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Abstract

We study the problem of approximating the eigenspectrum of a symmetric matrix A € R"*"
with bounded entries (i.e., ||Allcc < 1). We present a simple sublinear time algorithm that
approximates all eigenvalues of A up to additive error +en using those of a randomly sampled

~ 3 ~ 3
O (lof—zsn) x O (l"f—:i") principal submatrix. Our result can be viewed as a concentration bound

on the complete eigenspectrum of a random submatrix, significantly extending known bounds
on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds
of +e/nnz(A) and £¢||A || when the rows of A can be sampled with probabilities proportional
to their sparsities or their squared ¢s norms respectively. Here nnz(A) is the number of non-
zero entries in A and ||Al|r is its Frobenius norm. Even for the strictly easier problems of
approximating the singular values or testing the existence of large negative eigenvalues (Bakshi,
Chepurko, and Jayaram, FOCS ’20), our results are the first that take advantage of non-uniform
sampling to give improved error bounds. From a technical perspective, our results require several
new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our
non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out
entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues
of that submatrix as estimates for those of A. We complement our theoretical results with
numerical simulations, which demonstrate the effectiveness of our algorithms in practice.
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1 Introduction

Approximating the eigenvalues of a symmetric matrix is a fundamental problem — with applications
in engineering, optimization, data analysis, spectral graph theory, and beyond. For an n x n matrix,
all eigenvalues can be computed to high accuracy using direct eigendecomposition in O(n*) time,
where w & 2.37 is the exponent of matrix multiplication [DDHKO07, AW21]. When just a few of the
largest magnitude eigenvalues are of interest, the power method and other iterative Krylov methods
can be applied [Saall]. These methods repeatedly multiply the matrix of interest by query vectors,
requiring O(n?) time per multiplication when the matrix is dense and unstructured.

For large n, it is desirable to have even faster eigenvalue approximation algorithms, running in
o(n?) time — i.e., sublinear in the size of the input matrix. Unfortunately, for general matrices,
no non-trivial approximation can be computed in o(n?) time: without reading €2(n?) entries, it is
impossible to distinguish with reasonable probability if all entries (and hence all eigenvalues) are
equal to zero, or if there is a single pair of arbitrarily large entries at positions (7, j) and (j,14), leading
to a pair of arbitrarily large eigenvalues. Given this, we seek to address the following question:

Under what assumptions on a symmetric n X n input matriz, can we compute non-trivial
approximations to its eigenvalues in 0(n2) time?

It is well known that o(n?) time eigenvalue computation is possible for highly structured inputs,
like tridiagonal or Toeplitz matrices [GE95]. For sparse or structured matrices that admit fast matrix
vector multiplication, one can compute a small number of the largest in magnitude eigenvalues in
o(n?) time using iterative methods. Through the use of robust iterative methods, fast top eigenvalue
estimation is also possible for matrices that admit fast approrimate matrix-vector multiplication,
such as kernel similarity matrices [GS91, HP 14, BIMW2I]. Our goal is to study simple, sampling-
based sublinear time algorithms that work under much weaker assumptions on the input matrix.

1.1 Owur Contributions

Our main contribution is to show that a very simple algorithm can be used to approximate all
eigenvalues of any symmetric matrix with bounded entries. In particular, for any A € R"*" with
maximum entry magnitude ||Alw < 1, sampling an s x s principal submatrix Ag of A with

s=0 (10‘:;# and scaling its eigenvalues by n/s yields a +en additive error approximation to all
eigenvalues of A with good probability.! This result is formally stated below, where [n] dﬁf{l, ooy}

Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A € R™ ™ be symmetric with
|Allcoc < 1 and eigenvalues \(A) > ... > A\ (A). Let S C [n] be formed by including each in-
dex independently with probability s/n as in Algorithm 1. Let Ag be the corresponding principal
submatriz of A, with eigenvalues A\1(Ag) > ... > Ag/(As).

For all i € [|S|] with X\;(Ag) >0, let A\;(A) = 2 Ni(Ag). For alli € [|S|] with \i(Ags) <0, let
S\n,(|5|,i)(A) = 2 \i(Ag). For all other i € [n], let Ni(A)=0. Ifs > w, for large
enough constant ¢, then with probability > 1 — ¢, for all i € [n],

Ai(A) —en < Xi(A) < Ai(A) + en.

'"Here and throughout, O() hides logarithmic factors in the argument. Note that by scaling, our algorithm gives
a +en - ||A|lc approximation for any A.



See Figure 1 for an illustration of how the |S| eigenvalues of Ag are mapped to estimates for all n
eigenvalues of A. Note that the principal submatrix Ag sampled in Theorem 1 will have O(s) =

0 (log3 ") rows/columns with high probability. Thus, with high probability, the algorithm reads just

€35

0 (1‘};;‘) entries of A and runs in poly(logn, 1/¢,1/6) time. Standard matrix concentration bounds

imply that one can sample O (81%(21/6)) random entries from the O(s) x O(s) random submatrix

A and preserve its eigenvalues to error t+es with probability 1 — d [AMO7]. See Appendix F for a
proof. This can be directly combined with Theorem 1 to give improved sample complexity:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling). Let A € R™*™ be symmetric
with ||Allcc < 1 and eigenvalues \1(A) > ... > A\, (A). For any €,0 € (0,1), there is an algorithm

that reads O (105535"> entries of A and returns, with probability at least 1 — 8, X\;(A) for each i € [n]

satisfying |Ni(A) — \i(A)| < en.

Observe that the dependence on § in Theorem 1 and Corollary 1 can be improved via standard
arguments: running the algorithm with failure probability ¢’ = 2/3, repeating O(log(1/6)) times,
and taking the median estimate for each A;(A). This guarantees that the algorithm will succeed
with probability at most 1 — 0 at the expense of a log(1/§) dependence in the complexity.

M(A) for t € (n— (S| —p+1),p)

An(A) M(isl-p(A) "~ A, 1(A) A(A)

=5 Aig(As) Ap(As) 0 X,-1(As) M(Ag) 8

Figure 1: Alignment of eigenvalues in Thm. 1 and Algo. 1. We illustrate how the eigenvalues
of Ag, scaled by %, are used to approximate all eigenvalues of A. If Ag has p—1 positive eigenvalues,
they are set to the top p — 1 eigenvalue estimates. Its |S| —p+ 1 negative eigenvalues are set to the
bottom eigenvalue estimates. All remaining eigenvalues are simply approximated as zero.

Comparison to known bounds. Theorem 1 can be viewed as a concentration inequality on
the full eigenspectrum of a random principal submatrix Ag of A. This significantly extends prior
work, which was able to bound just the spectral norm (i.e., the magnitude of the top eigenvalue)
of a random principal submatrix [RV07, Tro08a|. Bakshi, Chepurko, and Jayaram [BCJ20| recently
identified developing such full eigenspectrum concentration inequalities as an important step in
expanding our knowledge of sublinear time property testing algorithms for bounded entry matrices.

Standard matrix concentration bounds [GT11] can be used to show that the singular values of

A (i.e., the magnitudes of its eigenvalues) are approximated by those of a O (loegz”> x O <lofgn)

random submatrix (see Appendix G) with independently sampled rows and columns. However,
such a random matrix will not be symmetric or even have real eigenvalues in general, and thus no
analogous bounds were previously known for the eigenvalues themselves.

Recently, Bakshi, Chepurko, and Jayaram [BCJ20] studied the closely related problem of testing
positive semidefiniteness in the bounded entry model. They show how to test whether the minimum




eigenvalue of A is either greater than 0 or smaller than —en by reading just O(e%) entries. They
show that this result is optimal in terms of query complexity, up to logarithmic factors. Like
our approach, their algorithm is based on random principal submatrix sampling. Our eigenvalue
approximation guarantee strictly strengthens the testing guarantee — given +en approximations to
all eigenvalues, we immediately solve the testing problem. Thus, our query complexity is tight up to
a poly(logn, 1/¢€) factor. It is open if our higher sample complexity is necessary to solve the harder
full eigenspectrum estimation problem. See Section 1.4 for further discussion.

Improved bounds for non-uniform sampling. Our second main contribution is to show that,
when it is possible to efficiently sample rows/columns of A with probabilities proportional to their
sparsities or their squared fo norms, significantly stronger eigenvalue estimates can be obtained. In
particular, letting nnz(A) denote the number of nonzero entries in A and ||A||r denote its Frobenius
norm, we show that sparsity-based sampling yields eigenvalue estimates with error +e/nnz(A) and
norm-based sampling gives error +¢||A| r. See Theorems 2 and 3 for formal statements. Observe
that when ||Al|s < 1, its eigenvalues are bounded in magnitude by ||A|2 < [|A||r < /nnz(A) < n.
Thus, Theorems 2 and 3 are natural strengthenings of Theorem 1. Row norm-based sampling
(Theorem 3) additionally removes the bounded entry requirement of Theorems 1 and 2.

As discussed in Section 1.3.1, sparsity-based sampling can be performed in sublinear time when A
is stored in a slightly augmented sparse matrix format or when A is the adjacency matrix of a graph
accessed in the standard graph query model of the sublinear algorithms literature [GR97|. Norm-
based sampling can also be performed efficiently with an augmented matrix format, and is commonly
studied in randomized and ‘quantum-inspired’ algorithms for linear algebra [FKV04, Tan18|.

Theorem 2 (Sparse Matrix Eigenvalue Approximation). Let A € R™ "™ be symmetric with
|Allo < 1 and eigenvalues A\i(A) > ... > M\(A). Let S C [n] be formed by including the it"

Snnz(Ai)) as in Algorithm 2. Here nnz(A;) is the

> nnz(A)

number of non-zero entries in the it" row of A. Let Ag be the corresponding principal submatriz of
~ 8

A, and let \i(A) be the estimate of N\i(A) computed from Ag as in Algorithm 2. If s > <& for

864

large enough constant ¢, then with probability > 1— 8, for alli € [n], |\i(A) — X;(A)] < ey/nnz(A).

index independently with probability p; = min <1

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation). Let A € R™™™ be symmetric
and eigenvalues A\ (A) > ... > M\, (A). Let S C [n] be formed by including the i index independently

12
) 3||||:‘z‘\2\2 + #) as in Algorithm 3. Here |A;||2 is the 3 norm of the it
F

row of A. Let Ag be the corresponding principal submatrixz of A, and let S\Z(A) be the estimate of

with probability p; = min (1

Xi(A) computed from Ag as in Algorithm 3. If s > Clggg;f”, for large enough constant c, then with
probability > 1 — &, for all i € [n], |N(A) — Mi(A)] < €| Al p.

The above non-uniform sampling theorems immediately yield algorithms for testing the presence
of a negative eigenvalue with magnitude at least e/nnz(A) or €| A|| p respectively, strengthening the
testing results of [BCJ20|, which require eigenvalue magnitude at least en. In the graph property
testing literature, there is a rich line of work exploring the testing of bounded degree or sparse
graphs [GR97, BSS10]. Theorem 2 can be thought of as first step in establishing a related theory
of sublinear time approximation algorithms and property testers for sparse matrices.

Surprisingly, in the non-uniform sampling case, the eigenvalue estimates derived from A g cannot
simply be its scaled eigenvalues, as in Theorem 1. E.g., when A is the identity, our row sampling



probabilities are uniform in all cases. However, the scaled submatrix = - Ag will be a scaled identity,
and have eigenvalues equal to n/s — failing to give a +ey/nnz(A) = +e¢||A||p = +ey/n approximation
to the true eigenvalues (all of which are 1) unless s 2 @ To handle this, and related cases, we
must argue that selectively zeroing out entries in sufficiently low probability rows/columns of A
(see Algorithms 2 and 3) does not significantly change the spectrum, and ensures concentration of
the submatrix eigenvalues. It is not hard to see that simple random submatrix sampling fails even
for the easier problem of singular value estimation. Theorems 2 and 3 give the first results of their
kinds for this problem as well.

1.2 Related Work

Eigenspectrum estimation is a key primitive in numerical linear algebra, typically known as spectral
density estimation. The eigenspectrum is viewed as a distribution with mass 1/n at each of the
n eigenvalues, and the goal is to approximate this distribution [WWAF06, LSY16]. Applications
include identifying motifs in social networks [DBB19], studying Hessian and weight matrix spectra
in deep learning [SBL16, YGL 18, GKX19], ‘spectrum splitting’ in parallel eigensolvers [LXES19)],
and the study of many systems in experimental physics and chemistry [Wan94, SR94, HBT19].

Recent work has studied sublinear time spectral density estimation for graph structured matri-
ces — Braverman, Krishnan, and Musco [BKM22] show that the spectral density of a normalized
graph adjacency or Laplacian matrix can be estimated to e error in the Wasserstein distance in
O(n/ poly(e)) time. Cohen-Steiner, Kong, Sohler, and Valiant study a similar setting, giving run-
time 20(1/¢) [CSKSV18]. We note that the additive error eigenvalue approximation result of Theorem
1 (analogously Theorems 2 and 3) directly gives an en approximation to the spectral density in the
Wasserstein distance — extending the above results to a much broader class of matrices. When
|Allc <1, A can have eigenvalues as large as n, while the normalized adjacency matrices studied
in [CSKSV18, BKM22| have eigenvalues in [—1, 1]. So, while the results are not directly comparable,
our Wasserstein error can be thought as on order of their error of € after scaling.

Our work is also closely related to a line of work on sublinear time property testing for bounded
entry matrices, initiated by Balcan et al. [BLWZ19]|. In that work, they study testing of rank,
Schatten-p norms, and several other global spectral properties. Sublinear time testing algorithms
for the rank and other properties have also been studied under low-rank and bounded row norm
assumptions on the input matrix [KS03, LWW14]. Recent work studies positive semidefiniteness
testing and eigenvalue estimation in the matrix-vector query model, where each query computes
Ax for some x € R™™. As in Theorem 3, +e||A||r eigenvalue estimation can be achieved with
poly(logn, 1/€) queries in this model [NSW22|. Finally, several works study streaming algorithms
for eigenspectrum approximation [AN13, LNW14, LW16]. These algorithms are not sublinear time
— they require at least linear time to process the input matrix. However, they use sublinear work-
ing memory. Note that Theorem 1 immediately gives a sublinear space streaming algorithm for
eigenvalue estimation. We can simply store the sampled submatrix Ag as its entries are updated.

1.3 Technical Overview

In this section, we overview the main techniques used to prove Theorems 1, and then how these
techniques are extended to prove Theorems 2 and 3. We start by defining a decomposition of any
symmetric A into the sum of two matrices containing its large and small magnitude eigendirections.



Definition 1.1 (Eigenvalue Split). Let A € R™*"™ be symmetric. For any €,d € (0,1), let A, =
VoA, VI where A, is diagonal, with the eigenvalues of A with magnitude > eV/on on its diagonal,
and V, has the corresponding eigenvectors as columns. Similarly, let A, = VmAng;L where A,
has the eigenvalues of A with magnitude < e\/on on its diagonal and V,, has the corresponding
etgenvectors as columns. Then, A can be decomposed as

A=A, +A,=VAVI+V, A, VT,
Any principal submatriz of A, Ag, can be similarly written as
As=A,s5+Ans=VosAVig+ VisAn V] g,
where V, 5, Vi, 5 are the corresponding submatrices obtained by sampling rows of Vo, Vipy,.

Since Ag, A, s and A, g are all symmetric, we can use Weyl’s eigenvalue perturbation theo-
rem [Wey12| to show that for all eigenvalues of Ag,

[Ai(As) = Ai(Aos)| < [[Am,sll2- (1)

We will argue that the eigenvalues of A, s approximate those of A, —i.e. all eigenvalues of A
with magnitude > ev/6n. Further, we will show that || A, s||2 is small with good probability. Thus,
via (1), the eigenvalues of Ag approximate those of A,. In the estimation procedure of Theorem 1,
all other small magnitude eigenvalues of A are estimated to be 0, which will immediately give our
+en approximation bound when the original eigenvalue has magnitude < en.

Bounding the eigenvalues of A, g. The first step is to show that the eigenvalues of A, g well-
approximate those of A,. As in [BCJ20], we critically use that the eigenvectors corresponding to
large eigenvalues are incoherent — intuitively, since || A ||« is bounded, their mass must be spread out
in order to witness a large eigenvalue. Specifically, [BCJ20] shows that for any eigenvector v of A
with corresponding eigenvalue > ev/0n, ||v]|so < ﬁ. We give related bounds on the Euclidean
norms of the rows of V, (the leverage scores of A,), and on these rows after weighting by A,.

Using these incoherence bounds, we argue that the eigenvalues of A, ¢ approximate those of
A, up to +en error. A key idea is to bound the eigenvalues of Ai/ 2V:;F’SVO,SA},/ 2, which are
identical to the non-zero eigenvalues of A, g = VO,SAOVZ—:S' Via a matrix Bernstein bound and our
incoherence bounds on V,, we show that this matrix is close to A, with high probability. However,
since A},/ 2 may be complex, the matrix is not necessarily Hermitian and standard perturbation
bounds [SgS90, HJ12] do not apply. Thus, to derive an eigenvalue bound, we apply a perturbation
bound of Bhatia [Bhal3], which generalizes Weyl’s inequality to the non-Hermitian case, with a logn
factor loss. To the best of our knowledge, this is the first time that perturbation theory bounds
for non-Hermitian matrices have been used to prove improved algorithmic results in the theoretical
computer science literature.

We note that in Appendix B, we give an alternate bound, which instead analyzes the Hermitian
matrix (VZ:SVO,S)l/ QAO(VZ 5Vo.5)'/2, whose eigenvalues are again identical to those of A, g. This

approach only requires Weyl’s inequality, and yields an overall bound of s = O (lzfén)’ improving

the logn factors of Theorem 1 at the cost of worse € dependence.

