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Abstract

We study the problem of approximating the eigenspectrum of a symmetric matrix A ∈ Rn×n
with bounded entries (i.e., ‖A‖∞ ≤ 1). We present a simple sublinear time algorithm that
approximates all eigenvalues of A up to additive error ±εn using those of a randomly sampled
Õ
(

log3 n
ε3

)
× Õ

(
log3 n
ε3

)
principal submatrix. Our result can be viewed as a concentration bound

on the complete eigenspectrum of a random submatrix, significantly extending known bounds
on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds
of ±ε

√
nnz(A) and ±ε‖A‖F when the rows of A can be sampled with probabilities proportional

to their sparsities or their squared `2 norms respectively. Here nnz(A) is the number of non-
zero entries in A and ‖A‖F is its Frobenius norm. Even for the strictly easier problems of
approximating the singular values or testing the existence of large negative eigenvalues (Bakshi,
Chepurko, and Jayaram, FOCS ’20), our results are the first that take advantage of non-uniform
sampling to give improved error bounds. From a technical perspective, our results require several
new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our
non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out
entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues
of that submatrix as estimates for those of A. We complement our theoretical results with
numerical simulations, which demonstrate the effectiveness of our algorithms in practice.
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1 Introduction

Approximating the eigenvalues of a symmetric matrix is a fundamental problem – with applications
in engineering, optimization, data analysis, spectral graph theory, and beyond. For an n×n matrix,
all eigenvalues can be computed to high accuracy using direct eigendecomposition in O(nω) time,
where ω ≈ 2.37 is the exponent of matrix multiplication [DDHK07, AW21]. When just a few of the
largest magnitude eigenvalues are of interest, the power method and other iterative Krylov methods
can be applied [Saa11]. These methods repeatedly multiply the matrix of interest by query vectors,
requiring O(n2) time per multiplication when the matrix is dense and unstructured.

For large n, it is desirable to have even faster eigenvalue approximation algorithms, running in
o(n2) time – i.e., sublinear in the size of the input matrix. Unfortunately, for general matrices,
no non-trivial approximation can be computed in o(n2) time: without reading Ω(n2) entries, it is
impossible to distinguish with reasonable probability if all entries (and hence all eigenvalues) are
equal to zero, or if there is a single pair of arbitrarily large entries at positions (i, j) and (j, i), leading
to a pair of arbitrarily large eigenvalues. Given this, we seek to address the following question:

Under what assumptions on a symmetric n× n input matrix, can we compute non-trivial
approximations to its eigenvalues in o(n2) time?

It is well known that o(n2) time eigenvalue computation is possible for highly structured inputs,
like tridiagonal or Toeplitz matrices [GE95]. For sparse or structured matrices that admit fast matrix
vector multiplication, one can compute a small number of the largest in magnitude eigenvalues in
o(n2) time using iterative methods. Through the use of robust iterative methods, fast top eigenvalue
estimation is also possible for matrices that admit fast approximate matrix-vector multiplication,
such as kernel similarity matrices [GS91, HP14, BIMW21]. Our goal is to study simple, sampling-
based sublinear time algorithms that work under much weaker assumptions on the input matrix.

1.1 Our Contributions

Our main contribution is to show that a very simple algorithm can be used to approximate all
eigenvalues of any symmetric matrix with bounded entries. In particular, for any A ∈ Rn×n with
maximum entry magnitude ‖A‖∞ ≤ 1, sampling an s × s principal submatrix AS of A with
s = Õ

(
log3 n
ε3

)
and scaling its eigenvalues by n/s yields a ±εn additive error approximation to all

eigenvalues of A with good probability.1 This result is formally stated below, where [n]
def
= {1, . . . , n}.

Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each in-
dex independently with probability s/n as in Algorithm 1. Let AS be the corresponding principal
submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with λi(AS) < 0, let

λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If s ≥ c log(1/(εδ))·log3 n

ε3δ
, for large

enough constant c, then with probability ≥ 1− δ, for all i ∈ [n],

λi(A)− εn ≤ λ̃i(A) ≤ λi(A) + εn.

