
Federated Reinforcement Learning: Linear Speedup Under Markovian
Sampling

Sajad Khodadadian 1 Pranay Sharma 2 Gauri Joshi 2 Siva Theja Maguluri 1

Abstract

Since reinforcement learning algorithms are no-
toriously data-intensive, the task of sampling ob-
servations from the environment is usually split
across multiple agents. However, transferring
these observations from the agents to a central
location can be prohibitively expensive in terms
of the communication cost, and it can also com-
promise the privacy of each agent’s local behavior
policy. In this paper, we consider a federated
reinforcement learning framework where multi-
ple agents collaboratively learn a global model,
without sharing their individual data and poli-
cies. Each agent maintains a local copy of the
model and updates it using locally sampled data.
Although having N agents enables the sampling
of N times more data, it is not clear if it leads to
proportional convergence speedup. We propose
federated versions of on-policy TD, off-policy TD
and Q-learning, and analyze their convergence.
For all these algorithms, to the best of our knowl-
edge, we are the first to consider Markovian noise
and multiple local updates, and prove a linear
convergence speedup with respect to the number
of agents. To obtain these results, we show that
federated TD and Q-learning are special cases of
a general framework for federated stochastic ap-
proximation with Markovian noise, and we lever-
age this framework to provide a unified conver-
gence analysis that applies to all the algorithms.

1H. Milton Stewart School of Industrial & Systems Engineer-
ing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
2Electrical and Computer Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 15213, USA,. Correspondence to: Sajad
Khodadadian <skhodadadian3@gatech.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Reinforcement Learning (RL) is an online sequential
decision-making paradigm that is typically modeled as a
Markov Decision Process (MDP) (Sutton & Barto, 2018). In
an RL task, the agent aims to learn the optimal policy of the
MDP that maximizes long-term reward, without knowledge
of its parameters. The agent performs this task by repeatedly
interacting with the environment according to a behavior
policy, which in turn provides data samples that can be used
to improve the policy. This MDP-based RL framework
has a vast array of applications including self-driving cars
(Yurtsever et al., 2020), robotic systems (Kober et al., 2013),
games (Silver et al., 2016), UAV-based surveillance (Yun
et al., 2022), and Internet of Things (IoT) (Lim et al., 2020).

Due to the high-dimensional state and action spaces that are
typical in these applications, RL algorithms are extremely
data hungry (Duan et al., 2016; Kalashnikov et al., 2018;
Akkaya et al., 2019), and training RL models with limited
data can result in low accuracy and high output variance
(Islam et al., 2017; Xu et al., 2021). However, generating
massive amounts of training data sequentially can be ex-
tremely time consuming (Nair et al., 2015). Hence, many
practical implementations of RL algorithms from Atari do-
main to Cyber-Physical Systems rely on parallel sampling of
the data from the environment using multiple agents (Mnih
et al., 2016; Espeholt et al., 2018; Chen et al., 2021a; Xu
et al., 2021). It was empirically shown in (Mnih et al., 2016)
that the federated version of these algorithms yields faster
training time and improved accuracy. A naive approach
would be to transfer all the agents’ locally collected data to
a central server that uses it for training. However, in appli-
cations such as IoT (Chen & Giannakis, 2018), autonomous
driving (Shalev-Shwartz et al., 2016) and robotics (Kalash-
nikov et al., 2018), communicating high-dimensional data
over low bandwidth network link can be prohibitively slow.
Moreover, sharing individual data of the agents with the
server might also be undesirable due to privacy concerns
(Yang et al., 2019; Mothukuri et al., 2021).

Federated Learning (FL) (Kairouz et al., 2019) is an emerg-
ing distributed learning framework, where multiple agents
seek to collaboratively train a shared model, while comply-
ing with the privacy and data confidentiality requirements

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

<latexit sha1_base64="EjP500rdggZ3mIv66PoToFP54dY=">AAACK3icbVDLSgMxFM34rPVVdekmWARBKDMi6qZQ6kYQpIJ9QKcdMmmmTZt5kGSEEuZ/3PgrLnThA7f+h5l2EG09EDg59x7uvceNGBXSNN+NhcWl5ZXV3Fp+fWNza7uws9sQYcwxqeOQhbzlIkEYDUhdUslIK+IE+S4jTXd0mdab94QLGgZ3chyRjo/6AfUoRlJLTqFq+0gOXE81EkfJ4+sElqHtcYSVlaibBNoi9h01LFtJd/L96e6qYeZwCkWzZE4A54mVkSLIUHMKz3YvxLFPAokZEqJtmZHsKMQlxYwkeTsWJEJ4hPqkrWmAfCI6anJrAg+10oNeyPULJJyovx0K+UKMfVd3pruK2Voq/ldrx9K76CgaRLEkAZ4O8mIGZQjT4GCPcoIlG2uCMKd6V4gHSCcldbx5HYI1e/I8aZyUrLOSdXtarFSzOHJgHxyAI2CBc1ABV6AG6gCDB/AEXsGb8Wi8GB/G57R1wcg8e+APjK9vX8qoZw==</latexit>

Vt+K =
1

N

NX

j=1

Vj
t+K

1

Agent 1 Agent N

Local observations & policy
not shared with central agent

K local updates to the
Value function Vt

Central Server

<latexit sha1_base64="CZ9+y2Lvpa/JUE3hUiWoRvAQg2s=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdVl047KCfUAby2Q6aYdOJmHmRikh/+HGhSJu/Rd3/o2TNgttPTBwOOde7pnjx4JrdJxvq7Syura+Ud6sbG3v7O5V9w/aOkoUZS0aiUh1faKZ4JK1kKNg3VgxEvqCdfzJTe53HpnSPJL3OI2ZF5KR5AGnBI300A8Jjv0gbWeDFLNBtebUnRnsZeIWpAYFmoPqV38Y0SRkEqkgWvdcJ0YvJQo5FSyr9BPNYkInZMR6hkoSMu2ls9SZfWKUoR1EyjyJ9kz9vZGSUOtp6JvJPKVe9HLxP6+XYHDlpVzGCTJJ54eCRNgY2XkF9pArRlFMDSFUcZPVpmOiCEVTVMWU4C5+eZm0z+ruRd29O681ros6ynAEx3AKLlxCA26hCS2goOAZXuHNerJerHfrYz5asoqdQ/gD6/MHKkqS8w==</latexit>

Vt
<latexit sha1_base64="CZ9+y2Lvpa/JUE3hUiWoRvAQg2s=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdVl047KCfUAby2Q6aYdOJmHmRikh/+HGhSJu/Rd3/o2TNgttPTBwOOde7pnjx4JrdJxvq7Syura+Ud6sbG3v7O5V9w/aOkoUZS0aiUh1faKZ4JK1kKNg3VgxEvqCdfzJTe53HpnSPJL3OI2ZF5KR5AGnBI300A8Jjv0gbWeDFLNBtebUnRnsZeIWpAYFmoPqV38Y0SRkEqkgWvdcJ0YvJQo5FSyr9BPNYkInZMR6hkoSMu2ls9SZfWKUoR1EyjyJ9kz9vZGSUOtp6JvJPKVe9HLxP6+XYHDlpVzGCTJJ54eCRNgY2XkF9pArRlFMDSFUcZPVpmOiCEVTVMWU4C5+eZm0z+ruRd29O681ros6ynAEx3AKLlxCA26hCS2goOAZXuHNerJerHfrYz5asoqdQ/gD6/MHKkqS8w==</latexit>

Vt
<latexit sha1_base64="CZ9+y2Lvpa/JUE3hUiWoRvAQg2s=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdVl047KCfUAby2Q6aYdOJmHmRikh/+HGhSJu/Rd3/o2TNgttPTBwOOde7pnjx4JrdJxvq7Syura+Ud6sbG3v7O5V9w/aOkoUZS0aiUh1faKZ4JK1kKNg3VgxEvqCdfzJTe53HpnSPJL3OI2ZF5KR5AGnBI300A8Jjv0gbWeDFLNBtebUnRnsZeIWpAYFmoPqV38Y0SRkEqkgWvdcJ0YvJQo5FSyr9BPNYkInZMR6hkoSMu2ls9SZfWKUoR1EyjyJ9kz9vZGSUOtp6JvJPKVe9HLxP6+XYHDlpVzGCTJJ54eCRNgY2XkF9pArRlFMDSFUcZPVpmOiCEVTVMWU4C5+eZm0z+ruRd29O681ros6ynAEx3AKLlxCA26hCS2goOAZXuHNerJerHfrYz5asoqdQ/gD6/MHKkqS8w==</latexit>

Vt<latexit sha1_base64="TCxcVluyiLMUlZEnTQnbuUtr6z8=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSIIQklE1GXRjeCmgn1AG8NkOmmHTiZhZiKWkF9x40IRt/6IO//GSduFth4YOJxzL/fMCRLOlHacb2tpeWV1bb20Ud7c2t7ZtfcqLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho+vCbz9SqVgs7vU4oV6EB4KFjGBtJN+u9CKsh0GYtfIH18/0yW3u21Wn5kyAFok7I1WYoeHbX71+TNKICk04VqrrOon2Miw1I5zm5V6qaILJCA9o11CBI6q8bJI9R0dG6aMwluYJjSbq740MR0qNo8BMFknVvFeI/3ndVIeXXsZEkmoqyPRQmHKkY1QUgfpMUqL52BBMJDNZERliiYk2dZVNCe78lxdJ67Tmntfcu7Nq/WpWRwkO4BCOwYULqMMNNKAJBJ7gGV7hzcqtF+vd+piOLlmznX34A+vzB9l3lFE=</latexit>

V1
t+K

<latexit sha1_base64="eTHpt2OE9DvTqaw+jU7OgQJcsGo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBosgCCURUZdFN4KbCvYBbQyT6aQdO3kwcyOWkF9x40IRt/6IO//GSZuFth4YOJxzL/fM8WLBFVjWt1FaWl5ZXSuvVzY2t7Z3zN1qW0WJpKxFIxHJrkcUEzxkLeAgWDeWjASeYB1vfJX7nUcmFY/CO5jEzAnIMOQ+pwS05JrVfkBg5PlpO7t/cFM4vslcs2bVrSnwIrELUkMFmq751R9ENAlYCFQQpXq2FYOTEgmcCpZV+oliMaFjMmQ9TUMSMOWk0+wZPtTKAPuR1C8EPFV/b6QkUGoSeHoyT6rmvVz8z+sl4F84KQ/jBFhIZ4f8RGCIcF4EHnDJKIiJJoRKrrNiOiKSUNB1VXQJ9vyXF0n7pG6f1e3b01rjsqijjPbRATpCNjpHDXSNmqiFKHpCz+gVvRmZ8WK8Gx+z0ZJR7OyhPzA+fwAxQJSK</latexit>

Vj
t+K

Agent j

<latexit sha1_base64="E3GHic3uy122/hQnLsqeJGCMhIE=">AAAB+3icbVDLSsNAFJ3UV62vWJdugkUQhJKIqMuiG0GQCvYBbQyT6aQdOpmEmRuxhPyKGxeKuPVH3Pk3TtostPXAwOGce7lnjh9zpsC2v43S0vLK6lp5vbKxubW9Y+5W2ypKJKEtEvFIdn2sKGeCtoABp91YUhz6nHb88VXudx6pVCwS9zCJqRvioWABIxi05JnVfohh5AdpO3u49VI4vsk8s2bX7SmsReIUpIYKND3zqz+ISBJSAYRjpXqOHYObYgmMcJpV+omiMSZjPKQ9TQUOqXLTafbMOtTKwAoiqZ8Aa6r+3khxqNQk9PVknlTNe7n4n9dLILhwUybiBKggs0NBwi2IrLwIa8AkJcAnmmAimc5qkRGWmICuq6JLcOa/vEjaJ3XnrO7cndYal0UdZbSPDtARctA5aqBr1EQtRNATekav6M3IjBfj3fiYjZaMYmcP/YHx+QMGKJRu</latexit>

VN
t+K

Figure 1. Schematic representation of FRL where N agents follow
a Markovian trajectory and synchronize their parameter every K
time steps.

(Qi et al., 2021; Yang et al., 2019). The key idea is that
the agents collect data, use on-device computation capabil-
ities to locally train the model, and only share the model
updates with the central server. Not sharing data reduces
communication cost and also alleviates privacy concerns.

Recently, there is a growing interest in employing FL for
RL algorithms (also known as FRL) (Nadiger et al., 2019;
Liu et al., 2019; Ren et al., 2019; Xu et al., 2021; Zhang
et al., 2022). Unlike standard supervised learning where
data is collected before training begins, in FRL, each agent
collects data by following its own Markovian trajectory,
while simultaneously updating the model parameters.

To ensure convergence, after every K time steps, the agents
communicate with the central server to synchronize their
parameters (see Figure 1). Intuitively, using more agents
and a higher synchronization frequency should improve the
convergence of training algorithm. However, the following
questions remain to be concretely answered:

1. With N agents, do we get an N -fold (linear) speedup
in the convergence of FRL algorithms?

2. How does the convergence speed and the final error
scale with synchronization frequency K?

While these questions are well-studied (Wang & Joshi, 2021;
Stich, 2018; Qu et al., 2020; Li et al., 2019) in federated su-
pervised learning, only a few works (Wai, 2020; Shen et al.,
2020) have attempted to answer them in the context of FRL.
However, none of them have established the convergence
analysis of FRL algorithms by considering Markovian local
trajectories and multiple local updates (see Table 1).

In this paper, we tackle this challenging open problem
and answer both the questions listed above. We propose
communication-efficient federated versions of on-policy TD,

off-policy TD, and Q-learning algorithms. In addition, we
are the first to establish the convergence bounds for these
algorithms in the realistic Markovian setting, showing a lin-
ear speedup in the number of agents. Previous works (Liu
& Olshevsky, 2021; Shen et al., 2020) on distributed RL
have only shown such a speedup by assuming i.i.d. noise.
Moreover, based on experiments, (Shen et al., 2020) conjec-
tures that linear speedup may be possible under the realistic
Markov noise setting, which we establish analytically. The
main contributions and organization of the paper are sum-
marized below.

• In the on-policy setting, in Section 4 we propose and
analyze federated TD-learning with linear function
approximation, where the agents’ goal is to evaluate a
common policy using on-policy samples collected in
parallel from their environments. The agents only share
the updated value function (not data) with the central
server, thus saving communication cost. We prove a
linear convergence speedup with the number of agents
and also characterize the impact of communication
frequency on the convergence.

• In the off-policy setting, in Section 5 we propose and
analyze the federated off-policy TD-learning and fed-
erated Q-learning algorithms. Again, we establish a
linear speedup in their convergence with respect to
the number of agents and characterize the impact of
synchronization frequency on the convergence. Since
every agent samples data using a private policy and
only communicates the updated value or Q-function,
off-policy FRL helps keep both the data as well as the
policy private.

• In Section 6, we propose a general Federated
Stochastic Approximation framework with Markovian
noise (FedSAM) which subsumes both federated TD-
learning and federatedQ-learning algorithms proposed
above. Considering Markovian sampling noise poses
a significant challenge in the analysis of this algo-
rithm. The convergence result for FedSAM serves as
a workhorse that enables us to analyze both federated
TD-learning and federated Q-learning. We character-
ize the convergence of FedSAM with a refined analysis
of general stochastic approximation algorithms, funda-
mentally improving upon prior work.

2. Related Work
Single node TD-learning and Q-learning. Most existing
RL literature is focused on designing and analyzing algo-
rithms that run at a single computing node. In the on-policy
setting, the asymptotic convergence of TD-learning was
established in (Tsitsiklis & Van Roy, 1997; Tadić, 2001;
Borkar, 2009), and the finite-sample bounds were studied

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Table 1. Comparison of sample complexity results for federated supervised learning (local SGD) and reinforcement learning algorithms.
The possible distributed architectures are: 1) Worker-server, with a central server that coordinates with N agents; 2) Decentralized, where
each agent directly communicates with its neighboring agents, without a central server; and 3) Shared memory, where each agent modifies
a subset of the parameters of a global model held in a shared memory, that is accessible to all agents. (Recht et al., 2011).

Algorithm Architecture References Local
Updates

Markov
Noise

Linear
Speedup

Local SGD Worker-server (Khaled et al., 2020) 7

Local SGD Worker-server (Spiridonoff et al., 2021) 7

TD(0) Worker-server (Liu & Olshevsky, 2021) 7

Stochastic Approximation Decentralized (Wai, 2020) 7 7

A3C-TD(0) Shared memory (Shen et al., 2020) 7 7

A3C-TD(0) Shared memory (Shen et al., 2020) 7 7

TD & Q-learning Worker-server This paper

in (Dalal et al., 2018; Lakshminarayanan & Szepesvari,
2018; Bhandari et al., 2018; Srikant & Ying, 2019; Hu
& Syed, 2019; Chen et al., 2021c). In the off-policy set-
ting, (Maei, 2018; Zhang et al., 2020) study the asymptotic
and (Chen et al., 2020a; 2021c) characterize the finite time
bound of TD-learning. The Q-learning algorithm was first
proposed in (Watkins & Dayan, 1992). There has been a
long line of work to establish the convergence properties of
Q-learning. In particular, (Tsitsiklis, 1994; Jaakkola et al.,
1994; Bertsekas & Tsitsiklis, 1996b; Borkar & Meyn, 2000;
Borkar, 2009) characterize the asymptotic convergence ofQ-
learning, (Beck & Srikant, 2012b; 2013; Wainwright, 2019;
Chen et al., 2020a; 2021c) study the finite-sample conver-
gence bound in the mean-square sense, and (Even-Dar &
Mansour, 2004; Li et al., 2020; Qu & Wierman, 2020) study
the high-probability convergence bounds of Q-learning.

Federated Learning with i.i.d. Noise. When multiple
agents are used to expedite sample collection, transferring
the samples to a central server for the purpose of training
can be costly in applications with high-dimensional data
(Shao et al., 2019) and it may also compromise the agents’
privacy. Federated Learning (FL) is an emerging distributed
optimization paradigm (Konečnỳ et al., 2016; Kairouz et al.,
2019) that utilizes local computation at the agents to train
models, such that only model updates, not data, is shared
with the central server. In local Stochastic Gradient De-
scent (Local SGD or FedAvg) (McMahan et al., 2017; Stich,
2018), the core algorithm in FL, locally trained models
are periodically averaged by the central server in order to
achieve consensus among the agents at a reduced communi-
cation cost. While the convergence of local SGD has been
extensively studied in prior work (Khaled et al., 2020; Spiri-
donoff et al., 2021; Qu et al., 2020; Koloskova et al., 2020),
these works assume i.i.d. noise in the gradients, which is
acceptable for SGD but too restrictive for RL algorithms.

Distributed and Multi-agent RL. Some recent works have
analyzed distributed and multi-agent RL algorithms in the
presence of Markovian noise in various settings such as
decentralized stochastic approximation (Doan et al., 2019;
Sun et al., 2020; Wai, 2020; Zeng et al., 2020), TD learning
with linear function approximation (Wang et al., 2020a),
and off-policy TD in actor-critic algorithms (Chen et al.,
2021e;f). However, all these works consider decentralized
settings, where the agents communicate with their neighbors
after every local update. On the other hand, we consider
a federated setting, with each agent performing multiple
local updates between successive communication rounds,
thereby resulting in communication savings. In (Shen et al.,
2020), a parallel implementation of asynchronous advantage
actor-critic (A3C) algorithm (which does not have local
updates) has been proposed under both i.i.d. and Markov
sampling. However, the authors prove a linear speedup only
for the i.i.d. case, and an almost linear speedup is observed
experimentally for the Markovian case.

3. Preliminaries: Single Node Setting
We model our RL setting with a Markov Decision Process
(MDP) with 5 tuples (S,A,P,R, γ), where S and A are
finite sets of states and actions, P is the set of transition
probabilities, R is the reward function, and γ ∈ (0, 1) de-
notes the discount factor. At each time step t, the system
is in some state St, and the agent takes some action At
according to a policy π(·|St) in hand, which results in re-
ward R(St, At) for the agent. In the next time step, the
system transitions to a new state St+1 according to the state
transition probability P(·|St, At). This series of states and
actions (St, At)t≥0 constructs a Markov chain, which is the
source of the Markovian noise in RL. Throughout this paper
we assume that this Markov chain is irreducible and aperi-
odic (also known as ergodic). It is known that this Markov

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

chain asymptotically converges to a steady state, and we
denote its stationary distribution with µπ .

To measure the long-term reward achieved by following
policy π, we define the value function

V π(s)=E

[∞∑

t=0

γtR(St, At)|S0 = s,At ∼ π(·|St)

]
. (1)

Equation (1) is the tabular representation of the value func-
tion. Sometimes, however, the size of the state space |S| is
large, and storing V π(s) for all s ∈ S is computationally
infeasible. Hence, a low dimensional vector vπ ∈ Rd,
where d � |S|, can be used to approximate the value
function as V π(s) ≈ φ(s)>vπ (Tsitsiklis & Van Roy,
1997). Here φ(s) ∈ Rd is a given feature vector corre-
sponding to the state s. Using a low-dimensional vector
vπ to approximate a high-dimensional vector (V π(s))s∈S
is referred to as the function approximation paradigm in
RL. For each (s, a) pair, we also define the Q-function,
Qπ(s, a) = E[

∑∞
t=0 γ

tR(St, At)|S0 = s,A0 = a], which
will be employed in Q-learning.

3.1. Temporal Difference Learning

An intermediate goal in RL is to estimate the value function
(either (V π(s))s∈S or vπ) corresponding to a particular pol-
icy π using data collected from the environment. This task
is denoted as policy evaluation and one of the commonly-
used approaches to accomplish this is Temporal Difference
(TD)-learning (Sutton, 1988). TD-learning is an iterative
algorithm where the elements of a d (or |S|, in the tabular
setting) dimensional vector is updated until it converges to
vπ (or V π). This evaluated value function can be employed
in different RL algorithms such as actor-critic (Konda &
Tsitsiklis, 2000). In the on-policy function approximation
setting, the update of the n-step TD-learning is as follows

Sample At+n ∼ π(·|St+n), St+n+1 ∼ P(·|St+n, At+n)

update vt+1 = vt + αφ(St)
t+n−1∑

l=t

γl−t(R(Sl, Al)

+γφ(Sl+1)>vt−φ(Sl)
>vt),

(2)

where α is the step size. Note that in this setting, the evaluat-
ing policy and the sampling policy coincide. In contrast, in
the off-policy setting these two policies can in general differ,
and we need to account for this difference while running the
algorithm. We will further expand on TD-learning and its
variants in Sections 4.1 and 5.1.1.

3.2. Control Problem and Q-learning

Assuming some initial distribution ξ on the state space,
the average value function corresponding to policy π is

defined as V π(ξ) = Es∼ξ[V π(s)]. This scalar quantity is a
metric of average long-term rewards achieved by the agent,
when it starts from distribution ξ and follows policy π. The
ultimate goal of the agent is to obtain an optimal policy
π∗ which results in the maximum long-term rewards, i.e.
π∗ ∈ arg maxπ V

π(ξ). Throughout the paper, we denote
the parameters corresponding to the optimal policy with ∗,
e.g., V π

∗
(ξ) ≡ V ∗(ξ). The task of obtaining the optimal

policy in RL is denoted as the control problem.

Q-learning (Watkins & Dayan, 1992) is one of the
most widely used algorithms in RL to solve the con-
trol problem. At each time step t, Q-learning pre-
serves a |S|.|A| dimensional table Qt, and updates it
table as Qt+1(s, a) = Qt(St, At) + α(R(St, At) +
γmaxaQt(St+1, a)−Qt(St, At)), if (s, a) = (St, At) and
Qt+1(s, a) = Qt(s, a) otherwise. The |S||A| elements of
the vector Qt are updated iteratively until it converges to
Q∗, corresponding to an optimal policy. Using Q∗, one can
obtain an optimal policy via greedy selection.

3.3. Stochastic Approximation and Finite Sample
Bounds

Both TD-learning and Q-learning can be seen as variants
of stochastic approximation (Chen et al., 2020b; 2019b;a;
2021d; Tsitsiklis, 1994). While generic stochastic approxi-
mation algorithms are studied under i.i.d. noise (Even-Dar
& Mansour, 2004; Shah & Xie, 2018; Wainwright, 2019;
Liu et al., 2015; Dalal et al., 2018), to apply them for study-
ing RL we need to understand stochastic approximation
under Markovian noise (Tsitsiklis, 1994; Qu & Wierman,
2020; Srikant & Ying, 2019; Chen et al., 2021c) which is
significantly more challenging.

For a generic stochastic approximation (i.i.d. or Markovian
noise) with constant step size α, parameter vector xT , and
convergent point x∗, it can be shown that the algorithm have
the following convergence behaviour

E[‖xT − x∗‖2] ≤ C1(1− C0α)T + C2α, (3)

where C0, C1, and C2 are some problem dependent positive
constants (Look at Appendix A for a discussion on a lower
bound on the convergence of general stochastic approxima-
tion). The first term is denoted as the bias and the second
term is called the variance. According to this bound, xT
geometrically converges to a ball around x∗ with radius
proportional to C2α. Notice that we can always reduce the
variance term by reducing the step size α, but this will lead
to slower convergence in the bias term. In particular, in
order to get E[‖xT − x∗‖2] ≤ ε, it is easy to see that we
need T ≥ O

(C2
ε log 1

ε

)
sample complexity. Now suppose

the constant C2 is large. In this case, the variance term in
the bound in (3) is large, and the sample complexity, which
is proportional to C2 will be poor. Notice that by the dis-

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

cussion in Appendix A, this bound is tight and cannot be
improved.

This is where the FL can be employed in order to control
the variance term by generating more data. For instance,
in federated TD-learning, multiple agents work together
to evaluate the value function simultaneously. Due to this
collaboration, the agents can estimate the true value function
with a lower variance. The same holds for estimating Q∗ in
Q-learning.

4. Federated On-policy RL
4.1. On-policy TD-learning with linear function

approximation

In this section we describe the TD-learning with linear func-
tion approximation and online data samples in the single
node setting. In this problem, we consider a full rank feature
matrix Φ ∈ |S| × d, and we denote s-th row of this matrix
with φ(s), s ∈ S . The goal is to find vπ ∈ Rd which solves
the following fixed point equation:

Φvπ = ΠΦ((T π)nΦvπ). (4)

In equation (4), ΠΦ(·) is the projection with respect to the
weighted 2-norm, i.e., ΠΦ(V) = arg minv∈Rd ‖Φv−V‖π .
Here ‖V‖π =

√
V>µπV and µπ is a diagonal matrix

with diagonal entries corresponding to µπ. In equation (4),
(T π)n denotes the n-step Bellman operator (Tsitsiklis &
Van Roy, 1997). It is known (Tsitsiklis & Van Roy, 1997)
that equation (4) has a unique solution vπ, and Φvπ is
“close” to the true value function V π. n-step TD-learning
algorithm, which was shown in (2), is an iterative algorithm
to obtain this unique fixed point using samples from the
environment. Note that in this algorithm states and actions
are sampled over a single trajectory, and hence the noise in
updating vt is Markovian. Furthermore, since the policy
which samples the actions and the the evaluating policy
are both π, this algorithm is on-policy. As described in
(Tsitsiklis & Van Roy, 1997; Bertsekas & Tsitsiklis, 1996a),
the TD-learning algorithm can be studied under the umbrella
of linear stochastic approximation with Markovian noise.
More recently, the authors in (Bhandari et al., 2018; Srikant
& Ying, 2019) have shown that the update parameter of TD-
learning vt converges to vπ in the form E[‖vt − vπ‖22] ≤
O((1 − C0α)t + α). In the next section we show how FL
can improve this result.

4.2. Federated TD-learning with linear function
approximation

The federated version of on-policy n-step TD-learning with
linear function approximation is shown in Algorithm 1.
In this algorithm we consider N agents which collabo-
ratively work together to evaluate vπ. For each agent
i, i = 1, 2, . . . , N , we initialize their corresponding pa-

rameters vi0 = 0. Furthermore, each agent i samples
its initial state Si0 from some given distribution ξ. In the
next time steps, each agent follows a single Markovian tra-
jectory generated by policy π, independently from other
agents. At each time t, the parameter of each agent i is
updated using this independently generated trajectory as
vit+1 = vit + αφ(Sit)E

i
t,n. Finally, in order to ensure con-

vergence to a global optimum, every K time steps all the
agents send their parameters to a central server. The central
server evaluates the average of these parameters and returns
this average to each of the agents. Each agent then continues
their update procedure using this average.

Notice that the averaging step is essential to ensure syn-
chronization among the agents. Smaller K results in more
frequent synchronization, and hence better convergence
guarantees. However, setting smaller K is equivalent to
more number of communications between the single agents
and the central server, which incurs higher cost. Hence, an
intermediate value forK has to be chosen to strike a balance
between the communication cost and the accuracy. At the
end, the algorithm samples a time step T̂ ∼ qcT , where

qcT (t) =
c−t

∑T−1
t′=0 c

−t′
for t = 0, 1, . . . , T − 1 (5)

and c > 1 is some constant. Since we have qcT (t) ≥ 0

and
∑T−1
t=0 qcT (t) = 1, it is clear that qcT (·) is a probability

distribution over the time interval [0, T − 1]. In Theorem
4.1 we characterize the convergence of this algorithm as
a function of α, N , and K. Throughout the paper, Õ(·)
ignores the logarithmic terms.