Bounding the spectral norm of A,, 5. The next step is to show that all eigenvalues of A,, g are
small provided a sufficiently large submatrix is sampled. This means that the “middle” eigenvalues



of A, i.e. those with magnitude < ev/dn do not contribute much to any eigenvalue \;(Ag). To
do so, we apply a theorem of [RV07, Tro08a] which shows concentration of the spectral norm of a
uniformly random submatrix of an entrywise bounded matrix Observe that while ||A s < 1, such a
bound will not in general hold for ||A,,||c. Nevertheless, we can use the incoherence of V,, to show
that || A,l/oo is bounded, which via triangle inequality, yields a bound on ||A;,[lco < [|A oo+ || Ablco-
In the end, we show that if s > O(lzgg), with probability at least 1 — 6, [|A,, sll2 < es. After the
n/s scaling in the estimation procedure of Theorem 1, this spectral norm bound translates into an
additive en error in approximating the eigenvalues of A.

Completing the argument. Once we establish the above bounds on A, s and A,, g, Theorem
1 is essentially complete. Any eigenvalue in A with magnitude > en will correspond to a nearby
eigenvalue in % - A, 5 and in turn, % - Ag given our spectral norm bound on A, 5. An eigenvalue
in A with magnitude < en may or may not correspond to a nearby by eigenvalue in A, g (it will
only if it lies in the range [ex/gn, en]). In any case however, in the estimation procedure of Theorem
1, such an eigenvalue will either be estimated using a small eigenvalue of Ag, or be estimated as 0.
In both instances, the estimate will give en error, as required.

Can we beat additive error? It is natural to ask if our approach can be improved to yield
sublinear time algorithms with stronger relative error approximation guarantees for A’s eigenvalues.
Unfortunately, this is not possible — consider a matrix with just a single pair of entries A; ;, A;;
set to 1. To obtain relative error approximations to the two non-zero eigenvalues, we must find the
pair (i,7), as otherwise we cannot distinguish A from the all zeros matrix. This requires reading
a 2(n?) of A’s entries. More generally, consider A with a random n/t x n/t principal submatrix
populated by all 1s, and with all other entries equal to 0. A has largest eigenvalue n/t. However,
if we read s < t? entries of A, with good probability, we will not see even a single one, and thus
we will not be able to distinguish A from the all zeros matrix. This example establishes that any
sublinear time algorithm with query complexity s must incur additive error at least Q(n//s).

1.3.1 Improved Bounds via Non-Uniform Sampling

We now discuss how to give improved approximation bounds via non-uniform sampling. We focus
on the £ey/nnz(A) bound of Theorem 2 using sparsity-based sampling. The proof of Theorem 3
for row norm sampling follows the same general ideas, but with some additional complications.
Theorem 2 requires sampling a submatrix Ag, where each index i is included in S with proba-
bility p; = min(1, %) We reweight each sampled row by \/%. Thus, if entry A;; is sampled,
1
VPiDj®

full submatrix is scaled by n/s, as in Theorem 1.

The proof of Theorem 2 follows the same outline as that of Theorem 1: we first argue that
the outlying eigenvectors in V, are incoherent, giving a bound on the norm of each row of V, in
terms of nnz(A;). We then apply a matrix Bernstein bound and Bhatia’s non-Hermitian eigenvalue
perturbation bound to show that the eigenvalues of A, g approximate those of A, up to +€4/nnz(A).

it is scaled by When the rows have uniform sparsity (so all p; = s/n), this ensures that the

Bounding the spectral norm of A,, 5. The major challenge is showing that the subsampled mid-
dle eigendirections do not significantly increase the approximation error by bounding the ||A,, s||2
by ey/nnz(A). This is difficult since the indices in A,, g are sampled nonuniformly, so existing
bounds [Tro08a] on the spectral norm of uniformly random submatrices do not apply. We extend
these bounds to the non-uniform sampling case, but still face an issue due to the rescaling of entries



by \/plTp?-' In fact, without additional algorithmic modifications, ||A,, s||2 is simply not bounded by
€y/nnz(A)! For example, as already discussed, if A =T is the identity matrix, we get A, 5 =21
and so [[Ap,sll2 = & > €y/nnz(A), assuming s < @ Relatedly, suppose that A is tridiagonal,
with zeros on the diagonal and ones on the first diagonals above and below the main diagonal.

Then, if s > /n, with constant probability, one of the ones will be sampled and scaled by 2. Thus,

we will again have [[Ap, 5|2 > % > ey/nnz(A), assuming s < % Observe that this issue arrises
even when trying to approximate just the singular values (the eigenvalue magnitudes) via sampling.
Thus, while an analogous bound to the uniform sampling result of Theorem 1 can easily be given
for singular value estimation via matrix concentration inequalities (see Appendix G), to the best of
our knowledge, Theorems 2 and 3 are the first of their kind even for singular value estimation.

Zeroing out entries in sparse rows/columns. To handle the above cases, we prove a novel
perturbation bound, arguing that if we zero out any entry A;; of A where y/nnz(A;) - nnz(A;) <

LCIE;;M, then the eigenvalues of A are not perturbed by more than ey/nnz(A). This can be
thought of as a strengthening of Girshgorin’s circle theorem, which would ensure that zeroing out
entries in rows/columns with nnz(A;) < e/nnz(A) does not perturb the eigenvalues by more than
ey/nnz(A). Armed with this perturbation bound, we argue that if we zero out the appropriate
entries of Ag before computing its eigenvalues, then since we have removed entries in very sparse
rows and columns which would be scaled by a large \/[}ij factor in Ag, we can bound ||A,, g2
This requires relating the magnitudes of the entries in A,, g to those in Ag using the incoherence
of the top eigenvectors, which gives bounds on the entries of A, g = Ag — Ay, 5.

Sampling model. We note that the sparsity-based sampling of Theorem 2 can be efficiently
implemented in several natural settings. Given a matrix stored in sparse format, i.e., as a list of
nonzero entries, we can easily sample a row with probability % by sampling a uniformly random
non-zero entry and looking at its corresponding row. Via standard techniques, we can convert several

such samples into a sampled set S close in distribution to having each ¢ € [n] included independently

with probability min (1, %
also efficiently access each p;, which is needed for rescaling and zeroing out entries. Also observe
that if A is the adjacency matrix of a graph, in the standard graph query model [GR97], it is well
known how to approximately count edges and sample them uniformly at random, i.e., compute
nnz(A) and sample its nonzero entries, in sublinear time [GRO8, ER18]. Further, it is typically
assumed that one has access to the node degrees, i.e., nnz(Aj),...,nnz(A,). Thus, our algorithm
can naturally be used to estimate spectral graph properties in sublinear time.

The ¢ norm-based sampling of Theorem 3 can also be performed efficiently using an augmented
data structure for storing A. Such data structures have been used extensively in the literature on
quantum-inspired algorithms, and require just O(nnz(A)) time to construct, O(nnz(A)) space, and
O(logn) time to update give an update to an entry of A [Tan18, CCH20)].

). If we store the values of nnz(A),nnz(A;),...,nnz(A,), we can

1.4 Towards Optimal Query Complexity

As discussed, Bakshi et al. [BCJ20] show that any algorithm which can test with good probability
whether A has an eigenvalue < —en or else has all non-negative eigenvalues must read € (6%)
entries of A. This testing problem is strictly easier than outputting 4en error estimates of all
eigenvalues, so gives a lower bound for our setting. If the queried entries are restricted to fall in a



submatrix, [BCJ20] shows that this submatrix must have dimensions 2 (E%) x §2 (6%), giving total
query complexity 2 (}4) Closing the gap between our upper bound of O (bfﬁ) x O (%) and

the lower bound of €2 (6%) x Q (}2) for submatrix queries is an intriguing open question.

We show in Appendix A that this gap can be easily closed via a surprisingly simple argument if
A is positive semidefinite (PSD). In that case, A = BB” with B € R™*". Writing Ag = STAS for
a sampling matrix S € R™*I5| the non-zero eigenvalues of Ag are identical to those of BSSTBT.
Via a standard approximate matrix multiplication analysis [DIKX01]|, one can then show that, for
5> %, with probability at least 1 — ¢, |BBT — BSSTB||p < en. Via Weyl’s inequality, this shows
that the eigenvalues of BSS”B, and hence A g, approximate those of A up to 4en error.”

Unfortunately, this approach breaks down when A has negative eigenvalues, and so cannot be
factored as BB” for real B € R"*". This is more than a technical issue: observe that when A is
PSD and has ||A |l < 1, it can have at most 1/¢ eigenvalues larger than en — since its trace, which
is equal to the sum of its eigenvalues, is bounded by n, and since all eigenvalues are non-negative.
When A is not PSD, it can have Q(1/€?) eigenvalues with magnitude larger than en. In particular,
if A is the tensor product of a 1/€? x 1/€? random =41 matrix and the €2n x €2n all ones matrix, the
bulk of its eigenvalues (of which there are 1/€2) will concentrate around 1/e - €2n = en. As a result
it remains unclear whether we can match the 1/e? dependence of the PSD case, or if a stronger
lower bound can be shown for indefinite matrices.

Outside the e dependence, it is unknown if full eigenspectrum approximation can be performed
with sample complexity independent of the matrix size n. [BCJ20] achieve this for the easier posi-
tive semidefiniteness testing problem, giving sample complexity 0(1 /€?). However our bounds have
additional logn factors. As discussed, in Appendix B we give an alternate analysis for Theorem 1,

which shows that sampling a O (124%6" ) x O (125%; ) submatrix suffices for +en eigenvalue approxi-

mation, saving a log? n factor at the cost of worse e dependence. However, removing the final logn
seems difficult — it arises when bounding ||A,, g||2 via bounds on the spectral norms of random
principal submatrices [RV07]. Removing it seems as though it would require either improving such
bounds, or taking a different algorithmic approach.

Also note that our logn and e dependencies for non-uniform sampling (Theorems 2 and 3)
are likely not tight. It is not hard to check that the lower bounds of [BCJ20] still hold in these
settings. For example, in the sparsity-based sampling setting, by simply having the matrix entirely
supported on a y/nnz(A) x /nnz(A) submatrix, the lower bounds of [3CJ20] directly carry over.
Giving tight query complexity bounds here would also be interesting. Finally, it would be interesting
to go beyond principal submatrix based algorithms, to achieve improved query complexity, as in
Corollary 1. Finding an algorithm matching the O (6%) overall query complexity lower bound of
[BCJ20] is open even in the much simpler PSD setting.

2 Notation and Preliminaries

We now define notation and foundational results that we use throughout our work. For any integer
n, let [n] denote the set {1,2,...,n}. We write matrices and vectors in bold literals — e.g., A or x.
We denote the eigenvalues of a symmetric matrix A € R™*"™ by A\j(A) > ... > A\, (A), in decreasing
order. A symmetric matrix is positive semidefinite if all its eigenvalues are non-negative. For two

2In fact, via more refined eigenvalue perturbation bounds [Bhal3] one can show an £2 norm bound on the eigenvalue
approximation errors, which can be much stronger than the ¢+, norm bound of Theorem 1.
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matrices A, B, we let A > B denote that A — B is positive semidefinite. For any matrix A € R™*"
and i € [n], we let A; denote the i'® row of A, nnz(A;) denote the number of non-zero elements in
this row, and ||A;||2 denote its £2 norm. We let nnz(A) denote the total number of non-zero elements
A. For a vector x, we let ||x||2 denote its Euclidean norm. For a matrix A, we let ||A|o denote the

lAXIl> genote the spectral norm, [AllF= (32, A?j)l/2

l1x[l2
denote the Frobenius norm, and ||Al|;—2 denote the maximum Euclidean norm of a column. For

A € R"™™ and S C [n] we let Ag denote the principal submatrix corresponding to S. We let Eo
denote the Ly norm of a random variable, Eo[X] = (E[X?])'/2, where E[.] denotes expectation.
We use the following basic facts and identities on eigenvalues throughout our proofs.

largest magnitude of an entry, ||Alls = maxx

Fact 1 (Eigenvalue of Matrix Product). For any two matrices A € C"*™ B € C™*" the non-zero
etgenvalues of AB are identical to those of BA.

Fact 2 (Girshgorin’s circle theorem [Ger31]). Let A € C™*™ with entries A;j. Fori € [n], let R; be
the sum of absolute values of non-diagonal entries in the i row. Let D(A;;, R;) be the closed disc
centered at A;; with radius R;. Then every eigenvalue of A lies within one of the discs D(A;;, R;).

Fact 3 (Weyl’s Inequality [Wey12]). For any two Hermitian matrices A,B € C"*" with A—B = E,

max |Ai(A) = Xi(B)] < [[E]2.

Weyl’s inequality ensures that a small Hermitian perturbation of a Hermitian matrix will not sig-
nificantly change its eigenvalues. The bound can be extended to the case when the perturbation is
not Hermitian, with a loss of an O(logn) factor; to the best of our knowledge this loss is necessary:

Fact 4 (Non-Hermitian perturbation bound [Bhal3]). Let A € C"*" be Hermitian and B € C™"*"
be any matriz whose eigenvalues are A\1(B), ..., A\y(B) such that Re(A1(B)) > ... > Re(A(B))
(where Re(\;(B)) denotes the real part of \i(B)). Let A —B = E. For some universal constant C,

max IAi(A) — X\i(B)| < Clogn| E|2.

Beyond the above facts, we use several theorems to obtain eigenvalue concentration bounds.
We first state a theorem from [Tro08a|, which bounds the spectral norm of a principal submatrix
sampled uniformly at random from a bounded entry matrix. We build on this to prove the full
eigenspectrum concentration result of Theorem 1.

Theorem 4 (Random principal submatrix spectral norm bound [RV07, Tro08a]). Let A € C**"
be Hermitian, decomposed into diagonal and off-diagonal parts: A = D 4+ H. Let S € R™™™ be a
diagonal sampling matriz with the j'* diagonal entry set to 1 independently with probability s/n and
0 otherwise. Then, for some universal constant C,

[slogn s

For Theorems 2 and 3, we need an extension of Theorem 4 to the setting where rows are sampled
non-uniformly. We will use two bounds here. The first is a decoupling and recoupling result for
matrix norms. One can prove this lemma following an analogous result in [Tro08a| for sampling
rows/columns uniformly. The proof is almost identical so we omit it.

11



Lemma 1 (Decoupling and recoupling). Let H be a Hermitian matriz with zero diagonal. Let 0; be
a sequence of independent random variables such that 6; = \/% with probability p; and 0 otherwise.

Let S be a square diagonal sampling matriz with j*" diagonal entry set to 0j. Then:
Fo|[SHS||2 < 2E;||SHS|2  and Eu||SHS||oo < 4E5||SHS||o,
where S is an independent diagonal sampling matriz drawn from the same distribution as S.

The second theorem bounds the spectral norm of a non-uniform random column sample of a matrix.
We give a proof in Appendix D, again following a theorem in [Tro08b] for uniform sampling.

Theorem 5 (Non-uniform column sampling — spectral norm bound). Let A be an m xn matriz with
rank r. Let ¢; be a sequence of independent random variables such that 6; = —L_ with probability Dj

N

and 0 otherwise. Let S be a square diagonal sampling matriz with " diagonal entry set to ;.

Ea||AS|[2 < 54/logr - Ea||AS|l152 + [[A]l2

We use a standard Matrix Bernstein inequality to bound the spectral norm of random submatrices.

Theorem 6 (Matrix Bernstein [1rol5]). Consider a finite sequence {Si} of random matrices in
R4, Assume that for all k, E[S;] = 0 and |[|Sklla < L. Let Z = Y., S and let V1, Va be
semidefinite upper-bounds for the matriz valued variances Varyi(Z) and Vary(Z):

V1 > Var(Z ) ZZT ZE SkST and
Vy = Vary(Z) € E (272) = ZE (STsy).

Then, letting v = max(||V1l|2, | Vall2), for any t >0,

B(IZl|s > £) < 2d-exp | /2
- eX e ——— .
221) s 2d-exp{ s

For real valued random variables, we use the standard Bernstein inequality.

Theorem 7 (Bernstein inequality [Ber27]). Let {z;} for j € [n] be independent random variables
with zero mean such that |zj| < M for all j. Then for all positive t,

- —t2/2
P([s|2t) <ov (srmaisamn)

Jj=1

3 Sublinear Time Eigenvalue Estimation using Uniform Sampling

We now prove our main eigenvalue estimation result — Theorem 1. We give the pseudocode for our
principal submatrix based estimation procedure in Algorithm 1. We will show that any positive or
negative eigenvalue of A with magnitude > en will appear as an approximate eigenvalue in A g with
good probability. Thus, in step 5 of Algorithm 1, the positive and negative eigenvvalues of Ag are
used to estimate the outlying largest and smallest eigenvalues of A. All other interior eigenvalues

12



Algorithm 1 Eigenvalue estimator using uniform sampling

1: Input: Symmetric A € R™*" with ||A||sx < 1, Accuracy € € (0,1), failure prob. § € (0, 1).
clog(l/(e5)) log® n

2: Fix s = where ¢ is a sufficiently large constant.
3: Add each 1ndex i € [n] to the sample set S independently with probability . Let the principal
submatrix of A corresponding S be Ag.
4: Compute the eigenvalues of Ag: Al(AS) -2 Nis|(As).
5: For all i € [|S]] with A\;(Ag) >0, let \;(A ) = % Ai(Ag). Forall i e [|S]] with \;(Ag) < 0, let
S\n_(|5|_,~)(A) =2 Xi(Ag). For all remalmng z [n], let A;(A) = 0.
)-

6: Return: Eigenvalue estimates A\ (A) > An(A

of A are estimated to be 0, which will immediately give our +en approximation bound when the
original eigenvalue has magnitude < en.

Running time. Observe that the expected number of indices chosen by Algorithm 1 is s =
M A standard concentration bound can be used to show that with high probability
(1- 1/ poly( ), the number of sampled entries is O(s). Thus, the algorithm reads a total of O(s?)
entries of A and runs in O(s*) time — the time to compute a full eigendecomposition of Ag.

3.1 Outer and Middle Eigenvalue Bounds

Recall that we will split A into two symmetric matrices (Definition 1.1): A, = V,A, VL which
contains its large magnitude (outlying) eigendirections with eigenvalue magnitudes > eV/on and
A, = VmAmVZ1 which contains its small magnitude (middle) eigendirections.