1Here and throughout, Õ(·) hides logarithmic factors in the argument. Note that by scaling, our algorithm gives
a ±εn · ‖A‖∞ approximation for any A.
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See Figure 1 for an illustration of how the |S| eigenvalues of AS are mapped to estimates for all n
eigenvalues of A. Note that the principal submatrix AS sampled in Theorem 1 will have O(s) =

Õ
(

log3 n
ε3δ

)
rows/columns with high probability. Thus, with high probability, the algorithm reads just

Õ
(

log6 n
ε6δ2

)
entries of A and runs in poly(log n, 1/ε, 1/δ) time. Standard matrix concentration bounds

imply that one can sample O
(
s log(1/δ)

ε2

)
random entries from the O(s) × O(s) random submatrix

AS and preserve its eigenvalues to error ±εs with probability 1− δ [AM07]. See Appendix F for a
proof. This can be directly combined with Theorem 1 to give improved sample complexity:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling). Let A ∈ Rn×n be symmetric
with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). For any ε, δ ∈ (0, 1), there is an algorithm
that reads Õ

(
log3 n
ε5δ

)
entries of A and returns, with probability at least 1− δ, λ̃i(A) for each i ∈ [n]

satisfying |λ̃i(A)− λi(A)| ≤ εn.
Observe that the dependence on δ in Theorem 1 and Corollary 1 can be improved via standard

arguments: running the algorithm with failure probability δ′ = 2/3, repeating O(log(1/δ)) times,
and taking the median estimate for each λi(A). This guarantees that the algorithm will succeed
with probability at most 1− δ at the expense of a log(1/δ) dependence in the complexity.

−n 0 n

−s 0 s

λ̃n(A) λ̃1(A)λ̃n−(|S|−p)(A) λ̃p−1(A)

λ|S|(AS) λ1(AS)λp(AS) λp−1(AS)

λ̃t(A) for t ∈ (n− (|S| − p+ 1), p)

Figure 1: Alignment of eigenvalues in Thm. 1 and Algo. 1. We illustrate how the eigenvalues
of AS , scaled by n

s , are used to approximate all eigenvalues of A. If AS has p−1 positive eigenvalues,
they are set to the top p− 1 eigenvalue estimates. Its |S| − p+ 1 negative eigenvalues are set to the
bottom eigenvalue estimates. All remaining eigenvalues are simply approximated as zero.

Comparison to known bounds. Theorem 1 can be viewed as a concentration inequality on
the full eigenspectrum of a random principal submatrix AS of A. This significantly extends prior
work, which was able to bound just the spectral norm (i.e., the magnitude of the top eigenvalue)
of a random principal submatrix [RV07, Tro08a]. Bakshi, Chepurko, and Jayaram [BCJ20] recently
identified developing such full eigenspectrum concentration inequalities as an important step in
expanding our knowledge of sublinear time property testing algorithms for bounded entry matrices.

Standard matrix concentration bounds [GT11] can be used to show that the singular values of
A (i.e., the magnitudes of its eigenvalues) are approximated by those of a O

(
logn
ε2

)
× O

(
logn
ε2

)
random submatrix (see Appendix G) with independently sampled rows and columns. However,
such a random matrix will not be symmetric or even have real eigenvalues in general, and thus no
analogous bounds were previously known for the eigenvalues themselves.

Recently, Bakshi, Chepurko, and Jayaram [BCJ20] studied the closely related problem of testing
positive semidefiniteness in the bounded entry model. They show how to test whether the minimum
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eigenvalue of A is either greater than 0 or smaller than −εn by reading just Õ( 1
ε2

) entries. They
show that this result is optimal in terms of query complexity, up to logarithmic factors. Like
our approach, their algorithm is based on random principal submatrix sampling. Our eigenvalue
approximation guarantee strictly strengthens the testing guarantee – given ±εn approximations to
all eigenvalues, we immediately solve the testing problem. Thus, our query complexity is tight up to
a poly(log n, 1/ε) factor. It is open if our higher sample complexity is necessary to solve the harder
full eigenspectrum estimation problem. See Section 1.4 for further discussion.