Algorithm 1 Federated n-step TD (On-policy, Function
Approx.)

1: Input: Policy π, ξ
2: Initialization: vi0 = 0 and Si0 ∼ ξ and {Ail, Sil+1} ∼
π for 0 ≤ l ≤ n− 1 and all i

3: for t = 0 to T − 1 do
4: for i = 1, . . . , N do
5: Sample Ait+n ∼ π(·|Sit+n), Sit+n+1 ∼

P(·|Sit+n, Ait+n)
6: eit,l = R(Sil , A

i
l) +γφ(Sil+1)>vit−φ(Sil)

>vit for
l = t, . . . , t+ n− 1

7: Eit,n =
∑t+n−1
l=t γl−teit,l

8: vit+1 = vit + αφ(Sit)E
i
t,n

9: end for
10: if t+ 1 mod K = 0 then
11: vit+1 ← 1

N

∑N
j=1 vjt+1, ∀ i ∈ [N]

12: end if
13: end for
14: Sample T̂ ∼ qcTDLT

15: Return: 1
N

∑N
i=1 vi

T̂

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Theorem 4.1. Let vT̂ = 1
N

∑N
i=1 vi

T̂
denote the average

of the parameters across agents at the random time T̂ . For
small enough step size α, and T ≥ O(log 1

α), there exist
constant cTDL ∈ (0, 1) (see Section C.1 for precise state-
ment), such that we have

E[‖vT̂ − vπ‖22] ≤CTDL1

1

α
(1− αCTDL0)T + CTDL2

ατ2
α

N

+ CTDL3 (K − 1)α2τα + CTDL4 α3τ2
α,

where CTDLi , i = 0, 1, 2, 3, 4 are problem dependent
constants, and τα = O(log(1/α)). By choosing α =

O(log(NT)
T) andK = T/N , we achieve E[‖vT̂−vπ‖22] ≤ ε

within T = Õ
(

1
Nε

)
iterations.

For brevity purposes, here we did not show the exact depen-
dence of the constants CTDLi , i = 0, 1, 2, 3 on the problem
dependent constants. For a discussion on the detailed ex-
pression look at Section C.1 in the appendix.

Theorem 4.1 shows that federated TD-learning with linear
function approximation enjoys a linear speedup with respect
to the number of agents. Compared to the convergence
bound of general stochastic approximation in (3), the bound
in Theorem 4.1 has three differences. Firstly, the variance
term which is proportional to the step size α is divided
with the number of agents N . This will allow us to control
the variance (and hence improve sample complexity) by
employing more number of agents. Secondly, we have
an extra term which is zero with perfect synchronization
K = 1. Although this term is not divided with N , but it
is proportional to α2, which is one order higher than the
variance term in (3). Finally, the last term is of the order
Õ(α3), which can be handled by choosing small enough
step size.

Furthermore, according to the choice of K in Theorem 4.1,
after T iterations, the communication cost of federated TD is
T/K = N . However, by employing federated TD-learning
in the naive setting where all the agents communicate with
the central server at every time step, the communication cost
will be O(T). Hence, we observe that by carefully tuning
the hyper parameters of federated TD, we can significantly
reduce the communication cost of the overall algorithm,
while not loosing performance in terms of the sample com-
plexity.

Finally, federated TD-learning Algorithm 1 preserves the
privacy of the agents. In particular, since the single agents
only require to share their parameters vit+1, the central
server will not be exposed to the state-action-reward tra-
jectory generated by each agent. This can be essential in
some applications where privacy is an issue (Mothukuri
et al., 2021; Truex et al., 2019). Examples of such applica-
tions include autonomous driving (Liang et al., 2019; Zhao
et al., 2021), Internet of Things (IoT) (Nguyen et al., 2021;

Ren et al., 2019; Wang et al., 2020b), and cloud robotics
(Liu et al., 2019; Xu et al., 2021).

Remark. In algorithm 1, the randomness in choosing T̂ is
independent of all the other randomness in the problem.
Hence, in a practical setting, one can sample T̂ ahead of
time, before running the algorithm, and stop the algorithm
at time step T̂ and output vT̂ . By this method, we require
only a single data point to be saved, which results in the
memory complexity of O(1) for the algorithm.

5. Federated Off-Policy RL
On-policy TD-learning requires online sampling from the
environment, which might be costly (e.g. robotics (Gu et al.,
2017; Levine et al., 2020)), high risk (e.g. self-driving cars
(Yurtsever et al., 2020; Maddern et al., 2017)), or unethical
(e.g. in clinical trials (Gottesman et al., 2019; Liu et al.,
2018; Gottesman et al., 2020)). Off-policy training in RL
refers to the paradigm where we use data collected by a
fixed behaviour policy to run the algorithm. When employed
in federated setting, off-policy RL has privacy advantages
as well (Foerster et al., 2016; Qi et al., 2021; Zhuo et al.,
2019). In particular, suppose each single agent attains a
unique sampling policy, and they do not wish to reveal
these policies to the central server. In off-policy FL, agents
only transmit sampled data, and hence the sampling policies
remain private to each agent.

In Section 5.1 we will discuss off-policy TD-learning and
in Section 5.2 we will discuss Q-learning, which is an off-
policy control algorithm. For the off-policy algorithms,
we only study the tabular setting. Notice that it has been
observed that the combination of off-policy sampling and
function approximation in RL (also known as deadly triad
(Sutton & Barto, 2018)) can result in instability or even di-
vergence (Baird, 1995). Recently there has been some work
to overcome deadly triad (Chen et al., 2021b). Extension of
our work to function approximation in the off-policy setting
is a future research direction.

5.1. Federated Off-Policy TD-learning

In the following, we first discuss single-node off-policy TD-
learning, and then we generalize it to the federated setting.

5.1.1. OFF-POLICY TD-LEARNING

In off-policy TD-learning the goal is to evaluate the value
function Vπ = (V π(s))s∈S corresponding to the policy π
using data sampled from some fixed behaviour policy πb. In
this setting, the evaluating policy π and the sampling policy
πb can be arbitrarily different, and we need to account for
this difference while performing the evaluation. Although
π and πb can be different, notice that the value function
Vπ does not depend on πb. In order to account for this

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

difference, we introduce the notion of importance sampling
as Ib(s, a) = π(a|s)

πb(a|s) which is employed in the off-policy
TD-learning.

Recently, several works studied the finite-time convergence
of off-policy TD-learning. In particular, the authors in (Kho-
dadadian et al., 2021; Chen et al., 2021c; 2020b; 2021d)
show that, similar to on-policy TD, off-policy TD-learning
can be studied under the umbrella of stochastic approxi-
mation. Hence, this algorithm enjoys similar convergence
behaviour as (3).

5.1.2. FEDERATED OFF-POLICY TD-LEARNING

The federated version of n-step off-policy TD-learning is
shown in Algorithm 2. In this algorithm, each agent i at-
tains a unique (and private) sampling policy πi and fol-
lows an independent trajectory generated by this policy.
Furthermore, at each time step t, each agent i attains a |S|-
dimensional vector Vi

t and updates this vector using the sam-
ples generated by πi. In order to account for the off-policy
sampling, each agent utilizes I(i)(Si, Ai) = π(Ai|Si)

πi(Ai|Si) in
the update of their algorithm. We further define Imax =
maxs,a,i I

(i)(s, a), which is a measure of discrepancy be-
tween the evaluating policy π and sampling policy πi of all
the agents.

In order to ensure synchronization, all the agents transmit
their parameter vectors to the central server every K time
steps. The central server returns the average of these vec-
tors to each agent and each agent follows this averaged
vector afterwards. Notice that in federated off-policy TD-
learning Algorithm 2, each agent share neither their sam-
pled trajectory of state-action-rewards, nor their sampling
policy with the central server. This provides two levels
of privacy for the single agents. At the end, the algo-
rithm samples a time step T̂ ∼ qcTDT , where the distri-
bution qcT is defined in (5) and cTD = 1 − αϕTD

2 , where

ϕTD = 1 − 0.5e1/4(2−µmin(1−γn+1))√
√
e−1+

(
2−µmin(1−γn+1)

2−2µmin(1−γn+1)

)2
. Here, we de-

note µmin = mins,i µ
πi(s). The constant cTD is carefully

chosen to ensure the convergence of Algorithm 2. Further-
more, for small enough step size α, it can be shown that
0 < cTD < 1.
Theorem 5.1 states the convergence of this Algorithm.

Theorem 5.1. Consider the federated n-step off-policy TD-
learning Algorithm 2. Denote VT̂ = 1

N

∑N
i=1 Vi

T̂
. For

small enough step size α and large enough T , we have

E[‖VT̂ −Vπ‖2∞] ≤CTDT1

1

α
cTTD + CTDT2

ατ2
α

N

+ CTDT3 (K − 1)α2τα,

where CTDT1 = C̄TDT1 .
I4n−2
max

µmin(1−γ)3 , CTDT2 =

Algorithm 2 Federated n-step TD (Off-policy Tabular Set-
ting)

1: Input: Policy π, ξ
2: Initialization: Vi

0 = 0 and Si0 ∼ ξ and {Ail, Sil+1} ∼
πi for 0 ≤ l ≤ n− 1 and all i

3: for t = 0 to T − 1 do
4: for i = 1, . . . , N do
5: Sample Ait+n ∼ πi(·|Sit+n), Sit+n+1 ∼

P(·|Sit+n, Ait+n)
6: eit,l = R(Sil , A

i
l)+γVi

t(S
i
l+1)−Vi

t(S
i
l)

7: Update Vi
t+1(s) = Vi

t(s) +

α
∑t+n−1
l=t γl−t

[
Πl
j=tI

(i)(Sij , A
i
j)
]
eit,l if s = Sit

and Vi
t+1(s) = Vi

t(s) otherwise.
8: end for
9: if t+ 1 mod K = 0 then

10: Vi
t+1 ← 1

N

∑N
j=1 Vj

t+1, ∀ i ∈ [N]
11: end if
12: end for
13: Sample T̂ ∼ qcTDT

14: Return: 1
N

∑N
i=1 Vi

T̂

C̄TDT2 .
I3n−1
max |S| log2(|S|)
µ2
min(1−γ)4

, CTDT3 = C̄TDT3 .
I7n−3
max |S|

2 log2(|S|)
µ4
min(1−γ)8

,

and C̄TDTi , i = 1, 2, 3 are universal problem indepen-
dent constants. In addition, choosing α = 8 log(NT)

TϕTD

and K = T/N , we have E[‖VT̂ − Vπ‖2∞] ≤ ε after

T = Õ
(

1
Nε .

I7n−3
max |S|

2 log2(|S|)
µ5
min(1−γ)9

)
iterations.

The proof is given in Section C.2 in the appendix.

Note that similar to on-policy TD-learning Algorithm 1,
off-policy TD-learning also enjoys a linear speedup while
maintaining a low communication cost. In addition, this
algorithm preserves the privacy of the agents by holding
both the data and the sampling policy private.

5.2. Federated Q-learning

So far we have discussed policy evaluation problem with
on and off-policy samples. Next we aim at solving the
control problem by employing the celebrated Q-learning
algorithm (Watkins & Dayan, 1992; Tsitsiklis, 1994). In
the next section we will explain the Q-learning algorithm.
Further, in Section 5.2.2 we will provide a federated version
of Q-learning along with its convergence result.

5.2.1. Q-LEARNING

The goal ofQ-learning is to evaluateQ∗, which is the unique
Q-function corresponding to the optimal policy. Knowing
Q∗, one can obtain an optimal policy through a greedy
selection (Puterman, 2014), and hence resolve the control
problem.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Suppose {St, At}t≥0 is generated by a fixed behaviour pol-
icy πb. At each time step t, Q-learning preserves a |S|.|A|
table Qt and updates the elements of this table as shown in
Section 3.2. By assuming πb to be an ergodic policy, the
asymptotic convergence of Qt to Q∗ has been established
in (Bertsekas & Tsitsiklis, 1996b). Furthermore, it can be
shown that Q-learning is a special case of stochastic ap-
proximation and enjoys a convergence bound similar to (3)
(Beck & Srikant, 2012a; Li et al., 2020; Qu & Wierman,
2020; Chen et al., 2021c).

Two points worth mentioning about the Q-learning algo-
rithm. Firstly, Q-learning is an off-policy algorithm in the
sense that only samples from a fixed ergodic policy is needed
to perform the algorithm. Secondly, as opposed to the TD-
learning, the update of the Q-learning is non-linear. This
imposes a sharp contrast between the analysis of Q-learning
and TD-learning (Chen et al., 2019a).

5.2.2. FEDERATED Q-LEARNING

Algorithm 3 provides the federated version of Q-learning.
We characterize its convergence in the following theorem.

Algorithm 3 Federated Q-learning
1: Input: Sampling policy πib for i = 1, 2, . . . , N , initial

distribution ξ
2: Initialization: Qi0 = 0 and Si0 ∼ ξ for all i
3: for t = 0 to T − 1 do
4: for i = 1, . . . , N do
5: Sample Ait ∼ πib(·|Sit), Sit+1 ∼ P(·|Sit , Ait)
6: Update Qit+1(s, a) = Qit(S

i
t , A

i
t)+

α
[
R(Sit , Ait) + γmaxaQ

i
t(S

i
t+1, a)−Qit(Sit , Ait)

]
,

if (s, a) = (Sit , A
i
t) and Qit+1(s, a) = Qit(s, a)

otherwise.
7: end for
8: if t+ 1 mod K = 0 then
9: Qit+1 ← 1

N

∑N
j=1Q

j
t+1, ∀ i ∈ [N]

10: end if
11: end for
12: Sample: T̂ ∼ qcQT
13: Return: 1

N

∑N
i=1Q

i
T̂

Theorem 5.2. Consider the federated Q-learning Algo-
rithm 3 with cQ = 1 − αϕQ

2 ∈ (0, 1) , where ϕQ =

1 − 0.5e1/4(2−µmin(1−γ))√
√
e−1+

(
2−µmin(1−γ)
2−2µmin(1−γ)

)2
and we denote µmin =

mins,a,i µ
πi(s)πi(a|s). Denote QT̂ = 1

N

∑N
i=1Q

i
T̂

. For
small enough step size α and large enough T , we have

E[‖QT̂ −Q
∗‖2∞] ≤ CQ1

1

α
cTQ + CQ2

ατ2
α

N
+ CQ3 (K − 1)α2τα,

where CQ1 = C̄Q1 . 1
µmin(1−γ)3 , CQ2 = C̄Q2 .

|S| log2(|S|)
µ2
min(1−γ)4

, CQ3 =

C̄Q3 .
|S|2 log2(|S|)
µ4
min(1−γ)8

, and C̄Qi , i = 1, 2, 3 are universal problem

independent constants. In addition, choosing α = 8 log(NT)
TϕQ

and K = T/N , we have E[‖QT̂ − Q∗‖2∞] ≤ ε within

T = Õ
(

1
Nε .
|S|2 log2(|S|)
µ5
min(1−γ)9

)
iterations.

According to Theorem 5.2, federated Q-learning Algorithm
3, similar to federated off-policy TD-learning, enjoys lin-
ear speedup, communication efficiency as well as privacy
guarantees. We would like to emphasize that the update of
Q-learning is non-linear. Hence the result of Theorem 5.2
cannot be derived from Theorems 4.1 and 5.1.

6. Generalized Federated Stochastic
Approximation

In this section we study the convergence of a general fed-
erated stochastic approximation for contractive operators,
FedSAM, which is presented in Algorithm 4. In this algo-
rithm there are N agents i = 1, 2, . . . , N . At each time
step t ≥ 0, each agent i maintains the parameter θit ∈ Rd.
At time t = 0, all agents initialize their parameters with
θi0 = θ0. Next, at time t ≥ 0, each agent i updates its param-
eter as θit+1 = θit + α

(
Gi(θit,y

i
t)− θit + bi(yit)

)
. Here

α denotes the step size, and yit is a noise which is Marko-
vian along the time t, but is independent across the agents
i. This notion is defined more concretely in Assumption
6.4. We note that functions Gi(·, ·) and bi(·) are allowed
to be dependent on the agent i. This allows us to employ
the convergence bound of FedSAM in order to derive the
convergence bound of off-policy TD-learning with different
behaviour policies across agents. In order to avoid diver-
gence, every K time steps we synchronize the parameters
of all the agents as θit ← θt , 1

N

∑N
j=1 θ

j
t , for all i ∈ [N].

Note that although smaller K corresponds to more frequent
synchronization and hence more “accurate” updates, at the
same time it results in a higher communication cost, which
is not desirable. Hence, in order to determine the optimal
choice of synchronization period, it is essential to charac-
terize the dependence of the convergence on K. This is one
of the results which we will derive in Theorem B.1. Finally,
the algorithm samples T̂ ∼ qcT , where qcT (t) = c−t∑T−1

t′=0
c−t′

and outputs θT̂ . This sampling scheme is essential for the
convergence of overall algorithm. We further make some
assumptions regarding the underlying process.

First, we assume that the expectation of Gi(θ,yit) geometri-
cally converges to some function Ḡi(θ) and the expectation
of bi(yit) geometrically converges to 0. In particular, we
have the following assumption.

Assumption 6.1. For every agent i, there exist a function
Ḡi(θ) such that we have

lim
t→∞

E[Gi(θ,yit)] = Ḡi(θ)

lim
t→∞

E[bi(yit)] = 0. (6)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Algorithm 4 Federated Stochastic Approximation with
Markovian Noise (FedSAM)

1: Input: cFSAM , T, θ0,K, α
2: θi0 = θ0 for all i = 1, . . . , N .
3: for t = 0 to T − 1 do
4: θit+1 = θit + α

(
Gi(θit,y

i
t)− θit + bi(yit)

)
, ∀ i ∈

[N]
5: if t+ 1 mod K = 0 then
6: θit+1 = θt+1 , 1

N

∑N
j=1 θ

j
t+1, ∀ i ∈ [N]

7: end if
8: end for
9: Sample T̂ ∼ qcFSAMT (·).

10: Return: 1
N

∑N
i=1 θ

i
T̂

Furthermore, there exists m1,m2 ≥ 0 and ρ ∈ [0, 1), such
that for every i = 1, 2, . . . , N ,

‖Ḡi(θ)− E[Gi(θ,yit)]‖c ≤ m1‖θ‖cρt

‖E[bi(yit)]‖c ≤ m2ρ
t,

(7)

where ‖ · ‖c is a given norm.

Next, we assume a contraction property on the expected
operator Ḡi(θ).
Assumption 6.2. We assume all expected operators Ḡi(θ)
are contraction mappings with respect to ‖ · ‖c with contrac-
tion factor γc ∈ (0, 1). That is, for all i = 1, 2, . . . , N ,

‖Ḡi(θ1)− Ḡi(θ2)‖c ≤ γc‖θ1 − θ2‖c, ∀ θ1,θ2 ∈ Rd.

Next, we consider some Lipschitz and boundedness proper-
ties on Gi(·, ·) and bi(·).
Assumption 6.3. For all i = 1, . . . , N , there exist constants
A1, A2 and B such that

1. ‖Gi(θ1,y
i)−Gi(θ2,y

i)‖c ≤ A1‖θ1 − θ2‖c, for all
θ1,θ2,y

i.

2. ‖Gi(θ,yi)‖c ≤ A2‖θ‖c for all θ,yi.

3. ‖bi(yi)‖c ≤ B for all yi.

Remark. By Assumption 6.2 and due to the Banach fixed
point theorem, Ḡi(·) has a unique fixed point for all i =
1, 2, . . . , N . Furthermore, by Assumption 6.3, we have
Gi(0,y) = 0. Hence the point 0 is the unique fixed point
of Ḡi(·).

Finally, we impose an assumption on the random data yit.
Assumption 6.4. We assume that the Markovian noise yit
(Markovian with respect to time t) is independent across
agents i. In other words, for all measurable functions f(·)
and g(·), we assume the following

Et−r[f(yit)× g(yjt)] = Et−r[f(yit)]× Et−r[g(yjt)],

for all r ≤ t, i 6= j.

Theorem 6.1 states the convergence of Algorithm 4.
Theorem 6.1. Consider the federated stochastic approxi-
mation Algorithm 4 with cFSAM = 1− αϕ2

2 ∈ (0, 1) (ϕ2 is
defined in Equation (14) in the appendix), and synchroniza-
tion frequency K. Denote θt = 1

N

∑N
i=1 θ

i
t, and consider

θT̂ as the output of this algorithm after T iterations. As-
sume τα = d2 logρ

1
αe. For T ≥ max{K + τα, 2τα} and

small enough step size α, we have

E[‖θT̂ ‖
2
c] ≤C1

1

α
cT−2τα+1
FSAM + C2

ατ2
α

N
+ C3(K − 1)α2τα

+ C4α3τ2
α, (8)

where Ci, i = 1, 2, 3, 4 are some constants which are
specified precisely in Appendix B, and are independent
of K,α,N . Choosing α = 8 log(NT)

Tϕ2
and K = T/N ,

we get T = Õ
(

1
Nε

)
sample complexity for achieving

E[‖θT̂ ‖2c] ≤ ε.

Theorem 6.1 establishes the convergence of θT̂ to zero in
the expected mean-squared sense. The first term in (8) con-
verges geometrically to zero as T grows. The second term
is proportional to α similar as (3). However, the number
of agents N in the denominator ensures linear speedup,
meaning that for small enough α (such that α/N is the dom-
inant term), the sample complexity of each individual agent,
relative to a centralized system, is reduced by a factor of
N . The third term has quadratic dependence on α, and is
zero when we have perfect synchronization, i.e. K = 1.
The last term is proportional to α3, and has the weakest
dependency on the step size α. For K > 1 we can merge
the last two terms by upper bounding α3 ≤ α2. The current
upper bound, however, is tighter since with K = 1 (i.e.
perfect synchronization) we have no term in the order α2.
Note that similar bounds (sans the last α3 term) have been
established for the simpler i.i.d. noise case in the federated
setting (Khaled et al., 2020; Koloskova et al., 2020). Conse-
quently, we achieve the same sample complexity results for
the more general federated setting with Markov noise.
Remark. The bound in Theorem 6.1 holds only after T >
max{K+τα, 2τα} and for all synchronization periodsK ≥
1. At K = 1 the third term in the bound goes away, and we
will be left only with the first order term, which is linearly
decreasing with respect to the number of agents N , and the
third order term Õ(α3). The last term, however, is not tight
and can be further improved to be of the orderO(αj), j > 3.
However, for that we need to assume larger τα, which means
the bound only hold after a longer waiting time. In particular,
by choosing τα = dr logρ αe, we can get Õ(α2r−1) for the
last term (see the proof of Lemma B.2).

Acknowledgment
This work was partially supported by NSF awards CCF-
1944993, CCF-2045694, CNS-2112471, CMMI-2112533,
EPCN-2144316, and an award from Raytheon technologies.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

References
Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., Schneider, J., Tezak, N., Tworek, J., Welin-
der, P., Weng, L., Yuan, Q., Zaremba, W., and Zhang,
L. Solving Rubik’s cube with a robot hand. Preprint
arXiv:1910.07113, 2019.

Baird, L. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning Proceed-
ings 1995, pp. 30–37. Elsevier, 1995.

Banach, S. Sur les opérations dans les ensembles abstraits
et leur application aux équations intégrales. Fund. math,
3(1):133–181, 1922.

Beck, A. First-order methods in optimization, volume 25.
SIAM, 2017.

Beck, C. L. and Srikant, R. Error bounds for constant
step-size Q-learning. Syst. Control. Lett., 61:1203–1208,
2012a.

Beck, C. L. and Srikant, R. Error bounds for constant
step-size Q-learning. Systems & control letters, 61(12):
1203–1208, 2012b.

Beck, C. L. and Srikant, R. Improved upper bounds on the
expected error in constant step-size Q-learning. In 2013
American Control Conference, pp. 1926–1931. IEEE,
2013.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming. Athena Scientific, 1996a.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming. Athena Scientific, 1996b.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and
Bertsekas, D. P. Dynamic programming and optimal
control, volume 2. Athena scientific Belmont, MA, 1995.

Bhandari, J., Russo, D., and Singal, R. A finite time anal-
ysis of temporal difference learning with linear function
approximation. In Conference on learning theory, pp.
1691–1692. PMLR, 2018.

Borkar, V. S. Stochastic approximation: a dynamical sys-
tems viewpoint, volume 48. Springer, 2009.

Borkar, V. S. and Meyn, S. P. The ODE method for con-
vergence of stochastic approximation and reinforcement
learning. SIAM Journal on Control and Optimization, 38
(2):447–469, 2000.

Chen, T. and Giannakis, G. B. Bandit convex optimization
for scalable and dynamic iot management. IEEE Internet
of Things Journal, 6(1):1276–1286, 2018.

Chen, T., Zhang, K., Giannakis, G. B., and Basar, T.
Communication-efficient policy gradient methods for dis-
tributed reinforcement learning. IEEE Transactions on
Control of Network Systems, 2021a.

Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T., and Clarke,
J.-P. Finite-sample analysis of nonlinear stochastic ap-
proximation with applications in reinforcement learning.
Under review by Automatica, Preprint arXiv:1905.11425,
2019a.

Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T., and Clarke,
J.-P. Performance of Q-learning with linear function ap-
proximation: Stability and finite-time analysis. In OptRL
Workshop at NeuRIPS 2019, 2019b.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shan-
mugam, K. Finite-sample analysis of stochastic ap-
proximation using smooth convex envelopes. Under Re-
view at Mathematics of Operations Research, Preprint
arXiv:2002.00874, 2020a.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shan-
mugam, K. Finite-sample analysis of stochastic
approximation using smooth convex envelopes. In
Advances in Neural Information Processing Sys-
tems, 2020b. URL https://proceedings.
neurips.cc/paper/2020/file/
5d44ee6f2c3f71b73125876103c8f6c4-Paper.
pdf.

Chen, Z., Khodadadian, S., and Maguluri, S. T.
Finite-Sample Analysis of Off-Policy Natural Actor-
Critic with Linear Function Approximation. Preprint
arXiv:2105.12540, 2021b. Submitted to NeurIPS 2021.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam,
K. A Lyapunov Theory for Finite-Sample Guarantees
of Asynchronous Q-Learning and TD-Learning Vari-
ants. Under review by JMLR, Preprint arXiv:2102.01567,
2021c.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shan-
mugam, K. Finite-Sample Analysis of Off-Policy TD-
Learning via Generalized Bellman Operators. Preprint
arXiv:2106.12729, 2021d.

Chen, Z., Zhou, Y., and Chen, R. Multi-agent off-policy
td learning: Finite-time analysis with near-optimal sam-
ple complexity and communication complexity. arXiv
preprint arXiv:2103.13147, 2021e.

Chen, Z., Zhou, Y., Chen, R., and Zou, S. Sample
and communication-efficient decentralized actor-critic
algorithms with finite-time analysis. arXiv preprint
arXiv:2109.03699, 2021f.

https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Dalal, G., Szörényi, B., Thoppe, G., and Mannor, S. Finite
sample analysis for TD(0) with function approximation.
In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Doan, T., Maguluri, S., and Romberg, J. Finite-Time Anal-
ysis of Distributed TD(0) with Linear Function Approx-
imation on Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning, pp. 1626–
1635, 2019.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl 2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., Legg, S., and Kavukcuoglu, K. IMPALA: Scalable
Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures. In International Conference on
Machine Learning, pp. 1406–1415, 2018.

Even-Dar, E. and Mansour, Y. Learning Rates for Q-
Learning. J. Mach. Learn. Res., 5:1–25, 2004. ISSN
1532-4435.

Foerster, J. N., Assael, Y. M., De Freitas, N., and Whiteson,
S. Learning to communicate with deep multi-agent re-
inforcement learning. arXiv preprint arXiv:1605.06676,
2016.

Gottesman, O., Johansson, F., Komorowski, M., Faisal, A.,
Sontag, D., Doshi-Velez, F., and Celi, L. A. Guidelines
for reinforcement learning in healthcare. Nature medicine,
25(1):16–18, 2019.

Gottesman, O., Futoma, J., Liu, Y., Parbhoo, S., Celi, L.,
Brunskill, E., and Doshi-Velez, F. Interpretable off-policy
evaluation in reinforcement learning by highlighting in-
fluential transitions. In International Conference on Ma-
chine Learning, pp. 3658–3667. PMLR, 2020.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–
3396. IEEE, 2017.

Hu, B. and Syed, U. A. Characterizing the exact be-
haviors of temporal difference learning algorithms us-
ing markov jump linear system theory. arXiv preprint
arXiv:1906.06781, 2019.

Islam, R., Henderson, P., Gomrokchi, M., and Precup,
D. Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

Jaakkola, T., Jordan, M. I., and Singh, S. P. Convergence of
stochastic iterative dynamic programming algorithms. In
Advances in neural information processing systems, pp.
703–710, 1994.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Preprint arXiv:1912.04977, 2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation.
Preprint arXiv:1806.10293, 2018.

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter
theory for local sgd on identical and heterogeneous data.
In International Conference on Artificial Intelligence and
Statistics, pp. 4519–4529. PMLR, 2020.