We first show that the eigenvectors in V,, are incoherent. l.e., that their (eigenvalue weighted)
squared row norms are bounded. This ensures that the outlying eigenspace of A is well-
approximated via uniform sampling.

Lemma 2 (Incoherence of outlying eigenvectors). Let A € R™ ™ be symmetric with ||Ale < 1.
Let V, be as in Definition 1.1. Let V,; denote the it row of V,. Then,

1
e2on’

1
2< - and V.. |? <
i< Vol <

Proof. Observe that AV, = V,A,. Let [AV,]; denote the it" row of the AV,. Then we have

1052 Vo,

[AVJi[13 = [I[V oA ”2_2)‘2 oind? (2)
J=1

where 7 = rank(A,), V. ; is the (i, )" element of V, and A\; = A,(j, 7). ||Alcc < 1 by assumption
and since V, has orthonormal columns, its spectral norm is bounded by 1, thus we have

IAV]ill3 = I[AL VoI < [[TAL3 - VoI5 < n.

Therefore, by (2), we have:

Z)\2 ozg— (3)
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Since by definition of A,, |A;| > eV/on for all j, we finally have

AV, 13 =3 ) < -
H HZ ]Zl o,z,j = 6\/571 6\/5

and

1
Vol = ZVO,Z,J < ew = 2on

O

Let S € R"*I5I be the scaled sampling matrix satisfying STAS = %+Ag. Wenext apply Lemma 2

in conjunction with a matrix Bernstein bound to show that Afl)/ 2VZSSTVOA(1,/ 2 concentrates around
its expectation, A,. Since by Fact 1, this matrix has identical eigenvalues to %A, s = STV,A, VIS,
this allows us to argue that the eigenvalues of 7 - A, s approximate those of A,.

Lemma 3 (Concentration of outlying eigenvalues). Let S C [n] be sampled as in Algorithm 1 for
s > clog(1/(ed))

T .
satisfying STAS = = Ag. Letting Ay, Vo be as in Definition 1.1, with probability at least 1 — 6,

where ¢ is a sufficiently large constant. Let S € R™"*I5! be the scaled sampling matriz

IALY2VISSTV,AL? — A2 < en.

Proof. Define E = A,lj/QVZSSTVOA},/2 —A,. Foralli € [n], let V,; be the ith row of V, and define
the matrix valued random variable

(4)

otherwise.

v {ZA},/ QVO’Z-VOTiA})/ 2, with probability s/n
i = ’
0

Define Q; = Y; — E[Y;]. Observe that Qi,...,Q, are independent random variables and
that > Qi = A(l,/zVZSSTVOA})/2 — A, = E. Further, observe that [|Q]l; < max (1,2 —1) -
”A}/?VOZ»VT.AE/QH2 < max (1,2 — 1) - [|A5*V,[3. Now, [ Ag/*V,;[|3 < L= by Lemma 2. Thus,

|Qil2 < . The variance Var(E) = o E(EET) = E(ETE) = 3.7, E[Q?] can be bounded as:

iE[Q?] =S [S () (1o 2)} ALYV VI AV, VI AL?)

- - n S
=1 =1

= Z ’A1/2V01H2 (ALI)/2V0,Z‘VZ:1‘A¢17/2)- (5)

1/2y/

Again by Lemma 2, ||Ay/“V,,|3 < E\[ Plugging back into (5) we can bound,

2
=S 2 AV VI AL = A, <L
; Z )= seV/o T seVo
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Since Q? is PSD, this establishes that || Var(E)||2 < &. We then apply Theorem 6 (the matrix
A%

- . . 2 .
Bernstein inequality) with L = ﬁ, v = 3?7\/3’ and d < % since there are at most 555 < %

outlying eigenvalues with magnitude > v/den in A,. This gives:

2 —e?n?/2
P(|E], > en) < — - exp (T‘/>
€

2 v+ Len/3
< 2 —e2n? )2
- % " EXp n2 en?
seVd 3seV/8

IN
|

2 —863\/5
25 exp — |-

Thus, if we set s > %\%{5)) for large enough ¢, then the probability is bounded above by §,
completing the proof. O

We cannot prove an analogous leverage score bound to Lemma 2 for the interior eigenvectors of
A appearing in V,,,. Thus we cannot apply a matrix Bernstein bound as in Lemma 3. However,
we can use Theorem 4 to show that the spectral norm of the random principal submatrix A, g is
not too large, and thus that the eigenvalues of Ag = A, ¢ + A, 5 are close to those of A, g.

Lemma 4 (Spectral norm bound — sampled middle eigenvalues). Let A € R™™™ be symmetric with
|Allco < 1. Let Ay, be as in Definition 1.1. Let S be sampled as in Algorithm 1. If s > Cl;;%n for
some sufficiently large constant c, then with probability at least 1 — 0, [[Ay, sll2 < es.

Proof. Let A,, = D,, + H,, where D,,, is the matrix of diagonal elements and H,, the matrix of
off-diagonal elements. Let S € R"*I5I be the binary sampling matrix with A, s =STA,S. From
Theorem 4, we have for some constant C|

slogn s
Balll Am.s2) < €| logn  EaISTHunS o] + 1/ = =Bl HunS 2] + [ Honllo | + Ea(IST DS )

(6)
Considering the various terms in (6), we have ||STH,,S|lcc < [[Am|l and [|STD,,S|2 =
1ISTD 1 S]|00 < |Am|oo- We also have

Enl2 < | Amllz + [Dill2 < [|Amllz + |l < €62+ [ Anlloo

and
HSll1-2 < [[AnS[l1is2 < [[Anllise < Vo

The final bound follows since A,, = V,,VI A, where V,, VI is an orthogonal projection matrix.
Thus, [|[An|1-52 < ||A]l152 < v/n by our assumption that ||Al« < 1. Plugging all these bounds
into (6) we have, for some constant C,

Es[|Apm,sll2] < Cllogn - [|Ap|lsc + ylogn - s+ s - e6'/2]. (7)
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It remains to bound ||A,|s. We have A = A, + A, and thus by triangle inequality,
[Amlloo < [[Alloo + [[Aolloc = 1+ [| Asllco- (8)

Writing A, = V,A, VL (see Definition 1.1), and letting V,; denote the i*® row of V,, the (4,5)"
element of A, has magnitude

‘Ao,i,j’ = ’VO,Z'AOVT ‘ < ”VO,iHQ : HAOVT

0,J 0,J

2

by Cauchy-Schwarz. From Lemma 2, we have ||V, [z < m. Also, from (2), ]]ong:j|]2 =
I[AV,]jll2 < v/n. Overall, for all 4,j we have A,;; < m /n =

Plugging back into (8) and in turn (7), we have for some constant C,

ﬁ’ giving ||Asllee < ﬁ

logn

E2[HAm,S”2] < C m

+ slogn+se§1/2 .

Setting s > CIGC;%” for sufficiently large ¢, all terms in the right hand side of the above equation are
bounded by ev/ds and so
Eo[| Apn,sl2] < 3¢V/ds

Thus, by Markov’s inequality, with probability at least 1 — d, we have ||A,, s|l2 < 3es. We can
adjust € by a constant to obtain the required bound. O

3.2 Main Accuracy Bounds

We now restate our main result, and give its proof via Lemmas 3 and 4.

Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A € R™ ™ be symmetric with
|Allcoc < 1 and eigenvalues \(A) > ... > A\, (A). Let S C [n] be formed by including each in-
dex independently with probability s/n as in Algorithm 1. Let Ag be the corresponding principal
submatriz of A, with eigenvalues A\1(Ag) > ... > Ag(As).

For all i € [|S|] with \i(Ag) >0, let \j(A) = 2. Ni(Ag). Foralli € [|S]] with A\;(Ag) <0, let
S\n,(|5|,i)(A) = 2. Xi(Ag). For all other i € [n], let N(A) =0. If s > w, for large
enough constant ¢, then with probability > 1 — 6, for all i € [n],

Ai(A) —en < Xi(A) < \(A) + en.

Proof. Let S € R™*I5I be the binary sampling matrix with a single one in each column such that
STAS = Ag. Let S = y/n/s-S Following Definition 1.1, we write A = A,+A,,. By Fact | we have
that the nonzero eigenvalues of - A, 5 = STVOAOVES are identical to those of Aé/ 2VOTSSTVOAi/ 2
where A},/ 2 is the square root matrix of A, such that Atl,/ 2Afl)/ 2 A,.

Note that A, is Hermitian. However Ai/ 2 may be complex, and hence A})/ 2VZSSTV0A(1,/ % is not
necessarily Hermitian, although it does have real eigenvalues. Thus, we can apply the perturbation

bound of Fact 4 to A, and AY QVZQSTVOAi/ ? to claim for all i € [n], and some constant C,

X (ALY2VTSSTV ALY — Ni(Ay)| < Clogn||AY2VISSTV,ALZ — Alls.
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3
By Lemma 3 applied with error m, with probability at least 1 — ¢, for any s > clog(1/(ed))log" n

38
(for a large enough constant ¢) we have ]]Acl,/QVOTSSTVOA},/2 — Aoll2 < 557657 Thus, for all 4,
A(AL2VISSTV,AL2) — Ni(A)| < % 9)

We note that the conceptual part of the proof is essentially complete: the nonzero eigenvalues of
% A, g are identical to those of Aé/ 2VZSSTVOA},/ 2, which we have shown well approximate those
of A, and in turn A,. i.e., the non-zero eigenvalues of * - A, ¢ approximate all outlying eigenvalues
of A. It remains to carefully argue how these approximations should be ‘lined up’ given the presence
of zero eigenvalues in the spectrum of these matrices. We also must account for the impact of the

interior eigenvalues in A, g, which is limited by the spectral norm bound of Lemma 4.

Eigenvalue alignment and effect of interior eigenvalues. First recall that Ag = A, s+A,, 5.
By Lemma 4 applied with error €/2, we have [|A,, sll2 < €/2-s with probability at least 1 — ¢ when

s> 016‘;%”, By Weyl’s inequality (Fact 3), for all i € [|S|] we thus have

n

"i(As) — DA s)| <

n e en
Z. 2= 1

s 2 2 (10)
Consider i € [|S]] with A\;(A,s) > 0. Since the nonzero eigenvalues of % - A, 5 are identical to those
of AYPVISSTV, AL, 2 Xi(Aus) = Mi(AY*VISSTV,AL?), and so by (9),

en

< —. (11)

)% . /\i(Ao,S) - )\i(Ao) 9

Analogously, consider i & [|S]] such that A\(Ay,s) < 0. We have 2 - \(A,s) =
Ar—(|S|—i) (A}/QVOTSSTVOA(I)M), where 7 is the dimension of A, —i.e., the number of outlying eigen-
values in A. Again by (9) we have

n en

< Ai(Ao,s) = Ar—(15]—i) (Ao) | < b (12)
Now the nonzero eigenvalues of A, are identical to those of A,. Consider i € [|S|] such that
Ai(Ag) > es. In this case, by (10), (11), and the triangle inequality, we have A;(A,) > 0 and thus
we have \;(A,) = \i(Ay). In turn, again applying (10), (11), and the triangle inequality, we have

g)\i(AS) — M(AY)

Analogously, for i € [|S|] such that \;(Ag) < —es, we have by (10) and (12) that A,._(sj—(As) < 0.
Thus A _(151—-i)(Ao) = A—(r—i)(As). Again by (10), (12), and triangle inequality this gives

<

n
‘ ;/\z (AO,S) - )\i (Ao)

+ ‘%/\i(AS) —Xi(Ao5)| < en.

n
‘; “Ai(As) = Ap—(5]-i) (Ao)

< en.

Now, consider all i € [n] such that A;(A,) is not well approximated by one of the outlying
eigenvalues of A g as argued above. By (10), (11), and (12), all such eigenvalues must have [A;(A,)| <
2en. Thus, if we approximate them in any way either by the remaining eigenvalues of Ag with
magnitude < es, or else by 0, we will approximate all to error at most 3en. Thus, if (as in Algorithm
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1) for i € [|S]] with X\;(As) > 0, we let \;(A) = 2. Xi(Ag) and for i € [|S]] with A\;(Ag) <0, let
S\n_(|5|_i)(A) = 2-Xi(Ag), and let Ai(A) = 0 for all other i, we will have for all 4,

Ai(A) = Xi(AL)| < 3en.

Finally by definition, for all i, |A\;(A) — X\i(A,)| < eV/on < en and thus, via triangle inequality,
‘S\Z(A) - )\i(A)‘ < 4en. This gives our final error bound after adjusting constants on e.

Recall that we require s > w for the outer eigenvalue bound of (9) to hold with
probability 1 — §. We require s > 616%%5” for ||An, sll2 < €/2- s to hold with probability 1 — § by
Lemma 4. Thus, for both conditions to hold simultaneously with probability 1 — 24 by a union

Jog3 R
bound, if suffices to set s = W > max (Clog(l/e (36\6/%) log"n 616%%"), where we use that

log(1/(ed) < O(logn), as otherwise our algorithm can take Ag to be the full matrix A. Adjusting
d to §/2 completes the theorem. O

Remark: The proof of Lemma 3 and consequently, Theorem 1 can be modified to give better
bounds for the case when the eigenvalues of A, lie in a bounded range — between €*v/dn and e’n
where 0 < b < a < 1. See Theorem 9 in Appendix C for details. For example, if all the top

~ 2
eigenvalues are equal, one can show that s = O (b§—2”> suffices to give +en error, nearly matching

the lower bound of [BCJ20]. This seems to indicate that improving Theorem 1 in general requires
tackling the case when the outlying eigenvalues in A, have a wide range.

4 Improved Bounds via Sparsity-Based Sampling

We now prove the £e4/nnz(A) approximation bound of Theorem 2, assuming the ability to sample
nnz(A;)
nnz(A) *
rithm 2. Unlike in the uniform sampling case (Algorithm 1), we cannot simply sample a principal
submatrix of A and compute its eigenvalues. We must carefully zero out entries lying at the in-
tersection of sparse rows and columns to ensure accuracy of our estimates. A similar approach is

taken for the norm-based sampling result of Theorem 3. We defer that proof to Appendix E.

each row with probability proportional to Pseudocode for our algorithm is given in Algo-

4.1 Preliminary Lemmas

Our first step is to argue that zeroing out entries in sparse rows/columns in step 5 of Algorithm 2
does not introduce significant error. We define A’ € R™*" to be the extension of A’ to the original

2
matrix — i.e., Aj; = 0 whenever i = j or nnz(A;)nnz(A;) < %. Otherwise Aj; = A;;. We

argue via a strengthening of Girshgorin’s theorem that [A\;(A) — X\;(A’)| < ey/nnz(A) for all i.
After this step is complete, our proof follows the same general outline as that of Theorem 1 in
Section 3. We split A’ = Af, + A, arguing that (1) after sampling [|A], s[2 < €/nnz(A) and
(2) that the eigenvalues of Al o are +e,/nnz(A) approximations to those of A/. In both cases, we
critically use that the rescaling factors introduced in line 4 of Algorithm 2 do not introduce too

much variance, due to the zeroing out of entries in A’.
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Algorithm 2 Eigenvalue estimator using sparsity-based sampling
1: Input: Symmetric A € R™" with ||A||s < 1, Accuracy € € (0,1), failure prob. § € (0,1).
nnz(A;) for all 7 € [n] and nnz(A).

. 8 . .
2: Fix s = 6161;’# where ¢ is a sufficiently large constant.

3: Add each i € [n] to sample set S independently, with probability p; = min (1, S;ISZZ((II:;)) Let

the principal submatrix of A corresponding to S be Ag.
4: Let Ag = DAgD where D € RISIXIS| is diagonal with D;; = —= if the i*" element of S is ;.

VPi
5. Construct A’y € RISXISI from A g as follows:
(AL] 0 if i = j or nnz(A;)nnz(A;) < 63;22(2:) for sufficient large constant cy
slij = _
" [Agli; otherwise.

6: Compute the eigenvalues of A'g: A\j(Ag) > ... > \g/(A%).

7: For all i € [|S]] with \;(A%) > 0, let A\;(A) = \j(Ag). For all i € [|S]] with A\;(AY) < 0, let
An—(15]—i) (A) = Xi(A%). For all remaining i € [n], let \;(A) = 0.

8: Return: Eigenvalue estimates A1 (A) > ... > A\, (A).

Remark: Throughout, we will assume that A does not have any rows/columns that are all 0, as

such rows will never be sampled and will have no effect on the output of Algorithm 2. Additionally,
8 8

we will assume that nnz(A) > Clg§§4 " as otherwise, A has at most s = Cl:§§4 ™ non-zero rows.

Thus, rather than running Algorithm 2, we can directly compute the eigenvalues of A.

Lemma 5. Let A € R™™ be symmetric with ||Allseo <1 and nnz(A) > 2/e2. Let A’ € R™" have
A =01ifi=j ornnz(A;) nnz(A;) < € nna(A)

Loz’ n for a sufficiently large constant co and A;j =A;;
otherwise. Then, for all i € [n],

INi(A) — N (A")] < ey/nnz(A).

Proof. We consider the matrix A”, which is defined identically to A’ except we only set A/, = 0 if

2
nnz(A;) - nnz(A;j) < 66;1122(2:). I.e., we do not have the condition requiring setting the diagonal to

0. We will show that |\;(A) — \;(A”)| < ¢/2-/nnz(A). By Weyl’s inequality, and the assumption
that nnz(A) > 2/€2, we then have [\;(A) — \;(A')] < ¢/2-/nnz(A) +1 < - y/nnz(A) as required.

Let Zj, C [n] be the set of rows/columns with nnz(A;) € [%ﬁA), n;%@) and Ay = A(Zy, 7))
be the submatrix of A formed with rows in Zj, and columns in Z;. Define A}, in the same way and
observe that A}, = Ay whenever 2k+ < mnz(?%g%b.