Improved bounds for non-uniform sampling. Our second main contribution is to show that,
when it is possible to efficiently sample rows/columns of A with probabilities proportional to their
sparsities or their squared `2 norms, significantly stronger eigenvalue estimates can be obtained. In
particular, letting nnz(A) denote the number of nonzero entries in A and ‖A‖F denote its Frobenius
norm, we show that sparsity-based sampling yields eigenvalue estimates with error ±ε

√
nnz(A) and

norm-based sampling gives error ±ε‖A‖F . See Theorems 2 and 3 for formal statements. Observe
that when ‖A‖∞ ≤ 1, its eigenvalues are bounded in magnitude by ‖A‖2 ≤ ‖A‖F ≤

√
nnz(A) ≤ n.

Thus, Theorems 2 and 3 are natural strengthenings of Theorem 1. Row norm-based sampling
(Theorem 3) additionally removes the bounded entry requirement of Theorems 1 and 2.

As discussed in Section 1.3.1, sparsity-based sampling can be performed in sublinear time when A
is stored in a slightly augmented sparse matrix format or when A is the adjacency matrix of a graph
accessed in the standard graph query model of the sublinear algorithms literature [GR97]. Norm-
based sampling can also be performed efficiently with an augmented matrix format, and is commonly
studied in randomized and ‘quantum-inspired’ algorithms for linear algebra [FKV04, Tan18].

Theorem 2 (Sparse Matrix Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the ith

index independently with probability pi = min
(

1, s nnz(Ai)
nnz(A)

)
as in Algorithm 2. Here nnz(Ai) is the

number of non-zero entries in the ith row of A. Let AS be the corresponding principal submatrix of
A, and let λ̃i(A) be the estimate of λi(A) computed from AS as in Algorithm 2. If s ≥ c log8 n

ε8δ4 , for
large enough constant c, then with probability ≥ 1− δ, for all i ∈ [n], |λ̃i(A)−λi(A)| ≤ ε

√
nnz(A).

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation). Let A ∈ Rn×n be symmetric
and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the ith index independently
with probability pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
as in Algorithm 3. Here ‖Ai‖2 is the `2 norm of the ith

row of A. Let AS be the corresponding principal submatrix of A, and let λ̃i(A) be the estimate of
λi(A) computed from AS as in Algorithm 3. If s ≥ c log10 n

ε8δ4 , for large enough constant c, then with
probability ≥ 1− δ, for all i ∈ [n], |λ̃i(A)− λi(A)| ≤ ε‖A‖F .

The above non-uniform sampling theorems immediately yield algorithms for testing the presence
of a negative eigenvalue with magnitude at least ε

√
nnz(A) or ε‖A‖F respectively, strengthening the

testing results of [BCJ20], which require eigenvalue magnitude at least εn. In the graph property
testing literature, there is a rich line of work exploring the testing of bounded degree or sparse
graphs [GR97, BSS10]. Theorem 2 can be thought of as first step in establishing a related theory
of sublinear time approximation algorithms and property testers for sparse matrices.

Surprisingly, in the non-uniform sampling case, the eigenvalue estimates derived from AS cannot
simply be its scaled eigenvalues, as in Theorem 1. E.g., when A is the identity, our row sampling
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probabilities are uniform in all cases. However, the scaled submatrix n
s ·AS will be a scaled identity,

and have eigenvalues equal to n/s – failing to give a ±ε
√

nnz(A) = ±ε‖A‖F = ±ε
√
n approximation

to the true eigenvalues (all of which are 1) unless s &
√
n
ε . To handle this, and related cases, we

must argue that selectively zeroing out entries in sufficiently low probability rows/columns of A
(see Algorithms 2 and 3) does not significantly change the spectrum, and ensures concentration of
the submatrix eigenvalues. It is not hard to see that simple random submatrix sampling fails even
for the easier problem of singular value estimation. Theorems 2 and 3 give the first results of their
kinds for this problem as well.