Khodadadian, S., Chen, Z., and Maguluri, S. T. Finite-
Sample Analysis of Off-Policy Natural Actor-Critic Algo-
rithm. In International Conference on Machine Learning,
2021.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238–1274, 2013.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. A unified theory of decentralized sgd with changing
topology and local updates. In International Conference
on Machine Learning, pp. 5381–5393. PMLR, 2020.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Advances in neural information processing systems, pp.
1008–1014, 2000.

Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

Lakshminarayanan, C. and Szepesvari, C. Linear stochas-
tic approximation: How far does constant step-size and
iterate averaging go? In International Conference on Ar-
tificial Intelligence and Statistics, pp. 1347–1355, 2018.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. Preprint arXiv:2005.01643, 2020.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Sample Com-
plexity of Asynchronous Q-Learning: Sharper Analysis
and Variance Reduction. Advances in neural information
processing systems, 2020.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

Liang, X., Liu, Y., Chen, T., Liu, M., and Yang, Q. Federated
transfer reinforcement learning for autonomous driving.
arXiv preprint arXiv:1910.06001, 2019.

Lim, H.-K., Kim, J.-B., Heo, J.-S., and Han, Y.-H. Federated
reinforcement learning for training control policies on
multiple iot devices. Sensors, 20(5):1359, 2020.

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., and
Petrik, M. Finite-sample analysis of proximal gradi-
ent TD algorithms. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, pp.
504–513, 2015.

Liu, B., Wang, L., and Liu, M. Lifelong federated reinforce-
ment learning: a learning architecture for navigation in
cloud robotic systems. IEEE Robotics and Automation
Letters, 4(4):4555–4562, 2019.

Liu, R. and Olshevsky, A. Distributed td (0) with almost no
communication. arXiv preprint arXiv:2104.07855, 2021.

Liu, Y., Gottesman, O., Raghu, A., Komorowski, M., Faisal,
A. A., Doshi-Velez, F., and Brunskill, E. Representation
Balancing MDPs for Off-policy Policy Evaluation. Ad-
vances in Neural Information Processing Systems, 31:
2644–2653, 2018.

Maddern, W., Pascoe, G., Linegar, C., and Newman, P. 1
year, 1000 km: The oxford robotcar dataset. The Interna-
tional Journal of Robotics Research, 36(1):3–15, 2017.

Maei, H. R. Convergent actor-critic algorithms under off-
policy training and function approximation. Preprint
arXiv:1802.07842, 2018.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., De-
hghantanha, A., and Srivastava, G. A survey on security
and privacy of federated learning. Future Generation
Computer Systems, 115:619–640, 2021.

Nadiger, C., Kumar, A., and Abdelhak, S. Federated re-
inforcement learning for fast personalization. In 2019

IEEE Second International Conference on Artificial Intel-
ligence and Knowledge Engineering (AIKE), pp. 123–127.
IEEE, 2019.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon,
R., De Maria, A., Panneershelvam, V., Suleyman, M.,
Beattie, C., Petersen, S., et al. Massively parallel meth-
ods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296, 2015.

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne,
A., Li, J., and Poor, H. V. Federated learning for inter-
net of things: A comprehensive survey. arXiv preprint
arXiv:2104.07914, 2021.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Qi, J., Zhou, Q., Lei, L., and Zheng, K. Federated rein-
forcement learning: Techniques, applications, and open
challenges. arXiv preprint arXiv:2108.11887, 2021.

Qu, G. and Wierman, A. Finite-Time Analysis of Asyn-
chronous Stochastic Approximation and Q-Learning. In
Conference on Learning Theory, pp. 3185–3205. PMLR,
2020.

Qu, Z., Lin, K., Kalagnanam, J., Li, Z., Zhou, J., and
Zhou, Z. Federated learning’s blessing: Fedavg has linear
speedup. arXiv preprint arXiv:2007.05690, 2020.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradient
descent optimal for strongly convex stochastic optimiza-
tion. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, pp.
1571–1578, 2012.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A
lock-free approach to parallelizing stochastic gradient de-
scent. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., and Weinberger, K. Q. (eds.), Advances in Neural
Information Processing Systems, volume 24. Curran As-
sociates, Inc., 2011. URL https://proceedings.
neurips.cc/paper/2011/file/
218a0aefd1d1a4be65601cc6ddc1520e-Paper.
pdf.

Ren, J., Wang, H., Hou, T., Zheng, S., and Tang, C. Feder-
ated learning-based computation offloading optimization
in edge computing-supported internet of things. IEEE
Access, 7:69194–69201, 2019.

Shah, D. and Xie, Q. Q-learning with nearest neighbors. In
Advances in Neural Information Processing Systems, pp.
3111–3121, 2018.

https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Shalev-Shwartz, S., Shammah, S., and Shashua, A. Safe,
multi-agent, reinforcement learning for autonomous driv-
ing. Preprint arXiv:1610.03295, 2016.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Shao, K., Tang, Z., Zhu, Y., Li, N., and Zhao, D. A survey
of deep reinforcement learning in video games. arXiv
preprint arXiv:1912.10944, 2019.

Shen, H., Zhang, K., Hong, M., and Chen, T. Asynchronous
advantage actor critic: Non-asymptotic analysis and lin-
ear speedup. arXiv preprint arXiv:2012.15511, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484, 2016.

Spiridonoff, A., Olshevsky, A., and Paschalidis, I. C.
Communication-efficient sgd: From local sgd to one-shot
averaging. In Advances in Neural Information Processing
Systems, volume 34, 2021.

Srikant, R. and Ying, L. Finite-time error bounds for linear
stochastic approximation and TD learning. In Conference
on Learning Theory, pp. 2803–2830. PMLR, 2019.

Stich, S. U. Local sgd converges fast and communicates
little. In International Conference on Learning Represen-
tations, 2018.

Sun, J., Wang, G., Giannakis, G. B., Yang, Q., and Yang, Z.
Finite-time analysis of decentralized temporal-difference
learning with linear function approximation. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 4485–4495. PMLR, 2020.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tadić, V. On the convergence of temporal-difference learn-
ing with linear function approximation. Machine learn-
ing, 42(3):241–267, 2001.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pp.
1–11, 2019.

Tsitsiklis, J. N. Asynchronous stochastic approximation and
Q-learning. Machine learning, 16(3):185–202, 1994.

Tsitsiklis, J. N. and Van Roy, B. Analysis of temporal-
difference learning with function approximation. In Ad-
vances in neural information processing systems, pp.
1075–1081, 1997.

Wai, H.-T. On the convergence of consensus algorithms
with markovian noise and gradient bias. In 2020 59th
IEEE Conference on Decision and Control (CDC), pp.
4897–4902. IEEE, 2020.

Wainwright, M. J. Stochastic approximation with cone-
contractive operators: Sharp `∞-bounds for Q-learning.
Preprint arXiv:1905.06265, 2019.

Wang, G., Lu, S., Giannakis, G., Tesauro, G., and Sun, J.
Decentralized TD Tracking with Linear Function Ap-
proximation and its Finite-Time Analysis. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 13762–13772. Curran Associates,
Inc., 2020a. URL https://proceedings.
neurips.cc/paper/2020/file/
9ec51f6eb240fb631a35864e13737bca-Paper.
pdf.

Wang, J. and Joshi, G. Cooperative sgd: A unified frame-
work for the design and analysis of local-update sgd algo-
rithms. Journal of Machine Learning Research, 22(213):
1–50, 2021.

Wang, X., Wang, C., Li, X., Leung, V. C., and Taleb, T.
Federated deep reinforcement learning for internet of
things with decentralized cooperative edge caching. IEEE
Internet of Things Journal, 7(10):9441–9455, 2020b.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Xu, M., Peng, J., Gupta, B., Kang, J., Xiong, Z., Li, Z., and
Abd El-Latif, A. A. Multi-agent federated reinforcement
learning for secure incentive mechanism in intelligent
cyber-physical systems. IEEE Internet of Things Journal,
2021.

Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., and Yu,
H. Federated learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 13(3):1–207, 2019.

Yun, W. J., Park, S., Kim, J., Shin, M., Jung, S., Mo-
haisen, A., and Kim, J.-H. Cooperative multi-agent deep
reinforcement learning for reliable surveillance via au-
tonomous multi-uav control. IEEE Transactions on In-
dustrial Informatics, 2022.

https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. A
survey of autonomous driving: Common practices and
emerging technologies. IEEE Access, 8:58443–58469,
2020.

Zeng, S., Doan, T. T., and Romberg, J. Finite-time anal-
ysis of decentralized stochastic approximation with ap-
plications in multi-agent and multi-task learning. arXiv
preprint arXiv:2010.15088, 2020.

Zhang, S., Liu, B., Yao, H., and Whiteson, S. Provably con-
vergent two-timescale off-policy actor-critic with function
approximation. In International Conference on Machine
Learning, pp. 11204–11213. PMLR, 2020.

Zhang, S. Q., Lin, J., and Zhang, Q. A multi-agent rein-
forcement learning approach for efficient client selection
in federated learning. arXiv preprint arXiv:2201.02932,
2022.

Zhao, L., Ran, Y., Wang, H., Wang, J., and Luo, J. Towards
cooperative caching for vehicular networks with multi-
level federated reinforcement learning. In ICC 2021-
IEEE International Conference on Communications, pp.
1–6. IEEE, 2021.

Zhuo, H. H., Feng, W., Lin, Y., Xu, Q., and Yang, Q.
Federated deep reinforcement learning. arXiv preprint
arXiv:1901.08277, 2019.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Appendices
The appendices are organized as follows. In section A we discuss the lower bound on the convergence of general stochastic
approximation. In Section B we derive the convergence bound of FedSAM algorithm. Next, we employ the results in
Section B to derive the convergence bounds of federated TD-learning in Section C and federated Q-learning in Section D.

A. Lower Bound on the Convergence of General Stochastic Approximation
In this section we discuss the convergence of general stochastic approximation. In this discussion we provide a simple
stochastic approximation with iid noise which can give insight into the general convergence bound in (3). In particular, we
show that the convergence bound in (3) is tight and cannot be improved.

Consider a one dimensional random variable X with zero mean E[X] = 0 and bounded variance E[X2] = σ2. Consider the
following update

xt+1 = xt + α(Xt − xt), t ≥ 0, (9)

where we start with some fixed deterministic x0 and Xt is a an iid sample of the random variable X . It is easy to see that the
update (9) is a special case of the update of the general stochastic approximation with the fixed point x∗ = 0.

By expanding the update (9), we have

xt = (1− α)tx0 + α
t−1∑

k=0

(1− α)t−k−1Xk.

Hence, we have

x2
t = (1− α)2tx2

0 +

(
α

t−1∑

k=0

(1− α)t−k−1Xk

)2

+ 2α(1− α)tx0

t−1∑

k=0

(1− α)t−k−1Xk.

Taking expectation on both sides, and using the zero mean property of Xk, we have

E[x2
t] =(1− α)2tx2

0 + α2E

(
t−1∑

k=0

(1− α)t−k−1Xk

)2

=(1− α)2tx2
0 + α2E



t−1∑

k=0

(1− α)2(t−k−1)X2
k +

t−1∑

k,k′=0,k 6=k′
(1− α)2t−k−k′−2XkX

′
k




=(1− α)2tx2
0 + α2



t−1∑

k=0

(1− α)2(t−k−1)σ2 +
t−1∑

k,k′=0,k 6=k′
(1− α)2t−k−k′−2E[Xk]E[X ′k]


 (iid property)

=(1− α)2tx2
0 + α2

(
t−1∑

k=0

(1− α)2(t−k−1)σ2

)
(zero mean)

=(1− α)2tx2
0 + α2σ2 1− (1− α)2t

1− (1− α)2

=x2
0(1− α)2t + σ2 1− (1− α)2t

2− α
α

= (x2
0 −

ασ2

2− α
)(1− α)2t

︸ ︷︷ ︸
T1:bias

+
σ2

2− α
α

︸ ︷︷ ︸
T2:variance

. (10)

It is clear that (10) has the same form as the bound in (3) with T1 as the geometric term which converges to zero as t→∞,
and T2 term proportional to the step size α. In addition, note that in the above derivation, we did not use any inequality, and
hence the bounds in (10) as well as (3) are tight.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

B. Analysis of Federated Stochastic Approximation
First, we restate Theorem 6.1 with explicit expressions of the different constants.

Theorem B.1. Consider the FedSAM Algorithm 4 with cFSAM = 1− αϕ2

2 (ϕ2 is defined in (14)), and suppose Assumptions
6.1, 6.2, 6.3, 6.4 are satisfied. Consider small enough step size α which satisfies the assumptions in (21), (23), (32), (35).
Furthermore, denote τα = d2 logρ αe, and take large enough T such that T > max{K + τα, 2τα}. Then, the output of the
FedSAM Algorithm 4, θT̂ , 1

N

∑N
i=1 θ

i
T̂

, satisfies

E[‖θT̂ ‖
2
c] ≤ C1

1

α

(
1− αϕ2

2

)T−2τα+1

+ C2
ατ2

α

N
+ C3(K − 1)α2τα + C4α3τ2

α, (11)

where C1 = 16u2
cmM0(logρ

1
e + 1

ϕ2
), M0 = 1

l2cm

(
1
C2

1

(
B + (A2 + 1)

(
‖θ0‖c + B

2C1

))2

+ ‖θ0‖2c
)

,

C2 = 8u2
cm

(
C8 + 1

2 + C12

)
/ϕ2, and C3 = 80B̃2C17u

2
cm

(
1 + 4mρ

B(1−ρ)

)
/ϕ2 and C4 =

8u2
cm

(
C7 + C11 + 0.5C2

3C
2
9 + C3C10 + 2C1C3C10 + 3A1C3 + C13

)
/ϕ2. Here the constants

ucm, lcm, ϕ2, C1, C3, C7, C8, C9, C10, C11, C12, C13, C17, B̃ are problem dependent constants which are defined in
the following proposition and lemmas.

Next, we characterize the sample complexity of the FedSAM Algorithm 4, where we establish a linear speedup in the
convergence of the algorithm.

Corollary B.1.1. Consider FedSAM Algorithm 4 with fixed number of iterations T and step size α = 8 log(NT)
ϕ2T

. Suppose T
is large enough, such that α satisfies the requirements of the step size in Theorem B.1 and T > 4τα. Also take K = T/N .
Then we have E[‖θT̂ ‖2c] ≤ ε after T = O

(
1
Nε

)
iterations.

Corollary B.1.1 establishes the sample and communication complexity of FedSAM Algorithm 4. The O(1/(Nε)) sample
complexity shows the linear speedup with increasing N . Another aspect of the cost is the number of communications
required between the agents and the central server. According to Corollary B.1.1, we need T/N = Õ(N) rounds of
communications in order to reach an ε-optimal solution. Hence, even in the presence of Markov noise, the required number
of communications is independent of the desired final accuracy ε, and grows linearly with the number of agents. Our result
generalizes the existing result achieved for the simpler i.i.d. noise case in (Khaled et al., 2020; Spiridonoff et al., 2021).

In the following sections, we discuss the proof of Theorem B.1. In Section B.1, we introduce some notations and preliminary
results to facilitate our Lyapunov-function based analysis. Next, in Section B.2, we state some primary propositions, which
are then used to prove Theorem B.1. In Sections B.3,B.4,B.5, we prove the aforementioned propositions. Along the way, we
state several intermediate results, which are stated and proved in Sections B.6 and B.7, respectively.

Throughout the appendix we have several sets of constants. The constants Ci, i = 1, . . . , 17 are problem dependent
constants which we define recursively. The final constants which appears in the resulting bound in Theorem B.1 are shown
as Ci, i = 1, . . . , 4. Finally, the constant c is used in the sampling of the time step T̂ .

B.1. Preliminaries

We define the following notations:

• θt , 1
N

∑N
i=1 θ

i
t : virtual sequence of average (across agents) parameter.

• Θt =
{
θ1
t , . . . , θ

N
t

}
: set of local parameters at individual nodes.

• Yt =
{
y1
t , . . . ,y

N
t

}
: Markov chains at individual nodes.

• µi: the stationary distribution of yit as t→∞.

• G(Θt,Yt) , 1
N

∑N
i=1 Gi(θit,y

i
t): average of the noisy local operators at the individual local parameters.

• G(θt,Yt) , 1
N

∑N
i=1 Gi(θt,y

i
t) : average of the noisy local operators at the average parameter.

• b(Yt) , 1
N

∑N
i=1 bi(yit) : average of Markovian noise.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

• Ḡ(Θt) , 1
N

∑N
i=1 Ḡi(θit) : average of expected operators evaluated at the local parameter.

• Ḡ(θt) , 1
N

∑N
i=1 Ḡi(θt) : average of expected operator evaluated at the average parameter.

• θ∗ = 0 is the unique fixed point satisfying θ∗ = Ḡi(θ∗) for all i = 1, . . . , N . Note that this follows directly from
the assumptions. In particular, by Assumption 6.2, Ḡi(·) is a contraction, and hence by Banach fixed point theorem
(Banach, 1922), there exist a unique fixed point of this operator. Furthermore, by Assumption 6.3, we have

‖Ḡi(0)‖c = ‖Ey∼µi [G
i(0,y)]‖c ≤ Ey∼µi‖Gi(0,y)‖c ≤ A2Ey∼µi [‖0‖c] = 0.

Hence Ḡi(0) = 0 and 0 is the unique fixed point of the operator Ḡi(·).

• ∆i
t = ‖θt − θit‖c, ∆t = 1

N

∑N
i=1 ∆i

t, Ωt = 1
N

∑N
i=1(∆i

t)
2: measures of synchronization error.

Throughout this proof we assume ‖ · ‖c as some given norm. Et[·] , E[·|Ft], where Ft is the sigma-algebra generated by
{θir}

i=1,...,N
r=1,...,t . Unless specified otherwise, ‖ · ‖ denotes the Euclidean norm.

Generalized Moreau Envelope: Consider the norm ‖ · ‖c which appears in Assumptions 6.1-6.3. Square of this norm need
not be smooth. Inspired by (Chen et al., 2020a), we use the Generalized Moreau Envelope as a Lyapunov function for the
analysis of the convergence of Algorithm 4. The Generalized Moreau Envelope of f(·) with respect to g(·), for ψ > 0, is
defined as

Mψ,g
f (x) = min

u∈Rd

{
f(u) +

1

ψ
g(x− u)

}
. (12)

Let f(x) = 1
2‖x‖

2
c and g(x) = 1

2‖x‖
2
s, which is L-smooth with respect to ‖ · ‖s norm. For this choice of f, g, Mψ,g

f (·) is
essentially a smooth approximation to f , which is henceforth denoted with the simpler notation M(·). Also, due to the
equivalence of norms, there exist lcs, ucs > 0 such that

lcs‖ · ‖s ≤ ‖ · ‖c ≤ ucs‖ · ‖s. (13)

We next summarize the properties of M(·) in the following proposition, which were established in (Chen et al., 2020a).

Proposition B.1 ((Chen et al., 2020b)). The function M(·) satisfies the following properties.

(1) M(·) is convex, and L
ψ -smooth with respect to ‖ · ‖s. That is, M(y) ≤M(x) + 〈∇M(x),y − x〉+ L

2ψ‖x− y‖2s for
all x,y ∈ Rd.

(2) There exists a norm, denoted by ‖ · ‖m, such that M(x) = 1
2‖x‖

2
m.

(3) Let `cm = (1 + ψ`2cs)
1/2 and ucm = (1 + ψu2

cs)
1/2. Then it holds that `cm‖ · ‖m ≤ ‖ · ‖c ≤ ucm‖ · ‖m.

By Proposition B.1, we can use M(·) as a smooth surrogate for 1
2‖ · ‖

2
c . Furthermore, we denote

ϕ1 =
1 + ψu2

cs

1 + ψ`2cs
, ϕ2 = 1− γcϕ1/2

1 , and ϕ3 =
114L(1 + ψu2

cs)

ψ`2cs
. (14)

Note that by choosing ψ > 0 small enough, we can ensure ϕ2 ∈ (0, 1).

B.2. Proof of Theorem B.1

In this section, first we state three key results (Propositions B.2, B.3, B.4). These are then used to prove Theorem B.1. The
first step of the proof is to characterize the one-step drift of the Lyapunov function M(·), with the parameters generated by
the FedSAM Algorithm 4, which is formally stated in the following proposition.

Proposition B.2 (One-step drift - I). Consider the update of the FedSAM Algorithm 4. Suppose the assumptions 6.1, 6.2,
6.3, and 6.4 are satisfied. Consider τ = d2 logρ αe and t ≥ 2τ , we have

Et−2τ [M(θt+1)]

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤
(

1− α
[
2ϕ2 − ζ2

1 − ζ2
2

2LA2

ψl2cs
− ζ2

3

L(A1 + 1)

ψl2cs
− ζ2

4

]
+ α2 6Lu2

cm

l2csψ

[
m1 +

(A2 + 1)2

2

])
Et−2τ [M(θt)]

+ α2

(
m2L

ψl2cs

)

︸ ︷︷ ︸
C3

Et−2τ [‖θt − θt−τ‖c] (15)

+
L

ψl2cs

(
L

2ψl2cs
+ αA2

(
1 +

u2
cm

ζ22

)
+ α(A1 + 1)

(
3u2
cm

2ζ23
+ 2
)

+ 3m1α
2

)

︸ ︷︷ ︸
C4

Et−2τ [‖θt − θt−τ‖2c] (16)

+ α
L

ψl2cs

((
3u2

cm

2ζ2
3

+
3

2

)
(A1 + 1) + A2 +

Lu2
cm

2l2csζ
2
4ψ

+
3A2

1α
2

2

)

︸ ︷︷ ︸
C5

Et−2τ [Ωt] (17)

+ α
L

2l2csψ

((
3u2

cm

ζ2
3

+ 3

)
(A1 + 1) +m1α

)

︸ ︷︷ ︸
C6

Et−2τ [Ωt−τ] (18)

+
m2

2u
2
cmL

2

2ζ2
1 l

4
csψ

2
α

︸ ︷︷ ︸
C7

α4 (19)

+
1

2

(
1 +

3L

ψl2cs

)

︸ ︷︷ ︸
C8

α2Et−2τ

[
‖b(Yt)‖2c

]
, (20)

where ζ1, ζ2, ζ3, and ζ4 are arbitrary positive constants.

Proof. The proof of Proposition B.2 is presented in full detail in Section B.3.

Before discussing the bound in its full generality, we discuss a few special cases.

• Perfect synchronization (K = 1) with i.i.d. noise: since Ωt = 0 for all t, τ = 0 (independence across time), and
C7 = 0 (see Lemmas B.2 and B.5 in Section B.6), the terms (15), (16) (17),(18), (19) will not appear in the bound,
which is the form we get for centralized systems with i.i.d. noise (Rakhlin et al., 2012).

• Infrequent synchronization (K > 1) with i.i.d. noise: τ = 0 , and C7 = 0, the terms (15), (16),(18), (19) will not
appear in the bound, which is the form we get for federated stochastic optimization with i.i.d. noise (Khaled et al.,
2020).

• Perfect synchronization (K = 1) with Markov noise: since Ωt = 0 for all t, the bound in Proposition B.2 generalizes
the results in (Srikant & Ying, 2019; Chen et al., 2021c).

Next, we substitute the bound on ‖θt − θt−τ‖c (Lemma B.6) and ‖θt − θt−τ‖2c (Lemma B.7) to further bound the one-step
drift. Establishing a tight bound for these two quantities are essential to ensure linear speedup.

Proposition B.3 (One-step drift - II). Consider the update of the FedSAM Algorithm 4. Suppose Assumptions 6.1, 6.2, 6.3,
and 6.4 are satisfied. Define C15(τ) =

(
6m1Lu

2
cm

l2csψ
+

6L(A2+1)2u2
cm

2ψl2cs
+ 144(A2

2 + 1)C4u
2
cm

)
τ2. For

α ≤ min

{
1

360τ(A2
2 + 1)

,
ϕ2

2C15(τ)

}
, (21)

τ = d2 logρ αe, and t ≥ 2τ , we have

Et−2τ [M(θt+1)] ≤ (1− αϕ2)Et−2τ [M(θt)] + C14(τ)α4 + C16(τ)
α2

N
+ αC17

t∑

k=t−τ

Et−2τ [Ωk],

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

where C14(τ) =
(
C7 + C11 + 0.5C2

3C
2
9 + C3C10 + 2C1C3C10 + 3A1C3 + C13 + C8

u2
cD

l2cD
2m2

2α
2
)
τ2, C16(τ) =

(
C8

u2
cDB

2

l2cD
+ 1

2 + C12

)
τ2 and C17 = (3A1C3 + 8A2

1C4 + C5 + C6). Here we define C9 = 8ucDB
lcD

, C10 = 8m2ucD
lcD(1−ρ) ,

C11 =
8C2

1C
2
3u

2
cm

ζ26
, C12 =

8C4u
2
cDB

2

l2cD
, C13 =

14C4u
2
cDm

2
2

l2cD(1−ρ2)
.

Proof. The proof of Proposition B.3 is presented in full detail in Section B.4.

Conditional expectation Et−2τ [·]. The conditional expectation Et−2τ [·] used in Proposition B.3 is essential when dealing
with Markovian noise. The idea of using conditional expectation to deal with Markovian noise is not novel per se. In the
previous work (Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al., 2021c), conditioning on t − τ is sufficient to
establish the convergence results. Due to the mixing property (Assumption 6.1), the Markov chain geometrically converges
to its stationary distribution. Therefore, choosing “large enough” τ , and conditioning on t − τ , one can ensure that the
Markov chain at time t is “almost in steady state.” However, in federated setting, conditioning on t− τ results in bounds
that are too loose. In particular, consider the differences ‖θt − θt−τ‖c and ‖θt − θt−τ‖2c in (15) and (16) respectively. In
the centralized setting, as in (Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al., 2021c), these terms can be bounded
deterministically to yield � α2 bound. However, in the federated setting, this crude bound does not result in linear speedup
in N . In this work, to achieve a finer bound on ‖θt − θt−τ‖c, we go τ steps further back in time. This ensures that the
difference behaves almost like the difference of average of i.i.d. random variables, resulting in a tighter bound (see Lemma
B.6). By exploiting the conditional expectation Et−2τ [·], we derive a refined analysis to bound this term as O(α2/N + α4),
which guarantees a linear speedup (see Lemmas B.6 and B.7).

Taking total expectation in Proposition B.3 (using tower property), we get

E [M(θt+1)] ≤ (1− αϕ2)E [M(θt)] + C14(τ)α4 + C16(τ)
α2

N
+ αC17

t∑

k=t−τ

E[Ωk] (22)

To understand the bound in Proposition B.3, consider the case ofK = 1 (i.e. full synchronization). In this case we have Ωi =

0 for all i, and the bound in Proposition B.3 simplifies to E [M(θt+1)] ≤ (1− αϕ2)E [M(θt)] + C14(τ)α3 + C16(τ)α
2

N .
This recursion is sufficient to achieve linear speedup. However, the bound in Proposition B.3 also include terms which are
proportional to the error due to synchronization. In order to ensure convergence along with linear speedup, we need to
further upper bound this term with terms which are of the order O(α3(K − 1)) and M(θi). The following lemma is the
next important contribution of the paper where we establish such a bound for weighted sum of the synchronization error.
Notice that the weights {wt} are carefully chosen to ensure the best rate of convergence for the overall algorithm.

Proposition B.4 (Synchronization Error). Suppose T > K + τ . For α such that

α2 ≤ min

{
1

ϕ2
2

,
ln(5/4)

2(1 + Ã1)(K − 1)2

}
,

α2(logρ(α) + 1) ≤ v

2K2
,

α2(logρ(α) + 1)3 exp
(
αϕ2

(
2 logρ α+ 1

))
≤ v

4K
exp

(
−ϕ2

√
ln(5/4)

2(1 + Ã1)

)
,

(23)

where v = ϕ2

80Ã2C17u2
cm

, the weighted consensus error satisfies

2C17

ϕ2WT

T∑

t=2τ

wt

[
t∑

`=t−τ

EΩ`

]
≤ α2B̃2 10C17

ϕ2

(
1 +

4m2ρ

B(1− ρ)

)
(τ + 1)(K − 1) +

1

2WT

T∑

t=0

wtEM(θt). (24)

Proof. The proof is presented in Section B.5.

Finally, by incorporating the results in Propositions B.2, B.3, and B.4, we can establish the convergence of FedSAM in
Theorem B.1.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Proof of Theorem B.1. Assume w0 = 1, and consider the weights wt generated by the recursion wt = wt−1

(
1− αϕ2

2

)−1
.