2 —~
When 2F+ > w, we may zero out some entries of Ay to produce AY,. Let Ay be

€

equal to Ay on this set of zeroed out entries, and 0 everywhere else. Observe that (.&kl;&%})m =

(Kkl)m,:fifl- Next observe that (;&kl)m,: has at most nnz(A,,) < mz(A) on-zero entries. Similarly,

2
nglsz‘) non-zero elements. Thus, for all m € |Z|, using that ||A |l <1,

nnz(A)?  4nnz(A)?
ok+l—2 T 9kt

each row of Afl has at most

(AR AL m. 1 <
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Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

4nnz(A)?

1Awl3 = |AuAf: < max (A AL m:lh < S

(13)
Let Ay € R™" be a symmetric matrix such that A (Zy,Z;) = Akl, AT, ) = Alk, and Ay is

zero everywhere else. By triangle inequality and the bound of (13),

4nnz(A)

1Akl2 < | Akl + A2 < SOAD2

Observe that, since we assume all rows have at least one non-zero entry, nnz(A;) > 1 and nnz(A) <
n?. Therefore, k,[ can range from 1 to log(n?) = 2logn. By triangle inequality,

1A — A"l < > 1A

. (A) log?
(k’l).2k+l>c2nnz = ogen

21§0g:n 46\/1? 2logn
P ¢z -logn 21—
< 16€y/nnz(A)
p— \/a .

Finally, setting co large enough and using Weyls’ inequality (Fact 4) we have the required bound:

IANi(A) — N (A")] < €/24/nnz(A).

O

We next give a bound on the coherence of the outlying eigenvectors of A’. This bound is
analogous to Lemma 2, but is more refined, taking into account the sparsity of each row.

Lemma 6 (Incoherence of outlying eigenvectors in terms of sparsity). Let A, A’ € R™ ™ be as in
Lemma 5. Let AL = V! A'V.I where Al is diagonal, with the eigenvalues of A’ with magnitude
> eV/6+\/nnz(A) on its diagonal, and V', has columns equal to the corresponding eigenvectors. Let
V,; denote the i row of V'. Then,

/ A)) nnz(A;)
A2y 12 < nnz(A; d IV 12 < i)
|| o 0,1”2 — Gﬁ\/m an H o,z||2 — 625HDZ(A)

Proof. The proof is nearly identical to that of Lemma 2. Observe that A’V) = V/Al. Letting
[A’V']; denote the i*h row of the A’V we have

IAVE]ilI5 = ITVoAGLil5 = Z)\2 o (14)
7j=1
where r = rank(Ay), V7, ; is the (3, 7)™ element of V/ and A; = AL (4,7). Since V! has orthonormal
columus, we thus have [[A’V2)[3 < | A!|3 < | A:]3 < nnz(A;). Therefore, by (14),
T
DNV < nnz(Ay). (15)
j=1
Since by definition |\;| > ev/§\/nnz(A for all j, we can concluse that HA/Ol/?VfM.H% =2 N
nnz(A;) nnz(A; .
V2, < W and |V}, |3 = Y5_, V2 ; < aasas, which completes the lemma., O
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4.2 Outer and Middle Eigenvalue Bounds

Using Lemma 6, we next argue that the eigenvalues of A; ¢ will approximate those of A’, and in
turn those of A. The proof is very similar to Lemma 3 in the uniform sampling case.

Lemma 7 (Concentration of outlying eigenvalues with sparsity-based sampling). Let A, A’ ¢ R
be as in Lemmas 5 and 6. Let A’ = Al + Al where AL, = V! A V'T and Al = V. AV'T are
projections onto the eigenspaces with magnitude < e\/g\/nnz ) and > €v/6+/nnz(A) respectively

(analogous to Definition 1.1) As in Algorithm 2, for all i € [n] let p; = min (1, s;?;éﬁ?) and let

S be a scaled diagonal sampling matriz such that the S = ﬁ with probability p; and Sii =0

otherwise. If s > %\%ﬁ;)) for a large enough constant ¢, then with probability at least 1 — ¢,

A2V TSSTV! A/? — Al||5 < ey/nnz(A).

Proof. Define E = A,/>VITSSTV! A/> — A/ For all i € [n], let V,; be the it row of V/, and

(0]
define the matrix valued random Varlable

(16)

otherwise.

v {I}A;I/ 2V! V'TAY? with probability p;
i = 7 ) )
0

Define Q; = Y; — E[Y;]. We can observe that Q1,Qo,...,Q, are independent random variables
and that > " | Q; = A01/2V'OTS§TV2A01/2 — Al =E. Let P ={i € [n] : p < 1}. Then, observe
that Zie[n]\P Qi =0. So, E =3, p Q;. Then, similar to the proof of Lemma 3, we need to bound
|Qil|2 for all i € P and Var(E )defE(EET) E(ETE) = Y, p E[Q?] using the improved row norm
bounds of Lemma 5. In particular, we have

ZE[Q?] = Z pi (; - 1>2+(1 — i)

C(AYAV VI AV, VAL

i€P i€P
= Z |A1/2V0 z||2 (Ai/2VO,iVZiA<1;/2)- (17)
zEP
- 1/2 112 nnz(A;) . .
By Lemma 5, [|[Ay "V, ;|5 < oJom &) Plugging back into (17),
Z E[Q? Z nnz—) ) (A(ly/2Vo,ng:iAé/2)
icP iep P nnz(A)
nnz(A) 1
< V&) 5~ ey, AL
T seVo (g}; o )
_ nnz(A)Ao < nnz(A) 1
seV/d seV/6
Slnce Q? is PSD this establishes that v < ||Var(E) H nnz\(/é) Since there are at most %%

6 eigenvalues with absolute value > ev/§ 04/nnz(A), we can apply the matrix Bernstein inequality
exactly as in the proof of Lemma 3 with d = 21 5 to bhOW that when s > %\%{5)) for large enough
¢, with probability at least 1 — 4, [|E||, < ey/nnz(A). O
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We next bound the spectral norm of A/ s This is the most challenging part of the proof — the
rows of this matrix are sampled non—umforrnly and scaled proportional to their inverse sampling
probabilities, so we cannot apply existing bounds on the spectral norms of uniformly sampled ran-
dom submatrices [RV07]. We extend these bounds to the non-uniform case, critically using that en-
tries which would be scaled up significantly after sampling (i.e. those lying in sparse rows,/columns),
have already been set to 0 in A’m7 g» and thus do not contribute to the spectral norm.

Lemma 8 (Concentration of middle eigenvalues with sparsity-based sampling). Let A, A’ € R"*"
be as in Lemmas 5 and 6. Let A = A’ + A/ where A/, = V! A V'T and A, = V. ALV'E are
projections onto the eigenspaces with magnitude < (—:\[\/nnz ) and > ef\/nnz (A) respectively

(analogous to Definition 1.1). As in Algorithm 2, for all i € [n} let p; = min (1, ngjéﬁ;)) and

let S be a scaled diagonal sampling matriz such that the S; = ﬁ with probability p; and S;; = 0

otherwise. If s > 012%4" for a large enough constant ¢, then with probability at least 1 — 6,

ISA! S||2 < ey/nnz(A).

Proof. The initial part of the proof follows the outline of proof of the spectral norm bound for

uniformly random submatrices (Theorem 4) of [Tro08al. From Lemma 6, we have ||[V/,;|l2 <
v/nnz(A;) . T .

oA Also, following the proof of Lemma 6, we have [|A', V', ;[l2 = [[[A"V',];]l2 < y/nnz(A;).

Thus, for all 4, j € [n], using Cauchy Schwarz’s inequality, we have

A, V'T nnz nnz 18
NVl S R (18)

Let A’,, = H,, + D,,, where H,,, and D,, contain the off-diagonal and diagonal elements of A/,
respectively. Note that while A’ is zero on the diagonal, A/ may not be. We have:

A il = V!0 oV o] < [V

Using Lemma 1 (decoupling) on Es|SH,,S||2, we get
Es||SA’,,S|2 < 2E3||SH,,S|2 + E2[|SD,,.S |2, (19)

where S is an independent copy of S. Upper bounding the rank of H,, as n and applying Theorem
5 twice to Eq||[SH,,,S||2, once for each operator, we get

Es||SH,,S||2 < 51/1og nEs||SH,,.S||12 + E2|[SH,|2
< 5+1/log nEs||SH,,,S|| 12 + 51/log nEa||[H,nS |12 + ||Hon|2- (20)

Plugging (20) into (19), we have:
E3l|SA,Sll> < 10v/1ogn (B |SHS |12 + E2[HuSll1) + 2| Hinl2 + B2 SDyS|l — (21)

We now proceed to bound each of the terms on the right hand side of (21). We start with
Es||SD,,S|2. First, observe that Eq|SD,,S||2 < max; p%](Dm)w| We consider two cases.
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Case 1: p; < 1. Then, p; = *22l4) and |(Dy)is] = [(Am)ii] = [(AL)ui| (since A, = 0). Then by

(18), we have E|<Dm)zz‘ S sev/o

Case 2: p; = 1. Then we have p%](Dm)”| = [(Dy)ii| < max;|(Dy)j;] < [|ALll2 < ev/dy/nnz(A
From the two cases above, for s > %, we have:

E5||SD,,S||2 < eV/d1/nnz(A). (22)

We can bound ||H,y,||2 similarly. Since H,, = A’,, — Dy, and ||A’,,||2 < ev/§1/nnz(A),

Hmll2 < [[A'm]l2 + D2
< eV/8/mz(A) 4 eV/5/nnz(A)
= 2¢V/5/mnz(A) (23)

where the second step follows from the fact that |D,,|l2 < max;|(Dp )il < ||AL,ll2-

We next bound the term Bs||HL, S|l 2. Observe that Ep|[H, S|y < 22l2mil2 - where
Ay, i is the ith column/row of A/ . We again consider the two cases when p; = 1 and p; < 1:
Case 1: p; = 1. Then ||A’}4]l2 < [|A ]2 < €V/5y/nnz(A).

Case 2: p; < 1. Then [|A’p;ll2 < |A%]]2 < y/nnz(A;). Thus, setting s > 5 we have:

|Aallz _ [ ana(A)
VvPi | snnz(A;)

nnz(A) < eV/dy/mnz(A).

S

1A

log n.

€28 °

Bal[H,, 81, < VOVe(A) (24)
\/logn

Overall, plugging (22), (23), and (24) back into (21), we have :
Es||SA’,S|l2 < 104/logn - Ea||SH,,S||1-2 + 15¢V/81/nnz(A). (25)

It remains to bound Ey||SH,,S||; 2, which is the most complex part of the proof. Since S is

Thus, from the two cases above, for all i € [n], adjusting € by a \/7 factor, we have for s >

an independent copy of S, we denote the norm of the i*" column of SH,,.S as W Then
SH,»)

Es||SH,, S||1_>2 < E, (maxZ icln] w> We will argue that max;.;c[, w

by Vo dy/nnz(A) with probability 1 — 1/ poly(n). Since our sampling probabilities are all at least
1/n? and since HHmH r < ||A||F < n, this value is also deterministically bounded by n?. Thus, our
[(SHm)..ill2

- vpi )

We begin by observing that since A’,;, = H,,, + Doy, [|(SA0).ill2 > [|(SHy).ill2, and so to

is bounded

high probability bound implies the needed bound on Ey (maxi:ie[n]

bound max;.ic[n] H(SH#?“"ID, it suffices to bound ”(SA,% for all i € [n]. Towards this end, for a
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fixed ¢ and any j € [n], define

| Ai 5> with probability p;
zj = 7 .
0 otherwise.

Then Z?:l Zj = ”(SA/m),z

I(SA’},). 4|13 is a sum of independent random variables, we can bound this quantity by applying

5 and E[}70, 7] = [|A],[3 < [[Af]3 < nnz(Ai). Since 377, 75 =
Bernstein’s inequality. To do this, we must bound |z;| for all j € [n] and Var (Z?Zl zj). We will
again consider the cases of p; < 1 and p; = 1 separately.

Case 1: p; < 1. Then, we have p; = snnz(A;)/nnz(A). If A’; ; # 0 then

1 ) nnz(A) 2
2] < pfle'm,m’ < max <1’ sunz(A;) Al

2nnz(A)
< A/mi'z A/i'2 A/oi'2
2nnz(A) nnz(A;)nnz(A;)
< A/mi 12 Ali 12 J
< [ A"+ snnz(Aj) <| al €20 nnz(A)
2nnz(A) 2nnz(A;)
< A/mi 12 Ali 12
— ’ HJ‘ +SHDZ(A]‘)| ,]| + 265 ’

where the fourth inequality uses (18). By the thresholding procedure which defines A’; if Agj #0,

2 A 2 A
nnz(A;) -nnz(A;) > ¢ nnz(A) = nnz(A;) > ¢ nnz(A) , (26)
J 2 j 2
colog®n colog®nnnz(A;)
and thus for p; < 1 and A’;; # 0 we have
2¢o log? n nnz(A;) 2nnz(A;)
T < (A2 .
|25 < |A%migl” + 52 285
If A’; ; = 0 then we simply have
, 5 nnz(A,)
2] < A g™ + ——55—
Overall for all j € [n],
2nnz(A;)  2cylog? nnnz(A;)
/ 2 1 %
|Zj| < ‘A m,i,j| + 5€25 s€2 ’ (27)
and since |A'yn ;> < 350 |A g = |A mill3 < [JA%13 < nnz(A),
2nnz(A;)  2cplog? A;
2] < nnz(A,) + 2202A) | 2eplog”ninz(Ay) (28)

s€26 S€

For s > ¢ (1o§jn + %) and large enough ¢, we thus have |z;| < 2nnz(A).
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We next bound the variance by:

n
Z 32 <Zpa 2|A,m,w’4

A
max LLU A
snnz(A,;) ”

n

> %
7=1

IN

Il
M= T

1

<.
Il

n
12nnz(A
A gl + 12ona(A) (JA 51"+ 1A 50%)

-

~ — snnz(A;)
12nnz(A) nnz(A;)? nnz(A,;)*
, / 4 J
< HAmz”ﬁZm (s ar )

where the last inequality uses (18). Now since A}, = 0 for all 7 and ||A’||c < 1 we have

= 12nnz(A) <~ 12nnz(A;)? nnz(A;)
>z | <A malli+ Y 2 s @)
j=1

A 452
= AT 40 snnz(Aj) se*d? nnz(A)

Combining (26) with the second term to the right of (29) we have

n 2 n 2
12¢9log” n - nnz(A;) 12nnz(A;)* nnz(A;)
/ 4 2 108 i i j
Z % | S A mallz + Z s€2 * Z se*6?nnz(A) 7
j= JiA ;70 =1

and since [{j : A’; ; # 0}| = nnz(A;), we have

n 2 2 n 2
12¢2log” n - nnz(A;) 12nnz(A;)°nnz(A;)
V. E < 1A 14 E 22 30
ar st % | < I Amillz + se2 + st se*§2nnz(A) (30)
Finally since )°7_; nnz(A;) = nnz(A) and [[A’;, ;3 < [|A’;]|3 < nnz(A;)* we have
n 2 2 2
12¢c9log” n - nnz(A;) 12nnz(A;)
2 2 108 7 7
Var E zj | <nnz(A;)°+ o2 Y (31)

=1

ForsZc(

%S) for large enough ¢, we have Var (Z?:1 z]-) < 2nnz(A;)2.

Therefore, using (28) and (31) with s > ¢ (log o+ ﬁ), we can apply Bernstein inequality (Theo-

rem 7) (for some constant ¢) to get

P ([(SAL,):ill3 > E(SAL).ill3 +1) <P | Yz > nna(A;) +t
j=1

= P (c nnz(Az')Z_fc/tznnZ(Ai)/ 3> '
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If we set t = logn - nnz(A;), for some constant ¢’ we have

—(logn)?/2

P (|[(SAL,).ill3 > E|(SAL,). |13 + logn - nnz(A;)) < — = L
(IAL).413 > BISAL). I3 + logn - mua(a,)) < exp ( S022 5

) < exp(—c'logn) < 1/n°.

Since A’;, = Hy, + Dy, we have |[(SA).ill2 > [|[(SHy).ill2. Then with probability at least

1- l/ncl > 1— 6, for any row i with p; < 1, we have

€26 nnz(A)

1 - nnz(A)
— - |(SH,,).i|% <
- (SH)ill3 < g n

AR A <
P sonz(A) c(logn)nnz(A;) <

9

2
for s > ¢ <10§2 m 4+ #) for large enough c. Observe that, as in Lemma 3 w.l.o.g. we have assumed

1-n¢>1-9§ , since otherwise, our algorithm would read all n? entries of the matrix.
Case 2: p; = 1. Then, we have nnz(A;) > nnz(A)/s. As in the p; < 1 case, we have from (27):

2nnz(A;) N 2¢2 log? nnnz(A;)

2] < Al jl® + 3

s€26 S€

Now, we observe that |A/,, ; j|* < PR |A i jI* < HA;mHg < ||A||2 < €25 nnz(A), which gives us

2nnz(A;) N 2¢9 log? nnnz(A;)
5 .

|zj| < 25 nnz(A) + (32)

s€26 S€

Thus, for s > ¢ <1°§26n + ﬁ) for a large enough constant ¢ and adjusting for other constants we
have |z;| < 2e2nnz(A). Also observe that the expectation of > z; can be bounded by:

n
E|D 2| =EISA):ll3 = 1A mill3 < [|A'n]3 < 6 nnz(A).
j=1
Next, the variance of the sum of the random variables {z;} can again be bounded by following the
analysis presented in and prior to (30) and (31) we have
n

Var | Yz | < [|Amigl5 +
j=1

12¢o1log? n - nnz(A;)?  12nnz(A;)?
se? seto?

12¢olog? n - nnz(A;)? n 12nnz(A;)?

< 452 A)2
< €0 mnz(A)7+ s€2 setd?

where we again bound ||A’,,; ;|3 using

n
(A i [P <Y A il < 1AL l5 < A]3 < €0nnz(A).
j=1

Then for s > c(l‘;%;” + —51), we have Var (Z?Zl zj) < 26462 nnz(A)? for large enough constant c.
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Using (32) and (33) and noting that >°% ; E <z]2> > Var (Z?:l zj> —E2 (E?Zl zj) we can apply

the Bernstein inequality (Theorem 7):

P ([|(SA7,).ill3 > EI[(SAL,).ills +1) <P [ Y2 > *6nna(A;) + ¢
j=1

- —t2/2

ex .
= O cetg2 nnz(A)? + ce2dnnz(A)t/3

If we set t = (logn)e2d nnz(A), then for some constant ¢’ we have

P ([[(SAL):ill3 = Ell(SA7,).ill3 + 1) < exp(~logn) < 1/n”".