1.2 Related Work

Eigenspectrum estimation is a key primitive in numerical linear algebra, typically known as spectral
density estimation. The eigenspectrum is viewed as a distribution with mass 1/n at each of the
n eigenvalues, and the goal is to approximate this distribution [WWAF06, LSY16]. Applications
include identifying motifs in social networks [DBB19], studying Hessian and weight matrix spectra
in deep learning [SBL16, YGL+18, GKX19], ‘spectrum splitting’ in parallel eigensolvers [LXES19],
and the study of many systems in experimental physics and chemistry [Wan94, SR94, HBT19].

Recent work has studied sublinear time spectral density estimation for graph structured matri-
ces – Braverman, Krishnan, and Musco [BKM22] show that the spectral density of a normalized
graph adjacency or Laplacian matrix can be estimated to ε error in the Wasserstein distance in
Õ(n/ poly(ε)) time. Cohen-Steiner, Kong, Sohler, and Valiant study a similar setting, giving run-
time 2O(1/ε) [CSKSV18]. We note that the additive error eigenvalue approximation result of Theorem
1 (analogously Theorems 2 and 3) directly gives an εn approximation to the spectral density in the
Wasserstein distance – extending the above results to a much broader class of matrices. When
‖A‖∞ ≤ 1, A can have eigenvalues as large as n, while the normalized adjacency matrices studied
in [CSKSV18, BKM22] have eigenvalues in [−1, 1]. So, while the results are not directly comparable,
our Wasserstein error can be thought as on order of their error of ε after scaling.

Our work is also closely related to a line of work on sublinear time property testing for bounded
entry matrices, initiated by Balcan et al. [BLWZ19]. In that work, they study testing of rank,
Schatten-p norms, and several other global spectral properties. Sublinear time testing algorithms
for the rank and other properties have also been studied under low-rank and bounded row norm
assumptions on the input matrix [KS03, LWW14]. Recent work studies positive semidefiniteness
testing and eigenvalue estimation in the matrix-vector query model, where each query computes
Ax for some x ∈ Rn×n. As in Theorem 3, ±ε‖A‖F eigenvalue estimation can be achieved with
poly(log n, 1/ε) queries in this model [NSW22]. Finally, several works study streaming algorithms
for eigenspectrum approximation [AN13, LNW14, LW16]. These algorithms are not sublinear time
– they require at least linear time to process the input matrix. However, they use sublinear work-
ing memory. Note that Theorem 1 immediately gives a sublinear space streaming algorithm for
eigenvalue estimation. We can simply store the sampled submatrix AS as its entries are updated.

1.3 Technical Overview

In this section, we overview the main techniques used to prove Theorems 1, and then how these
techniques are extended to prove Theorems 2 and 3. We start by defining a decomposition of any
symmetric A into the sum of two matrices containing its large and small magnitude eigendirections.
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Definition 1.1 (Eigenvalue Split). Let A ∈ Rn×n be symmetric. For any ε, δ ∈ (0, 1), let Ao =
VoΛoV

T
o where Λo is diagonal, with the eigenvalues of A with magnitude ≥ ε

√
δn on its diagonal,

and Vo has the corresponding eigenvectors as columns. Similarly, let Am = VmΛmVT
m where Λm

has the eigenvalues of A with magnitude < ε
√
δn on its diagonal and Vm has the corresponding

eigenvectors as columns. Then, A can be decomposed as

A = Ao + Am = VoΛoV
T
o + VmΛmVT

m.

Any principal submatrix of A, AS, can be similarly written as

AS = Ao,S + Am,S = Vo,SΛoV
T
o,S + Vm,SΛmVT

m,S ,

where Vo,S ,Vm,S are the corresponding submatrices obtained by sampling rows of Vo,Vm.