Multiplying both sides of (22) by 2wt
αϕ2

, and rearranging the terms, we get

wtEM(θt) ≤
2wt
αϕ2

(
1− αϕ2

2

)
EM(θt)−

2wt
αϕ2

EM(θt+1)

+
2wt
αϕ2

(
C14(τ)α4 + C16(τ)

α2

N

)
+

2wtαC17

αϕ2

t∑

`=t−τ

E [Ω`]

=
2

αϕ2
[wt−1EM(θt)− wtEM(θt+1)] +

2wt
ϕ2

(
C14(τ)α3 + C16(τ)

α

N

)
+

2wtC17

ϕ2

t∑

`=t−τ

E [Ω`] , (25)

where we use wt−1 = wt
(
1− αϕ2

2

)
. Summing (25) over t = 2τ to T (define WT =

∑T
t=2τ wt), we get

1

WT

T∑

t=2τ

wtEM(θt)

≤ 2

αϕ2WT
[w2τ−1EM(θ2τ)− wTEM(θT+1)] +

2

ϕ2

(
C14(τ)α3 + C16(τ)

α

N

) 1

WT

T∑

t=2τ

wt

+
1

WT

T∑

t=2τ

2wtC17

ϕ2

[
t∑

`=t−τ

Ω`

]

≤ 2w2τ−1

αϕ2wT
EM(θ2τ) +

2

ϕ2

(
C14(τ)α3 + C16(τ)

α

N

)
+

2C17

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

Ω` (∵M(θ) ≥ 0,WT ≥ wT)

=
2

αϕ2

(
1− αϕ2

2

)T−2τ+1

EM(θ2τ) +
2

ϕ2

(
C14(τ)α3 + C16(τ)

α

N

)
+

2C17

ϕ2WT

T∑

t=2τ

wt

[
t∑

`=t−τ

Ω`

]
. (26)

Substituting the bound on 1
WT

∑T
t=2τ wt

[∑t
`=t−τ Ω`

]
from Proposition B.4 into (26), we get

1

WT

T∑

t=2τ

wtEM(θt) ≤
2

αϕ2

(
1− αϕ2

2

)T−2τ+1

EM(θ2τ) +
2

ϕ2

(
C14(τ)α3 + C16(τ)

α

N

)

+ α2B̃2 10C17

ϕ2

(
1 +

4m2ρ

B(1− ρ)

)
(τ + 1)(K − 1) +

1

2WT

T∑

t=0

wtEM(θt)

⇒ 1

WT

T∑

t=2τ

wtE [M(θt)] ≤
4

αϕ2

(
1− αϕ2

2

)T−2τ+1

M0 +
4

ϕ2

(
C14(τ)α3 + C16(τ)

α

N

)

+ α2B̃2 20C17

ϕ2

(
1 +

4m2ρ

B(1− ρ)

)
(τ + 1)(K − 1) + 2τ

(
1− αϕ2

2

)T−2τ+1

M0, (27)

where M0 is a problem dependent constant and is defined in Lemma B.6. To simplify (27), we define C̄18(τ) =

B̃2 40C17

ϕ2

(
1 + 4m2ρ

B(1−ρ)

)
τ , C̄19(τ) = 4

ϕ2
C16(τ). We have

1

WT

T∑

t=2τ

wtEM(θt) ≤
(

4

αϕ2
+ 2τ

)(
1− αϕ2

2

)T−2τ+1

M0 +
4C14(τ)

ϕ2
α3 + C̄18(τ)(K − 1)α2 + C̄19(τ)

α

N
. (28)

Furthermore, define W̃T =
∑T
t=0 wt ≥WT . By definition of T̂ , we have E[M(θT̂)] = 1

W̃T

∑T
t=0 wtEM(θt), and hence

E[M(θT̂)] =
1

W̃T

2τ−1∑

t=0

wtEM(θt) +
1

W̃T

T∑

t=2τ

wtEM(θt)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤M0

W̃T

2τ−1∑

t=0

wt +
1

W̃T

T∑

t=2τ

wtEM(θt) (Lemma B.6)

≤2τM0w2τ−1

W̃T

+
1

W̃T

T∑

t=2τ

wtEM(θt) (wt ≤ wt+1 for all t ≥ 0)

≤2τM0w2τ−1

wT
+

1

W̃T

T∑

t=2τ

wtEM(θt)

=2τM0

(
1− αϕ2

2

)T−2τ+1

+
1

W̃T

T∑

t=2τ

wtEM(θt)

≤2τM0

(
1− αϕ2

2

)T−2τ+1

+
1

WT

T∑

t=2τ

wtEM(θt)

≤
(

4τ +
4

αϕ2

)
M0

(
1− αϕ2

2

)T−2τ+1

+
4C14(τ)

ϕ2
α3 + C̄18(τ)(K − 1)α2 + C̄19(τ)

α

N
(by (28))

=C̄20(τ)
(

1− αϕ2

2

)T−2τ+1

+
4C14(τ)

ϕ2
α3 + C̄18(τ)(K − 1)α2 + C̄19(τ)

α

N
,

where C̄20(α, τ) =
(

4τM0 + 4M0

αϕ2

)
. Furthermore, by Proposition B.1, we have M(θT̂) = 1

2‖θT̂ ‖
2
m ≥ 1

2u2
cm
‖θT̂ ‖2c , and

hence

E[‖θT̂ ‖
2
c] ≤C̄1(α, τ)

(
1− αϕ2

2

)T−2τ+1

+ C2(τ)
α

N
+ C3(τ)(K − 1)α2 + C4(τ)α3 (29)

where C̄1(α, τ) = 2u2
cmC̄20(α, τ), C2(τ) = 2u2

cmC̄19(τ), C3(τ) = 2u2
cmC̄18(τ) and C4(τ) = 2u2

cm.
4C14(τ)
ϕ2

.

Finally, note that by definition of τ , we have τ = d2 logρ αe ≤ 1 + 2 logρ α = 1 + 2(lnα)(logρ e) = 1 + (2 logρ
1
e) ln 1

α ≤
1 + (2 logρ

1
e) 1
α . Hence, we have C̄1(α, τ) ≤ 2u2

cmM0(4 + 8
α logρ

1
e + 4

αϕ2
) ≤ 16u2

cmM0(logρ
1
e + 1

ϕ2
) 1
α = C1. 1

α , where

C1 = 16u2
cmM0(logρ

1
e + 1

ϕ2
). Furthermore, we have C2(τ) = 2u2

cmC̄19(τ) = 2u2
cm

4
ϕ2
C16(τ) =

8u2
cm(C8+ 1

2 +C12)
ϕ2

τ2 ≡
8u2
cm(C8+ 1

2 +C12)
ϕ2

τ2
α = C2τ2

α, where we denote τα ≡ τ to emphasize the dependence of τ on α, and C2 =
8u2
cm(C8+ 1

2 +C12)
ϕ2

.
Note that we have τα = O(log(1/α)).

In addition, C3(τ) = 2u2
cmC̄18(τ) =

80B̃2C17u
2
cm(1+

4m2ρ

B(1−ρ))
ϕ2

.τ ≡ C3τα, where C3 =
80B̃2C17u

2
cm(1+

4m2ρ

B(1−ρ))
ϕ2

.

And lastly, C4(τ) =
8u2
cm(C7+C11+0.5C2

3C
2
9+C3C10+2C1C3C10+3A1C3+C13)

ϕ2
τ2 ≡ C4τ2

α, where C4 =

8u2
cm

(
C7 + C11 + 0.5C2

3C
2
9 + C3C10 + 2C1C3C10 + 3A1C3 + C13

)
/ϕ2.

Next we will state the proof of Corollary B.1.1.

Proof of Corollary B.1.1. By this choice of step size, for large enough T , α will be small enough and can satisfy the
requirements of the step size in (21), (23), (32), (35). Furthermore, the first term in (29) will be

C1
1

α

(
1− αϕ2

2

)T−2τ+1

≤C1
1

α
e−

4 log(NT)
T (T−2τ+1) = C1

ϕ2T

8 log(NT)
e− log((NT)4)(1+ 1−2τ

T)

=
C1ϕ2T

8 log(NT)

(
1

N4T 4

)(1+ 1−2τ
T)

≤ C1ϕ2T

8 log(NT)

(
1

N4T 4

)0.5

(Assumption on T)

=
C1ϕ2T

8 log(NT)

1

N2T 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=Õ
(
C1ϕ2

NT

)
.

Furthermore, for the second term we have

C2
ατ2

α

N
= Õ

(
C2/ϕ2

NT

)
.

Finally, for the third and the fourth terms we have

C3(K − 1)α2τα + C4α3τ2
α = Õ

(
(C3/ϕ2

2 + C4/ϕ3
2)
T

N
× log2(NT)

T 2

)
= Õ

(
(C3/ϕ2

2 + C4/ϕ3
2)

NT

)
.

Upper bounding (29) with ε, we get Õ
(
C1ϕ2+C2/ϕ2+C3/ϕ2

2+C4/ϕ3
2

NT

)
≤ ε. Hence, we need to have T =

Õ
(
C1ϕ2+C2/ϕ2+C3/ϕ2

2+C4/ϕ3
2

Nε

)
number of iterations to get to a ball around the optimum with radius ε.

B.3. Proof of Proposition B.2

The update of the virtual parameter sequence {θt} can be written as follows

θt+1 = θt + α (G(Θt,Yt)− θt + b(Yt)) . (30)

Using p−1
ψ -smoothness of M(·) (Proposition B.1), we get

M(θt+1) ≤M(θt) + 〈∇M(θt),θt+1 − θt〉+
L

2ψ
‖θt+1 − θt‖2s (Smoothness of M(·))

= M(θt) + α 〈∇M(θt),G(Θt,Yt)− θt + b(Yt)〉+
Lα2

2ψ
‖G(Θt,Yt)− θt + b(Yt)‖2s

= M(θt) + α
〈
∇M(θt), Ḡ(θt)− θt

〉
︸ ︷︷ ︸

T1: Expected update

+α 〈∇M(θt),b(Yt)〉︸ ︷︷ ︸
T2: Error due to Markovian

noise b(Yt)

+ α 〈∇M(θt),G(Θt,Yt)− Ḡ(Θt)〉︸ ︷︷ ︸
T3: Error due to Markovian noise Yk

+α 〈∇M(θt), Ḡ(Θt)− Ḡ(θt)〉︸ ︷︷ ︸
T4: Error due local updates

.

+
Lα2

2ψ
‖G(Θt,Yt)− θt + b(Yt)‖2s︸ ︷︷ ︸
T5: Error due to noise and discretization

. (31)

The inequality in (31) characterizes one step drift of the Lyapunov function M(θt). The term T1 is responsible for negative
drift of the overall recursion. T2 and T3 appear due to the presence of the Markovian noises bi(yit) and Gi(θit,y

i
t) in the

update of Algorithm 4. T4 appears due to the mismatch between the parameters of the agents θit, i = 1, . . . , N . Finally,
T5 appears due to discretization error in the smoothness upper bound. Next, we state bounds on T1, T2, T3, T4, T5 in the
following intermediate lemmas.

Lemma B.1. For all θ ∈ Rd, the operator Ḡ(θ) satisfies the following

T1 =
〈
∇M(θ), Ḡ(θ)− θ

〉
≤ −2ϕ2M(θ).

Lemma B.1 guarantees the negative drift in the one step recursion analysis of Proposition B.2. It follows from the Moreau
envelope construction (Chen et al., 2021c) and the contraction property of the operators Ḡi(·), i = 1, . . . , N (Assumption
6.2).

Lemma B.2. Consider the iteration t of the Algorithm 4, and consider τ = d2 logρ αe. We have

Et−τ [T2] = Et−τ 〈∇M(θt),b(Yt)〉

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤ L2

2αψ2l4cs
Et−τ‖θt − θt−τ‖2c +

α

2
Et−τ

[
‖b(Yt)‖2c

]

+
αm2L

ψl2cs
Et−τ‖θt−τ − θt‖c +

1

2

(
Lm2α

2ucm
ζ1l2csψ

)2

+ ζ2
1Et−τ [M(θt)],

where ζ1 is an arbitrary positive constant.

In the i.i.d. noise setting, E[T2] = 0. In Markov noise setting, going back τ steps (which introduces θt−τ) enables us to use
Markov chain mixing property (Assumption 6.1).

Lemma B.3. For any t ≥ 0, denote T3 = 〈∇M(θt),G(Θt,Yt)− Ḡ(Θt)〉. For any τ < t, we have

Et−τ [T3] ≤
(
ζ2
2

2LA2

ψl2cs
+ ζ2

3

L(A1 + 1)

ψl2cs
+

6αm1Lu
2
cm

l2csψ

)
Et−τ [M(θt)]

+

(
2LA2

ψl2cs

(
1

2
+
u2
cm

2ζ2
2

)
+
L(A1 + 1)

ψl2cs

(
3u2

cm

2ζ2
3

+ 2

)
+

3m1Lα

l2csψ

)
Et−τ

[
‖θt − θt−τ‖2c

]

+

((
3u2

cm

2ζ2
3

+
3

2

)
· L(A1 + 1)

ψl2cs
+
LA2

ψl2cs

)
Et−τ [Ωt]

+

((
3u2

cm

2ζ2
3

+
3

2

)
L(A1 + 1)

ψl2cs
+
m1Lα

2l2csψ

)
Et−τ [Ωt−τ],

where ζ2 and ζ3 are arbitrary positive constants.

Lemma B.4. For any t ≥ 0, we have

T4 = 〈∇M(θt), Ḡ(Θt)− Ḡ(θt)〉 ≤ ζ2
4M(θt) +

L2u2
cm

2l4csζ
2
4ψ

2
Ωt,

where ζ4 is an arbitrary positive constant.

Lemma B.5. For any 0 ≤ τ < t, we have

T5 = ‖G(Θt,Yt)− θt + b(Yt)‖2s ≤
6(A2 + 1)2u2

cm

l2cs
M(θt) +

3A2
1

l2cs
Ωt +

3

l2cs
‖b(Yt)‖2c .

Substituting the bounds in Lemmas B.1, B.2, B.3, B.4, B.5, and taking expectation, we get the final bound in Proposition
B.2.

B.4. Proof of Proposition B.3

First we state the following two intermediate lemmas, which are proved in Section B.7.

Lemma B.6. Suppose τ = d2 logρ αe and

ατ ≤ min

{
1

12
√
A2

2 + 1
,

1

8(A2 + 1)

}
. (32)

For any 0 ≤ t ≤ 2τ we have the following

M(θt) ≤
1

l2cm

(
1

C2
1

(
B + (A2 + 1)

(
‖θ0‖c +

B

2C1

))2

+ ‖θ0‖2c

)
≡M0 (33)

Furthermore, for any t ≥ 2τ , we have the following

Et−2τ [‖θt − θt−τ‖c] ≤ 4ατC1Et−2τ [‖θt‖c] + 8ατ
ucD
lcD

B√
N

+
ucD
lcD

8m2

1− ρ
α2(1 + 2C1τ)

+ 6A1α
t∑

i=t−τ
Et−2τ [∆i].

(34)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Lemma B.7. Suppose τ = d2 logρ αe and

α ≤ min

{
1

C1
,

1

4τC2
,

1

40τC2
1

}
, (35)

where C1 = 3
√
A2

2 + 1 and C2 = 3C1 + 8. We have the following

Et−2τ [‖θt − θt−τ‖2c] ≤ 8τ2α2C2
1Et−2τ‖θt‖2c + 8

u2
cD

l2cD

B2

N
α2τ2

+ 14
u2
cD

l2cD

m2
2α

4τ

1− ρ2
+ 8α2A2

1τ
τ∑

i=0

Et−2τ

[
∆2
t−i
]
.

In Lemma B.6, we define C9 , 8ucDB
lcD

, C10 , 8m2ucD
lcD(1−ρ) . Hence, we can bound the term in (15) as

α2C3Et−2τ [‖θt − θt−τ‖c]

≤ α2C3

(
4ατC1Et−2τ [‖θt‖c] + C9

ατ√
N

+ C10α
2(1 + 2C1τ) + 6A1α

t∑

k=t−τ

Et−2τ [∆k]

)

≤ α2C3

(
4C1ucmατEt−2τ

[√
2M(θt)

]
+ C9

ατ√
N

+ C10α
2(1 + 2C1τ) + 6A1α

t∑

k=t−τ

Et−2τ [∆k]

)

(Proposition B.1)

=
1

ζ6
4C1C3ucmα

5/2τ ·
√
αζ6
√

2Et−2τ [M(θt)]

+ α2C3

(
C9

ατ√
N

+ C10α
2(1 + 2C1τ) + 6A1α

t∑

k=t−τ

Et−2τ [∆k]

)
(√. is concave, ζ6 > 0)

≤ 8C2
1C

2
3u

2
cm

ζ2
6

α5τ2 + αζ2
6Et−2τ [M(θt)] + C3C9

α3τ√
N

+ C3C10α
4(1 + 2C1τ)

+ 6A1C3

t∑

k=t−τ

Et−2τ

[
1

2
α5 +

1

2
α∆2

k

]
(Young’s inequality)

≤ 8C2
1C

2
3u

2
cm

ζ2
6︸ ︷︷ ︸

C11

α5τ2 + αζ2
6Et−2τ [M(θt)] + C3C9

α3τ√
N

+ α4[C3C10(1 + 2C1τ) + 3A1C3α(τ + 1)]

+ 3αA1C3

t∑

k=t−τ

Et−2τ [Ωk] (By (58))

≤ C11α
5τ2 + αζ2

6Et−2τ [M(θt)] +
1

2
C2

3C
2
9α

4τ +
1

2

α2τ

N
+ α4[C3C10(1 + 2C1τ) + 3A1C3α(τ + 1)]

+ 3αA1C3

t∑

k=t−τ

Et−2τ [Ωk]. (36)

Furthermore, using Lemma B.7, (58) and Proposition B.1, the term in (16) can be bounded as follows:

C4Et−2τ

[
‖θt − θt−τ‖2c

]
≤ 16τ2α2C2

1C4u
2
cmEt−2τ [M(θt)] + 8α2A2

1C4τ
τ∑

k=0

Et−2τ [Ωt−k]

+
8C4u

2
cDB

2

l2cD︸ ︷︷ ︸
C12

α2

N
τ2 +

14C4u
2
cDm

2
2

l2cD(1− ρ2)︸ ︷︷ ︸
C13

α4τ. (37)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Inserting the upper bounds in (36) and (37) in the upper bound in Proposition B.2, we have

Et−2τ [M(θt+1)]

≤
(

1− α
[
2ϕ2 − ζ2

1 − ζ2
2

2LA2

ψl2cs
− ζ2

3

L(A1 + 1)

ψl2cs
− ζ2

4 − ζ2
6

]

+ α2 6Lu2
cm

l2csψ

[
m1 +

(A2 + 1)2

2

]
+ α216τ2C2

1C4u
2
cm

)
Et−2τ [M(θt)]

+ αC5Et−2τ [Ωt] + αC6Et−2τ [Ωt−τ]

+

(
C7 + C11ατ

2 + 0.5C2
3C

2
9τ + C3C10 + 2C1C3C10τ + 3A1C3α(τ + 1) + C13τ + C8

u2
cD

l2cD
2m2

2α
2

)

︸ ︷︷ ︸
C′14(τ)

α4

+

(
C8
u2
cDB

2

l2cD
+
τ

2
+ C12τ

2

)
α2

N
+
(
3αA1C3 + 8α2A2

1C4τ
) t∑

k=t−τ

Et−2τ [Ωk]. (38)

We define C′14(τ) ≤ C14(τ) ,
(
C7 + C11 + 0.5C2

3C
2
9 + C3C10 + 2C1C3C10 + 3A1C3 + C13 + C8

u2
cD

l2
cD

2m2
2α

2
)
τ2. Also, we

choose ζ1 = ζ4 = ζ6 =
√
ϕ2/10, ζ2 =

√
ϕ2

10 ·
ψl2cs
2LA2

, ζ3 =
√

ϕ2

10 ·
ψl2cs

L(A1+1) , and denote

C15(τ) =

(
6m1Lu

2
cm

l2csψ
+

6L(A2 + 1)2u2
cm

2ψl2cs
+ 144(A2

2 + 1)C4u
2
cm

)
τ2. (39)

This yields

Et−2τ [M(θt+1)] ≤
(

1− 3

2
αϕ2 + α2C15(τ)

)
Et−2τ [M(θt)] +

(
C8
u2
cDB

2

l2cD
+
τ

2
+ C12τ

2

)
α2

N

+ C14(τ)α4 + (3αA1C3 + 8α2A2
1C4τ + αC5 + αC6)

t∑

k=t−τ

Et−2τ [Ωk]

≤
(

1− 3

2
αϕ2 + α2C15(τ)

)
Et−2τ [M(θt)] + C14(τ)α4 + C16(τ)

α2

N
+ αC17

t∑

k=t−τ

Et−2τ [Ωk], (40)

where C16(τ) =
(
C8

u2
cDB

2

l2cD
+ 1

2 + C12

)
τ2 and C17 = (3A1C3 + 8A2

1C4 + C5 + C6). Due to α ≤ ϕ2

2C15(τ) , we have

1− 3
2αϕ2 + α2C15(τ) ≤ 1− αϕ2. This completes the proof.

B.5. Proof of Proposition B.4

First we state the following lemma, which characterizes a bound on the expectation of the synchronization error Ωt.

Lemma B.8. Suppose Assumptions 6.1, 6.3 holds and the step size α satisfies α ≤
√

ln(5/4)

2(1+Ã1)(K−1)2
. Then, for sK ≤ t ≤

(s+ 1)K − 1, where s = bt/Kc, the network consensus error Ωt , 1
N

∑N
i=1 ‖θt − θit‖2c satisfies

EΩt ≤ 5α2(t− sK)B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ 5α2(t− sK)Ã2

t−1∑

t′=sK

E ‖θt′‖2c , (41)

where Ã1 =
2A2

1u
2
c2

l2c2
, Ã2 =

2A2
2u

2
c2

l2c2
, B̃ = uc2

lc2
B. Here, A1, A2, B are the constants defined in Assumption 6.3, and lc2, uc2

are constants involved in the equivalence of the norms: lc2 ‖·‖2 ≤ ‖·‖c ≤ uc2 ‖·‖2.

Due to the assumption on the step size, the bound in Lemma B.8 hold. Substituting the bound on Ω` from Lemma B.8, we
get

2C17

ϕ2WT

T∑

t=2τ

wt

[
t∑

`=t−τ

EΩ`

]

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤ 2C17

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

[
5α2(`− s`K)B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ 5α2(`− s`K)Ã2

`−1∑

t′=s`K

E ‖θt′‖2c

]
. (42)

where s` = b`/Kc. Hence, s`K denotes the last time instant before ` when synchronization happened. The first term in
(42) can be upper bounded as follows.

2C17

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

5α2(`− s`K)B̃2

(
1 +

4m2ρ

B(1− ρ)

)

= α2B̃2

(
1 +

4m2ρ

B(1− ρ)

)
10C17

ϕ2

1

WT

T∑

t=2τ

wt

t∑

`=t−τ

(`− s`K)

≤ α2B̃2

(
1 +

4m2ρ

B(1− ρ)

)
10C17

ϕ2

1

WT

T∑

t=2τ

wt

t∑

`=t−τ

(K − 1) (`− s`K ≤ K − 1)

= α2B̃2

(
1 +

4m2ρ

B(1− ρ)

)
10C17

ϕ2

[
1

WT

T∑

t=2τ

wt

]
(τ + 1)(K − 1)

≤ α2B̃2

(
1 +

4m2ρ

B(1− ρ)

)
10C17

ϕ2
(τ + 1)(K − 1). (43)

Next, we compute the second term in (42).

2C17

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

5α2(`− s`K)Ã2

`−1∑

`′=s`K

‖θ`′‖2c

≤ α2Ã2
20C17u

2
cm

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

(`− s`K)
`−1∑

`′=s`K

M(θ`′) (Proposition B.1)

≤ α2Ã2
20C17u

2
cm

ϕ2WT




K∑

t=2τ

wt

t∑

`=t−τ

(`− s`K)

`−1∑

`′=s`K

M(θ`′)

︸ ︷︷ ︸
I1

+

T∑

t=K+1

wt

t∑

`=t−τ

(`− s`K)

`−1∑

`′=s`K

M(θ`′)

︸ ︷︷ ︸
I2



, (44)

where if K < 2τ , I1 = 0. Next, we bound I1, I2 separately.

I1 =
K∑

t=2τ

wt

t∑

`=t−τ

(`− s`K)
`−1∑

`′=s`K

M(θ`′)

≤ (K − 1)
K∑

t=2τ

wt

t∑

`=t−τ

`−1∑

`′=0

M(θ`′) (for ` < K, s` = 0; for ` = K, `− s`K = 0)

≤ (K − 1)(τ + 1)
K∑

t=2τ

wt

t−1∑

`′=0

M(θ`′)

≤ (K − 1)(K − 2τ + 1)(τ + 1)wK

K−1∑

t=0

M(θt), (45)

where, (45) follows since wt−1 ≤ wt, ∀ t. Next, to bound I2 in (44), we again split it into two terms.

I2 =
K+τ∑

t=K+1

wt

t∑

`=t−τ

(`− s`K)
`−1∑

`′=s`K

M(θ`′)

︸ ︷︷ ︸
I3

+
T∑

t=K+τ+1

wt

t∑

`=t−τ

(`− s`K)
`−1∑

`′=s`K

M(θ`′)

︸ ︷︷ ︸
I4

.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

First, we bound I3.

I3 ≤
K+τ∑

t=K+1

wt

[
K∑

`=t−τ

(`− s`K)
`−1∑

`′=s`K

M(θ`′) +
t∑

`=K+1

(`− s`K)
`−1∑

`′=s`K

M(θ`′)

]

≤
K+τ∑

t=K+1

wt

[
K∑

`=t−τ

`
`−1∑

`′=0

M(θ`′) +
t∑

`=K+1

(`−K)
`−1∑

`′=K

M(θ`′)

]
(s` = 0 for ` < K, s` ≥ 1 for K ≤ ` ≤ K + τ)

≤
K+τ∑

t=K+1

wt

[
K(K + 1− t+ τ)

K−1∑

`′=0

M(θ`′) + (t−K)2
t−1∑

`′=K

M(θ`′)

]

≤ wK+τKτ
2
K−1∑

t=0

M(θt) + τ3wK+τ

K+τ−1∑

t=K

M(θt). (46)

Next, we bound I4, assuming t0K + τ ≤ T < (t0 + 1)K + τ , where t0 is a non-negative integer.

I4 =
T∑

t=K+τ+1

wt

t∑

`=t−τ

(`− s`K)︸ ︷︷ ︸
≤K−1

`−1∑

`′=s`K

M(θ`′)

≤ (K − 1)
T∑

t=K+τ+1

wt

t∑

`=t−τ

`−1∑

`′=s`K

M(θ`′)

= (K − 1)

[
wK+τ+1

K+τ+1∑

`=K+1

`−1∑

`′=s`K

M(θ`′) + · · ·+ wK+τ+K−1

2K+τ−1∑

`=2K−1

`−1∑

`′=s`K

M(θ`′)

]

+ (K − 1)

[
w2K+τ

2K+τ∑

`=2K

`−1∑

`′=s`K

M(θ`′) + · · ·+ w3K+τ−1

3K+τ−1∑

`=3K−1

`−1∑

`′=s`K

M(θ`′)

]

+ · · ·+ (K − 1)

[
wt0K+τ

t0K+τ∑

`=t0K

`−1∑

`′=s`K

M(θ`′) + · · ·+ wT

T∑

`=T−τ

`−1∑

`′=s`K

M(θ`′)

]

≤ (K − 1)(τ + 1)

[
wK+τ+1

K+τ∑

`=K

M(θ`) + · · ·+ w2K+τ−1

2K+τ−2∑

`=K

M(θ`)

]

+ (K − 1)(τ + 1)

[
w2K+τ

2K+τ−1∑

`=2K

M(θ`) + · · ·+ w3K+τ−1

3K+τ−2∑

`=2K

M(θ`)

]

+ · · ·+ (K − 1)(τ + 1)

[
wt0K+τ

t0K+τ−1∑

`=t0K

M(θ`) + · · ·+ wT

T−1∑

`=t0K

M(θ`)

]

≤ (K − 1)K(τ + 1)

[
w2K+τ−1

2K+τ−2∑

`=K

M(θ`) + w3K+τ−1

3K+τ−2∑

`′=2K

M(θ`′) + · · ·+ wT

T−1∑

`=t0K

M(θ`)

]

≤ (K − 1)K(τ + 1)

[
w2K+τ−1

(
2K−1∑

`=K

M(θ`) +
2K+τ−2∑

`=2K

M(θ`)

)

+ w3K+τ−1

(
3K−1∑

`′=2K

M(θ`′) +
3K+τ−2∑

`′=3K

M(θ`′)

)

+ · · ·+ wt0K+τ−1




t0K−1∑

`′=(t0−1)K

M(θ`′) +

t0K+τ−1∑

`′=t0K

M(θ`′)


+ wT

T−1∑

`=t0K

M(θ`)

]

≤ (K − 1)K(τ + 1)

⌈
(τ − 1)

K

⌉[2K−1∑

`=K

w`+K+τ−1M(θ`) +

3K−1∑

`=2K

w`+K+τ−1M(θ`) + · · ·+ wT

T−1∑

`=t0K

M(θ`)

]

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤ (K − 1)τ(τ + 1)

[
T−K−τ∑

`=K

w`+K+τ−1M(θ`) + wT

T−1∑

`=T−K−τ+1

M(θ`)

]

= (K − 1)τ(τ + 1)

[
T−K−τ∑

`=K

w`(
1− αϕ2

2

)K+τ−1
M(θ`) +

T−1∑

`=T−K−τ+1

w`(
1− αϕ2

2

)T−`M(θ`)

]

(wt = wt+1

(
1− αϕ2

2

)
)

≤ (K − 1)τ(τ + 1)
(
1− αϕ2

2

)K+τ−1

T−1∑

t=K

wtM(θt). (47)

Using the bounds on I3, I4 from (46) and (47) respectively, we can bound I2.