This, since ||(SH,,).i|12 < |[(SAZ,).:|13, when p; = 1, setting s > c(l(z,sg;g"—l—ﬁ) for large enough ¢, we

have with probability > 1—1/n¢ p%H(SHm),zH% = |(SHy)-il3 < [[(SAL,).:ll3 < (logn)e26 nnz(A).
We thus have, that with probability > 1 — 1/ncl, for both cases when p; < 1 and p; = 1,

_ -
W < (logn)e?6 nnz(A). Taking a union bound over all i € [n], with probability at least

1—1/n"1, max; H(SH% < logneV/d+/nnz(A) for s > c(% + ﬁ) As stated before, since

D > # for all ¢ € [n], and since ||H,,||r < ||A||r < n, we also have max; H(SH%M < n?. Thus,
H(SHm),z 2 1 1
Eo max T < Vlognevs\/mz(A)(1 — ——) + —— < \/logneV/nnz(A).
1:11EN Di n n

after adjusting € by at most some constants. Overall, we finally get

S & SH,,)..i
Eo||SH,,,S||1_52 < Eo (maix] M) < ey/lognVé+/nnz(A).
RIS Di

log?n

Plugging this bound into (25), we have for s > c(“&5" + ﬁ),

Ez||SA’,,S|l2 < (log n)eV/d/nnz(A).

log® n log®
S5z + et

Es[|SA’,S|2 < eVdy/nnz(A).

The final bound then follows via Markov’s inequality on |[SA’,,S||2. O

n clog®n
i) or s> 58%4 )

L factor, we have for s > c(

Finally after adjusting € by a Tog

4.3 Main Accuracy Bound
We are finally ready to prove our main result for sparsity-based sampling, which we restate below.

Theorem 2 (Sparse Matrix Eigenvalue Approximation). Let A € R™™ be symmetric with

Ao < 1 and eigenvalues A\1(A) > ... > M\ (A). Let S C [n] be formed by including the i

index independently with probability p; = min <1, SSI?ZZ((Q)Z')) as in Algorithm 2. Here nnz(A;) is the

number of non-zero entries in the it row of A. Let Ag be the corresponding principal submatriz of
~ 8

A, and let \;j(A) be the estimate of N\i(A) computed from Ag as in Algorithm 2. If s > CL%%ﬂ, for

large enough constant ¢, then with probability > 1 — 46, for all i € [n], |Ni(A) — Xi(A)] < ey/nnz(A).
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Proof. With Lemmas 7 and 8 in place, the proof is nearly identical to that of Theorem 1, with the
additional need to apply Lemma 5 to show that the eigenvalues of A’ are close to those of A.

For all i € [n] let p; = min (1, 22222
that the S;; = ﬁ with probability p; and S;; = 0 otherwise. Let A’ be the matrix constructed
from A by zeroing out its elements as described in Lemma 5. Then, note that SA’S = A’y where
A’ is the submatrix constructed as in Algorithm 2. We first show that the eigenvalues of A’y
approximate those of A’ up to error e1/nnz(A). The steps are almost identical to those in the proof
of Theorem 1. We provide a brief outline of the steps but skip the details.

We split A’ as A’ = Al + A/ where A/ and A} contain eigenvalues of A’ of magnitudes
< ev/6y/nnz(A) and> ev/§,/nnz(A). This implies Ay = Al g+ A}, 5 where Al o = = SA’S and

Al o =SA/ S. By Fact 1 we have that the nonzero eigenvalues of A/ ¢ = SVgA’OVOTS are identical
to those of A;l/ QV;TSSVQA:}/ 2, Thus, applying the perturbation bound of Fact 4, we have:

) and let S be a scaled diagonal sampling matrix such

N(A2VISSV!I AL2) — N(AL)| < Clogn||AV*V.ISSV/AY2 — AL ||,

From Lemma 7, we get ||A, M2y V.I'SSV’/ A AL - A "ll2 < ey/nnz(A) for s > clog(/() with proba-

€36
log(1/(ed)) log®
in Lemma 7, for s > %7

bility at least 1 —§. Thus, setting the error parameter to

log n

with probability at least 1 — § we have:

AN(APVIISSV!AL2) — N(AD)| < ey/nnz(A). (34)

We have thus shown that the non-zero eigenvalues of Aﬁ)’ g approximate all outlying eigenvalues of

A’ Note that by Lemma 8, we also have ||A! |l2 < ey/nnz(A) with probability at least 1 — ¢ for

s> Cl%%f Then, similarly to the section on eigenvalue alignment of Theorem 1, we can argue how

these approximations ‘line up’ in the presence of zero eigenvalues in the spectrum of these matrices,
concluding that, for all i € [n],

Ai(A) — N(A)] < e

nnz(A).

Finally, by Lemma 5, we have [A\;j(A’) — \i(A)| < ey/nnz(A) for all i € [n]. Thus, via triangle
Ni(A) — )\i(A)‘ < 2ey/nnz(A), which gives the required bound after adjusting € to €/2.

inequality,

Recall that we require s > W for (34) to hold with probability 1 — . We also
require s > CIE%%ZZ" for |A}, sll2 < €y/nnz(A) to hold with probability 1 — ¢ by Lemma 8. Thus, for
both conditions to hold simultaneously With probability 1 — 20 by a union bound, it suffices to set

log® log(1/(ed))-log® log®
5= "t > max (C o8( /ege\/)g) kT L
our algorithm can take Ag to be the full matrix A. Adjusting § to /2 completes the theorem. [J

), where we use that log(1/(ed) < O(logn), as otherwise

5 Empirical Evaluation

We complement our theoretical results by evaluating Algorithms 1 (uniform sampling) and Algo-
rithm 2 (sparsity-based sampling) in approximating the eigenvalues of several symmetric matrices.
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We defer an evaluation of Algorithm 3 (norm-based sampling) to later work. Algorithm 1 and
Algorithm 2 perform very well. They seem to have error dependence roughly 1/€? in practice, as
compared to the 1/ dependence proven in Theorem 1 and 1/¢% dependence in Theorem 2. Closing
the gap between the theory and observed results would be very interesting.

5.1 Datasets

We test Algorithm 1 (uniform sampler) on three dense matrices. We also compare the relative
performance of Algorithm 1 and Algorithm 2 (sparsity sampler) on three other synthetic and real
world matrices.

The first two dense matrices, following [CNX21|, are created by sampling 5000 points from a
binary image. We then normalize all the points in the range [0, 1] in both axes. The original image
and resulting set of points are shown in Figure 2. We then compute a similarity matrix for the points
using two common similarity functions used in machine learning and computer graphics: d(x,y) =
tanh (@), the hyperbolic tangent; and 6(x,y) = ||[x — y||3 - log (||X — yH%), the thin plane spline.
These measures lead to symmetric, indefinite, and entrywise bounded similarity matrices.

Our next dense matrix (called the block matrix) is based on the construction of the hard instance
for the lower bound in [BCJ20] which shows that we need Q(1/¢2) x (1/e2) samples to compute en
approximations to the eigenvalues of a bounded entry matrix. It is a 5000 x 5000 matrix containing
a 2500 x 2500 principal submatrix of all 1s, with the rest of the entries set to 0. It has A;(A) = 2500
and all other eigenvalues equal to 0.

We now describe the three matrices used to compare Algorithm 1 and Algorithm 2. All three are
graph adjacency matrices, which are symmetric, indefinite, entrywise bounded and sparse. Spectral
density estimation for graph structured matrices is an important primitive in network analysis
[DBB19]. The first is a dense Erdos-Rényi graph with 5000 nodes and connection probability 0.1.
The second two are real world graphs, taken from SNAP [LIK14]; namely Facebook [M112] and Arxiv
COND-MAT [LKF07]. The Facebook graph contains 4039 nodes and 88234 directed edges. We
symmetrize the adjacency matrix. Arxiv COND-MAT is a collaboration network between authors
of Condensed Matter papers published on arXiv, containing 23133 nodes and 93497 undirected
edges. Both these graphs are very sparse — the number of edges is < 1% of the total edges in a
complete graph with same number of nodes.

Original image Sampled points

1.0 .

0.8

y co-ordinates
y co-ordinates

0.2

0 100 200 300 400 500 600 700 0.2 0.4 0.6 0.8 1.0
x co-ordinates x co-ordinates

Figure 2: Kong dataset. The image on the left is the original synthetic binary image and the image
on the right shows the 5000 sampled points from the outline used as dataset in our experiments.
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5.2 Implementation Details

Apart from uniform random sampling (Algorithm 1), we also apply the sparsity-based sampling
technique in Algorithm 2 and a modification to Algorithm 2, where we do not zero out the elements
of the sampled submatrix Ag (we call this simple sparsity sampler). In practice, to apply Algorithm
2, we zero out element [Agl; ; (line 5 of Algorithm 2) if i = j or nnz(A;)nnz(A;) < nnfz(f)
co is a constant and s is the size of the sample. We set co = 0.1 experimentally as this results in
consistent behavior across datasets.

, Where

5.3 Experimental Setup

We subsample each matrix and compute its eigenvalues using numpy [Com?21|. We then use
our approximation algorithms to estimate the eigenvalues of A by scaling the eigenvalues of the
sampled submatrix. For ¢ trials, we report the logarithm of the average absolute scaled error,

log (1 > M) , where \; ;(A) is the estimated eigenvalue in the ¢ trial, \;(A) is the true

\/nnz(A)
eigenvalue and nnz(A) is the number of non-zero elements in A. Recall that \/nnz(A) > ||A|r
is an upper bound on all eigenvalue magnitudes. Also note that for the fully dense matrices,
nnz(A) = n.

We repeat our experiments for t = 50 trials at different sampling rates and aggregate the
results. The resultant errors of estimation for dense matrices are plotted in Figure 3 and for the
graph matrices are plotted in Figure 4. The z-axis is the log proportion of the number of random
samples chosen from the matrix. If we sample 1% of the rows/columns, then the log comes to
around —4.5. In these log-log plots, if the sample size has polynomial dependence on ¢, e.g., en or
e/nnz(A) error is achieved with sample size proportional to 1/€P, we expect to see error falling off
linearly, with slope equal to —1/p where p is the exponent on e.

As a baseline we also show the error if we approximate all eigenvalues with 0 which results in

an error of %. This helps us to observe how the approximation algorithms perform for both
nnz

large and small order eigenvalues, as opposed to just approximating everything by 0.
Code. All codes are written in Python and available at https://github.com/archanray/
eigenvalue_estimation.

5.4 Summary of Results

Our results are plotted in Figures 3 and 4. We observe relatively small error in approximating all
eigenvalues, with the error decreasing as the number of samples increases. What is more interesting
is that the relationship between sample size and error en seems to be generally on the order of
1/€%, our expected lower bound for approximating eigenvalues by randomly sampling a principal
submatrix. This can be seen by observing the slope of approximately —1/2 on the log-log error
plots. In some cases, we do better in approximating small eigenvalues of A — if the eigenvalue lies
well within the range of middle eigenvalues, i.e. {—en,en}), we may achieve a very good absolute
error estimate simply by approximating it to 0.

As expected, on the graph adjacency matrices (in Figure 4), sparsity-based sampling techniques
generally achieve better error than uniform sampling. For the Erdés-Rényi graph, we expect the
node degrees (and hence row sparsities) to be similar. Thus the sampling probability for each
row will be roughly uniform, which leads to similar performance of sparsity-based techniques and
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uniform sampling. For the real world graphs, which have power law degree distributions, sparsity-
based sampling techniques has a significant effect. As a result Algorithm 2, and the simple sparsity
sampler variant significantly outperform uniform sampling.

Algorithm 2 almost always dominates simple sparsity sampler. In some cases simple sparsity
sampler performs better or equivalent to Algorithm 2. This may happen because for two reasons:
1) if Algorithm 2 zeroes out almost all of the sampled submatrix Ag for small samples, the algo-
rithm will underestimate the corresponding eigenvalue, and 2) the cut-off threshold for the term
nnz(A;)nnz(A;) may be too high leading to no difference between simple sparsity sampler and
Algorithm 2.

We also observe that approximating all eigenvalues with 0 results in very good approximation
for small eigenvalues of the Erdos-Rényi graph. We believe this is because the smaller eigenvalues
are significantly less than the largest eigenvalue (of the order of 3500). We see similar trends of
approximating eigenvalues with zero for the real world graphs too. But since eigenvalues at the
extreme spectrum are of a larger order, we see reasonably good approximation for the sampling
algorithms. Algorithm 2 outperforms approximation by 0 in all of these cases.

In the dense matrices uniform sampling almost always outperforms approximation by 0 when
estimating any reasonably large eigenvalues. Additionally, note that the block matrix is rank-1
with true eigenvalues {2500, 0, ...,0}. Any sampled principal submatrix will also have rank at most
1. Thus, outside the top eigenvalue, the submatrix will have all zero eigenvalues. So, in theory,
our algorithm should give perfect error for all eigenvalues outside the top — we see that this is
nearly the case. The very small and sporadic error in the plots for these eigenvalues arises due to
numerical roundoff in the eigensolver. The only non-trivial approximation for this matrix is for the
top eigenvalue. This approximation seems to have error dependency around 1/€2, as expected.

6 Conclusion

We present efficient algorithms for estimating all eigenvalues of a symmetric matrix with bounded
entries up to additive error en, by reading just a poly(logn,1/¢) x poly(logn, 1/¢) random principal
submatrix. We give improved error bounds of €,/nnz(A) and €||A|r when the rows/columns are
sampled with probabilities proportional to their sparsities or squared £ norms, respectively.

As discussed, our work leaves several open questions. In particular, it is open if our query
complexity for den approximation can be improved, possibly to ON(logC n/e) total entries using
principal submatrix queries or O(logC /€?) entries using general queries. The later bound is open
even when A is PSD, a setting where we know that sampling a O(1/€2) x O(1/¢€?) principal submatrix
(with O(1/€*) total entries) does suffice. Additionally, it is open if we can achieve sample complexity
independent of n, by removing all log n factors, as have been done for the easier problem of testing
positive semidefiniteness [BCJ20]. See Section 1.4 for more details.

It would also be interesting to extend our results to give improved approximation bounds for
other properties of the matrix spectrum, such as various Schatten-p norms and spectral summaries.
For many of these problems large gaps in understanding exist — e.g., for +n3/2 approximation to the
Schatten-1 norm, which requires Q(n) queries, but for which no o(n?) query algorithm is known.
Applying our techniques to improve sublinear time PSD testing algorithms under an ¢ rather than
{~ approximation requirement [BCJ20] would also be interesting. Finally, it would be interesting
to identify additional assumptions on A or on the sampling model where stronger approximation
guarantees (e.g., relative error) can be achieved in sublinear time.
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Figure 3: Approximation error of eigenvalues of dense matrices. Log scale absolute er-
ror vs. log sampling rate for Algorithm 1 and and approximation by 0, as described in Sec-
tion 5.3, for approximating the largest, smallest and fourth largest of three of the example ma-
trices. The corresponding true eigenvalues for each matrix in-order are: (hyperbolic tangent)
{4.52e+03, —7.85e+00, 3.18e—01}, (thin plane spline) {3.54e+02, —1.22¢403, 1.28¢+02} and (block
matrix) {2.50e+03, —5.08e—14,1.49e—23}.
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Figure 4: Approximation error of eigenvalues of sparse matrices. Log scale absolute er-
ror vs. log sampling rate for Algorithm 1, Algoithm 2, simple sparsity sampler and approxima-
tion by 0, as described in Section 5.3, for approximating the largest, smallest, and fourth largest
of remaining three example matrices. The corresponding true eigenvalues for each matrix in-
order are: (Erdos-Rényi) {500.57,—42.52,42.02}, (Facebook) {162.37,—23.75,73.28} and (arXiv)
{37.95, —15.58,26.92}.
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A Eigenvalue Approximation for PSD Matrices

Here we give a simple proof that shows if Algorithm 1 is used to approximate the eigenvalues of
positive semidefinite (PSD) matrices (i.e., with all non-negative eigenvalues) using a O(1/€?) x
O(1/€?) random submatrix, then the ¢3 norm of the error of eigenvalue approximations is bounded
by en. This much stronger result immediately implies that each eigenvalue of a PSD matrix can be
approximated to den additive error using just a O(1/e?) x O(1/e?) random submatrix. The proof
follows from a bound in [Bhal3] which bounds the f2 norm of the difference vector of eigenvalues
of a Hermitian matrix and any other random matrix by the Frobenius norm of the difference of the
two matrices. This improves on the bound of Theorem 1 for general entrywise bounded matrices
by a 1/€? factor, and matches the O(1/€*) lower bound for principal submatrix queries in [BCJ20].
Note that the hard instance used to prove the lower bound in [BCJ20] can in fact be negated to be
PSD, thus showing that our upper bound here is tight.
We first state the result from [Bhal3] which we will be using in our proof.

Fact 5 ({2-norm bound on eigenvalues |Bhal3|). Let A € C™"*" be Hermitian and B € C™*" be
any matriz whose eigenvalues are \1(B), ..., A\p(B) such that Re(A1(B)) > ... > Re(A,(B)) (where
Re(Xi(B)) denotes the real part of A\i(B)). Let A—B =E. Then

n 1/2
(Z Ai(A) - MB)F) < V2| E||p.

Our result is based on the following Lemma, we prove at the end of the section.