Since AS , Am,S and Ao,S are all symmetric, we can use Weyl’s eigenvalue perturbation theo-
rem [Wey12] to show that for all eigenvalues of AS ,

|λi(AS)− λi(Ao,S)| ≤ ‖Am,S‖2. (1)

We will argue that the eigenvalues of Ao,S approximate those of Ao – i.e. all eigenvalues of A
with magnitude ≥ ε

√
δn. Further, we will show that ‖Am,S‖2 is small with good probability. Thus,

via (1), the eigenvalues of AS approximate those of Ao. In the estimation procedure of Theorem 1,
all other small magnitude eigenvalues of A are estimated to be 0, which will immediately give our
±εn approximation bound when the original eigenvalue has magnitude ≤ εn.

Bounding the eigenvalues of Ao,S. The first step is to show that the eigenvalues of Ao,S well-
approximate those of Ao. As in [BCJ20], we critically use that the eigenvectors corresponding to
large eigenvalues are incoherent – intuitively, since ‖A‖∞ is bounded, their mass must be spread out
in order to witness a large eigenvalue. Specifically, [BCJ20] shows that for any eigenvector v of A
with corresponding eigenvalue ≥ ε

√
δn, ‖v‖∞ ≤ 1

ε
√
δ·
√
n
. We give related bounds on the Euclidean

norms of the rows of Vo (the leverage scores of Ao), and on these rows after weighting by Λo.
Using these incoherence bounds, we argue that the eigenvalues of Ao,S approximate those of

Ao up to ±εn error. A key idea is to bound the eigenvalues of Λ
1/2
o VT

o,SVo,SΛ
1/2
o , which are

identical to the non-zero eigenvalues of Ao,S = Vo,SΛoV
T
o,S . Via a matrix Bernstein bound and our

incoherence bounds on Vo, we show that this matrix is close to Λo with high probability. However,
since Λ

1/2
o may be complex, the matrix is not necessarily Hermitian and standard perturbation

bounds [SgS90, HJ12] do not apply. Thus, to derive an eigenvalue bound, we apply a perturbation
bound of Bhatia [Bha13], which generalizes Weyl’s inequality to the non-Hermitian case, with a log n
factor loss. To the best of our knowledge, this is the first time that perturbation theory bounds
for non-Hermitian matrices have been used to prove improved algorithmic results in the theoretical
computer science literature.

We note that in Appendix B, we give an alternate bound, which instead analyzes the Hermitian
matrix (VT

o,SVo,S)1/2Λo(V
T
o,SVo,S)1/2, whose eigenvalues are again identical to those of Ao,S . This

approach only requires Weyl’s inequality, and yields an overall bound of s = O
(

logn
ε4δ

)
, improving

the log n factors of Theorem 1 at the cost of worse ε dependence.

Bounding the spectral norm of Am,S. The next step is to show that all eigenvalues of Am,S are
small provided a sufficiently large submatrix is sampled. This means that the “middle” eigenvalues
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of A, i.e. those with magnitude ≤ ε
√
δn do not contribute much to any eigenvalue λi(AS). To

do so, we apply a theorem of [RV07, Tro08a] which shows concentration of the spectral norm of a
uniformly random submatrix of an entrywise bounded matrix Observe that while ‖A‖∞ ≤ 1, such a
bound will not in general hold for ‖Am‖∞. Nevertheless, we can use the incoherence of Vo to show
that ‖Ao‖∞ is bounded, which via triangle inequality, yields a bound on ‖Am‖∞ ≤ ‖A‖∞+‖Ao‖∞.
In the end, we show that if s ≥ O( logn

ε2δ
), with probability at least 1 − δ, ‖Am,S‖2 ≤ εs. After the

n/s scaling in the estimation procedure of Theorem 1, this spectral norm bound translates into an
additive εn error in approximating the eigenvalues of A.

Completing the argument. Once we establish the above bounds on Ao,S and Am,S , Theorem
1 is essentially complete. Any eigenvalue in A with magnitude ≥ εn will correspond to a nearby
eigenvalue in n

s ·Ao,S and in turn, ns ·AS given our spectral norm bound on Am,S . An eigenvalue
in A with magnitude ≤ εn may or may not correspond to a nearby by eigenvalue in Ao,S (it will
only if it lies in the range [ε

√
δn, εn]). In any case however, in the estimation procedure of Theorem

1, such an eigenvalue will either be estimated using a small eigenvalue of AS , or be estimated as 0.
In both instances, the estimate will give ±εn error, as required.