I2 ≤ wK+τKτ
2
K−1∑

t=0

M(θt) + τ3wK+τ

K+τ−1∑

t=K

M(θt) +
(K − 1)τ(τ + 1)
(
1− αϕ2

2

)K+τ−1

T−1∑

t=K

wtM(θt). (48)

Substituting the bounds on I1, I2 from (45), (48) respectively, into (44), we get

2C17

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

5α2(`− s`K)Ã2

`−1∑

`′=s`K

‖θ`′‖2c

≤ α2Ã2
20C17u

2
cm

ϕ2WT

[
(K − 1)(K − 2τ + 1)(τ + 1)wK

K−1∑

t=0

M(θt) +Kτ2wK+τ

K−1∑

t=0

M(θt)

]

+ α2Ã2
20C17u

2
cm

ϕ2WT

[
τ3wK+τ

K+τ−1∑

t=K

M(θt) +
(K − 1)τ(τ + 1)
(
1− αϕ2

2

)K+τ−1

T−1∑

t=K

wtM(θt)

]
(49)

We analyze the terms in (49) separately. First, for the terms with
∑K−1
t=0 M(θt),

1

WT
α2Ã2

20C17u
2
cm

ϕ2
K(τ + 1) [(K − 2τ + 1)wK + τwK+τ]

K−1∑

t=0

M(θt)

=
1

WT
α2Ã2

20C17u
2
cm

ϕ2
K(τ + 1)

K−1∑

t=0

[
(K − 2τ + 1)

wt(
1− αϕ2

2

)K−t + τ
wt(

1− αϕ2

2

)K+τ−t

]
M(θt)

=
1

WT
α2Ã2

20C17u
2
cm

ϕ2
K(τ + 1)

K−1∑

t=0

[
(K − 2τ + 1) +

τ(
1− αϕ2

2

)τ
]

wt(
1− αϕ2

2

)K−tM(θt)

≤ α2Ã2
20C17u

2
cm

ϕ2
K(τ + 1)

[
(K − 2τ + 1) +

τ(
1− αϕ2

2

)τ
]

1

WT

K−1∑

t=0

wtM(θt)

≤ 1

2WT

K−1∑

t=0

wtM(θt), (50)

where (50) holds since we choose α small enough such that

α2Ã2
20C17u

2
cm

ϕ2

[
(K − 2τ + 1) +

τ(
1− αϕ2

2

)τ
]
K(τ + 1) ≤ 1

2
.

To get this, we use the inequality 1 − x ≥ exp
(
− x

1−x

)
for x < 1, αϕ2

2 ≤ 1
2 and τ < 2 logρ α + 1, we get 1

(1−αϕ2
2)

τ ≤

exp
(
αϕ2

(
2 logρ α+ 1

))
. For (50) to hold, it is sufficient that

α2 ≤ ϕ2

80C17u2
cmÃ2K2(logρ(α) + 1)

min

{
1

K
,

1

2(logρ(α) + 1) exp
(
αϕ2

(
2 logρ α+ 1

))
}

(51)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Next, for the remaining terms in the third line of (49), by the assumption on the step size, we have

α2Ã2
20C17u

2
cm

ϕ2

τ3

(
1− αϕ2

2

)τ ≤
1

4
,

α2Ã2
20C17u

2
cm

ϕ2

(τ + 1)τ(K − 1)
(
1− αϕ2

2

)K+τ−1
≤ 1

4
,

(52)

and hence we get

1

WT
α2Ã2

20C17u
2
cm

ϕ2

[
τ3wK(

1− αϕ2

2

)τ
K+τ−1∑

t=K

M(θt) +
(τ + 1)τ(K − 1)
(
1− αϕ2

2

)K+τ−1

T∑

t=K

wtM(θt)

]

≤ 1

2WT

T∑

t=K

wtM(θt). (53)

Substituting (50), (53) in (49), we get

2C17

ϕ2WT

T∑

t=2τ

wt

t∑

`=t−τ

5α2(`− s`K)Ã2

`−1∑

t=s`K

‖θt‖2c ≤
1

2WT

T∑

t=0

wtM(θt). (54)

Finally, substituting the bounds in (43), (54) into (42), we get

2C17

ϕ2WT

T∑

t=2τ

wt

[
t∑

`=t−τ

EΩ`

]

≤ α2B̃2 10C17

ϕ2

(
1 +

4m2ρ

B(1− ρ)

)
(τ + 1)(K − 1) +

1

2WT

T∑

t=0

wtEM(θt). (55)

B.6. Auxiliary Lemmas

The following lemma is of central importance in proving linear speedup of FedSAM.
Lemma B.9. Let lcD and ucD be constants that satisfy lcD‖ · ‖D ≤ ‖ · ‖c ≤ ucD‖ · ‖D, where ‖ · ‖D =

√
x>Dx for some

positive definite matrix D � 0. Note that for any D � 0, these constants always exist due to norm equivalence. Furthermore,
in case the norm ‖x‖c is defined in the form

√
x>Dx for some D � 0, we take lcD = ucD = 1. We have

Et−r[‖b(Yt)‖c] ≤
ucD
lcD

[
B√
N

+ 2m2ρ
r

]
(56)

Et−r[‖b(Yt)‖2c] ≤
u2
cD

l2cD

[
B2

N
+ 2m2

2ρ
2r

]
. (57)

Lemma B.9 is essential in characterizing the linear speedup in Theorem B.1. This lemma characterizes the bound on the
conditional expectation of ‖b(Yt)‖c and ‖b(Yt)‖2c , conditioned on r time steps before. In order to understand this lemma,
consider the bound in (57). For the sake of understanding, suppose the noise Yt is i.i.d. In this case we will end up with the
first term which is proportional to 1/N . This is precisely the linear reduction of the variance of sum of N i.i.d. random
variables. Furthermore, in order to extend the i.i.d. noise setting to the more general Markovian noise, we need to pay an
extra price by adding the exponentially decreasing term to the first variance term.
Lemma B.10. The following hold

‖G(Θt,Yt)−G(θt,Yt)‖2c ≤ A2
1∆2

t ≤A2
1Ωt

∆2
t ≤ Ωt. (58)

Lemma B.11. For the generalized Moreau Envelope defined in (12), it holds that
∥∥∥∇Mψ,g

f (x)
∥∥∥
?

m
= ‖x‖m ,

〈
∇Mψ,g

f (x), x
〉
≥ 2Mψ,g

f (x).

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

B.7. Proof of Lemmas

Proof of Lemma B.1. Using Cauchy-Schwarz inequality, we have
〈
∇M(θ), Ḡ(θ)− θ

〉
≤‖∇M(θ)‖?m ·

∥∥Ḡ(θ)
∥∥
m︸ ︷︷ ︸

T11

−〈∇M(θ),θ〉︸ ︷︷ ︸
T12

, (59)

where ‖ · ‖?m denotes the dual of the norm ‖ · ‖m. Furthermore, by Proposition B.1 we have

T11

(a)

≤‖θ‖m.‖Ḡ(θ)‖m (Lemma B.11)

≤‖θ‖m.l−1
cm

∥∥∥∥∥
1

N

N∑

i=1

Ḡi(θ)

∥∥∥∥∥
c

(By (13))

≤‖θ‖m.l−1
cm

1

N

N∑

i=1

∥∥Ḡi(θ)
∥∥
c

(triangle inequality)

≤‖θ‖m.
ucmγc
lcm

‖θ‖m (Assumption 6.2, Proposition B.1)

=
2ucmγc
lcm

M(θ). (60)

Furthermore, by the convexity of the ‖ · ‖m norm (Lemma B.11), we have

T12 ≥ ‖θ‖2m = 2M(θ). (61)

Hence, using (60), (61) in (59) we get

〈
∇M(θ), Ḡ(θ)− θ

〉
≤ −2

(
1− ucmγc

lcm

)
M(θ) = −2ϕ2M(θ), (62)

where ϕ2 is defined in (14).

Proof of Lemma B.2. Given some τ < t, T2 = 〈∇M(θt),b(Yt)〉 can be written as follows:

T2 = 〈∇M(θt)−∇M(θt−τ),b(Yt)〉+ 〈∇M(θt−τ),b(Yt)〉
≤‖∇M(θt)−∇M(θt−τ)‖?s.‖b(Yt)‖s + 〈∇M(θt−τ),b(Yt)〉 (Cauchy–Schwarz)

≤ L

ψlcs
‖θt − θt−τ‖c.

1

lcs
‖b(Yt)‖c + 〈∇M(θt−τ),b(Yt)〉 (Proposition B.1)

≤ 1

2α

(
L

ψl2cs

)2

‖θt − θt−τ‖2c +
α

2
‖b(Yt)‖2c + 〈∇M(θt−τ),b(Yt)〉 . (63)

Taking expectation on both sides, we have

Et−τ [T2] =
L2

2αψ2l4cs
Et−τ‖θt − θt−τ‖2c +

α

2
Et−τ‖b(Yt)‖2c + 〈∇M(θt−τ),Et−τ [b(Yt)]〉

≤ L2

2αψ2l4cs
Et−τ‖θt − θt−τ‖2c +

α

2
Et−τ‖b(Yt)‖2c + ‖∇M(θt−τ)‖?s‖Et−τ [b(Yt)] ‖s︸ ︷︷ ︸

T21

. (64)

For T21, we have

T21 ≤l−1
cs

[
‖∇M(θt−τ)‖?s ‖Et−τ [b(Yt)]‖c

]

≤l−1
cs [‖∇M(θt−τ)‖?sm2ρ

τ] (Assumption 6.1)

≤m2α
2

lcs
[‖∇M(θt−τ)−∇M(θt)‖?s + ‖∇M(θt)‖?s] (assumption on τ)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤m2α
2

lcs

[
L

ψ
‖θt−τ − θt‖s + ‖∇M(θt)−∇M(0)‖?s

]
(Proposition B.1)

≤m2α
2

l2cs

L

ψ
[‖θt−τ − θt‖c + ‖θt‖c] (By (13))

≤m2α

l2cs

L

ψ
‖θt−τ − θt‖c +

m2α
2ucm

ζ1l2cs

L

ψ
· ζ1‖θt‖m (Proposition B.1; ζ1 > 0)

≤m2α

l2cs

L

ψ
‖θt−τ − θt‖c +

1

2

(
m2α

2ucm
ζ1l2cs

L

ψ

)2

+ ζ2
1M(θt). (65)

Substituting (65) in (64), we get

Et−τ [T2] ≤ L2

2αψ2l4cs
Et−τ‖θt − θt−τ‖2c +

α

2
Et−τ‖b(Yt)‖2c +

αm2L

ψl2cs
Et−τ‖θt−τ − θt‖c

+
1

2

(
m2α

2ucm
ζ1l2cs

L

ψ

)2

+ ζ2
1Et−τ [M(θt)].

Proof of Lemma B.3.

T3 =〈∇M(θt),G(Θt,Yt)− Ḡ(Θt)〉
= 〈∇M(θt)−∇M(θt−τ),G(Θt,Yt)− Ḡ(Θt)〉︸ ︷︷ ︸

T31

+ 〈∇M(θt−τ),G(Θt,Yt)−G(Θt−τ ,Yt) + Ḡ(Θt−τ)− Ḡ(Θt)〉︸ ︷︷ ︸
T32

+ 〈∇M(θt−τ),G(Θt−τ ,Yt)− Ḡ(Θt−τ)〉︸ ︷︷ ︸
T33

.

(66)

Next, we bound all three terms individually.

I. Bound on T31:

T31 =
1

N

N∑

i=1

〈
∇M(θt)−∇M(θt−τ),Gi(θit,y

i
t)− Ḡi(θit)

〉

≤ 1

N

N∑

i=1

‖∇M(θt)−∇M(θt−τ)‖?s︸ ︷︷ ︸
T311

·
∥∥Gi(θit,y

i
t)− Ḡi(θit)

∥∥
s︸ ︷︷ ︸

T312

. (67)

For T311, we have

T311 = ‖∇M(θt)−∇M(θt−τ)‖?s ≤
L

ψlcs
‖θt − θt−τ‖c, (68)

where the inequality follows from Proposition B.1 and (13). For T312, we have,

T312 =‖Gi(θit,y
i
t)− Ey∼µiG

i(θit,y)‖s
≤l−1

cs

[∥∥Gi(θit,y
i
t)
∥∥
c

+ Ey∼µi
∥∥Gi(θit,y)

∥∥
c

]
(Triangle and Jensen’s inequality)

≤l−1
cs [A2‖θit‖c +A2‖θit‖c] (Assumption 6.3)

≤2A2

lcs

[
‖θit − θt‖c + ‖θt‖c

]
(triangle inequality)

=
2A2

lcs

[
∆i
t + ‖θt‖c

]
. (69)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Substituting (68) and (69) in (67), we get

T31 ≤
2LA2

ψl2cs

[
1

N

N∑

i=1

‖θt − θt−τ‖c ·
[
∆i
t + ‖θt‖c

]
]

≤2LA2

ψl2cs

[
1

N

N∑

i=1

[
‖θt − θt−τ‖c ·∆i

t

]
+
ucm
ζ2
‖θt − θt−τ‖c · ζ2‖θt‖m

]
(Proposition B.1)

≤2LA2

ψl2cs

[
1

N

N∑

i=1

[
1

2
‖θt − θt−τ‖2c +

1

2
(∆i

t)
2

]
+
u2
cm

2ζ2
2

‖θt − θt−τ‖2c +
ζ2
2

2
‖θt‖2m

]
(Young’s inequality)

=
2LA2

ψl2cs

[(
1

2
+
u2
cm

2ζ2
2

)
‖θt − θt−τ‖2c + ζ2

2M(θt) +
1

2
Ωt

]
. (70)

II. Bound on T32:

T32 =
1

N

N∑

i=1

〈
∇M(θt−τ),Gi(θit,y

i
t)−Gi(θit−τ ,y

i
t) + Ḡi(θit−τ)− Ḡi(θit)

〉

≤ 1

N

N∑

i=1

‖∇M(θt−τ)‖?s︸ ︷︷ ︸
T321

· ‖Gi(θit,y
i
t)−Gi(θit−τ ,y

i
t) + Ḡi(θit−τ)− Ḡi(θit)‖s︸ ︷︷ ︸

T322

, (71)

where the last inequality is by Hölder’s inequlaity. For T321, we have

T321 =‖∇M(θt−τ)−∇M(0)‖?s ≤
L

ψ
‖θt−τ − 0‖s (Proposition B.1)

≤ L

ψlcs
[‖θt‖c + ‖θt − θt−τ‖c] . (72)

For T322, we have

T322 =‖Gi(θit,y
i
t)−Gi(θit−τ ,y

i
t) + Ḡi(θit−τ)− Ḡi(θit)‖s

≤ 1

lcs

[∥∥Gi(θit,y
i
t)−Gi(θit−τ ,y

i
t)
∥∥
c

+
∥∥Ḡi(θit−τ)− Ḡi(θit)

∥∥
c

]
(triangle inequality)

≤ 1

lcs

[
A1‖θit − θit−τ‖c + γc‖θit − θit−τ‖c

]
(Assumptions 6.2 and 6.3)

≤A1 + 1

lcs

[∥∥θit − θt
∥∥
c

+ ‖θt − θt−τ‖c +
∥∥θt−τ − θit−τ

∥∥
c

]
(γc ≤ 1; triangle inequality)

=
A1 + 1

lcs

[
∆i
t + ‖θt − θt−τ‖c + ∆i

t−τ
]
. (73)

Substituting (72) and (73) in (71), we get

T32 ≤
L(A1 + 1)

ψl2cs

[
1

N

N∑

i=1

ζ3‖θt‖c ·
1

ζ3

[
∆i
t + ‖θt − θt−τ‖c + ∆i

t−τ
]

+
1

N

N∑

i=1

‖θt − θt−τ‖c ·
[
∆i
t + ‖θt − θt−τ‖c + ∆i

t−τ
]
]

≤L(A1 + 1)

ψl2cs

[
1

2
ζ2
3‖θt‖2m +

1

2N

N∑

i=1

u2
cm

ζ2
3

[
∆i
t + ‖θt − θt−τ‖c + ∆i

t−τ
]2

+
1

2
‖θt − θt−τ‖2c +

1

2N

N∑

i=1

[
∆i
t + ‖θt − θt−τ‖c + ∆i

t−τ
]2
]

(Young’s inequality)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤L(A1 + 1)

ψl2cs

[
ζ2
3M(θt) +

(
3u2

cm

2ζ2
3

+ 2

)
‖θt − θt−τ‖2c +

(
3u2

cm

2ζ2
3

+
3

2

)
1

N

N∑

i=1

[
(∆i

t)
2 + (∆i

t−τ)2
]]

≤L(A1 + 1)

ψl2cs

[
ζ2
3M(θt) +

(
3u2

cm

2ζ2
3

+ 2

)
‖θt − θt−τ‖2c +

(
3u2

cm

2ζ2
3

+
3

2

)
[Ωt + Ωt−τ]

]
. (74)

III. Bound on T33: Taking expectation on both sides of T33, we have

Et−τ [T33] =
〈
∇M(θt−τ),Et−τ [G(Θt−τ ,Yt)]− Ḡ(Θt−τ)

〉

=
1

N

N∑

i=1

〈
∇M(θt−τ),Et−τ [Gi(θit−τ ,y

i
t)]− Ḡi(θit−τ)

〉

≤ 1

lcs

1

N

N∑

i=1

‖∇M(θt−τ)‖?s ·
∥∥Et−τ [Gi(θit−τ ,y

i
t)]− Ḡi(θit−τ)

∥∥
c

(By (13))

≤ 1

lcs

1

N

N∑

i=1

‖∇M(θt−τ)‖?s ·m1‖θit−τ‖cρτ (Assumption 6.1)

≤m1α

lcs

1

N

N∑

i=1

‖∇M(θt−τ)‖?s ‖θ
i
t−τ‖c (assumption on τ)

≤m1Lα

l2csψ

1

N

N∑

i=1

‖θt−τ‖c ‖θ
i
t−τ‖c (By Proposition B.1 and (13))

≤m1Lα

l2csψ

1

N

N∑

i=1

‖θt−τ‖c
[
‖θt−τ‖c + ‖θt−τ − θit−τ‖c

]
(tringle inequality)

≤m1Lα

l2csψ

[
‖θt−τ‖2c +

1

N

N∑

i=1

[
1

2
‖θt−τ‖2c +

1

2

∥∥θt−τ − θit−τ
∥∥2

c

]]
(Young’s inequality)

≤m1Lα

l2csψ
Et−τ

[
3
(
‖θt‖2c + ‖θt − θt−τ‖2c

)
+

1

2
Ωt−τ

]
((a+ b)2 ≤ 2a2 + 2b2)

=
m1Lα

l2csψ
Et−τ

[
6u2

cmM(θt) + 3 ‖θt − θt−τ‖2c +
1

2
Ωt−τ

]
. (75)

Substituting the bounds on T31, T32, T33 from (70), (74), (75), in (66), we get the result.

Proof of Lemma B.4. Denote T4 = 〈∇M(θt), Ḡ(Θt)− Ḡ(θt)〉. By the Cauchy–Schwarz inequality, we have

T4 ≤ ‖∇M(θt)‖?s︸ ︷︷ ︸
T41

· ‖Ḡ(Θt)− Ḡ(θt)‖s︸ ︷︷ ︸
T42

. (76)

For T41 we have

‖∇M(θt)‖?s =‖∇M(θt)−∇M(0)‖?s

≤L
ψ
‖θt‖s (Proposition B.1)

≤ L

lcsψ
‖θt‖c (By (13))

≤Lucm
lcsψ

‖θt‖m (Proposition B.1)

=
Lucm
lcsψ

√
2M(θt). (77)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

For T42 we have

‖Ḡ(Θt)− Ḡ(θt)‖s =

∥∥∥∥∥
1

N

N∑

i=1

(
Ḡi(θit)− Ḡi(θt)

)
∥∥∥∥∥
s

≤ 1

N

N∑

i=1

∥∥Ḡi(θit)− Ḡi(θt)
∥∥
s

(Jensen’s inequality)

≤ 1

lcsN

N∑

i=1

∥∥Ḡi(θit)− Ḡi(θt)
∥∥
c
≤ γc
lcsN

N∑

i=1

∥∥θit − θt
∥∥
c
, (78)

where (78) follows from Assumption 6.2. Combining (77) and (78), for an arbitrary ζ4 > 0, we get

T4 ≤
Lucm
lcsψ

√
2M(θt) ·

γc
lcsN

N∑

i=1

∥∥θit − θt
∥∥
c

≤ 1

N

N∑

i=1

ζ4
√

2M(θt) ·
1

ζ4

∥∥θit − θt
∥∥
c
· Lucm
l2csψ

(γc ≤ 1)

≤ 1

N

N∑

i=1

[
ζ2
4M(θt) +

1

2ζ2
4

∥∥θit − θt
∥∥2

c
· L

2u2
cm

l4csψ
2

]
(Young’s inequality)

= ζ2
4M(θt) +

L2u2
cm

2l4csζ
2
4ψ

2
Ωt. (79)

Proof of Lemma B.5. Denote T5 = ‖G(Θt,Yt)− θt + b(Yt)‖2s. We have

T5 = ‖G(θt,Yt) + G(Θt,Yt)−G(θt,Yt)− θt + b(Yt)‖2s
≤3 ‖G(θt,Yt)− θt‖2s︸ ︷︷ ︸

T51

+3 ‖G(Θt,Yt)−G(θt,Yt)‖2s︸ ︷︷ ︸
T52

+3 ‖b(Yt)‖2s . (80)

For T51 we have

T51 ≤l−2
cs (‖G(θt,Yt)‖c + ‖θt‖c)

2 (By (13))

≤l−2
cs (A2 ‖θt‖c + ‖θt‖c)

2 (Assumption 6.3)

=
2(A2 + 1)2u2

cm

l2cs
M(θt). (81)

For T52 we have

T52 =

∥∥∥∥∥
1

N

N∑

i=1

(Gi(θit,y
i
t)−Gi(θt,y

i
t))

∥∥∥∥∥

2

s

≤ 1

N

N∑

i=1

∥∥Gi(θit,y
i
t)−Gi(θt,y

i
t)
∥∥2

s
(‖ · ‖2s is convex)

≤ 1

Nl2cs

N∑

i=1

∥∥Gi(θit,y
i
t)−Gi(θt,y

i
t)
∥∥2

c
(By (13))

≤A
2
1

l2cs

1

N

N∑

i=1

∥∥θit − θt
∥∥2

c
(Assumption 6.3)

=
A2

1

l2cs
Ωt. (82)

Using the bounds in (81), (82), we get

T5 ≤
6(A2 + 1)2u2

cm

l2cs
M(θt) +

3A2
1

l2cs
Ωt + 3 ‖b(Yt)‖2s , (83)

where the last inequality is by the assumption on τ .

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Proof of Lemma B.6. Define θl = 1
N

∑N
i=1

∥∥θil
∥∥
c
. By the update rule of Algorithm 4, if l + 1 mod K 6= 0, we have

θl+1 =
1

N

N∑

i=1

∥∥θil+1

∥∥
c

=
1

N

N∑

i=1

∥∥θil + α(Gi(θil ,y
i
l)− θil + bi(yil))

∥∥
c

≤θl +
α

N

N∑

i=1

[
‖Gi(θil ,y

i
l)‖c + ‖θil‖c + ‖bi(yil)‖c

]
(triangle inequality)

≤θl + α
1

N

N∑

i=1

[
(A2 + 1)‖θil‖c +B

]
(Assumption 6.3)

=(1 + α(A2 + 1))θl + αB. (84)

Furthermore, if l + 1 mod K = 0, we have θil+1 = 1
N

∑N
j=1(θjl + α(Gj(θjl ,y

j
l)− θjl + bj(yjl))), and hence

θl+1 =
1

N

N∑

i=1

∥∥θil+1

∥∥
c

=
1

N

N∑

i=1

∥∥∥∥∥∥
1

N

N∑

j=1

(θjl + α(Gj(θjl ,y
j
l)− θjl + bj(yjl)))

∥∥∥∥∥∥
c

≤θl +
α

N

N∑

i=1

[
‖Gi(θil ,y

i
l)‖c + ‖θil‖c + ‖bi(yil)‖c

]
, (triangle inequality)

and the same bound as in (84) holds. By recursive application of (84), we get

θl+1 ≤(1 + α(A2 + 1))l+1θ0 + αB
l∑

`=0

(1 + α(A2 + 1))`

=(1 + α(A2 + 1))l+1θ0 + αB
(1 + α(A2 + 1))l+1 − 1

α(A2 + 1)
. (85)

Notice that for x ≤ log 2
τ , we have (1 + x)τ+1 ≤ 1 + 2x(τ + 1). If 0 ≤ l ≤ 2τ − 1, by the assumption on α, we have

(1 + α(A2 + 1))l+1 ≤ (1 + α(A2 + 1))2τ ≤ 1 + 4α(A2 + 1)τ ≤ 2. Hence, we have

θl ≤2θ0 + αB
4α(A2 + 1)τ

α(A2 + 1)
= 2θ0 + 4αBτ. (86)

Furthermore, we have

‖θl+1 − θl‖c =α‖G(Θl,yl)− θl + b(yl)‖c
≤α‖G(Θl,yl)− θl‖c + α‖b(yl)‖c (triangle inequality)

=α

∥∥∥∥∥
1

N

N∑

i=1

(Gi(θil ,y
i
l)− θil)

∥∥∥∥∥
c

+ α‖b(yl)‖c

≤α 1

N

N∑

i=1

∥∥Gi(θil ,y
i
l)− θil

∥∥
c

+ αB (convexity of norm)

≤α 1

N

N∑

i=1

(A2 + 1)
∥∥θil
∥∥
c

+ αB (Assumption 6.3)

=α(A2 + 1)θl + αB. (87)

Suppose 0 ≤ t ≤ 2τ . We have

‖θt − θ0‖c ≤

[
t−1∑

k=0

‖θk+1 − θk‖c

]
(triangle inequality)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤

[
t−1∑

k=0

α(A2 + 1)θk + αB

]
(By (87))

≤Bαt+ α(A2 + 1)
t−1∑

k=0

(2θ0 + 4Bατ) (By (86))

≤2ατ(B + (A2 + 1)(2θ0 + 4Bατ)) (t ≤ 2τ)

≤ 1

C1

(
B + (A2 + 1)

(
θ0 +

B

2C1

))
. (88)

Furthermore, by Proposition B.1, we have M(θt) = 1
2‖θt‖

2
m, and hence for any 0 ≤ t ≤ 2τ we have

M(θt) ≤
1

2l2cm
‖θt‖2c

=
1

2l2cm
(‖θt − θ0 + θ0‖c)2

≤ 1

2l2cm
(‖θt − θ0‖c + ‖θ0‖c)2 (triangle inequality)

≤ 1

l2cm
(‖θt − θ0‖2c + ‖θ0‖2c)

≤ 1

l2cm

(
1

C2
1

(
B + (A2 + 1)

(
‖θ0‖c +

B

2C1

))2

+ ‖θ0‖2c

)
,

which proves the first claim.