Lemma 9. Consider a PSD matriz A = BBT with ||Allo < 1. Let S be sampled as in Algorithm
1 for s > % Let S € R™¥I5! be the scaled sampling matriz satisfying STAS = %+ Ag. Then with
probability at least 1 — 6,

IBTSS™B — BTB||r < en.
From the above Lemma we have:

Corollary 2 (Spectral norm bound — PSD matrices). Consider a PSD matriz A with ||Allsx < 1.
Let S be a subset of indices formed by including each index in [n] independently with probability
s/n as in Algorithm 1. Let Ag be the corresponding principal submatriz of A, with eigenvalues
M(Ag) > ... > )\|S|(AS)-

For all i € [|S|] with A\i(Ag) > 0, let \i(A) = - \;(Ag). For all other i € [n], let \i(A) = 0.
Then if s > %, with probability at least 1 — 6,

>

i=1

) 1/2
Ni(A) = Xi(A)| ) <en,

which implies that for all i € [n],

Ai(A) —en < Xi(A) < Ni(A) + en.
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Proof. Let S be sampled as in Algorithm 1 and let S € R™*IS| be the scaled sampling matrix
satisfying STAS = %.Ag. Since A is PSD, we can write A = BB for some matrix B € Rxrank(A)
From Lemma 9, for s > %, we have with probability at least 1 — 9:

IBTSSTB — BTB||r < en

Using Fact 5, we have,

rank(A) 1/2

> |}(BTSS"B) - A(B'B)
=1

]  <v2|B"SS"B - B"B||r < V2en. (35)
Also from Fact 1, we have \;(BTB) = X\;(BB”) = \;(A) for all i < rank(A). Thus,
rank(A) 1/2
3 MBTSETB) - M(A)[] < Veen
i=1
Also by Fact 1, all non-zero eigenvalues of BTSS”B are equal to those of STBB'S = T Ag. Al
other eigenvalue estimates are set to 0. Further, for all ¢ > rank(A), A\;(A) = 0. Thus,

5

i=1

) 1/2
Ai(A) — /\i(A)‘ ) < V2en.

Adjusting € to €/1/2 then gives us the bound. O

We now prove Lemma 9, using a standard approach for sampling based approximate matrix
multiplication — see e.g. [DKO1].

Proof of Lemma 9. Fork =1,...,nlet Y}, = T—1 with probability > and Y}, = —1 with probability
1 — 2. Thus E[Y};] = 0 and

n n n 2
IB"SS"B-B'B|7 =) ) ( Y, - BikBjk) .
k=1

i=1 j=1

Fixing 1, j, each the Y - B;xBj; are 0 mean independent random variables. Thus we have:

n n n 2
E[|B'SS"B-B'B|%] => Y E (Z Y- BikBjk)
k=1

i=1 j=1

n n n
= Z ZV&Y ZYk . BlkBjk
i=1 j=1 k=1
n n n
= Z Z Z Var [Yk . Bik:Bjk]
i=1 j=1 k=1
n n n n ) s
< ZZZ S B Bj-
i=1 j=1 k=1
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since Var[Yy] = (2 — 1)2 24 (1-2)=2-24+541—%="_1 Rearranging the sums we have:

n n

n
— — n
B(IBSSTB - BBI} < 1Y) B Y B,
k=1 i=1 j=1

Observe that 37, B?k = Air < ||Al|co < 1, thus overall we have:

n2

E[|BTSSTB - B'B||%] < — < é26n.
s

So by Markov’s inequality, with probability > 1 — §, |[BYSSTB — BTB||2 < ¢2n2. This completes

the theorem after taking a square root. O

Remark: The proof of Lemma 9 can be easily modified to show that the i*" row of A can be
sampled with probability proportional to t';?}d) to approximate the eigenvalues of any PSD A up to

+e - tr(A) error (tr(A) is the trace of A). When sampling with probability proportional to J;?Xg,

we do not require a bounded entry assumption on A.

B Alternate Bound for Uniform Sampling

In this section we provide an alternate bound for approximating eigenvalues with uniform sampling.
The sample complexity is worse by a factor of 1/e for this approach, but better by a factor log?n
as compared to Theorem 1. We start with an analog to Lemma 3, showing that the outlying
eigenspace remains nearly orthogonal after sampling. In particular, we show concentration of the
Hermitian matrix VZSSTV, about its expectation VI'V, = I rather than the non-Hermitian
Ag;/ QVEQSTVOA})/ % as in Lemma 3. This allows us to use Weyl’s inequality in our final analysis,
rather than the non-Hermitian eigenvalue perturbation bound of Fact 4, saving a log? n factor in
the sample complexity.

Lemma 10 (Near orthonormality — sampled outlying eigenvalues). Let S be sampled as in Algorithm

1 for s > w where ¢ is a sufficiently large constant. Let S € R™*I5] be the scaled sampling
matriz satisfying STAS = %. Ag. Then with probability at least 1 — 4, IVISSTV, — Iz <e.

Proof. The result is standard in randomized numerical linear algebra — see e.g., [CLM™15]. For
completeness, we give a proof here. Define E = VI'SSTV, — 1. For all i € [n], let V,; be the "
row of V, and define the matrix valued random variable

v, {gvo7ivgi, with probability s/n
0

otherwise.

Then, similar to the proof of Lemma 3, define Q; = Y; —E[Y;]. Since Q1,Qo, ..., Q, are indepen-

dent random variables and Y"1 ; Q; = VISSTV, — I =E , we need to bound ||Q;||2 for all i € [n]

and Var(E) d:efE(EET) =E(ETE) = Y1 | E[Q?]. Observe ||Q;|j> < max (1,2 —1) HVO,Z»VZJ.HQ =
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max (1,2 — 1) [|[Vo,l3 < 62155, by row norm bounds of Lemma 2. Again, using Lemma 2 we have

SEQY = Y2 (2o 1) (VoI (1= 2) (v V)

n S
1

n
n
<> 2IVealB(VaiVE)
=1

n
n 1 T
= ; E%(Vo,ivo,z’)
1

<=1
— s€2§

where I is the identity matrix of appropriate dimension. By setting d = %, we can finally bound
the probability of the event ||E||2 > en using Theorem 6 (the matrix Bernstein inequality) with ¢ if
s> %. Since these steps follow Lemma 3 nearly exactly, we omit them here. O

With Lemma 10 in place, we can now give our alternate sample complexity bound.

Theorem 8 (Sublinear Time Eigenvalue Approximation). Let A € R™ ™ be symmetric with
|Allcoc < 1 and eigenvalues \(A) > ... > A, (A). Let S C [n] be formed by including each in-
dex independently with probability s/n as in Algorithm 1. Let Ag be the corresponding principal
submatriz of A, with eigenvalues A\1(Ag) > ... > Ag(As).

For all i € [|S]] with \j(Ag) > 0, let \j(A) = 2 Xi(Ag). For alli € {1,...,|S|} with
Ai(Ag) <0, let j\n_(|5|_i)(A) = % Xi(Ag). For all otheri € [n], let Ni(A)=0. Ifs > Cl;fl%", for a
large enough constant ¢, then with probability > 1 — 0, for all i € [n],

Ai(A) —en < Xi(A) < Ni(A) + en.

Proof. Let S € R"*I5| be the binary sampling matrix with a single one in each column such that
STAS = Ag. Let S = \/7% S. Following Definition 1.1, we write A = A, + A,,. By Fact 1 we
have that the nonzero eigenvalues of - A, g = STVOAOV(?S are identical to those of AOVZSSTVO.

Note that H = VI'SSTV, is positive semidefinite. Writing its eigendecomposition H = UWUT
we can define the matrix squareroot H/2 = UWY2UT with HY/2H'/2 = H. By Lemma 10 applied
with error €/6, with probability at least 1 — ¢, all eigenvalues of H lie in the range [1 —¢/6, 1+ ¢€/6].
In turn, all eigenvalues of H'/? also lie in this range. Again using Fact 1, we have that the nonzero
eigenvalues of A H, and in turn those of % - A, g, are identical to those of HY/2A H/2,

Let E=H!Y? - 1=UW!/2UT - UUT = U(W!/2 —T)U”. Since the diagonal entries of W/2
lie in [1 — €/6,1 + €/6], those of W1/2 — T lie in [—¢/6, ¢/6]. Thus, |E|s < /6. We can write

N(HYZAHY?) = M((I+E)A,I+E)) = A\(Ay + EA, + A E + EAE).
We can then bound

[EAo + AE + EAGE[y < [[EA[|2 + [|AE[2 + [[EAE];
< [Ell2l[Aollz + [[Aoll2[[Ellz + [[Ell2]| Aol El2
< en/6 4 ne/6 + ¢*n /36
<e€/2-n.
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Applying Weyl’s eigenvalue perturbation theorem (Fact 3), we thus have for all 4,
NHZAHY?) = Ni(Ay)| < €/2 - n. (36)

Note that we have shown that the nonzero eigenvalues of % - A, s are identical to those of
H'/2A,H'/2, which we have shown well approximate those of A, and in turn A, i.e., the non-
zero eigenvalues of “ - A, ¢ approximate all outlying eigenvalues of A. We can also bound the
middle eigenvalues using Lemma 4 as in Theorem 1. Now the only thing left is to argue how these
approximations ‘line up’ in the presence of zero eigenvalues in the spectrum of these matrices. This
part of the proof again proceeds similarly to that of Theorem 1 in Section 3.2.

Analogous to Theorem 1, from Lemma 10 equation (36) holds with probability 1 — ¢ if s >
%. We also require s > 01602# for ||A,,s|l2 < en to hold with probability 1 — ¢ by Lemma
4. Thus, for both conditions to hold simultaneously with probability 1 — 2§ by a union bound, it

suffices to set s = Clﬁ?l%" > max (Cloggg(d)), Clﬁ%%”), where we use that log(1/(ed)) = O(logn), as

otherwise our algorithm can take Ag to be all of A. Adjusting 6 to §/2 completes the theorem. [

C Refined Bounds

In this section, we show how it is possible to get better query complexity or tighter approximation
factors by modifying the proof of Theorem 1 and Lemmas 3 and 2 under some assumptions. We give
an extension to Theorem 1 in Theorem 9 for the case when the eigenvalues of A, lie in a bounded
range — between €®/on and €’n where 0 < b < a < 1.

Theorem 9. Let A € R™"™ be symmetric with |Allc < 1 and eigenvalues A\1(A) > ... > A\, (A).
Let A, be as in Definition 1.1 such that for all eigenvalues Ai(A,) we have either e*/dn < |\i(A,)| <
e’n or \i(A,) = 0 where 0 < b < a < 1. Let S C [n] be formed by including each index independently
with probability s/n as in Algorithm 1. Let Ag be the corresponding principal submatriz of A, with
eigenvalues A\1(Ag) > ... > Ag(Ag).

For all i € [|S|] with \i(Ag) > 0, let \j(A) = 2. Xi(Ag). For alli € [|S|] with A\;(Ag) <0,
let /N\n,(|5|,i)(A) = % - X(Ag). For all other i € [n], let Ni(A)=0. Ifs > CIOg(l/EZ?zl%%2+a_bn, for
large enough ¢, then with probability at least 1 — 6, for all i € [n],

Ni(A) —en < Xi(A) < \(A) + en.

Proof. The proof follows by modifying the proofs of Theorem 1, Lemmas 2 and 3 to account for
the tighter intervals. First observe that since |\;(A,)| > €*v/dn for all i, we can give a tighter row
norm bound for V, from the proof of Lemma 2. In particular, from equation (3) we get:
1
IAVVol3< —  and Vel <
€

V6
We can then bound the number of samples we need to take such that for A(l,/ 2V§SSTV0AC1,/ 2 (as
defined in Theorem 8) we have ||A£/ QVZSSTVOAé/ 2 A,ll2 < en with probability at least 1 —§ via
a matrix Bernstein bound. By appropriately modifying the proof of Lemma 3 to incorporate the

stronger row norm bound for V,, we can show that sampling with probability s/n for s > %

n 1
€2afn2  e2a8p’
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for large enough c suffices. Specifically, we get L < eanﬁ’ v< - andd< log(1/(€26)) for

— 64::,7b\/gs
the Bernstein bound in Lemma 3 which enables us to get the tighter bound. Thus, we have

||A(1,/2VgﬂSSTV0A1/2 — A,ll2 < en with probability 1 — ¢ for s > clog/(d) gollowing Lemma 3.

e2+a— b\f
We also require s > Clog" for ||Ap, sll2 < en to hold with probability 1 — ¢ by Lemma 4. Then,
following the proof of Theorem 1, by Fact 4, for all i € [n], and some constant C, we have:

IXN(AY2VISSTV , AL2) — Ni(Ao)| < Clogn||AY2VISSTV,AL2 — A,lls.

As in the proof of Theorem 1, adjusting € by a ﬁgn factor, we get ])\i(A},/QVOTSSTVOAé/Q) -

A,)| < en with probability 1 — ¢ for s > Clog(l/ﬁgﬂl‘)\gjgﬁ_b”

Theorem 1 to align the eigenvalues completing the proof. O

Then we follow the proof of

D Spectral Norm Bounds for Non-Uniform Random Submatrices

Theorem 5 (Non-uniform column sampling — spectral norm bound). Let A be an m xn matriz with
rank r. Let 6; be a sequence of independent random variables such that 6; = \/% with probability p;
J

and 0 otherwise. Let S be a square diagonal sampling matriz with ™ diagonal entry set to 0.

Eo|[AS|l2 < 54/logr - Eo||AS|l1-2 + [ A2
Proof. The proof follows from [Tro08b]. We begin by first defining the following term

E = Ey||AS||2.

Now we have

— E||AS|3 = E|ASSA", = E S 62,45

where §; is the sequence of independent random variables such that 6; = with probability p; and

1
VDi
0 otherwise, and A; is the j** column of A. Then, u; = E[(§;)%] = 1. Let {07} be an independent
copy of the sequence {d;}. Subtracting the mean and applying triangle inequality we have

n

E* <E||> (67— E[(0)*) A A} ZA A
=1 2 2

Using Jensen’s inequality we have

B2 <E|Y (57— (9))AA5] +[AA",.
J=1 2

The random variables ((5J2 — (5;)2) are symmetric and independent. Let {¢;} be i.i.d Rademacher
random variables for all j € [n]. Then applying the standard symmetrization argument followed by
triangle inequality, we have:

n
E® <2E||) €07 A;A| + |[AAT,.
j:l 2
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Let @ ={j:6; = \/%} Let E be the partial expectation with respect to {e€;}, keeping the other
random variables fixed. Then, we get:

E? <2Eq |Ec |y ;07 A;AT| | + | Al
Q 2
Using Rudelson’s Lemma 11 of [Tro08b] for any matrix X with columns x;,x2, -, %, and any
q = 2logn we have
q\ 1/q
n
E ZEijX; < 1-5\/§||XH1—>2HX||2-
j=1

2
Since (.)'/9 is concave for ¢ > 1, using Jensen’s inequality we get:

n

E|D exxi| < 15valX[h-2lX]2

]:1 2

Applying the above result to the matrix AS, we get:
E” < 3G [E(|AS| 152/l AS]l2)] + A3
Applying Cauchy Schwartz we get:
E? < 3\4(E|AS|i_,) " (E|AS[3)"/* + || A3

The above equation is of the form E? < bE +¢. Thus, the values of E fro which the above equation
is true is given by F < btvbidde VgQHC < b+ +/c. Thus, we get:

Eol|AS[l2 < 3v/gE2[|AS[l1-2 + [[A]l2-

This gives us the final bound. O

E TImproved Bounds via Row-Norm-Based Sampling

Building on the sparsity-based sampling results presented in Section 4, we now show how to obtain
improved approximation error of +¢||A || assuming we can sample the rows of A with probabilties
proportional to their squared ¢ norms. The ability to sample by norms also allows us to remove
the assumption that A has bounded entries — our results apply to any symmetric matrix.

For technical reasons, we mix row norm sampling with uniform sampling, forming a ran-

dom principal submatrix by sampling each index i € [n] independently with probability p; =

. sl A3
win (1, 37
sampling setting, we must carefully zero out entries of the sampled submatrix to ensure concentra-
tion of the sampled eigenvalues. Pseudocode for the full algorithm is given in Algorithm 3.

+ %) and rescaling each sampled row/column by 1/,/p;. As in the sparsity-based
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E.1 Preliminary Lemmas

Our proof closely follows that of Theorem 2 in Section 4. We start by defining A’ € R"*™ obtained
by zeroing out entries of A as described in Algorithm 3. We have A;j = 0 whenever 1) ¢ = j and
| A3 < SIAIR or2) i # j and [| A3 | A3 < AIEAYE  Otherwise Al = Ay, Similar to the
sparsity sampling case, we argue that the eigenvalues of A’ are close to A i.e., zeroing out entries of
A according to the given condition doesn’t change it’s eigenvalues by too much (Lemma 11. Then,
we again split A’ = A/ + A’ such that [|A! |l < eV§||A||r. We argue that after sampling, we
have [|A], sll2 < €[|Al|r and the eigenvalues of A] ¢ approximate those of A up to %e||Al|r error.

Algorithm 3 Eigenvalue estimator using ¢o norm-based sampling

1: Input: Symmetric A € R"*" Accuracy € € (0,1), failure prob. § € (0,1). [|A;]|2 for all i € [n].

. 10 . .
2: Fix s = ‘:116%# where ¢ is a sufficiently large constant.

12
3: Add each i € [n] to sample set S independently, with probability p; = min (1, Sd'ﬁﬁ‘zb + #)
F
Let the principal submatrix of A corresponding to S be Ag.

4: Let Ag = DAgD where D e RISIXI5] is diagonal with D;; = \/% if the i** element of S is j.

5: Construct Ay € RISXISI from Ag as follows:

. . . 2
if i = j and HAzH% < %HAH%«“
if i # j and ||A4]l3 - [|A4]13 <

0
0 el AlE A,
[Agli; otherwise.

[AiS']i,]' = calog*n

for sufficient large constant ¢

6: Compute the eigenvalues of A'y: A1(Alg) > ... > A\ (A).

7: For all i € [|S]] with \;(A%) > 0, let A\;(A) = \;j(A). For all i € [|S]] with A\;(AY) < 0, let
An—(18]-i) (A) = Xi(A%). For all remaining i € [n], let A\;(A) = 0.

8: Return: Eigenvalue estimates Aj(A) > ... > A\, (A).