Can we beat additive error? It is natural to ask if our approach can be improved to yield
sublinear time algorithms with stronger relative error approximation guarantees for A’s eigenvalues.
Unfortunately, this is not possible – consider a matrix with just a single pair of entries Ai,j ,Aj,i

set to 1. To obtain relative error approximations to the two non-zero eigenvalues, we must find the
pair (i, j), as otherwise we cannot distinguish A from the all zeros matrix. This requires reading
a Ω(n2) of A’s entries. More generally, consider A with a random n/t × n/t principal submatrix
populated by all 1s, and with all other entries equal to 0. A has largest eigenvalue n/t. However,
if we read s � t2 entries of A, with good probability, we will not see even a single one, and thus
we will not be able to distinguish A from the all zeros matrix. This example establishes that any
sublinear time algorithm with query complexity s must incur additive error at least Ω(n/

√
s).

1.3.1 Improved Bounds via Non-Uniform Sampling

We now discuss how to give improved approximation bounds via non-uniform sampling. We focus
on the ±ε

√
nnz(A) bound of Theorem 2 using sparsity-based sampling. The proof of Theorem 3

for row norm sampling follows the same general ideas, but with some additional complications.
Theorem 2 requires sampling a submatrix AS , where each index i is included in S with proba-

bility pi = min(1, s nnz(Ai)
nnz(A) ). We reweight each sampled row by 1√

pi
. Thus, if entry Aij is sampled,

it is scaled by 1√
pi·pj . When the rows have uniform sparsity (so all pi = s/n), this ensures that the

full submatrix is scaled by n/s, as in Theorem 1.
The proof of Theorem 2 follows the same outline as that of Theorem 1: we first argue that

the outlying eigenvectors in Vo are incoherent, giving a bound on the norm of each row of Vo in
terms of nnz(Ai). We then apply a matrix Bernstein bound and Bhatia’s non-Hermitian eigenvalue
perturbation bound to show that the eigenvalues of Ao,S approximate those of Ao up to±ε

√
nnz(A).

Bounding the spectral norm of Am,S. The major challenge is showing that the subsampled mid-
dle eigendirections do not significantly increase the approximation error by bounding the ‖Am,S‖2
by ε

√
nnz(A). This is difficult since the indices in Am,S are sampled nonuniformly, so existing

bounds [Tro08a] on the spectral norm of uniformly random submatrices do not apply. We extend
these bounds to the non-uniform sampling case, but still face an issue due to the rescaling of entries
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by 1√
pipj

. In fact, without additional algorithmic modifications, ‖Am,S‖2 is simply not bounded by

ε
√

nnz(A)! For example, as already discussed, if A = I is the identity matrix, we get Am,S = n
s · I

and so ‖Am,S‖2 = n
s > ε

√
nnz(A), assuming s <

√
n
ε . Relatedly, suppose that A is tridiagonal,

with zeros on the diagonal and ones on the first diagonals above and below the main diagonal.
Then, if s ≥

√
n, with constant probability, one of the ones will be sampled and scaled by n

s . Thus,
we will again have ‖Am,S‖2 ≥ n

s ≥ ε
√

nnz(A), assuming s <
√
n

2ε . Observe that this issue arrises
even when trying to approximate just the singular values (the eigenvalue magnitudes) via sampling.
Thus, while an analogous bound to the uniform sampling result of Theorem 1 can easily be given
for singular value estimation via matrix concentration inequalities (see Appendix G), to the best of
our knowledge, Theorems 2 and 3 are the first of their kind even for singular value estimation.