Next we prove the second claim. By the update rule in 30, we have

‖θl+1 − θl‖2c =α2‖G(Θl,Yl)− θl + b(Yl)‖2c
≤3α2‖G(θl,Yl)− θl‖2c + 3α2‖b(Yl)‖2c + 3α2‖G(Θl,Yl)−G(θl,Yl)‖2c
≤6α2(‖G(θl,Yl)‖2c + ‖θl‖2c) + 3α2‖b(Yl)‖2c + 3α2‖G(Θl,Yl)−G(θl,Yl)‖2c

=6α2



∥∥∥∥∥

1

N

N∑

i=1

Gi(θl,y
i
l)

∥∥∥∥∥

2

c

+ ‖θl‖2c


+ 3α2‖b(Yl)‖2c + 3α2‖G(Θl,Yl)−G(θl,Yl)‖2c

≤6α2



(

1

N

N∑

i=1

∥∥Gi(θl,y
i
l)
∥∥
c

)2

+ ‖θl‖2c


+ 3α2‖b(Yl)‖2c + 3α2‖G(Θl,Yl)−G(θl,Yl)‖2c

(convexity of norm)

≤6α2



(

1

N

N∑

i=1

A2‖θl‖c

)2

+ ‖θl‖2c


+ 3α2‖b(Yl)‖2c + 3α2‖G(Θl,Yl)−G(θl,Yl)‖2c

(Assumption 6.3)

=6α2(A2
2 + 1)‖θl‖2c + 3α2‖b(Yl)‖2c + 3α2‖G(Θl,Yl)−G(θl,Yl)‖2c

≤6α2(A2
2 + 1)‖θl‖2c + 3α2‖b(Yl)‖2c + 3α2A2

1∆2
l , (89)

where (89) follows from Lemma B.10. Taking square root on both sides, we get

‖θl+1 − θl‖c ≤ 3α
√
A2

2 + 1‖θl‖c + 2α‖b(Yl)‖c + 2αA1∆l. (90)

Combining the above inequality with the fact that ‖θl+1‖c − ‖θl‖c ≤ ‖θl+1 − θl‖c, we get

‖θl+1‖c ≤(1 + 3α
√
A2

2 + 1)‖θl‖c + 2α‖b(Yl)‖c + 2αA1∆l

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=(1 + αC1)‖θl‖c + 2α‖b(Yl)‖c + 2αA1∆l, (91)

where we denote C1 = 3
√
A2

2 + 1. Assuming t− τ ≤ l ≤ t, and taking expectation on both sides, we have

Et−2τ [‖θl+1‖c] ≤ (1 + αC1)Et−2τ [‖θl‖c] + 2αEt−2τ [‖b(Yl)‖c] + 2αA1Et−2τ [∆l]

≤ (1 + αC1)Et−2τ [‖θl‖c] + 2α
ucD
lcD

[
B√
N

+ 2m2ρ
l−t+2τ

]
+ 2αA1Et−2τ [∆l] (Lemma B.9)

≤ (1 + αC1)Et−2τ [‖θl‖c] + 2α
ucD
lcD

[
B√
N

+ 2m2αρ
l−t+τ

]
+ 2αA1Et−2τ [∆l] (Assumption on τ)

= (1 + αC1)Et−2τ [‖θl‖c] + αct(l) + 2αA1Et−2τ [∆l], (92)

where ct(l) = 2ucDlcD

[
B√
N

+ 2m2αρ
l−t+τ

]
. By applying this inequality recursively, we have

Et−2τ [‖θl+1‖c] ≤ (1 + αC1)Et−2τ [‖θl‖c] + αct(l) + 2αA1Et−2τ [∆l]

≤ (1 + αC1) [(1 + αC1)Et−2τ [‖θl−1‖c] + αct(l − 1) + 2αA1Et−2τ [∆l−1]] + αct(l) + 2αA1Et−2τ [∆l]

≤ (1 + αC1)l+1−t+τEt−2τ [‖θt−τ‖c] + α
l∑

k=t−τ

(1 + αC1)l−kct(k) + 2αA1Et−2τ

[
l∑

k=t−τ

(1 + αC1)l−k∆k

]

≤ (1 + αC1)τ+1Et−2τ‖θt−τ‖c + α

t∑

k=t−τ

(1 + αC1)t−kct(k)

︸ ︷︷ ︸
T1

+2αA1Et−2τ

[
t∑

k=t−τ

(1 + αC1)t−k∆k

]

︸ ︷︷ ︸
T2

. (93)

We study T1 and T2 in (93) separately. For T1 we have

T1 = 2
ucD
lcD

τ∑

k=0

(1 + αC1)τ−k
[
B√
N

+ 2m2αρ
k

]

= 2
ucD
lcD

[
B√
N

(1 + αC1)τ+1 − 1

αC1
+ 2m2α(1 + αC1)τ

τ∑

k=0

(
ρ

1 + αC1

)k]

≤ 2
ucD
lcD

[
B√
N

(1 + αC1)τ+1 − 1

αC1
+ 2m2α(1 + αC1)τ

τ∑

k=0

ρk

]
(α > 0)

≤ 2
ucD
lcD

[
B√
N

(1 + αC1)τ+1 − 1

αC1
+ 2m2α(1 + αC1)τ

1

1− ρ

]
. (94)

Notice that for x ≤ log 2
τ , we have (1 + x)τ+1 ≤ 1 + 2x(τ + 1). By the assumption on α, we have (1 + αC1)τ+1 ≤

1 + 2αC1(τ + 1) ≤ 1 + 4ατC1 ≤ 2 and (1 + αC1)τ ≤ 1 + 2αC1τ ≤ 1 + 1/2 ≤ 2. Hence, we have

T1 ≤ 2
ucD
lcD

[
B√
N

2(τ + 1) +
4m2α

1− ρ

]
. (95)

Furthermore, for the term T2 we have

T2 =
τ∑

k=0

(1 + αC1)τ−k∆t−τ+k ≤
τ∑

k=0

(1 + αC1)τ∆t−τ+k (due to α > 0)

≤
τ∑

k=0

(1 + 2αC1τ)∆t−τ+k ≤ 2
τ∑

k=0

∆t−k. (96)

Subtituting (95), (96) in (93), for every t− τ ≤ l ≤ t, we get

Et−2τ [‖θl‖c] ≤ 2Et−2τ [‖θt−τ‖c] + α
2ucD
lcD

[
4B√
N
τ +

4m2α

1− ρ

]
+ 4A1α

τ∑

k=0

∆t−k. (97)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

But we have

Et−2τ‖θt − θt−τ‖c ≤ Et−2τ

[
t−1∑

i=t−τ
‖θi+1 − θi‖c

]
(triangle inequality)

≤
t−1∑

i=t−τ
Et−2τ [αC1‖θi‖c + 2α‖b(Yi)‖c + 2αA1∆i] (by (90))

≤
t−1∑

i=t−τ
αC1


2Et−2τ [‖θt−τ‖c] + α

2ucD
lcD

[
4B√
N
τ +

4αm2

1− ρ

]
+ 4A1α

τ∑

j=0

Et−2τ [∆t−j]


 (by (97))

+ 2α
t−1∑

i=t−τ

ucD
lcD

[
B√
N

+ 2m2ρ
i−t+2τ

]
(Lemma B.9)

+ 2αA1

t−1∑

i=t−τ
Et−2τ [∆i]

≤ ατC1


2Et−2τ [‖θt−τ‖c] + α

2ucD
lcD

[
4B√
N
τ +

4αm2

1− ρ

]
+ 4A1α

τ∑

j=0

Et−2τ [∆t−j]




+ 2ατ
ucD
lcD

B√
N

+ 4α2ucD
lcD

m2
1

1− ρ
+ 2αA1

t−1∑

i=t−τ
Et−2τ [∆i] (assumption on τ)

≤ 2ατC1Et−2τ [‖θt−τ‖c] +
ucD
lcD

B√
N

[
8C1α

2τ2 + 2ατ
]

+
ucD
lcD

[
8m2C1α

2τ

1− ρ
+

4m2α
2

1− ρ

]

+ (4A1α
2τC1 + 2αA1)

t∑

i=t−τ
Et−2τ [∆i] (∆i ≥ 0)

≤ 2ατC1Et−2τ [‖θt−τ‖c] + 4ατ
ucD
lcD

B√
N

+
ucD
lcD

4m2

1− ρ
α2(1 + 2C1τ) + 3A1α

t∑

i=t−τ
Et−2τ [∆i]. (98)

Furthermore, by triangle inequality, we have ‖θt−τ‖c ≤ ‖θt − θt−τ‖c + ‖θt‖c. By assumption on α, we have
2ατC1‖θt−τ‖c ≤ 2ατC1‖θt − θt−τ‖c + 2ατC1‖θt‖c ≤ 0.5‖θt − θt−τ‖c + 2ατC1‖θt‖c. By taking expectation
on both sides, and substituting it in (98), we get (34).

Proof of Lemma B.7. From (91) we have

‖θl+1‖2c ≤(1 + αC1)2‖θl‖2c + 4α2‖b(Yl)‖2c + 4α2A2
1∆2

l

+ 4α(1 + αC1)‖θl‖c‖b(Yl)‖c︸ ︷︷ ︸
T1

+ 4αA1(1 + αC1)‖θl‖c∆l︸ ︷︷ ︸
T2

+ 8α2A1∆l‖b(Yl)‖c︸ ︷︷ ︸
T3

. (99)

For T1 we have

T1 =2
√
α(1 + αC1)‖θl‖c · 2

√
α(1 + αC1)‖b(Yl)‖c

≤2α(1 + αC1)‖θl‖2c + 2α(1 + αC1)‖b(Yl)‖2c (ab ≤ 1
2a

2 + 1
2b

2)

≤4α‖θl‖2c + 4α‖b(Yl)‖2c , (100)

where the last inequality is by the assumption on α. Analogously for T2 we have

T2 =2
√
α(1 + αC1)‖θl‖c · 2A1

√
α(1 + αC1)∆l

≤4α‖θl‖2c + 4αA2
1∆2

l . (101)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

For T3 we have

T3 =2α‖b(Yl)‖c · 4αA1∆l

≤2α2‖b(Yl)‖2c + 8α2A2
1∆2

l . (102)

Combining the bounds in (100), (101), and (102), and noting that (1 + αC1)2 ≤ 1 + 3αC1, from (99) we have

‖θl+1‖2c ≤(1 + 3αC1)‖θl‖2c + 4α2‖b(Yl)‖2c + 4α2A2
1∆2

l

+ 4α‖θl‖2c + 4α‖b(Yl)‖2c + 4α‖θl‖2c + 4αA2
1∆2

l + 2α2‖b(Yl)‖2c + 8α2A2
1∆2

l

=(1 + α(3C1 + 8))‖θl‖2c + (6α2 + 4α)‖b(Yl)‖2c +A2
1(12α2 + 4α)∆2

l

≤(1 + αC2)‖θl‖2c + 10α‖b(Yl)‖2c + 16αA2
1∆2

l . (103)

where C2 = 3C1 + 8. Taking expectation on both sides, we have

Et−2τ‖θl+1‖2c ≤ (1 + αC2)Et−2τ‖θl‖2c + 10αEt−2τ‖b(Yl)‖2c + 16αA2
1Et−2τ [∆2

l]

≤ (1 + αC2)Et−2τ‖θl‖2c + 10α
u2
cD

l2cD

[
B2

N
+ 2m2

2ρ
2(l−t+2τ)

]
+ 16αA2

1Et−2τ [∆2
l] (Lemma B.9)

= (1 + αC2)Et−2τ‖θl‖2c + αc̄t(l) + 16αA2
1Et−2τ [∆2

l], (104)

where c̄t(l) = 10
u2
cD

l2cD

[
B2

N + 2m2
2α

2ρ2(l−t+τ)
]
. Hence, for any t− τ ≤ l ≤ t, we have

Et−2τ‖θl+1‖2c ≤ (1 + αC2)
[
(1 + αC2)Et−2τ‖θl−1‖2c + αc̄t(l − 1) + 16αA2

1Et−2τ [∆2
l−1]

]

+ αc̄t(l) + 16αA2
1Et−2τ [∆2

l]

≤ (1 + αC2)l+1−t+τEt−2τ‖θt−τ‖2c + α
l∑

i=t−τ
(1 + αC2)l−ic̄t(i) + 16αA2

1Et−2τ

[
l∑

i=t−τ
(1 + αC2)l−i∆2

i

]

≤ (1 + αC2)τ+1Et−2τ‖θt−τ‖2c + α
t∑

i=t−τ
(1 + αC2)t−ic̄t(i)

︸ ︷︷ ︸
T4

+16αA2
1Et−2τ

[
t∑

i=t−τ
(1 + αC2)t−i∆2

i

]

︸ ︷︷ ︸
T5

. (105)

For the term T4 we have

T4 =10
u2
cD

l2cD

τ∑

i=0

(1 + αC2)τ−i
[
B2

N
+ 2m2

2α
2ρ2i

]

=10
u2
cD

l2cD

B2

N

(1 + αC2)τ+1 − 1

αC2
+ 20

u2
cD

l2cD
m2

2α
2(1 + αC2)τ

τ∑

i=0

(
ρ2

1 + αC2

)i

≤10
u2
cD

l2cD

B2

N

(1 + αC2)τ+1 − 1

αC2
+ 20

u2
cD

l2cD
m2

2α
2(1 + αC2)τ

τ∑

i=0

ρ2i (αC2 ≥ 0)

≤10
u2
cD

l2cD

B2

N

(1 + αC2)τ+1 − 1

αC2
+ 20

u2
cD

l2cD
m2

2α
2(1 + αC2)τ

1

1− ρ2
. (106)

By the same argument as in Lemma B.6, and by the assumption on α, we have (1 + αC2)τ+1 ≤ 1 + 2αC2(τ + 1) ≤
1 + 4ατC2 ≤ 2 and (1 + αC2)τ ≤ 1 + 2αC2τ ≤ 1 + 1/2 ≤ 2. Hence, we have

T4 ≤ 40
u2
cD

l2cD

[
B2

N
τ +

m2
2α

2

1− ρ2

]
. (107)

Furthermore, for T5, we have

T5 =
τ∑

i=0

(1 + αC2)τ−iEt−2τ [∆2
t−τ+i]

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤
τ∑

i=0

(1 + αC2)τEt−2τ [∆2
t−τ+i] (αC2 > 0)

≤
τ∑

i=0

(1 + 2αC2τ)Et−2τ [∆2
t−τ+i] (assumption on α)

≤2
τ∑

i=0

Et−2τ [∆2
t−i]. (108)

Combining the bounds on T4 (107) and T5 (108) in (105) we have for any t− τ ≤ l ≤ t,

Et−2τ‖θl‖2c ≤ 2Et−2τ‖θt−τ‖2c + 40
u2
cD

l2cD

[
B2

N
ατ +m2

2α
3 1

1− ρ2

]
+ 32αA2

1

τ∑

i=0

Et−2τ [∆2
t−i]. (109)

Furthermore, we have

‖θt − θt−τ‖2c ≤

(
t−1∑

i=t−τ
‖θi+1 − θi‖c

)2

(triangle inequality)

≤τ
t−1∑

i=t−τ
‖θi+1 − θi‖2c

≤τ
t−1∑

i=t−τ

[
α2C2

1‖θi‖2c + 3α2‖b(yi)‖2c + 3α2A2
1∆2

i

]
. (from (89))

Taking expectation on both sides, and using the bounds in Lemma B.9 and (109), we get

Et−2τ‖θt − θt−τ‖2c

≤ τα2C2
1

t−1∑

i=t−τ

[
2Et−2τ‖θt−τ‖2c + 40

u2
cD

l2cD

(
B2

N
ατ +

m2
2α

3

1− ρ2

)
+ 32αA2

1

τ∑

i=0

Et−2τ [∆2
t−i]

]

+ 3α2τ
t−1∑

i=t−τ

u2
cD

l2cD

[
B2

N
+ 2m2

2ρ
2(i−t+2τ)

]
+ 3α2A2

1τ
t−1∑

i=t−τ
Et−2τ

[
∆2
i

]

≤ τ2α2C2
1

[
2Et−2τ‖θt−τ‖2c + 40

u2
cD

l2cD

(
B2

N
ατ +

m2
2α

3

1− ρ2

)]
+ 3α2τ

u2
cD

l2cD

[
τB2

N
+

2m2
2α

2

1− ρ2

]
(ρτ ≤ α)

+ α2A2
1τ(3 + 32ατC2

1)

τ∑

i=0

Et−2τ∆2
t−i. (110)

Furthermore, by triangle inequality, we have ‖θt−τ‖c ≤ ‖θt − θt−τ‖c + ‖θt‖c. Squaring both sides, we have ‖θt−τ‖2c ≤
(‖θt − θt−τ‖c + ‖θt‖c)2 ≤ 2‖θt − θt−τ‖2c + 2‖θt‖2c . By assumption on α, we have 2τ2α2C2

1‖θt−τ‖2c ≤ 4τ2α2C2
1‖θt −

θt−τ‖2c + 4τ2α2C2
1‖θt‖2c ≤ 0.5‖θt − θt−τ‖2c + 4τ2α2C2

1‖θt‖2c .

Proof of Lemma B.8. For sK + 1 ≤ t ≤ (s+ 1)K − 1, where s = bt/Kc,

Ωt ,
1

N

N∑

i=1

(
∆i
t

)2
=

1

N

N∑

i=1

‖θt − θit‖2c

=
1

N

N∑

i=1

∥∥∥∥∥
(
θisK − θsK

)
+ α

t−1∑

t′=sK

[(
Gi(θit′ ,y

i
t′)− θit′ + bi(yit′)

)
− (G(Θt′ ,yt′)− θt′ + b(yt′))

]
∥∥∥∥∥

2

c

≤ 2α2

N

N∑

i=1



∥∥∥∥∥
t−1∑

t′=sK

[
bi(yit′)− b(yt′)

]
∥∥∥∥∥

2

c

+

∥∥∥∥∥
t−1∑

t′=sK

[(
Gi(θit′ ,y

i
t′)− θit′

)
− (G(Θt′ ,yt′)− θt′)

]
∥∥∥∥∥

2

c




(∵ θisK = θsK and Young’s inequality)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤ 2α2u2
c2

N

N∑

i=1




t−1∑

t′=sK

∥∥bi(yit′)− b(yt′)
∥∥2

2
+

t−1∑

t′,t′′=sK
t′ 6=t′′

〈
bi(yit′)− b(yt′),b

i(yit′′)− b(yt′′)
〉



+
4α2

N
(t− sK)

t−1∑

t′=sK

N∑

i=1

[
u2
c2

∥∥Gi(θit′ ,y
i
t′)−G(Θt′ ,yt′)

∥∥2

2
+
∥∥θit′ − θt′

∥∥2

c

]

(Triangle inequality, and ‖·‖c ≤ uc2 ‖·‖2)

≤ 2α2u2
c2

N

N∑

i=1




t−1∑

t′=sK

1

l2c2

∥∥bi(yit′)
∥∥2

c
+

t−1∑

t′,t′′=sK
t′ 6=t′′

〈
bi(yit′)− b(yt′),b

i(yit′′)− b(yt′′)
〉



+
4α2

N
(t− sK)

t−1∑

t′=sK

N∑

i=1

[
u2
c2

l2c2

∥∥Gi(θit′ ,y
i
t′)
∥∥2

c
+
∥∥θit′ − θt′

∥∥2

c

]
. (lc2 ‖·‖2 ≤ ‖·‖c and V ar(X) ≤ E[X2])

Taking expectation

E [Ωt] ≤
2α2u2

c2

l2c2
(t− sK)B2 +

4α2u2
c2

N

N∑

i=1

t−1∑

t′,t′′=sK
t′<t′′

E
〈
bi(yit′)− b(yt′),Et′

[
bi(yit′′)− b(yt′′)

]〉

+
4α2

N
(t− sK)

t−1∑

t′=sK

N∑

i=1

E
[

2u2
c2

l2c2

{∥∥Gi(θit′ ,y
i
t′)−Gi(θt′ ,y

i
t′)
∥∥2

c
+
∥∥Gi(θt′ ,y

i
t′)
∥∥2

c

}
+
∥∥θit′ − θt′

∥∥2

c

]

(using Assumption 6.3)

≤ 2α2u2
c2

l2c2
(t− sK)B2 +

4α2u2
c2

lc2N

N∑

i=1

t−1∑

t′,t′′=sK
t′<t′′

E
[∥∥bi(yit′)− b(yt′)

∥∥
2

∥∥Et′
[
bi(yit′′)− b(yt′′)

]∥∥
c

]

(using lc2 ‖·‖2 ≤ ‖·‖c)

+
4α2(t− sK)

N

t−1∑

t′=sK

N∑

i=1

E
[

2u2
c2

l2c2

{
A2

1

∥∥θit′ − θt′
∥∥2

c
+A2

2 ‖θt′‖
2
c

}
+
∥∥θit′ − θt′

∥∥2

c

]
(Assumption 6.3)

(a)

≤ 2α2u2
c2

l2c2
(t− sK)B2 +

4α2u2
c2

lc2N

2m2B

lc2

N∑

i=1

t−1∑

t′=sK

t−1∑

t′′=sK
t′<t′′

E
[
ρt
′′−t′

]

+ 4α2(t− sK)
t−1∑

t′=sK

[(
1 +

2A2
1u

2
c2

l2c2

)
Ωt′ +

2A2
2u

2
c2

l2c2
‖θt′‖2c

]

(b)

≤ 2α2u2
c2

l2c2
(t− sK)

[
B2 +

4m2Bρ

1− ρ

]
+ 4α2(t− sK)

t−1∑

t′=sK

[(
1 +

2A2
1u

2
c2

l2c2

)
Ωt′ +

2A2
2u

2
c2

l2c2
‖θt′‖2c

]
, (111)

where (a) follows since

E
[∥∥bi(yit′)− b(yt′)

∥∥
2

∥∥Et′
[
bi(yit′′)− b(yt′′)

]∥∥
c

]

≤ E


∥∥bi(yit′)

∥∥
2
·




∥∥Et′

[
bi(yit′′)

]∥∥
c

+

∥∥∥∥∥∥
Et′


 1

N

N∑

j=1

b(yjt′′)



∥∥∥∥∥∥
c






 (V ar(X) ≤ E[X2], and Triangle inequality)

≤ E


 1

lc2

∥∥bi(yit′)
∥∥
c
·




∥∥Et′

[
bi(yit′′)

]∥∥
c

+
1

N

N∑

j=1

∥∥∥Et′
[
b(yjt′′)

]∥∥∥
c






 (Jensen’s inequality)

≤ B

lc2
· 2m2E

[
ρt
′′−t′

]
. (Assumption 6.1, 6.3)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Finally, the inequality in (b) follows since

t−1∑

t′=sK

t−1∑

t′′=sK
t′<t′′

E
[
ρt
′′−t′

]
=

t−1∑

t′=sK

t−1∑

t′′=t′+1

ρt
′′−t′ =

t−1∑

t′=sK

ρ− ρt−t′

1− ρ

=
ρ(t− sK)

1− ρ
−
ρ
(
1− ρt−sK

)

1− ρ

≤ ρ(t− sK)

1− ρ
.

For simplicity, we define Ã1 =
2A2

1u
2
c2

l2c2
, Ã2 =

2A2
2u

2
c2

l2c2
, B̃ = uc2

lc2
B. Hence, (111) simplifies to

EΩt ≤ 2α2(t− sK)

[
B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ 2

t−1∑

t′=sK

(
(1 + Ã1)EΩt′ + Ã2E ‖θt′‖2c

)]
. (112)

Recursively applying (112), going back 2 steps, we see

EΩt ≤ 2α2B̃2(t− sK)

[
1 +

4m2ρ

B(1− ρ)

]
+ 4α2(t− sK)Ã2

t−1∑

t′=sK

E ‖θt′‖2c + 4α2(t− sK)(1 + Ã1)

t−2∑

t′=sK

EΩt′

+ 4α2(t− sK)(1 + Ã1) 2α2(t− sK − 1)

[
B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ 2

t−2∑

t′=sK

(
(1 + Ã1)EΩt′ + Ã2E ‖θt′‖2c

)]

︸ ︷︷ ︸
≥Ωt−1

= 2α2B̃2(t− sK)

[
1 +

4m2ρ

B(1− ρ)

] [
1 + 4α2(1 + Ã1)(t− 1− sK)

]

+ 4α2(t− sK)Ã2

[
t−1∑

t′=sK

‖θt′‖2c + 4α2(1 + Ã1)(t− 1− sK)
t−2∑

t′=sK

E ‖θt′‖2c

]

+ 4α2(t− sK)(1 + Ã1)
[
1 + 4α2(1 + Ã1)(t− 1− sK)

] t−2∑

t′=sK

EΩt′

≤ 4α2(t− sK)
[
1 + 4α2(1 + Ã1)(t− 1− sK)

] [
B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ Ã2

t−1∑

t′=sK

E ‖θt′‖2c

+ (1 + Ã1)

t−2∑

t′=sK

EΩt′

]
. (113)

To derive the bound for going back, in general, j steps (such that t− j ≥ sK), we use an induction argument. Suppose for
going back k(< j) steps, the bound is

EΩt ≤ 4α2(t− sK)B̃2

(
1 +

4m2ρ

B(1− ρ)

) k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

]

+ 4α2(t− sK)Ã2

k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

] t−1∑

t′=sK

E ‖θt′‖2c

+ 4α2(t− sK)(1 + Ã1)
k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

] t−k∑

t′=sK

EΩt′ . (114)

We derive the bound for k + 1 steps. For this, we further bound the last term in (114).

4α2(t− sK)(1 + Ã1)
k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

] [t−k−1∑

t′=sK

EΩt′ + EΩt−k

]

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤ 4α2(t− sK)(1 + Ã1)
k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

] t−k−1∑

t′=sK

EΩt′

+ 4α2(t− sK)(1 + Ã1)
k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

]

× 4α2(t− k − sK)

[
B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+
t−k−1∑

t′=sK

(
(1 + Ã1)EΩt′ + Ã2E ‖θt′‖2c

)]
(using (112))

≤ 4α2(t− sK)(1 + Ã1)
k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

] t−k−1∑

t′=sK

EΩt′

+ 4α2(t− sK)
k−1∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

]

× 4α2(1 + Ã1)(t− k − sK)

[
B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+
t−k−1∑

t′=sK

(
(1 + Ã1)EΩt′ + Ã2E ‖θt′‖2c

)]
. (115)

Substituting (115) into (114), we see that the induction hypothesis in (114) holds. We can go back as far as the last instant
of synchronization, j ≤ t− sK. For j = t− sK, we get

EΩt ≤ 4α2(t− sK)

t−1−sK∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

]

×

[
B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ Ã2

t−1∑

t′=sK

E ‖θt′‖2c + (1 + Ã)EΩsK

]
. (116)

Next, using 1 + x ≤ ex for x ≥ 0, we get

t−1−sK∏

`=1

[
1 + 4α2(1 + Ã1)(t− `− sK)

]
≤ exp

(
t−1−sK∑

`=1

4α2(1 + Ã1)(t− `− sK)

)

≤ exp
(

2α2(1 + Ã1)(t− sK)2
)

≤ 5

4
, (117)

if α is small enough such that 2α2(1 + Ã1)(K − 1)2 ≤ ln 5
4 , which holds true by the assumption on the step size. Using

(117) in (116), we get

EΩt ≤ 5α2(t− sK)


B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ Ã2

t−1∑

t′=sK

E ‖θt′‖2c + (1 + Ã)EΩsK︸ ︷︷ ︸
=0




= 5α2(t− sK)B̃2

(
1 +

4m2ρ

B(1− ρ)

)
+ 5α2(t− sK)Ã2

t−1∑

t′=sK

E ‖θt′‖2c , (118)

which concludes the proof.

Proof of Lemma B.9. We have

Et−r[‖b(Yt)‖c] ≤ ucDEt−r[‖b(Yt)‖D]

= ucDEt−r
[√

b(Yt)>Db(Yt)

]

≤ucD
√
Et−r [b(Yt)>Db(Yt)] (concavity of square root)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= ucD

√√√√√Et−r



(

1

N

N∑

i=1

bi(yit)

)>
D

(
1

N

N∑

i=1

bi(yit)

)


= ucD

√√√√√Et−r


 1

N2

N∑

i=1

bi(yit)
>Dbi(yit) +

2

N2

∑

i<j

bi(yit)
>Dbj(yjt)




= ucD

√√√√ 1

N2

N∑

i=1

Et−r
[∥∥bi(yit)

∥∥2

D

]
+

2

N2

∑

i<j

Et−r
[
bi(yit)

]>
DEt−r

[
bj(yjt)

]
(Assumption 6.4)

≤ ucD

[√√√√ 1

N2

N∑

i=1

Et−r
[∥∥bi(yit)

∥∥2

D

]

︸ ︷︷ ︸
T1

+

√
2

N2

∑

i<j

Et−r
[
bi(yit)

]>
DEt−r

[
bj(yjt)

]

︸ ︷︷ ︸
T2

]
. (119)

For the term T1 we have

T1 ≤
1

N

√√√√
N∑

i=1

Et−r
[
l−2
cD

∥∥bi(yit)
∥∥2

c

]
≤ 1

NlcD

√√√√
N∑

i=1

Et−r[B2] (Assumption 6.3)

=
B

lcD

1√
N
. (120)

For the term T2 we have

T2 ≤
2

N

√∑

i<j

‖Et−r
[
bi(yit)

]
‖D · ‖Et−r

[
bj(yjt)

]
‖D (Cauchy–Schwarz)

≤ 2

N

√∑

i<j

l−2
cD‖Et−r

[
bi(yit)

]
‖c · ‖Et−r

[
bj(yjt)

]
‖c

≤ 2

N

√∑

i<j

l−2
cDm2ρr ·m2ρr (Assumption 6.1)

≤2m2ρ
r

lcD
. (121)

Substituting (120) and (121) in (119), we get the result in (56).

The proof of (57) follows analogously.

Proof of Lemma B.10. By definition, we have

‖G(Θt,Yt)−G(θt,Yt)‖2c =

∥∥∥∥∥
1

N

N∑

i=1

(Gi(θit,y
i
t)−Gi(θt,y

i
t))

∥∥∥∥∥

2

c

≤

(
1

N

N∑

i=1

∥∥Gi(θit,y
i
t)−Gi(θt,y

i
t)
∥∥
c

)2

(convexity of norm)

≤

(
1

N

N∑

i=1

A1‖θit − θt‖c

)2

(Assumption 6.3)

= (A1∆t)
2

≤ 1

N

N∑

i=1

A2
1‖θit − θt‖2c (convexity of square)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=A2
1Ωt. (By definition of Ωt)

Furthermore, by the convexity of (·)2, we have

∆2
t =

(
1

N

N∑

i=1

∆i
t

)2

≤ 1

N

N∑

i=1

(∆i
t)

2 = Ωt.