Lemma 11. Let A € R™™ be symmetric. Let A’ € R™™ have A}; = 0 if either 1) i = j and
2 . . 2| A% A2
|AGlIE < SIAIZ or 2) i j and | A3 - |43 < SLALEALE

e log™n for a sufficiently large constant cs.
Otherwise, Aj; = Ayj. Then, for all i € [n],

[Xi(A) = A(AT)] < e[ Al p.

Proof. Consider the matrix A”, which is defined identically to A" except we only set A, = 0if i # j

2 A 2 A"2
and [[ A3 ]|A,[3 < SIALALE

will show that ||[A — A”||s < §||A]|p. If Ay; is zeroed out in A’ this implies that [|A;]|3 < %HAH%
Thus, [Ay4| < [|Aill2 < §]|Al|r and so [|[A” — A'|lz < §[|A||r. So, by triangle inequality, we will
then have ||A — A’||s <€ |A]|p. The lemma then follows from Weyl’s inequality

To show that |A — A”||2 < $[|A||F, we use a variant of Girshgorin’s theorem, as in the proof of
Lemma 5. First, we split the entries of A into level sets, according to their magnitudes. Let A =

i:io% Ak where (Ao)z‘j = Aij if ‘A”’ S [O, %HAHF) and (AO)ij = 0 otherwise. For 1 < k < log %,

. Le., we do not zero out any entries on the diagonal as in A’. We
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(Ag)ij = Ayjif |Ay] € [ 14)r llAﬂf) and (Ay);; = 0 otherwise. We can also define A” = log < AY

where each A are defined similarly. By triangle inequality, [[A — A"||s < Zlogn/ JAR — A%Hg.
First observe that |Ag — Afll2 < [|Ao — Afllr < n-[|Ao|lo < €||Al|p. Further, we can assume

without loss of generality that € > 1/n and so log(n/e) < 2logn, as otherwise our algorithm can
afford to read all of A. So, it suffices to show that for all & > 1,

A, — A" <7 A 37
AL — ALll2 logn |AllF- (37)

This will give ||A — A”|ls < e-||A||r + Zlogn/e en " IAllF < 3¢ [|Alp, which gives the lemma
after adjusting € by a constant factor.
We now prove (37) for each k > 1. For p € {0,1,...log(n?)}, let Z, C [n] be the set of

rows/columns in Ay with nnz((Ayg);) € [% nnZ(Al’“)> and let Agy, = Ag(Z,,Z,) be the sub-

2P 9p—
matrix of Ay formed with rows in Z, and columns in Z,. Define the submatrix A” of A} in the

kpq
same way. Let Ay, = Appg — Agpq and finally, let Akpq € R™ ™ be the symmetric error matrix
. A _ A T
such that Ayp,(Zp,Zy) = Agpg and Akpq(Iq,I ) = Akpq

Note that all rows from which we zero out entries must have at least one non-zero entry
nnz((Ag);) > 1 (otherwise all entries in that row/column are already zero), thus all such rows
have nnz((Ag);) > w and so are covered by the submatrices Ayy,. Thus, by triangle inequal-
ity, we can bound

log(n?) log(n?)

1Ak = ALl < Y0 > Akl (38)

To prove (37), we need to bound ||Agy, — A7

kpq||2 for all £ > 1 and p,q. We use a case analysis.

4nnz(Ag)?-co log . . . .
Case 1: 21 6’5?22i2 %8 T 2P+4 In this case, first observe that since the nonzero entries of A}, lie

in [H‘;,UF, ”;:ﬂf), for any i € 7, j € Z;,

1A - 145113 > [1(Aw)ill3 - [1(Ax);13

[N nnz((Ag)s) AL,
el 24k‘ - k)i) nnZ(( k)])
H ||4 . nn (A 2
= gk gprg - TA(AR)

Thus, by the assumed bound on 2P, we have for any 7,j where (Aj);; is nonzero,
ElAlL AR -|AyP

2keylogtn cologhn

A; A
A3 1408 >

where the second inequality follows again from the fact that the nonzero entries of Ay lie in

[”AQ‘,UF, ”;,ﬂf) Thus, any 4,j with (Ajpq)i; nonzero is not zeroed out in line 5 of Algorithm 3.

So Ay, = 0. Plugging into (38), we thus have:

log(n?)

[Ax — Z”QS Z Z HAkquQ‘ (39)

16 nnz(Ak)Q-cg logd n

p=0
q:2Pta> 257k
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Case 2: 16nnz(‘/z‘2’“;2kcz log’ n < 2PT4_In this case, observe that (;&kpq;‘;qu)m = (Kkpq)mz&qu- We

can see that (Akpq) has at most nnz((Ag)m) < m;,(f‘lk) non-zero entries. Similarly, each row of
Kkpq has at most M non-zero elements. Thus, for all m € |Z,|, using the fact that all non-zero

entries of Ay, are bounded by ”;,:ﬂf , we have:

nnz(Ap)® A%
p+q—2 22k—2"

||(Akqu£pq)mHl <
Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

S~y e nnz(Ag)? A%
[Akpgllz = [[AkpgAipgllz < opta—2  92k—2

and so

A A 8 A . A
| Akpgll2 < 2||Agpgll2 < |AllF - nnz( k)

2k2(p42rq)
Plugging to (39), we thus have:
log(n?)
8- AlLr - nnz(Ay)
HAk - lkIHQ < Z Z (p+q)
p=0 q:2p+q216nnz(Ak)2~c2 log4 n 2k27

2.22k

1
S 2l Z _ sdlAlr
=0 \Flog n \f Ve

Setting ca > 64, we thus have (37), and in turn the lemma. O

We next give a bound on the incoherence of the outlying eigenvectors of A’. This bound is again
similar to Lemmas 2 and 6.

Lemma 12 (Incoherence of outlying eigenvectors in terms of ¢ norms). Let A, A’ € R™*™ be as in
Lemma 11. Let A!, = V! A/ VI where A is diagonal, with the eigenvalues of A’ with magnitude
> VS| Al on its diagonal, and V' has columns equal to the corresponding eigenvectors. Let V.,
denote the i row of V'. Then,

1A:13

/ A3
Al/2v/ ) 2 < || 2112 d V/ ) 2 < .
|| o o,z||2 = an H 0,1”2 = 625||A||%

VoAl

Proof. The proof is again nearly identical to that of Lemma 2. Observe that A"V/ = V/ Al Letting
[A’V']; denote the i*h row of the A’V we have

ITA'VE]3 = ITVEAGLE = ZAQ Vi (40)
7=1
where r = rank(Ay), V7, ; is the (3, 7)™ element of V/ and A; = AL (4,7). Since V! has orthonormal

columns, we have [|[A'VZ];[3 < | A}]3 < | A;ll3 Therefore, by (40),

Z)‘2 ozg = HA ||2 (41)
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Since by definition |);| > ev/3||A || for all j, we can conclude that HAlol/QV;’iH% =2 V;zw <

A3 ro2 T 2 [ Asll3
and [|V” .||5 = } V= . < 2
E\/SHA”F H o7z||2 Z]:l 0,8,] — 525HA”%‘7

which completes the lemma. O

E.2 Outer and Middle Eigenvalue Bounds

Using Lemma 12, we next argue that the eigenvalues of Ai), ¢ will approximate those of A’, and in
turn those of A. The proof is very similar to Lemmas 3 and 7.

Lemma 13 (Concentration of outlying eigenvalues with 5 norm based sampling). Let A, A’ € R"*"
be as in algorithm 3. Let A' = A/ + Al where A/, = V! A V'T and A/, = VIA'V'T are

m m?’

projections onto the eigenspaces with magnitude < ev/8||A||r and > ev/3||Al|r respectively. For all

12
i € [n] let p; = min (1, sUA]ly
A%

+ #) and let S be a scaled diagonal sampling matriz such that the

Sii = ﬁ with probability p; and S;; = 0 otherwise. If s > %&%&;)) for a large enough constant c,

then with probability at least 1 — 4, \|A;1/2V;TSQTVQA;1/2 —Alll2 <e€||Allp-

Proof. We define the random variables Qq,---Q,, and the set P = {i € [n] : p; < 1} exactly as
in the proof of Lemma 7. Then, as explained in the proof of Lemma 7 it is sufficient to bound

> iep E[Q?]. From 17 we have >, pE[Q7] < Y icp = - ||A(1,/2Vo7i|]% : (Acl,/zVo’iVZiA},/Q). Also from

1€P p;
1/2 2 A3 A7
. < 2 F .
Lemma 11, we have ||[Ao "V, ll5 < VSIA AR

and for all ¢ € P, p%_ < We thus get,

1 ||A7f||% 1/2 T 1/2
E[Q?] = — ' (Ao/ VO,iVO iAo/ )
; ;P Vol Allr ’

|AllF 1/2 T Al1/2
'< A VOiVOiAO
% oo A VeV
2
_lAlr, AR
seV/o se\/g

2
Since Q? is PSD this establishes that v < |[Var(E)|2 < % We can then apply the matrix
Bernstein inequality exactly as in the proof of Lemma 3 to show that when s > eSf/S for large

enough ¢, with probability at least 1 — 6, ||E||, < €||A]|F. O

We now bound the middle eignevalues.

Lemma 14 (Concentration of middle eigenvalues with f5- norm based sampling). Let A, A’ €
R™ " be as in Lemma 12. Let A’ = A/ + Al where A/, = V! A V'L and A = V/ AL V'T

m’

are projections onto the eigenspaces with magnitude < e\/SHAHF and > e\/5||AHF respectively
112

(analogous to Definition 1.1). As in Algorithm 2, for all i € [n] let p; = min (1, s||||:"‘|2‘2 + #) and
F

1

N

10
otherwise. If s > 6128%54  for a large enough constant c, then with probability at least 1 — 0,

let S be a scaled diagonal sampling matriz such that the Sy = with probability p; and Si; = 0

ISALS|2 < e[| AllF.
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Proof. First observe that since s > ;% (for large enough c), the results of Lemmas 11 and 12 still
hold. The proof follows the same structure as the proof of bounding the middle eigenvalues for
sparsity sampling in Lemma 8. From Lemma 12, we have ||V, ||z < IAillz -~ Also, following the

5\/3”AHF
proof of Lemma 12, we have ||A’0V’Zj\|2 = |[[A"V'o]jll2 < ||Ajll2. Thus, for all 4,5 € [n], using
Cauchy Schwarz’s inequality, we have

Tl < Al
T eVoAllr

Let A’,, = H,, + D,,, where H,,, and D,, contain the off-diagonal and diagonal elements of A/,
respectively. Then following the proof of Lemma 8, we get:

T
A il = [V/oil Vo il < [V ol [| A6V A2 (42)

E2[ISA"S|2 < 10y/logn (B[ SHuS 152 + Eo[HuS |12 ) + 2 Hll2 + Eo|SDyS|2 (43)

We now proceed to bound each of the terms on the right hand side of (43). We start with
E3||SD,,,S||2. First, observe that E||SD,, S|l < max; pi|(Dm)“| We consider two cases.

112

Case 1: p; < 1. Then, as p; > 5||||11:‘z‘|2|2 we have ||A[|% < 1||A;]|3 since 1 < %. So we must have that
F

have |(Dy)isl = |(A'm)isl = |(AQ)is| (since Al = 0). Then by (42), we have L|(Dy)is| < IAIE.

Case 2: p; = 1. Then we have p%](Dm)“| = [(Dy)ii| < max;|(Dy)j;] < [|ALll2 < eVi||A]|F.
From the two cases above, for s > %, we have:

Eo||SD,.8]l2 < V5| Al (44)
We can bound ||H,,||2 similarly. Since H,, = A’,,, — D,,, and ||A’,,||l2 < V5| A||F.,

HHmH2 < HAlmHQ + HDmH2
< eVo|A|r +eVi||Allp.
— 2eV3] Al (45)
where the second step follows from the fact that |Dy,||2 < max;|(Dum)i| < ||ALll2-

We next bound the term Es|H,,S|1—2. Observe that Eo|H,,S|12 < w, where
A’ m,i is the ith column/row of A/ . We again consider the two cases when p; =1 and p; < 1:
Case 1: p; = 1. Then ||A/.ll2 < [|A mll2 < eVi||A]| £
Case 2: p; < 1. Then [|[A’y;ll2 < [|A']l2 < [|A| F. Thus, setting s > 25 we have:

A il [[Allr

< A2
VPi Vsl Adll2
A
= LV N
Vs
Thus, from the two cases above, for all i € [n], adjusting € by a ﬁ factor, we have for s > l‘zgg :
- VoA
By|[H, 8] < OIAIE (46)

Vlogn
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Overall, plugging (44), (45), and (46) back into (43), we have :
Es|SA’S|2 < 10y/logn - Eol|SH,,S|[152 + 156V || Al| 5. (47)

Finally we bound E2||SHmS||1_>2. As in the proof of Lemma 8, we have ]EQ”SHmS”1_)2 <
Es (maxi:ie[n] W) and we will argue that max;;c) W is bounded by eV§|A|p

with probability 1 — 1/ poly(n). Also as argued in the proof of Lemma 8, since p; > #, it suffices

to bound H(SA/% for all ¢ € [n] with high probability. Again, for a fixed i and any j € [n], define

the random variables z; as:

L pij‘A/mviij with probability p;

! 0 otherwise.
Then 327 1 2z = [|(SA'm).ill3 and E[3-7 2] = [|A ;13 < [IAZI3 < [[A]l%. We will again use
Bernstein’s inequality to bound >77_, z; = [(SA’.,). 1H2 by bounding bound |z;| for all j € [n] and
Var (Z =1 ? ) We consider the cases of p; < 1 and p; = 1 separately.
Case 1: p; < 1. Then, we have p; > s||A;[|3/||A[|%. If A’;; # 0 then

Lo AL :
< S IAT i < (1, L ) a0

2| A%
S ‘Almﬂ}j‘Q ||A ’ ( »J + ’AIOZ]‘ )

2| A%, A l3] A3
<A gl + AP+ R

sl A13 Al
2| A7 2] A3
< A/ 12 F A/‘ 12 212
— ‘ mﬂv]‘ SHA]H% '57.7‘ + 62(58 ’

where the fourth inequality uses (42). By the thresholding procedure which defines A’, if i # j and
Al.#0
iJ )

2 A A 2 12 2 2
A Ay > TIATEAGE | IANE Il (48)
cyloghn |A% ;] ¢ -log™n - || Ag[3

and thus for p; < 1 and A’;; # 0 we have

2¢;log" n - || Alf3 n 2| A13

s€2 €248s

2] < A migl® +

Also A/, = 0 since we must have ||A;[|3 < %HAH%7 as p; < 1. If A’; ; = 0 or i = j, then we simply
have

2 Al

< AL ]2
251 < Al ggl? + A5
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Overall for all j € [n],

2| A13 L 2 log" n - || Ai13

/ 2
2] < [ A m,ig|™ + =55 e (49)
and since [Alm,ij|? < 370 [Almi il = [A/mill3 < |AY]E < [lAG]3,
2||Aill3 | 2c2-log"n - [|Af3
1< A3 : 50
’Z]’—H Z”2+ €28 + s€2 ( )
For s > ¢ (1053” + %) and large enough ¢, we thus have |z;| < 2||A;[|3.
We next bound the variance by:
n n n
Var (35 ) < S8k < Yo bt
J=1 J=1 J=1
1A% > )
[ A i
Z < sll A3/
12[|A |7
Z A’mu\4+2 SJA, Hj (1A 351" + A oi40")
12HAll2 RESIEIEN]E
N Al ,
m E T2 A2 AllL
where the last inequality uses (42). We thus get:
u 2 AlIHIAG" O 12] A3 A3
/ ij ill2 (135112
S| i ) AR S RIABAL
: : sl A2 —  se'0?[|AflE
Jj=1 J:A; ;70 j=1

Now A/, =0 as p; < 1 (and thus, ||A[? < %HAH%) Combining (48) with the second term to the
right of (5 ) we have

n
>z | <A,
j=1

and since Y |A};|* = [|A4]|3, we have

s Lalogn A IALF | g 120AJIA S
s€2 seto?||AllE

JiA 1570 i=1

n 4 4 n 4 2
12¢calog™ n - || A; 12|| A5 A
var (37} < At + 1208t AL | S 2IAIA I 52
; s€ ; setd?||All%
J=1 J=1
Finally since 377, A% =||A|% and ||A" 13 < [|A'i]|3 < ||A;]|3 we have
n 4 4 4
12¢olog* n - || Ayl 12| A ||
A |14 2108 ill2 ill2
lej = [Adlz + s€? - setd? (53)
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For s > ¢ (105;% + #) for large enough ¢, we have Var <E?:1 zj> < 2||A4l5.

Therefore, using (50) and (53) with s > ¢ <1°f§ L ﬁ), we can apply Bernstein inequality (Theo-
rem 7) (for some constant c¢) to get

n

P ([(SAL) i3 2 EN(SAL).all3 +1) <P > 25> A5 +1

)

j=1

ce < —t2/2 )
= exp .
cllAill3 + ct]| Aill3/3

If we set t = logn - ||A;]|3, for some constant ¢/ we have

~(logn)*/2
¢+ c(logn)/3
Since A’ = Hy, + Dy, we have |[(SA’).ill2 > [|[(SHy).ill2. Then with probability at least
1-— l/ncl > 1— 9, for any row i with p; < 1, we have
1 1A%

~ LI(SH.L). 12 <

P (|(SAL).al3 > Ell(SAL).il3 + logn - | A2) < exp ( ) < exp(—c logn) < 1/n°.