Proof of Lemma B.11. Since Mψ,g
f (·) is convex, and there exists a norm, ‖ · ‖m, such that Mψ,g

f (x) = 1
2 ‖x‖

2
m (see

Proposition B.1), using the chain rule of subdifferential calculus,

∇Mψ,g
f (x) = ‖x‖m ux,

where ux ∈ ∂ ‖x‖m is a subgradient of ‖x‖m at x. Hence,
∥∥∥∇Mψ,g

f (x)
∥∥∥
?

m
= ‖x‖m ‖ux‖

?
m ,

where ‖·‖?m is the dual norm of ‖·‖m. Since ‖·‖m is convex and, as a function of x, is 1-Lipschitz w.r.t. ‖·‖m, we have
‖ux‖?m ≤ 1 (see Lemma 2.6 in (Shalev-Shwartz et al., 2012)).

Further, by convexity of ‖·‖m norm, ‖0‖m ≥ ‖x‖m + 〈ux,−x〉. Therefore,
〈
∇Mψ,g

f (x), x
〉

= ‖x‖m 〈ux, x〉 ≥ ‖x‖
2
m = 2Mψ,g

f (x).

C. Federated TD-learning
C.1. On-policy Function Approximation

Proposition C.1. On-policy TD-learning with linear function approximation Algorithm 1 satisfies the following:

1. θit = vit − vπ

2. St = (S1
t , . . . , S

N
t) and At = (A1

t , . . . , A
N
t)

3. yit = (Sit , A
i
t, . . . , S

i
t+n−1, A

i
t+n−1, S

i
t+n) and Yt = (St, At, . . . , St+n−1, At+n−1, St+n)

4. µπ : Stationary distribution of the policy π.

Furthermore, choose some arbitrary positive constant β > 0. The corresponding Gi(θit,y
i
t) and bi(yit) in Algorithm 1 for

On-policy TD-learning with linear function approximation is as follows

1. Gi(θit,y
i
t) = θit + 1

βφ(Sit)
∑t+n−1
l=t γl−t

(
γφ(Sil+1)>θit−φ(Sil)

>θit
)

2. bi(yit) = 1
βφ(Sit)

∑t+n−1
l=t γl−t

(
R(Sil , A

i
l) + γφ(Sil+1)>vπ−φ(Sil)

>vπ
)

where vπ solves the projected bellman equation Φvπ = Ππ((T π)nΦvπ). Furthermore, the corresponding step size α in
Algorithm 4 is α× β.

Lemma C.1. Consider the federated on-policy TD-learning Algorithm 1 as a special case of FedSAM Algorithm 4 (see
Proposition C.1). Suppose the trajectory {Sit}t=0,1,... converges geometrically fast to its stationary distribution as follows
dTV (P (Sit = ·|Si0)||µi(·)) ≤ m̄ρ̄t for all i = 1, 2, . . . , N . The corresponding Ḡi(θ) in Assumption 6.1 for the federated
TD-learning is as follows

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Ḡi(θ) =θ +
1

β
Φ>µπ (γn(Pπ)nΦθ − Φθ) , (122)

where β > 0 is an arbitrary constant introduced in Proposition C.1. In addition, (6) holds. Furthermore, for t ≥ n+ 1, we
have m = max{ 2A2m̄

ρ̄n , 2Bm̄}, where A2 and B are specified in Lemma C.3 and ρ̄ = ρ.

Lemma C.2. Consider the federated on-policy TD-learning 1 as a special case of FedSAM (as specified in Proposition C.1).
Consider the |S| × |S| matrix U = Φ>µπ (γn(Pπ)n − I) Φ with eigenvalues {λ1, . . . , λ|S|}. Define λmax = maxi |λi|
and δ = −maxiRe[λi] > 0, where Re[·] evaluates the real part. By choosing β large enough in the linear function
(122), there exist a weighted 2-norm ‖θ‖Λ =

√
θ>Λθ, such that Ḡi(θ) is a contraction with respect to this norm, i.e.,

‖Ḡi(θ1)− Ḡi(θ2)‖Λ ≤ γc‖θ1 − θ2‖Λ for γc = 1− δ2

8λ2
max

.

Lemma C.3. Consider the federated on-policy TD-learning Algorithm 1 as a special case of FedSAM (as specified in
Proposition C.1). There exist some constants A1, A2, and B such that the properties of Assumption 6.3 are satisfied.

Lemma C.4. Consider the federated on-policy TD-learning Algorithm 1 as a special case of FedSAM (as specified in
Proposition C.1). Assumption 6.4 holds for this algorithm.

C.1.1. PROOFS

Proof of Proposition C.1. Items 1-4 are by definition. Subtracting vπ from both sides of the update of the TD-learning, we
have

vit+1 − vπ︸ ︷︷ ︸
θit+1

= vit − vπ︸ ︷︷ ︸
θit

+αφ(Sit)
t+n−1∑

l=t

γl−t
(
R(Sil , A

i
l)+γφ(Sil+1)>vit−φ(Sil)

>vit
)

=θit + αφ(Sit)

t+n−1∑

l=t

γl−t
(
R(Sil , A

i
l)+γφ(Sil+1)>(vit − vπ︸ ︷︷ ︸

θit

+vπ)−φ(Sil)
>(vit − vπ︸ ︷︷ ︸

θit

+vπ)
)

=θit + αβ

(
θit +

1

β
φ(Sit)

t+n−1∑

l=t

γl−t
(
γφ(Sil+1)>θit−φ(Sil)

>θit
)

︸ ︷︷ ︸
Gi(θit,y

i
t)

− θit +
1

β
φ(Sit)

t+n−1∑

l=t

γl−t
(
R(Sil , A

i
l) + γφ(Sil+1)>vπ − φ(Sil)

>vπ
)

︸ ︷︷ ︸
bi(yit)

)
.

which proves items 1 and 2. Furthermore, for the synchronization part of TD-learning, we have

vit ←
1

N

N∑

j=1

vjt

=⇒ vit − vπ︸ ︷︷ ︸
θit

← 1

N

N∑

j=1

(vjt − vπ)︸ ︷︷ ︸
θjt

,

which is equivalent to the synchronization step in FedSAM Algorithm 4. Notice that here we used the fact that all agents
have the same fixed point vπ .

Proof of Lemma C.1. It is easy to observe that

Gi(θ,yit) = θ +
1

β
φ(Sit)

(
γnφ(Sit+n)>θ − φ(Sit)

>θ
)
.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Taking expectation with respect to the stationary distribution, we have

Ḡi(θ) =ESit∼µπ
[
θ +

1

β
φ(Sit)

(
γnφ(Sit+n)>θ − φ(Sit)

>θ
)]

=ESit∼µπ
[
E
[
θ +

1

β
φ(Sit)

(
γnφ(Sit+n)>θ − φ(Sit)

>θ
) ∣∣Sit

]]
(tower property of expectation)

=ESit∼µπ
[
θ +

1

β
φ(Sit)

(
γnE[(Φθ)(Sit+n)|Sit]− (Φθ)(Sit)

)]

=ESit∼µπ
[
θ +

1

β
φ(Sit)

(
γn((Pπ)nΦθ)(Sit)− (Φθ)(Sit)

)]

=θ +
1

β
Φ>µπ (γn(Pπ)nΦθ − Φθ) .

where Pπ is the transition probability matrix corresponding to the policy π, and µπ is a diagonal matrix with diagonal
entries corresponding to elements of µπ .

As explained in (Tsitsiklis & Van Roy, 1997), the projection operator Ππ is a linear operator and can be written as
Ππ = Φ(Φ>µΦ)−1Φ>µ, where µ is a diagonal matrix with diagonal entries corresponding to the stationary distribution of
the policy π. Hence, the fixed point equation is as follows Φvπ = Φ(Φ>µΦ)−1Φ>µ((T π)nΦvπ). Since Φ is a full column
matrix, we can eliminate it from both sides of the equality, and further multiply both sides with Φ>µΦ. We have Φ>µΦvπ =
Φ>µ((T π)nΦvπ), and hence Φ>µ((T π)nΦvπ − Φvπ) = 0, which is equivalent to ES∼µπ [φ>(S)((T π)nΦvπ)(S) −
(Φvπ)(S)] = 0. By expanding (T π)n, we have ESi0∼µπ [φ>(Si0)

∑n−1
l=0 (R(Sil , A

i
l) + γ(Φvπ)(Sil+1)− (Φvπ)(Sil))] = 0,

which means

Ey∼µπbi(y) = 0, (123)

and proves (6).

Moreover, we have

‖Ḡi(θ)− E[Gi(θ,yit)]‖c =
∥∥∥Eyit∼µπ [Gi(θ,yit)]− E[Gi(θ,yit)

∥∥∥
c

=

∥∥∥∥∥∥
∑

yit

(
µπ(yit)− P (yit = yit|yi0)

)
Gi(θ, yit)

∥∥∥∥∥∥
c

≤
∑

yit

∣∣µπ(yit)− P (yit = yit|yi0)
∣∣ .
∥∥Gi(θ, yit)

∥∥
c

(‖ax‖c = |a|‖x‖c)

≤
∑

yit

∣∣µπ(yit)− P (yit = yit|yi0)
∣∣ .A2 ‖θ‖c . (Assumption 6.3)

For brevity, we denote P (Sit = sit) = P (sit). We have
∑

yit

∣∣µπ(yit)− P (yit = yit|yi0)
∣∣

=
∑

sit,a
i
t,...,s

i
t+n

∣∣µπ(sit, a
i
t, . . . , s

i
t+n)− P (sit, a

i
t, . . . , s

i
t+n|yi0)

∣∣

=
∑

sit,a
i
t,...,s

i
t+n

∣∣∣∣µπ(sit)π(ait|sit)P(sit+1|sit, ait) . . .P(sit+n|sit+n−1, a
i
t+n−1)

− P (sit|Sin)π(ait|sit)P(sit+1|sit, ait) . . .P(sit+n|sit+n−1, a
i
t+n−1)

∣∣∣∣ (t ≥ n+ 1)

=
∑

sit,a
i
t,...,s

i
t+n

∣∣∣∣µπ(sit)− P (sit|Sin)

∣∣∣∣π(ait|sit)P(sit+1|sit, ait) . . .P(sit+n|sit+n−1, a
i
t+n−1)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=
∑

sit

∣∣∣∣µπ(sit)− P (sit|Sin)

∣∣∣∣

=2dTV (P (Sit = ·|Sin)||µπ(·))
≤2m̄ρ̄t−n

=(2m̄ρ̄−n)ρ̄t.

∥∥E[bi(yit)]
∥∥
c

=
∥∥∥E[bi(yit)]− Eyit∼µπ [bi(yit)]

∥∥∥
c

(By (123))

=

∥∥∥∥∥∥
∑

yit

(
µπ(yit)− P (yit = yit|yi0)

)
bi(yit)

∥∥∥∥∥∥
c

≤
∑

yit

∣∣µπ(yit)− P (yit = yit|yi0)
∣∣ ∥∥bi(yit)

∥∥
c

≤
∑

yit

∣∣µπ(yit)− P (yit = yit|yi0)
∣∣B (Assumption 6.3)

≤2Bm̄ρ̄t

Proof of Lemma C.2. Consider the |S| × |S| matrix U = Φ>µπ (γn(Pπ)n − I) Φ with eigenvalues {λ1, . . . , λ|S|}. As
shown in (Tsitsiklis & Van Roy, 1997), since Φ is a full rank matrix, the real part of λi is strictly negative for all i = 1, . . . , |S|.
Furthermore, define λmax = maxi |λi| and δ = −maxiRe[λi] > 0, where Re[·] evaluates the real part. Consider the
matrix U′ = I + 1

2λ2
max/δ

U. It is easy to show that the eigenvalues of U′ are {1 + λ1

2λ2
max/δ

, . . . , 1 +
λ|S|

2λ2
max/δ

}. For an
arbitrary i, the norm of the i’th eigenvalue satisfies

∣∣∣∣1 +
λi

2λ2
max/δ

∣∣∣∣
2

=

(
1 +

Re[λi]

2λ2
max/δ

)2

+

(
Im[λi]

2λ2
max/δ

)2

≤
(

1 +
Re[λi]

2λ2
max/δ

)
+

(
Im[λi]

2λ2
max/δ

)2

(Re[λi] < 0)

≤
(

1 +
−δ

2λ2
max/δ

)
+

(
λmax

2λ2
max/δ

)2

=1− δ2

4λ2
max

.

Hence, all the eigenvalues of U′ are in the unit circle. By (Bertsekas et al., 1995), Page 46 footnote, we can find a weighted
2-norm as ‖θ‖Λ =

√
θ>Λθ such that U′ is contraction with respect to this norm with some contraction factor γc. In

particular, there exist a choice of Λ such that we have γc = 1− δ2

8λ2
max

.

Proof of Lemma C.3. The existence of A1 and A2 immediately follows after observing that Gi(θit,y
i
t) is a linear function

of θit. Furthermore, the result on B follows due to vπ being bounded as shown in (Chen et al., 2021b).

Proof of Lemma C.4. For the sake of brevity, we write Sit = sit simply as sit, and similarly for other random variables. We
have

Et−r[f(yit)× g(yjt)]

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=
∑

sit,a
i
t,...,s

i
t+n−1,a

i
t+n−1,s

i
t+n

sjt ,a
j
t ,...,s

j
t+n−1,a

j
t+n−1,s

j
t+n

P (sit, a
i
t, . . . , s

i
t+n−1, a

i
t+n−1, s

i
t+n, s

j
t , a

j
t , . . . , s

j
t+n−1, a

j
t+n−1, s

j
t+n|Ft−r)f(yit)× g(yjt)

=
∑

sit−r,...,s
i
t+n−1,a

i
t+n−1,s

i
t+n

sjt−r,...,s
j
t+n−1,a

j
t+n−1,s

j
t+n

P (sit−r, . . . , s
i
t+n−1, a

i
t+n−1, s

i
t+n, s

j
t−r, . . . , s

j
t+n−1, a

j
t+n−1, s

j
t+n|Ft−r)f(yit)× g(yjt)

=
∑

sit−r,...,s
i
t+n−1,a

i
t+n−1,s

i
t+n

sjt−r,...,s
j
t+n−1,a

j
t+n−1,s

j
t+n

P (sit−r, . . . , s
i
t+n−1, a

i
t+n−1, s

i
t+n|Ft−r)P (sjt−r, . . . , s

j
t+n−1, a

j
t+n−1, s

j
t+n|Ft−r)f(yit)g(yjt)

=Et−r[f(yit)]× Et−r[g(yjt)].

Proof of Theorem 4.1. By Proposition C.1 and Lemmas C.1, C.2, C.3, and C.4, it is clear that the federated TD-learning with
linear function approximation Algorithm 1 satisfies all the Assumptions 6.1, 6.2, 6.3, and 6.4 on the FedSAM Algorithm 4.
Furthermore, by the proof of Theorem B.1, we have wt = (1− αϕ2

2)−t, and the constant cTDL in the sampling distribution
qcTDLT in Algorithm 1 is cTDL = (1− αϕ2

2)−1. Furthermore, by choosing the step size α small enough, we can satisfy the
requirements in (21), (23), (32), (35). By choosing K large enough, we can satisfy K > τα. Hence, the result of Theorem
B.1 holds for this algorithm with some cTDL > 1. Also, it is easy to see that (1− αϕ2

2)−τα = O(1), which is a constant
that can be absorbed in CTDL1 . Finally, for the sample complexity result, we simply employ Corollary B.1.1.

Next, we derive the constant cTDL. Since ‖ · ‖c = ‖ · ‖Λ, which is smooth, we choose g(·) = 1
2‖ · ‖

2
Λ. By taking ψ = 1, we

have lcs = ucs = 1. Therefore, we have ϕ1 = 1, and ϕ2 = 1− γc, and cTDL =
(

1− α(1−γc)
2

)−1

, where γc is defined in
Lemma C.2.

C.2. Off-policy Tabular Setting

In this subsection, we verify that the Off-policy federated TD-learning Algorithm 2 satisfies the properties of the FedSAM
Algorithm 4. In the following, V π is the solution to the Bellman equation (124).

V π(s) =
∑
a

π(a|s)

[
R(s, a) + γ

∑
s′

P(s′|s, a)V π(s′)

]
(124)

Note that V π is independent of the sampling policy of the agent. Furthermore, we take ‖ · ‖c = ‖ · ‖∞.

Proposition C.2. Off-policy n-step federated TD-learning is equivalent to the FedSAM Algorithm 4 with the following
parameters.

1. θit = Vi
t −Vπ

2. St = (S1
t , . . . , S

N
t) and At = (A1

t , . . . , A
N
t)

3. yit = (Sit , A
i
t, . . . , S

i
t+n−1, A

i
t+n−1, S

i
t+n) and Yt = (St, At, . . . , St+n−1, At+n−1, St+n)

4. µi : Stationary distribution of the sampling policy of the i-th agent.

5. Gi(θit,y
i
t)s = θit(s) + 1{s=Sit}

(∑t+n−1
l=t γl−t

(
Πl
j=tI

(i)(Sij , A
i
j)
) [
γθit(S

i
l+1)− θit(S

i
l)
])

6. bi(yit)s = 1{s=Sit}
∑t+n−1
l=t γl−t

(
Πl
j=tI

(i)(Sij , A
i
j)
) [
R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

]

Lemma C.5. Consider the federated off-policy TD-learning Algorithm 2 as a special case of FedSAM (as specified in
Proposition C.2). Suppose the trajectory {Sit}t=0,1,... converges geometrically fast to its stationary distribution as follows

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

dTV (P (Sit = ·|Si0)||µi(·)) ≤ m̄ρ̄t for all i = 1, 2, . . . , N . The corresponding Ḡi(θ) in Assumption 6.1 for the federated
TD-learning is as follows

Ḡi(θ)s =θ(s) +
[
γnµi(Pπ)nθ − µiθ

]
(s).

Furthermore, for t ≥ n + 1, we have m1 = 2A2m̄
ρ̄n , where A2 is the constant specified in Assumption 6.3, m2 = 0, and

ρ̄ = ρ.
Lemma C.6. Consider the federated off-policy TD-learning 2 as a special case of FedSAM (as specified in Proposition
C.2). The corresponding contraction factor γc in Assumption 6.2 for this algorithm is γc = 1− µmin(1− γn+1), where
µmin = mins,i µ

i(s).
Lemma C.7. Consider the federated off-policy TD-learning 2 as a special case of FedSAM (as specified in
Proposition C.2). The constants A1, A2, and B in Assumption 6.3 can be chosen as follows: A1 = A2 =

1 + (1 + γ)

{
n if γImax = 1
1−(γImax)n

1−γImax
o.w.

, and B = 2Imax

1−γ

{
n if γImax = 1
1−(γImax)n

1−γImax
o.w.

, where Imax =

maxsi,ai,i I
(i)(si, ai).

Lemma C.8. Consider the federated off-policy TD-learning 2 as a special case of FedSAM (as specified in Proposition
C.2). Assumption 6.4 holds for this algorithm.

C.2.1. PROOFS

Proof of Proposition C.2. Items 1-4 are by definition. Furthermore, by the update of the TD-learning, and subtracting Vπ

from both sides, we have

Vi
t+1 −Vπ(s)︸ ︷︷ ︸

θit+1(s)

= Vi
t −Vπ(s)︸ ︷︷ ︸

θit(s)

+ α1{s=Sit}

(
t+n−1∑

l=t

γl−t
[
Πl
j=tI

(i)(Sij , A
i
j)
] (
R(Sil , A

i
l)+γVi

t(S
i
l+1)−Vi

t(S
i
l)
)
)

= θit(s)

+ α1{s=Sit}

{
t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
)[
R(Sil , A

i
l)+γ

(
Vi
t(S

i
l+1)−Vπ(Sil+1)︸ ︷︷ ︸

θit(S
i
l+1)

+Vπ(Sil+1)
)

−
(

Vi
t(S

i
l)−Vπ(Sil)︸ ︷︷ ︸
θit(S

i
l)

+Vπ(Sil)
)]}

= θit(s) + α

{
θit(s) + 1{s=Sit}

(
t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
γθit(S

i
l+1)− θit(S

i
l)
]
)

︸ ︷︷ ︸
Gi(θit,y

i
t)s

−θit(s)

+ 1{s=Sit}

t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

]

︸ ︷︷ ︸
bi(yit)s

}
,

which proves items 5 and 6. Furthermore, for the synchronization part of TD-learning, if t mod K = 0,

Vi
t ←

1

N

N∑

j=1

Vj
t

=⇒ Vi
t −Vπ

︸ ︷︷ ︸
θit

← 1

N

N∑

j=1

(Vj
t −Vπ)︸ ︷︷ ︸
θjt

,

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

which is equivalent to the synchronization step in FedSAM Algorithm 4. Notice that here we used the fact that all agents
have the same fixed point Vπ .

Proof of Lemma C.5. By taking expectation of Gi(θit,y
i
t)s, we have

Ḡi(θ)s =ESit∼µi

[
θ(s) + 1{s=Sit}

(
t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
γθ(Sil+1)− θ(Sil)

]
)]

=θ(s) +
t+n−1∑

l=t

ESit∼µi
[
1{s=Sit}γ

l−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
γθ(Sil+1)− θ(Sil)

]]

︸ ︷︷ ︸
Tl

.

Denote Eik[·] = E[·|{Sir, Air}r≤k−1, S
i
k]. For Tl, we have

Tl =ESit∼µi
[
Eil
[
1{s=Sit}γ

l−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
γθ(Sil+1)− θ(Sil)

]]]

=ESit∼µi
[
1{s=Sit}γ

l−t
(

Πl−1
j=tI

(i)(Sij , A
i
j)
) [
γEil

[
I(i)(Sil , A

i
l)θ(Sil+1)

]
− θ(Sil)

]]
.

Here,

Eil
[
I(i)(Sil , A

i
l)θ(Sil+1)

]
=
∑

s,a

P (Sil+1 = s,Ail = a|Sil)I(i)(Sil , A
i
l = a)θ(s)

=
∑

s,a

P (Sil+1 = s,Ail = a|Sil)
π(a|Sil)
πi(a|Sil)

θ(s)

=
∑

s,a

πi(a|Sil)P(s|Sil , a)
π(a|Sil)
πi(a|Sil)

θ(s)

=
∑

s,a

P(s|Sil , a)π(a|Sil)θ(s) ≡ [Pπθ](Sil),

where [Pπ]s0,s1 =
∑
a P(s1|s0, a)π(a|s0). Hence, we have

Tl =ESit∼µi
[
1{s=Sit}γ

l−tΠl−2
j=tI

(i)(Sij , A
i
j)Eil−1

[
I(i)(Sil−1, A

i
l−1)

[
γ(Pπθ)(Sil)− θ(Sil)

]]]

=ESit∼µi
[
1{s=Sit}γ

l−tΠl−2
j=tI

(i)(Sij , A
i
j)
[
γ((Pπ)2θ)(Sil−1)− (Pπθ)(Sil−1)

]]

= . . .

=ESit∼µi
[
1{s=Sit}γ

l−t [γ((Pπ)l−t+1θ)(Sit)− ((Pπ)l−tθ)(Sit)
]]

=µi(s)γl−t
[
γ((Pπ)l−t+1θ)(s)− ((Pπ)l−tθ)(s)

]

=γl−t
[
γ(µi(Pπ)l−t+1θ)(s)− (µi(Pπ)l−tθ)(s)

]

=
[
γl−t+1µi(Pπ)l−t+1θ − γl−tµi(Pπ)l−tθ

]
(s),

where we denote µi as diagonal matrix with diagonal entries corresponding to the stationary distribution µi. Hence, in total
we have

Ḡi(θ)s =θ(s) +
t+n−1∑

l=t

[
γl−t+1µi(Pπ)l−t+1θ − γl−tµi(Pπ)l−tθ

]
(s)

=θ(s) +
[
γnµi(Pπ)nθ − µiθ

]
(s).

Furthermore, by the same argument as in the proof of Lemma C.1, we have

‖Ḡi(θ)− E[Gi(θ,yit)]‖c ≤
∑

yit

∣∣µi(yit)− P (yit = yit|yi0)
∣∣ .A2 ‖θ‖c ,

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

and
∑

yit

∣∣µi(yit)− P (yit = yit|yi0)
∣∣ ≤(2m̄ρ̄−n)ρ̄t,

which proves that m1 = 2m̄A2ρ̄
−n constant. In addition, we have

∥∥E[bi(yit)]
∥∥
c

=

∥∥∥∥∥E
[
1{s=Sit}

t+n−1∑

l=t

γl−tΠl
j=tI

(i)(Sij , A
i
j)
[
R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

]
]∥∥∥∥∥

c

=

∥∥∥∥∥E
[
1{s=Sit}

t+n−1∑

l=t

γl−tEl
[
Πl
j=tI

(i)(Sij , A
i
j)
[
R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

]]
]∥∥∥∥∥

c

=

∥∥∥∥∥∥∥
E


1{s=Sit}

t+n−1∑

l=t

γl−tΠl−1
j=tI

(i)(Sij , A
i
j)El

[
I(i)(Sil , A

i
l)
[
R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

]]

︸ ︷︷ ︸
T




∥∥∥∥∥∥∥
c

.

For the term T , we have

T =
∑

a

πi(a|Sil).
π(a|Sil)
πi(a|Sil)

[
R(Sil , a) + γ

∑

s′

P(s′|Sil , a)Vπ(s′)−Vπ(Sil)

]

=
∑

a

π(a|Sil)

[
R(Sil , a) + γ

∑

s′

P(s′|Sil , a)Vπ(s′)−Vπ(Sil)

]

=0,

which shows that m2 = 0.

Proof of Lemma C.6.

‖Ḡi(θ1)− Ḡi(θ2)‖c =
∥∥θ1 +

[
γn+1µi(Pπ)n+1θ1 − µiθ1

]
−
(
θ2 +

[
γn+1µi(Pπ)n+1θ2 − µiθ2

])∥∥
∞

=
∥∥(I − µi(I − γn+1(Pπ)n+1)

)
(θ1 − θ2)

∥∥
∞

≤
∥∥I − µi(I − γn+1(Pπ)n+1)

∥∥
∞ ‖θ1 − θ2‖∞ . (definition of matrix norm)

Since the elements of the matrix I − µi(I − γn+1(Pπ)n+1) is all positive, we have
∥∥I − µi(I − γn+1(Pπ)n+1)

∥∥
∞ =∥∥(I − µi(I − γn+1(Pπ)n+1))1

∥∥
∞ = ‖1− µi(1− γn+11)‖∞ = 1− µimin(1− γn+1) ≤ 1− µmin(1− γn+1).

Proof of Lemma C.7.

‖Gi(θ1,y)−Gi(θ2,y)‖c

= max
s

∣∣∣∣∣θ1(s)− θ2(s) + 1{s=Sit}

(
t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
γθ1(Sil+1)− θ1(Sil)

]
)

− 1{s=Sit}

(
t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
γθ2(Sil+1)− θ2(Sil)

]
) ∣∣∣∣∣ (∵ c =∞)

≤ max
s

[
|θ1(s)− θ2(s)|+

∣∣∣∣∣
t+n−1∑

l=t

γl−tΠl
j=tI

(i)(Sij , A
i
j)
[
γ
(
θ1(Sil+1)− θ2(Sil+1)

)
−
(
θ1(Sil)− θ2(Sil)

)]
∣∣∣∣∣

]

(triangle inequality)

≤ max
s

[
|θ1(s)− θ2(s)|+

t+n−1∑

l=t

γl−tΠl
j=tI

(i)(Sij , A
i
j)
[
γ
∣∣θ1(Sil+1)− θ2(Sil+1)

∣∣+
∣∣θ1(Sil)− θ2(Sil)

∣∣]
]

(triangle inequality)

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

≤ max
s

[
|θ1(s)− θ2(s)|+

t+n−1∑

l=t

γl−tΠl
j=tI

(i)(Sij , A
i
j) [γ ‖θ1 − θ2‖∞ + ‖θ1 − θ2‖∞]

]
(definition of ‖ · ‖∞)

≤ max
s

[
|θ1(s)− θ2(s)|+

t+n−1∑

l=t

γl−tIl−t+1
max [γ ‖θ1 − θ2‖∞ + ‖θ1 − θ2‖∞]

]
(definition of Imax)

= ‖θ1 − θ2‖∞ + [γ ‖θ1 − θ2‖∞ + ‖θ1 − θ2‖∞] Imax

n−1∑

l=0

(γImax)l

= ‖θ1 − θ2‖∞ + [γ ‖θ1 − θ2‖∞ + ‖θ1 − θ2‖∞] Imax

{
n if γImax = 1
1−(γImax)n

1−γImax
o.w.

Furthermore, we have

‖bi(yit)‖c = max
Sit ,A

i
t...,S

i
t+n

∣∣∣∣∣1{s=Sit}
t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) [
R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

]
∣∣∣∣∣

≤ max
Sit ,A

i
t...,S

i
t+n

t+n−1∑

l=t

γl−t
(

Πl
j=tI

(i)(Sij , A
i
j)
) ∣∣R(Sil , A

i
l) + γVπ(Sil+1)−Vπ(Sil)

∣∣ (triangle inequality)

≤ max
Sit ,A

i
t...,S

i
t+n

t+n−1∑

l=t

γl−t
(
Il−t+1

max

) ∣∣R(Sil , A
i
l) + γVπ(Sil+1)−Vπ(Sil)

∣∣

≤ max
Sit ,A

i
t...,S

i
t+n

t+n−1∑

l=t

γl−t
(
Il−t+1

max

) [∣∣R(Sil , A
i
l)
∣∣+ γ

∣∣Vπ(Sil+1)
∣∣+
∣∣Vπ(Sil)

∣∣] (triangle inequality)

≤ max
Sit ,A

i
t...,S

i
t+n

t+n−1∑

l=t

γl−t
(
Il−t+1

max

) [
1 +

γ

1− γ
+

1

1− γ

]

=
2Imax

1− γ

t+n−1∑

l=t

(γImax)l−t

=
2Imax

1− γ

{
n if γImax = 1
1−(γImax)n

1−γImax
o.w.