5] Al
logn

c(logn) | All3 <

)

for s > ¢ <1°f;1 n 4 ﬁ) for large enough c. Observe that, as in Lemma 3 w.l.o.g. we have assumed
1-— ? > 1 — 6, since otherwise, our algorithm would read all n? entries of the matrix.
Case 2: p; = 1. Then, we have ||A;]|3 > ||A|%/s. As in the p; < 1 case, when A;; = 0, (and this
Al = A;; =0) we have from (49):
2| Aill5 | 2colog’n - || A3

s€26 s€2 ’

2] < |A il +
Now, we observe that |A’,,; j|? < PRy |A i g < ||A;m|]% < ||AZLI13 < €25||A||%, which gives us

2| Al N 2¢olog? n - || AgJ3

2 2
51 < ESIAIE + 2o (54)
2 2
Note that if A;; # 0, the second term in (49) is bounded as ;'H:H‘f; AL < w < 2¢25||A||% for
ill3

4
s > O(=3). Thus, for s > ¢ (10515” + #) for a large enough constant ¢ and adjusting for other

constants we have |z;| < 2¢25||A[|%. Also observe that the expectation of Y z; can be bounded by:
n —
E| D 2| =EISA):ll3 = 1A mll3 < |43 < 5] All7.
j=1

Next, the variance of the sum of the random variables {z;} can again be bounded by following the
analysis presented in and prior to (52) and (53) we have

n
Var | >z | <Ay
j=1

4y 12¢9 loan- ||Az||§L 4 12HA1'||121
2 552 86452

12¢9 log2n' HAzH% 4 12HAiH§

< A+ =2 .,
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where we again bound ||A’,,; ;|3 using

n
AP <Y A g < AL 13 < IA]3 < 0] A%
j=1

4
Then for s > c(12§52" + ﬁ), we have Var (Z;;l zj> < 2¢462||A||3- for large enough constant c.

Using (54) and (55) and noting that > | E <2J2) > Var (Zj 12 j) — k2 (Z?:l zj) we can apply
the Bernstein inequality (Theorem 7):

P (II(SAL).ill3 = EI(SAL)ll5 +8) <P | Y2z > 6] Ayll3 + ¢
j=1

‘e —t%/2
X .
= e AT + e AF/3
If we set t = (logn)e2||A]|%, then for some constant ¢/ we have
P ([[(SAL):ill3 = Ell(SA7,).ill3 + 1) < exp(~'logn) < 1/n”".

This, since ||(SH,,)..i||3 < H(SA;?), 2_ when p; = 1, setting s > c(li’g;"—i— 1) for large enough ¢, we
have with probability > 1—1/n¢ p%H(SHm),zH% = |(SHy)..il3 < [[(SAL,).:ll3 < (logn)e?d nnz(A).
We have proven that with probability > 1 — 1/ n¢, for both cases when p; < 1 and p; = 1,

w < (logn)e?s||A||%. Taking a union bound over all i € [n], with probability at least

1—1/n"1, max; W < VIogneVs||A||F for s > c(% + —g57). Also, since p; > - for all

. S iy AZ S D
i€ [n], W <A/ 2= ﬁ “ H\‘}"F Thus, max; W < n||Al||r and we get,

E, (max [I(SH).,ill2
ii€[n] N

after adjusting € by at most some constants. Overall, we finally get

~ x SI_Im 1
E2||SHmS||1_>2 S EQ (max H()H2> < 6\/10gn\/>”A||F
1€ [n] \/Di

Plugging this bound into (47), we have for s > c(lzg;n + ﬁ),

) < \/lognefoAHF—i- < logneVs|Allr.

Ey||SA’S|l2 < (logn)eVd||A| g

10
Finally after adjusting € by a factor, we have for s > 0(106%52n + 10554") or s > Cl°§64 ,

1
logn
Es||SA’,,S|l2 < eVi||A| £

The final bound then follows via Markov’s inequality on [|[SA’,,S||2. O
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E.3 Main Accuracy Bound
We are finally ready to state our main result for £ norm based sampling.

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation). Let A € R™ " be symmetric
and eigenvalues \(A) > ... > M\ (A). Let S C [n] be formed by including the it" index independently

slAdllz | 1 , . . s "
A2 + -5 ) as in Algorithm 5. Here ||A;l|2 is the £y norm of the i
F

row of A. Let Ag be the corresponding principal Submatrix of A, and let S\Z(A) be the estimate of

with probability p; = min (1

Ai(A) computed from Ag as in Algorithm 3. If s > clog 854 , for large enough constant c, then with
probability > 1 — 6, for all i € [n], [X(A) — X(A)] < €||Allp.

Proof. The proof follows exactly the same structure as the proofs of Theorems 1 and 2 for uni-
form and sparsity based sampling respectively. We use the results of Lemmas 14 and 13 on the
concentration of the middle and large eigenvalues for £o norm based sampling.

Analogous to Theorem 2, from Lemma 13 with error parameter logn the eigenvalues of A;, S
3
approximate those of Al up to error €||A|r with probability 1 — § if s > %. We also

require s > 61‘6)5;;2" for |A7, sll2 < €[|Al|F to hold with probability 1 — & by Lemma 14. Thus, for

both conditions to hold 51multaneously with probability 1 — 2§ by a union bound, if suffices to set

1.3 10 10
§ = max (dog(l/e(;f/)g) log Ly Clg§54 ) = 6128%4”, where we use that log(1/(ed) < logn, as otherwise

our algorithm can take Ag to be the full matrix A. Adjusting § to /2 completes the theorem. [

F Eigenvalue Approximation via Entrywise Sampling

In this section we show that sampling O(n/ €2) entries from a bounded entry matrix preserves its
eigenvalues up to error ten. We use this result to improve the sample complexity of Theorem 1
from O <1°g ") to O (log ”) by applying entrywise sampling to further sparsify the submatrix Ag
that is sampled in Algorithm 1. Entrywise sampling results similar to what we show are well-known
in the literature. See for example [AMO07] and [BKIKS21]. For completeness, we give a proof here
using standard matrix concentration bounds.

Theorem 10 (Entrywise sampling — spectral norm bound). Consider A € R™ "™ with ||Alls < 1.
Let C € R™ ™ be constructed by setting C;; = A;; for alli € [n] and

1 . . o
C..—C..=4pP - A;;  with probability p
I 5] .
0 otherwise.

For any €,6 € (0,1), if p > for a large enough constant c, then with probability at least

1-0,||A—Cl2 <en.

clog(n/d)
ne?

Note that by Weyl’s inequality (Fact 3), Theorem 10 immediately implies that the eigenvalues
of C approximate those of A up to +en error with good probability.

Proof. For any i < j, define the symmetric random matrix E#) with

p

—Aij

(i) _ wld) _
E;; =E; =

(L -1)-A;; with probability p
otherwise.
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Observe that C — A = Zi’je[n]ﬂ.q
different rows and columns. So

E(7) . Further, each E(@) has just two non-zero values in

g 1 1
E@|y = |Cij — Ay g(l)-Ai-g,
H ||2 ’ »J J” p | :]| p

where the last inequality uses that ||Allee < 1. Additionally, EGET is diagonal with two
diagonal entries at (i,7) or (4,7) equal to (C; j — A;;)?. Thus, V=" E[EGET] is also
diagonal. We have

2
Vii= ZE[(CZJ - Az‘,j)z] = ZA?J : (P' (; - 1) + (1 —P) : (—1)2>
J#i J#i

T ()<

JF

1,j€[n],i<j

where in the final inequality we use that [|Als < 1. Thus, since V is diagonal, [[V]]z < 7. Putting
the above together using Theorem 6 we get,

(i) —€'n?/2
P(||A —C|y>en) =P > E >en | <2n-exp| -2 |

o &
i,j€n],i<j 9 p  3p

Thus, for p > % for large enough ¢, with probability at least 1 —¢ we have ||[A—Cll2s < en. O

F.1 Improved Sample Complexity via Entrywise Sampling

We can combine Theorem 10 directly with Theorem 1 to give an improved sample complexity for
eigenvalue estimation. we have:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling). Let A € R™*™ be symmetric
with ||Allec < 1 and eigenvalues A\1(A) > ... > A\, (A). For any €,6 € (0,1), there is an algorithm

that reads O <log n) entries of A and returns, with probability at least 1 — 8, X\;(A) for each i € [n]
satisfying |Ni(A) — Xi(A)| < en.

Proof. Letting s = £ 1og(1/€(§g))-1og3n for large enough constant c¢;, by Theorem 1, for a random
principal submatrix Ag formed by sampling each index with probability s/n, the eigenvalues of
Ag, after scaling up by a factor of n/s approximate those of A to error £en with probability at

least 1 — 4. By Theorem 10, if we sample off-diagonal entries of Ag with probability p > CQIE,‘(%

to produce C, then we preserve its eigenvalues to error +e|S|. Thus, after scaling by %, the
eigenvalues of C approximate those of A to error £ (en +2-¢lS |) Finally, observe that by a
standard Chernoff bound, |S| < 2s with probability at least 1 — §. So adjusting € by a constant,
the scaled eigenvalues of C give +en approximations to A’s eigenvalues. The expected number of

entries read is |S| +p - |S|? = O (%W) =0 (%). Additionally, by a standard Chernoff

bound at most O (bg ”) are read with probability at least 1 — 4. O
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G Singular Value Approximation via Sampling

We now show how to estimate the singular values of a bounded-entry matrix via random subsam-
pling. Unlike in eigenvalue estimation, instead of sampling a random principal submatrix, here
we sample a random submatrix with independent rows and columns. This allows us to apply
known interior eigenvalue matrix Chernoff bounds to bound the perturbation in the singular values
[GT11, BCJ20]. We first state a simplified version of Theorem 4.1 from [GT11] (also stated as The-
orem 4.6 in [BCJ20]), simplified using standard upper bounds on the Chernoff bounds in [MU17].

Theorem 11 (Interior Eigenvalue Matrix Chernoff bounds — Theorem 4.1 of [GT11]). Let {X;}
be a finite sequence of independent, random, positive-semidefinite matrices with dimension n, and
assume that | X;||2 < L for some value L almost surely. Given an integer k < n, define

Pk = Ak ZE[XJ]
J
Then we have the tail inequalities:

P ((3, %) = (1+ A ) < (
P(Ak(ZjXJ) (1+A)pk) (n—k+1)-e 55, for Ac[0,1)
P (M5, X5) < (1= A)w) < k- -5k for A € [0,1)

We are now ready to state and prove the main theorem.

_ Ak
—k+1)-e 32, forA>1

IN

Theorem 12. Let A € R™ " be a matriz with |Alleo < 1 and singular values o1(A) > ... > o, (A).
Let S € R™™ be a scaled diagonal sampling matriz such that Sy; = \/g with probability % and S;; =0
otherwise. Let T € R™ ™ be an independent and identically distributed random sampling matriz.
Let Z = SAT be the sampled submatriz from A with singular values o1(Z) > ... > o,(Z). Then,
if s > % for some constant ¢, with probability at least 1 — ¢, for all i € [n],

oi(A) —en < 04(Z) < oi(A) + en.
Proof. We first prove that singular values of SA are close to those of A. Let X; € R"*" be matrix
valued r.v.’s for ¢ € [n] such that:
X, — L A;AT,  with probability s/n
o otherwise
where A; is the i*! row of A written as a column vector. Then, >, X; = (SA)T(SA) and E[}; X;] =
ATA. We have ||X;||2 < max; 2||A;||3 < Z and A\g(E[>", Xi]) = M (ATA) = 02(A) for k € [n].

Case 1: We will first prove that o1, (A) —en < o (SA) for all k € [n]. Note that when o(A) < en,
or(A) —en < o (SA) is trivially true. We now consider all k € [n] such that o1 (A) > en. Setting

wr = M\ (ATA), L = % and A = % (note that A < 1) in Theorem 11, we get:

2,2 T
INSYRV-NDN) AR(ATA)

P (\((SA)T(SA)) < (1 — A)M(ATA)) < k- e ™5 <o “RATA 027
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where ¢ is constant. So, for s > O(logi%) for any k, we have A\;((SA)T(SA)) = 02(SA)
(1—A)oZ(A) with probability at least 1 — %. Taking a square root on both sides we get oy (SA)
V1—Ack(A) > (1 — A)og(A) = 0k(A) — en. Taking a union bound over all k with ox(A) > en

or(A) — en < 0x(SA) holds for all such k with probability at least 1 — 4.

2
>

Case 2: We now prove that 03 (SA) < o4 (A) + en for all k € [n]. We first consider the case when

or(A) < en. Setting uy, = \(ATA), L = %2 and A = ;;Zi) (note that A > 1) in Theorem 11, we
k

get (for some constant c):

_ear(aTa)

P (Ae((SA)T(SA)) > (1 + A)N(ATA)) < nee L

ce2n2 Ak (ATA)

<n-e wATA) " (02]5)

Thus, if s > O(57%)  we have AL((SA)T(SA)) < (1 + A)A(ATA) < A (ATA) + ¢2n? for all
k € [n] such that o (A) < en with probability at least 1 — § via a union bound. Taking square
root on both sides and using the facts that \,(ATA) = 02(A), M\ ((SA)T(SA)) = 02(SA) and
Va+b < ya+ Vb, we get 0,(SA) < op(A) + en.

We now consider the case o;(A) > en. Setting pup = A\y(ATA), L =" and A = —% (note

that A < 1) in Theorem 11, we get (for some constant c):

_ _ a2y, (AT A)
P (M((SA)T(SA)) > (1 + A)M(ATA)) <ne T
_ c52n2 'kk(ATA)
S n-e )‘k;(ATA) (n2/s) .

Thus, if s > O(bgi%), we have A\x((SA)T(SA)) < (1 + A)X(ATA) for all k& € [n] such that
or(A) > en with probability at least 1 — § via a union bound. Taking square root on both sides
and using the fact that A,(ATA) = 02(A), \e((SA)T(SA)) = 02(SA) and v/a < a for any a > 1,
we get 0x(SA) < (1 4+ A)or(A) < ox(A) + en. Thus, via a union bound over all k € [n], we have
0k(SA) < ok (A) + en with probability 1 — 24.

Thus, via a union bound over the two cases above, for all k& € [n] with probability at least 1 — 34

for s > O(M) we have, for all k € [n],

|0k(SA) — o) (A)] < en. (56)

Next we prove that the singular values of SAT are close to those of SA, using essentially the same
approach as above. Let Y; be a matrix values random variable for ¢ € [n] such that:

v {Z(QA)i(gA)iT, with probability s/n

otherwise

where (SA); is the i® column of SA. Then, Y, Y; = (SAT)T(SAT). Also, we have
Me(E[X, Y3]) = M ((SA)T(SA)) = 02(SA). First, using a standard Chernoff bound, we can claim
that S will sample at most 2s rows from A with probability at least 1 — ¢ for any s > O(log(1/9)).
Thus, we have [[Y;[o = 2[|SA[3 < 2. 2.25 < % with probability 1 — §. Let this event be called
E5. We now consider two cases conditioned on the event Es.
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Case 1: We first prove that 0,(SA) — en < 0,(SAT) for all £ € [n]. Again note that when
0t(SA) < en this is trvially true. So we consider all k¥ € [n] such that ox(SA) > en. Setting

wr = M((SA)T(SA)), L 2% (as we have conditioned on Fs) and A = kagA) (note that A < 1)
in Theorem 11, we get:

L - A 8a)T(EA)) _ Sn2 M (BA)T(SA)
P (A((SAT)T(SAT)) < (1 — A)A(ATA)) < k-e© 7 <k-e WGBATEA) 02/

where ¢ is some constant. So, for s > O(log(n/é)) for any k, we have A\;((SAT)T(SAT)) =
ak(SAT) (1-— )ok(SA) with probability at least 1 — % Taking a square root on both sides we
get 0, (SAT) > /1 — Aoci(SA) > (1 — A)or(SA) = 0x(SA) — en. Taking a union bound over all
k with o3 (A) > en, 0 (SA) — en < 0, (SAT) holds for all such k with probability at least 1 — 4.

Case 2: We now prove o1(SAT) < 0,(SA) + en for all k € [n]. We again first consider the case

0k(SA) < en. Setting up = \e(ATA), L = ”?2 and A = % (note that A > 1) in Theorem 11:
k

_ _ _ _ cANL((BA)T(8A))

P (M ((SAT)T(SAT)) > (1 + A)M((SA)T(SA)) <n-e” =~ £

_ ce2n? p(8a)T(EA))
<n-e w(GHTEA) (n2/9)

Then, similar to the case oj, (é) < en in the previous case 2, taking square root of both sides and via a
union bound, we get 0x(SAT) < 01(SA)+en for all k € [n] such that 0, (SA) < en with probability
at least 1 — 6 for s > O(log(n/é)) The case o(SA) > en will again be similar as ox(A) > en in the

previous case 2. We set A = o (Eg A and apply Theorem 11 and take the square root on both sides

to get a,(SAT) < 03,(SA) + en with probability 1— 6 for all k € [n] for s > O(* 2%/ Thys, with
probability 1 — 2§, conditioned on the event E3, we have 0, (SAT) < 0,(SA) + en for all k € [n].
Finally, via a union bound over the two cases above, and conditioned on Es, for all k € [n] with
probability at least 1 — 24§ for s > O(log(”/ 9 we get

lo(SAT) — 01(SA)| < en. (57)

Thus, taking a union bound over all the cases above (including F5), from equation (56) and (57)
and via a triangle inequality, we get: |0x(SAT) — o, (A)| < 2en with probability at least 1 — ¢§
(where ¢ is a small constant) for s > O(log(E%). Adjusting € and § by constant factors gives us the
final bound. O

Remark on Rectangular Matrices: Though we have considered A to be a square matrix for
simplicity, notice that Theorem 12 also holds for any arbitrary (non-square) matrix A € R™*™
with n replaced by max(n, m) in the sample complexity bound.

)

Remark on Non-Uniform Sampling: As discussed in Section 1.3.1, simple non-uniform random
submatrix sampling via row/column sparsities or norms does not suffice to estimate the singular
values up to improved error bounds of €/nnz(A) or €||A||r. A more complex strategy, such as the
zeroing out used in Theorems 2 and 3 must be used. It is worth noting that following the same
proof as Theorem 12, it is easy to show that if S is sampled according to row norms or sparsities
and appropriately weighted, then the singular values of SA do approximate those of A up to these
improved error bounds. The proof breaks down when analyzing SAT. T would have to be sampled
according to the row norms/sparsities of SA, not A, for the proof to go through. However, in
general, these sampling probabilities can differ significantly between SA and A.
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