Proof of Lemma C.8. The proof follows similar to Lemma C.4.

Proof of Theorem 5.1. By Proposition C.2 and Lemmas C.5, C.6, C.7, and C.8, it is clear that the federated off-policy
TD-learning Algorithm 2 satisfies all the Assumptions 6.1, 6.2, 6.3, and 6.4 of the FedSAM Algorithm 4. Furthermore, by
the proof of Theorem B.1, we have wt = (1− αϕ2

2)−t, and the constant c in the sampling distribution qcT in Algorithm 1 is
c = (1− αϕ2

2)−1. In equation (125) we evaluate the exact value of wt.

Furthermore, by choosing step size α small enough, we can satisfy the requirements in (21), (23), (32), (35). By choosing
K large enough, we can satisfy K > τ , and by choosing T large enough we can satisfy T > K + τ . Hence, the result of
Theorem B.1 holds for this algorithm.

Next, we derive the constants involved in Theorem B.1 step by step. After deriving the constants C1, C2, C3, and C4 in
Theorem B.1, we can directly get the constants CTDTi for i = 1, 2, 3, 4.

In this analysis we only consider the terms involving |S|, |A|, 1
1−γ , Imax, and µmin. Since ‖ · ‖c = ‖ · ‖∞, we choose

g(·) = 1
2‖ · ‖

2
p, i.e. the p-norm with p = 2 log(|S|). It is known that g(·) is (p − 1) smooth with respect to ‖ · ‖p norm

(Beck, 2017), and hence L = Θ(log(|S|)). Hence, we have lcs = |S|−1/p = 1√
e

= Θ(1) and ucs = 1. Therefore, we

have ϕ1 =
1+ψu2

cs

1+ψ`2cs
= 1+ψ

1+ ψ√
e

≤ 1 + ψ. By choosing ψ = (1+γc
2γc

)2 − 1 =
1+2γc−3γ2

c

4γ2
c

≥ (1 − γc) = µmin(1 − γn+1) =

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Ω(µmin(1− γ)), which is ψ = O(1), we have ϕ1 = 1+ψ

1+ ψ√
e

=
√
e

(1+γc
2γc

)2

√
e+(1+γc

2γc
)2−1

= O(1), and

ϕ2 =1− γc
√

1 + ψ

1 + ψ√
e

= 1− γc

√√√√√
(1+γc

2γc
)2

1 +
(1+γc

2γc
)2−1
√
e

= 1− 0.5(1 + γc)e
1/4

√
√
e− 1 +

(
1+γc
2γc

)2
= 1− 0.5e1/4(2− µmin(1− γn+1))√

√
e− 1 +

(
2−µmin(1−γn+1)
2−2µmin(1−γn+1)

)2

>1− γc
√

1 + ψ = 1− γc
1 + γc

2γc
=

1− γc
2

= 0.5µmin(1− γn+1) = Ω(µmin(1− γ))

ϕ3 =
L(1 + ψu2

cs)

ψ`2cs
= O

(
log(|S|)(1 + ψ)

ψ

)
≤ O

(
log(|S|)
1− γc

)
= O

(
log(|S|)

µmin(1− γ)

)
.

Using ϕ2, we have

wt =
(

1− αϕ2

2

)−t
=


1− α/2 +

0.25αe1/4(2− µmin(1− γn+1))√
√
e− 1 +

(
2−µmin(1−γn+1)
2−2µmin(1−γn+1)

)2




−t

. (125)

Further, we have
lcm = (1 + ψl2cs)

1/2 = Θ(1)

ucm = (1 + ψu2
cs)

1/2 = Θ(1)

Since TV-divergence is upper bounded with 1, we have m̄ = O(1). By Lemma C.7, we have

A1 = A2 = 1 + (1 + γ)

{
n if γImax = 1
1−(γImax)n

1−γImax
o.w.

= O(In−1
max)

and A1 = A2 = Ω(1),

B =
2Imax

1− γ

{
n if γImax = 1
1−(γImax)n

1−γImax
o.w.

= O
(
Inmax

1− γ

)
,

and B = Ω(1). Hence m1 = 2A2m̄
ρ̄n = O(In−1

max). Also, we have m2 = 0.

We choose the D-norm in Lemma B.9 as the 2-norm ‖ · ‖2. Hence, by primary norm equivalence, we have lcD = 1√
|S|

, and

ucD = 1, and hence ucD
lcD

=
√
|S|.

We can evaluate the rest of the constants as follows

ζ1 = ζ4 = ζ6 =
√
ϕ2/10 = Ω(

√
µmin(1− γ))

ζ2 =

√
ϕ2

10
· ψl

2
cs

2LA2
= Ω

(√
µmin(1− γ).

µmin(1− γ)

log(|S|)

)
= Ω

(
µmin(1− γ)√

log(|S|)

)
,

and similarly

ζ3 =

√
ϕ2

10
· ψl2cs
L(A1 + 1)

= Ω

(
µmin(1− γ)√

log(|S|)

)
.

C1 =3
√
A2

2 + 1 = O
(
In−1

max

)
,

and

C1 = Ω(1),

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

C2 =3C1 + 8 = O
(
In−1

max

)
,

C3 =
m2L

ψl2cs
= 0,

C4 =

(
L2

2ψ2l4cs
+

2αLA2

ψl2cs

(
1
2 +

u2
cm

2ζ22

)
+
αL(A1 + 1)

ψl2cs

(
3u2
cm

2ζ23
+ 2
)

+
3m1Lα

2

l2csψ

)

=O
(

log2(|S|)
µ2

min(1− γ)2
+

log(|S|)In−1
max

µmin(1− γ)
.

log(|S|)
µ2

min(1− γ)2
+

log(|S|)In−1
max

µmin(1− γ)
.

log(|S|)
µ2

min(1− γ)2
+

In−1
max log(|S|)
µmin(1− γ)

)

=O
(

log2(|S|)In−1
max

µ2
min(1− γ)2

)
,

C5 =

((
3u2

cm

2ζ2
3

+
3

2

)
L(A1 + 1)

ψl2cs
+
LA2

ψl2cs
+

L2u2
cm

2l4csζ
2
4ψ

2
+

3A2
1Lα

2

2ψl2cs

)

=O
(

log(|S|)
µ2

min(1− γ)2
.
log(|S|)In−1

max

µmin(1− γ)
+

log(|S|)In−1
max

µmin(1− γ)
+

log2(|S|)
µ3

min(1− γ)3
+

I2n−2
max log(|S|)
µmin(1− γ)

)

=O
(

log2(|S|)I2n−2
max

µ3
min(1− γ)3

)
,

C6 =

((
3u2

cm

2ζ2
3

+
3

2

)
L(A1 + 1)

ψl2cs
+
m1Lα

2l2csψ

)
= O

(
log(|S|)

µ2
min(1− γ)2

.
log(|S|)In−1

max

µmin(1− γ)
+

In−1
max log(|S|)
µmin(1− γ)

)

=O
(

log2(|S|)In−1
max

µ3
min(1− γ)3

)
,

C7 =
m2

2u
2
cmL

2

2ζ2
1 l

4
csψ

2
α = 0,

C8 =

(
1

2
+

3L

2ψl2cs

)
= O

(
log(|S|)

µmin(1− γ)

)
,

C9 =
8ucDB

lcD
= O

(√
|S|Inmax

1− γ

)
,

C10 =
8m2ucD
lcD(1− ρ)

= 0,

C11 =
8C2

1C
2
3u

2
cm

ζ2
6

= 0,

C12 =
8C4u

2
cDB

2

l2cD
= O

(
log2(|S|)In−1

max

µ2
min(1− γ)2

.|S|. I2n
max

(1− γ)2

)
= O

(
|S| log2(|S|)I3n−1

max

µ2
min(1− γ)4

)
,

C13 =
14C4u

2
cDm

2
2

l2cD(1− ρ2)
= 0.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

C14(τ) =

(
C7 + C11 + 0.5C2

3C
2
9 + C3C10 + 2C1C3C10 + 3A1C3 + C13 + C8

u2
cD

l2cD
2m2

2α
2

)
τ2 = 0,

C16(τ) =

(
C8
u2
cDB

2

l2cD
+

1

2
+ C12

)
τ2 = O

(
|S| log(|S|)I2n

max

(1− γ)3µmin
+ 1 +

(
|S| log2(|S|)I3n−1

max

µ2
min(1− γ)4

))
τ2

=O
(
|S| log2(|S|)I3n−1

max

(1− γ)4µ2
min

)
τ2,

C17 =(3A1C3 + 8A2
1C4 + C5 + C6)

=O
(

0 + I2n−2
max .

(
log2(|S|)In−1

max

µ2
min(1− γ)2

)
+

(
log2(|S|)I2n−2

max

µ3
min(1− γ)3

)
+

(
log2(|S|)In−1

max

µ3
min(1− γ)3

))

=O
(
I3n−3

max log2(|S|)
µ3

min(1− γ)3

)
.

Similar to ‖ · ‖D = ‖ · ‖2, we have lc2 = 1√
|S|

and uc2 = 1.

Ã1 =
2A2

1u
2
c2

l2c2
= O

(
I2n−2

max |S|
)
,

Ã2 =
2A2

2u
2
c2

l2c2
= O

(
I2n−2

max |S|
)
,

B̃ =
u2
c2

l2c2
B2 = O

(
|S|I2n

max

(1− γ)2

)
,

M0 =
1

l2cm

(
1

C2
1

(
B + (A2 + 1)

(
‖θ0‖c +

B

2C1

))2

+ ‖θ0‖2c

)
= O

((
Inmax

1− γ
+ (In−1

max).
Inmax

1− γ

)2

+ 1

)

=O
(

I4n−2
max

(1− γ)2

)

C1 = 16u2
cmM0(logρ

1

e
+

1

ϕ2
) = O

(
I4n−2

max

(1− γ)2
.

1

µmin(1− γ)

)
= O

(
I4n−2

max

(1− γ)3µmin

)

C2 =
8u2

cm

(
C8 + 1

2 + C12

)

ϕ2
= O

(
1

µmin(1− γ)

(
log(|S|)

µmin(1− γ)
+ 1 +

|S| log2(|S|)I3n−1
max

µ2
min(1− γ)4

))

=O
(
|S| log2(|S|)I3n−1

max

µ2
min(1− γ)4

)

C3 =
80B̃2C17u

2
cm

(
1 + 4m2ρ

B(1−ρ)

)

ϕ2
= O

(
1

µmin(1− γ)
.
|S|2I4n

max

(1− γ)4
.
I3n−3

max log2(|S|)
µ3

min(1− γ)3

)

=O
(
I7n−3

max |S|2 log2(|S|)
µ4

min(1− γ)8

)
,

C4 =8u2
cm

(
C7 + C11 + 0.5C2

3C
2
9 + C3C10 + 2C1C3C10 + 3A1C3 + C13

)
/ϕ2 = 0.

Finally, for the sample complexity result, we simply employ Corollary B.1.1.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

D. Federated Q-learning
In this section, we verify that the federated Q-learning algorithm 3 satisfies the properties of the FedSAM Algorithm 4. In
the following, Q∗ is the solution to the Bellman optimality equation (126)

Q∗(s, a) = R(s, a) + γES′∼P(·|s,a)

[
max
a′

Q∗(S′, a′)

]
. (126)

Note that Q∗ is independent of the sampling policy of the agent. Furthermore, ‖ · ‖c = ‖ · ‖∞.

Proposition D.1. FederatedQ-learning algorithm 3 is equivalent to the FedSAM Algorithm 4 with the following parameters.

1. θit = Qit −Q∗

2. St = (S1
t , . . . , S

N
t) and At = (A1

t , . . . , A
N
t)

3. yit = (Sit , A
i
t, S

i
t+1, A

i
t+1) and Yt = (St, At, St+1, At+1)

4. µi : Stationary distribution of the sampling policy of the i’th agent.

5. Gi(θit,y
i
t)(s,a) = θit(s, a)

+1{Sit=s,Ait=a} ×
[
γmaxa′

(
θit +Q∗(Sit+1, a

′)
)
− θit(S

i
t , A

i
t)− γmaxa′ Q

∗(Sit+1, a
′)
]

6. bi(yit)(s,a) = 1{Sit=s,Ait=a}
[
R(Sit , A

i
t) + γmaxa′ Q

∗(Sit+1, a
′)−Q∗(Sit , Ait)

]

where 1A is the indicator function corresponding to set A, such that 1A = 1 is A is true, and 0 otherwise.

Lemma D.1. Consider the federated Q-learning Algorithm 3 as a special case of FedSAM (as specified in Proposition D.1).
Suppose the trajectory {Sit , Ait}t=0,1,... converges geometrically fast to its stationary distribution as follows dTV (P (Sit =
·, Ait = ·|Si0, Ai0)||µi(·, ·)) ≤ m̄ρ̄t for all i = 1, 2, . . . , N . The corresponding Ḡi(θ) in Assumption 6.1 for the federated
Q-learning is as follows

Ḡi(θ)(s,a) =θ(s, a) + µi(s, a)× ES′∼P(·|s,a)

[
γmax

a′
(θ +Q∗(S′, a′))− θ(s, a)− γmax

a′
Q∗(S′, a′)

]
.

Furthermore, we have m1 = 2A2m̄, where A2 is specified in Lemma D.3, m2 = 0, and ρ̄ = ρ.

Lemma D.2. Consider the federated Q-learning as a special case of FedSAM (as specified in Proposition D.1). The
corresponding contraction factor γc in Assumption 6.2 for this algorithm is γc = (1− (1− γ)µmin), where µmin =
mins,a,i µ

i(s, a)

Lemma D.3. Consider the federated Q-learning as a special case of FedSAM (as specified in Proposition D.1). The
constants A1, A2, and B in Assumption 6.2 are as follows: A1 = A2 = 2 and B = 2

1−γ .

Lemma D.4. Consider the federated Q-learning as a special case of FedSAM (as specified in Proposition D.1). Assumption
6.4 holds for this algorithm.

D.1. Proofs

Proof of Proposition D.1. Items 1-4 are by definition. Furthermore, by the update of the Q-learning, and subtracting Q∗

from both sides, we have

Qit+1(s, a)−Q∗(s, a)︸ ︷︷ ︸
θit+1(s,a)

= Qit(s, a)−Q∗(s, a)︸ ︷︷ ︸
θit(s,a)

+ α1{(s,a)=(Sit ,A
i
t)}

(
R(Sit , A

i
t) + γmax

a
Qit(S

i
t+1, a)−Qit(Sit , Ait)

)

=θit(s, a)

+ α1{(s,a)=(Sit ,A
i
t)}

(
R(Sit , A

i
t) + γmax

a


Q

i
t(S

i
t+1, a)−Q∗(Sit+1, a)︸ ︷︷ ︸

θit(S
i
t+1,a)

+Q∗(Sit+1, a)




Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

−


Qit(Sit , Ait)−Q∗(Sit , Ait)︸ ︷︷ ︸

θit(S
i
t ,A

i
t)

+Q∗(Sit , A
i
t)



)

(addition and subtraction)

=θit(s, a)

+ α

(
θit(s, a) + 1{Sit=s,Ait=a} ×

[
γmax

a′

(
θit +Q∗(Sit+1, a

′)
)
− θit(S

i
t , A

i
t)− γmax

a′
Q∗(Sit+1, a

′)
]

︸ ︷︷ ︸
Gi(θit,y

i
t)(s,a)

−θit(s, a)

+ 1{Sit=s,Ait=a}

(
R(Sit , A

i
t) + γmax

a′
Q∗(Sit+1, a

′)−Q∗(Sit , Ait)
)

︸ ︷︷ ︸
bi(yit)(s,a)

)
,

which proves items 5 and 6. Furthermore, for the synchronization part of Q-learning, we have

Qit ←
1

N

N∑

j=1

Qjt

=⇒ Qit −Q∗︸ ︷︷ ︸
θit

← 1

N

N∑

j=1

(Qjt −Q∗)︸ ︷︷ ︸
θjt

,

which is equivalent to the synchronization step in FedSAM Algorithm 4. Notice that here we used the fact that all agents
have the same fixed point Q∗.

Proof of Lemma D.1. Ḡ(θ)(s,a) can be found by simply taking expectation of Gi(θit,y
i
t)(s,a), defined in Proposition D.1,

with respect to the stationary distribution µi. Furthermore, we have

‖Ḡi(θ)− E[Gi(θ,yit)]‖c

=
∥∥∥Eyit∼µi [G

i(θ,yit)]− E[Gi(θ,yit)
∥∥∥
c

=

∥∥∥∥∥∥
∑

s,a,s′,a′

(
µi(s, a, s′, a′)− P (Sit = s,Ait = a, Sit+1 = s′, Ait+1 = a′|Si0, Ai0)

)
Gi(θ,yit)

∥∥∥∥∥∥
c

=
∑

s,a,s′,a′

∣∣µi(s, a, s′, a′)− P (Sit = s,Ait = a, Sit+1 = s′, Ait+1 = a′|Si0, Ai0)
∣∣ .
∥∥Gi(θ,yit)

∥∥
c

(‖ax‖c = |a|‖x‖c)

≤
∑

s,a,s′,a′

∣∣µi(s, a, s′, a′)− P (Sit = s,Ait = a, Sit+1 = s′, Ait+1 = a′|Si0, Ai0)
∣∣ .A2‖θ‖c (Assumption D.3)

=
∑

s,a,s′,a′

∣∣∣∣µi(s, a)P(s′|s, a)πi(a′|s′)− P (Sit = s,Ait = a|Si0, Ai0)P(s′|s, a)πi(a′|s′)
∣∣∣∣.A2‖θ‖c

(definition of transition probability)

=
∑

s,a

∣∣∣∣µi(s, a)− P (Sit = s,Ait = a|Si0, Ai0)

∣∣∣∣.A2‖θ‖c

=2dTV (µi(·, ·), P (Sit = ·, Ait = ·|Si0, Ai0)).A2‖θ‖c
≤2A2‖θ‖cm̄ρ̄t.

In addition, we have

‖E[bi(yit)]‖c = max
s,a

∣∣∣P (Sit = s,Ait = a|Si0, Ai0)
(
R(s, a) + γES′∼P(·|s,a)[max

a′
Q∗(S′, a′)]−Q∗(s, a)

)∣∣∣

=0. (Bellman optimality equation (126))

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Proof of Lemma D.2.

‖Ḡi(θ1)− Ḡi(θ2)‖c = max
s,a
|Ḡi(θ1)(s,a) − Ḡi(θ2)(s,a)|

= max
s,a

∣∣∣∣∣θ1(s, a) + µi(s, a)× ES′∼P(·|s,a)

[
γmax

a′
(θ1 +Q∗(S′, a′))− θ1(s, a)− γmax

a′
Q∗(S′, a′)

]

−
(
θ2(s, a) + µi(s, a)× ES′∼P(·|s,a)

[
γmax

a′
(θ2 +Q∗(S′, a′))− θ2(s, a)− γmax

a′
Q∗(S′, a′)

]) ∣∣∣∣∣

= max
s,a

∣∣∣∣(1− µi(s, a))(θ1(s, a)− θ2(s, a))

+ γµi(s, a)ES′∼P(·|s,a)

[
max
a′

(θ1 +Q∗(S′, a′))−max
a′

(θ2 +Q∗(S′, a′))
] ∣∣∣∣

≤max
s,a

[∣∣∣∣(1− µi(s, a))(θ1(s, a)− θ2(s, a))

∣∣∣∣

+ γ

∣∣∣∣µi(s, a)ES′∼P(·|s,a)

[
max
a′

(θ1 +Q∗(S′, a′))−max
a′

(θ2 +Q∗(S′, a′))
] ∣∣∣∣

]
(triangle inequality)

≤max
s,a

[
(1− µi(s, a)) ‖θ1 − θ2‖∞ (definition of ‖ · ‖∞)

+ γµi(s, a)

[∣∣∣∣ES′∼P(·|s,a)

[
max
a′

(θ1 +Q∗(S′, a′))−max
a′

(θ2 +Q∗(S′, a′))
] ∣∣∣∣
]]

(µi(s, a) ≥ 0)

≤max
s,a

[
(1− µi(s, a)) ‖θ1 − θ2‖∞

+ γµi(s, a)

[
ES′∼P(·|s,a)

∣∣∣∣max
a′

(θ1 +Q∗(S′, a′))−max
a′

(θ2 +Q∗(S′, a′))

∣∣∣∣
]]

(Jensen’s inequality)

Next, we note that for any functions f(·) and g(·), we have
∣∣∣(max

x
f(x))− (max

x
g(x))

∣∣∣ ≤ max
x
|f(x)− g(x)| . (127)

The reason is as follows. We have maxx f(x) = maxx f(x) − g(x) + g(x) ≤ (maxx f(x) − g(x)) + (maxx g(x)).
Hence, (maxx f(x)) − (maxx g(x)) ≤ maxx f(x) − g(x) ≤ maxx |f(x)− g(x)|. Now suppose maxx f(x) ≥
maxx g(x). Then we can apply absolute value to the left hand side of the inequality, and we get the bound.
By a similar argument for the case maxx f(x) ≤ maxx g(x), we get the bound in (127). Hence, we have
|maxa′ (θ1 +Q∗(S′, a′))−maxa′ (θ2 +Q∗(S′, a′))| ≤ maxa′ |θ1(S′, a′) − θ2(S′, a′)| ≤ ‖θ1 − θ2‖∞. As a result,
we have

‖Ḡi(θ1)− Ḡi(θ2)‖c ≤max
s,a

[
(1− µi(s, a)) ‖θ1 − θ2‖∞ + γµi(s, a) [‖θ1 − θ2‖∞]

]

= max
s,a

(
1− (1− γ)µi(s, a)

)
‖θ1 − θ2‖∞

≤
(
1− (1− γ)µimin

)
‖θ1 − θ2‖∞

≤ (1− (1− γ)µmin) ‖θ1 − θ2‖∞
= (1− (1− γ)µmin) ‖θ1 − θ2‖c .

Proof of Lemma D.3. First, for A1, we have

‖Gi(θ1,y)−Gi(θ2,y)‖c

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= max
s,a

∣∣∣∣θ1(s, a) + 1{S=s,A=a} ×
[
γmax

a′
(θ1 +Q∗(S′, a′))− θ1(S,A)− γmax

a′
Q∗(S′, a′)

]

−
(
θ2(s, a) + 1{S=s,A=a} ×

[
γmax

a′
(θ2 +Q∗(S′, a′))− θ2(S,A)− γmax

a′
Q∗(S′, a′)

]) ∣∣∣∣

≤max
s,a

[∣∣(1− 1{S=s,A=a})(θ1(s, a)− θ2(s, a))
∣∣

+ γ1{S=s,A=a}

∣∣∣max
a′

(θ1 +Q∗(S′, a′))−max
a′

(θ2 +Q∗(S′, a′))
∣∣∣
]

(triangle inequality)

≤max
s,a

[
‖θ1 − θ2‖∞ + γ1{S=s,A=a}

∣∣∣max
a′

(θ1 +Q∗(S′, a′))−max
a′

(θ2 +Q∗(S′, a′))
∣∣∣
]

(definition of ‖ · ‖∞)

≤max
s,a

[
‖θ1 − θ2‖∞ + γ1{S=s,A=a}‖θ1 − θ2‖∞

]
(By (127))

≤2‖θ1 − θ2‖∞
=2‖θ1 − θ2‖c

Second, for A2, we have

‖Gi(θ,y)‖c = max
s,a

∣∣∣θ(s, a) + 1{S=s,A=a} ×
[
γmax

a′
(θ +Q∗(S′, a′))− θ(S,A)− γmax

a′
Q∗(S′, a′)

]∣∣∣

≤max
s,a

[∣∣(1− 1{S=s,A=a})θ(a, s)
∣∣+ γ1{S=s,A=a}

∣∣∣max
a′

(θ +Q∗(S′, a′))−max
a′

Q∗(S′, a′)
∣∣∣
]

(triangle inequality)

≤max
s,a

[
‖θ‖∞ + γ1{S=s,A=a}

∣∣∣max
a′

(θ +Q∗(S′, a′))−max
a′

Q∗(S′, a′)
∣∣∣
]

(definition of ‖ · ‖∞)

≤max
s,a

[
‖θ‖∞ + γmax

a′
|θ(S′, a′)|

]
(By (127))

≤2 ‖θ‖∞
=2 ‖θ‖c .

Lastly, for B, we have

‖bi(yi)‖c = max
s,a

∣∣∣1{S=s,A=a}

[
R(S,A) + γmax

a′
Q∗(S′, a′)−Q∗(S,A)

]∣∣∣

≤max
s,a

1{S=s,A=a}

[
|R(S,A)|+ γmax

a′
|Q∗(S′, a′)|+ |Q∗(S,A)|

]
(triangle inequality)

≤max
s,a

[
1 + γ

1

1− γ
+

1

1− γ

]

=
2

1− γ
.

Proof of Lemma D.4. The proof follows similar to Lemma C.4.

Proof of Theorem 5.2. By Proposition D.1 and Lemmas D.1, D.2, D.3, and D.4, it is clear that the federated Q Algorithm
3 satisfies all the Assumptions 6.1, 6.2, 6.3, and 6.4 of the FedSAM Algorithm 4. Furthermore, by the proof of Theorem
B.1, we have wt = (1− αϕ2

2)−t, and the constant c in the sampling distribution qcT in Algorithm 1 is c = (1− αϕ2

2)−1. In
equation (128) we evaluate the exact value of wt.

Furthermore, by choosing step size α small enough, we can satisfy the requirements in (21), (23), (32), (35). By choosing
K large enough, we can satisfy K > τ , and by choosing T large enough we can satisfy T > K + τ . Hence, the result of
Theorem B.1 holds for this algorithm.

Next, we derive the constants involved in Theorem B.1 step by step. In this analysis we only consider the terms involving
|S|, |A|, 1

1−γ , Imax, and µmin. Since ‖ · ‖c = ‖ · ‖∞, we choose g(·) = 1
2‖ · ‖

2
p, i.e. the p-norm with p = 2 log(|S|).

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

It is known that g(·) is (p − 1) smooth with respect to ‖ · ‖p norm (Beck, 2017), and hence L = Θ(log(|S|)). Hence,

we have lcs = |S|−1/p = 1√
e

= Θ(1) and ucs = 1. Therefore, we have ϕ1 =
1+ψu2

cs

1+ψ`2cs
= 1+ψ

1+ ψ√
e

≤ 1 + ψ. By

choosing ψ = (1+γc
2γc

)2 − 1 =
1+2γc−3γ2

c

4γ2
c

≥ (1 − γc) = µmin(1 − γ) = Ω(µmin(1 − γ)), which is ψ = O(1), we have

ϕ1 = 1+ψ

1+ ψ√
e

=
√
e

(1+γc
2γc

)2

√
e+(1+γc

2γc
)2−1

= O(1), and

ϕ2 =1− γc
√

1 + ψ

1 + ψ√
e

= 1− γc

√√√√√
(1+γc

2γc
)2

1 +
(1+γc

2γc
)2−1
√
e

= 1− 0.5(1 + γc)e
1/4

√
√
e− 1 +

(
1+γc
2γc

)2
= 1− 0.5e1/4(2− µmin(1− γ))√

√
e− 1 +

(
2−µmin(1−γ)
2−2µmin(1−γ)

)2

>1− γc
√

1 + ψ = 1− γc
1 + γc

2γc
=

1− γc
2

= 0.5µmin(1− γ) = Ω(µmin(1− γ))

ϕ3 =
L(1 + ψu2

cs)

ψ`2cs
= O

(
log(|S|)(1 + ψ)

ψ

)
≤ O

(
log(|S|)
1− γc

)
= O

(
log(|S|)

µmin(1− γ)

)
.

Using ϕ2, we have

wt =
(

1− αϕ2

2

)−t
=


1− α/2 +

0.25αe1/4(2− µmin(1− γ))√
√
e− 1 +

(
2−µmin(1−γ)
2−2µmin(1−γ)

)2




−t

. (128)

Further, we have
lcm = (1 + ψl2cs)

1/2 = Θ(1)

ucm = (1 + ψu2
cs)

1/2 = Θ(1)

Since TV-divergence is upper bounded with 1, we have m̄ = O(1). By Lemma D.3, we have

A1 = A2 = 2 = O(1)

and A1 = A2 = Ω(1),

B =
2

1− γ
= O

(
1

1− γ

)
.

Hence m1 = 2A2m̄ = O(1). Also, we have m2 = 0.

We choose the D-norm in Lemma B.9 as the 2-norm ‖ · ‖2. Hence, by primary norm equivalence, we have lcD = 1√
|S|

, and

ucD = 1, and hence ucD
lcD

=
√
|S|. The rest of the proof is similar to the proof of Theorem 5.1 where Imax is substituted

with 1. The sample complexity can also be derived using Corollary B.1.1.