Zeroing out entries in sparse rows/columns. To handle the above cases, we prove a novel
perturbation bound, arguing that if we zero out any entry Aij of A where

√
nnz(Ai) · nnz(Aj) ≤

ε
√

nnz(A)

c logn , then the eigenvalues of A are not perturbed by more than ε
√

nnz(A). This can be
thought of as a strengthening of Girshgorin’s circle theorem, which would ensure that zeroing out
entries in rows/columns with nnz(Ai) ≤ ε

√
nnz(A) does not perturb the eigenvalues by more than

ε
√

nnz(A). Armed with this perturbation bound, we argue that if we zero out the appropriate
entries of AS before computing its eigenvalues, then since we have removed entries in very sparse
rows and columns which would be scaled by a large 1√

pipj
factor in AS , we can bound ‖Am,S‖2.

This requires relating the magnitudes of the entries in Am,S to those in AS using the incoherence
of the top eigenvectors, which gives bounds on the entries of Ao,S = AS −Am,S .

Sampling model. We note that the sparsity-based sampling of Theorem 2 can be efficiently
implemented in several natural settings. Given a matrix stored in sparse format, i.e., as a list of
nonzero entries, we can easily sample a row with probability nnz(Ai)

nnz(A) by sampling a uniformly random
non-zero entry and looking at its corresponding row. Via standard techniques, we can convert several
such samples into a sampled set S close in distribution to having each i ∈ [n] included independently
with probability min

(
1, s nnz(Ai)

nnz(A)

)
. If we store the values of nnz(A), nnz(A1), . . . , nnz(An), we can

also efficiently access each pi, which is needed for rescaling and zeroing out entries. Also observe
that if A is the adjacency matrix of a graph, in the standard graph query model [GR97], it is well
known how to approximately count edges and sample them uniformly at random, i.e., compute
nnz(A) and sample its nonzero entries, in sublinear time [GR08, ER18]. Further, it is typically
assumed that one has access to the node degrees, i.e., nnz(A1), . . . , nnz(An). Thus, our algorithm
can naturally be used to estimate spectral graph properties in sublinear time.

The `2 norm-based sampling of Theorem 3 can also be performed efficiently using an augmented
data structure for storing A. Such data structures have been used extensively in the literature on
quantum-inspired algorithms, and require just O(nnz(A)) time to construct, O(nnz(A)) space, and
O(log n) time to update give an update to an entry of A [Tan18, CCH+20].

1.4 Towards Optimal Query Complexity

As discussed, Bakshi et al. [BCJ20] show that any algorithm which can test with good probability
whether A has an eigenvalue ≤ −εn or else has all non-negative eigenvalues must read Ω̃

(
1
ε2

)
entries of A. This testing problem is strictly easier than outputting ±εn error estimates of all
eigenvalues, so gives a lower bound for our setting. If the queried entries are restricted to fall in a
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submatrix, [BCJ20] shows that this submatrix must have dimensions Ω
(

1
ε2

)
× Ω

(
1
ε2

)
, giving total

query complexity Ω
(

1
ε4

)
. Closing the gap between our upper bound of Õ

(
log3 n
ε3

)
× Õ

(
log3 n
ε3

)
and

the lower bound of Ω
(

1
ε2

)
× Ω

(
1
ε2

)
for submatrix queries is an intriguing open question.

We show in Appendix A that this gap can be easily closed via a surprisingly simple argument if
A is positive semidefinite (PSD). In that case, A = BBT with B ∈ Rn×n. Writing AS = STAS for
a sampling matrix S ∈ Rn×|S|, the non-zero eigenvalues of AS are identical to those of BSSTBT .
Via a standard approximate matrix multiplication analysis [DK01], one can then show that, for
s ≥ 1

ε2δ
, with probability at least 1− δ, ‖BBT −BSSTB‖F ≤ εn. Via Weyl’s inequality, this shows

that the eigenvalues of BSSTB, and hence AS , approximate those of A up to ±εn error.2

Unfortunately, this approach breaks down when A has negative eigenvalues, and so cannot be
factored as BBT for real B ∈ Rn×n. This is more than a technical issue: observe that when A is
PSD and has ‖A‖∞ ≤ 1, it can have at most 1/ε eigenvalues larger than εn – since its trace, which
is equal to the sum of its eigenvalues, is bounded by n, and since all eigenvalues are non-negative.
When A is not PSD, it can have Ω(1/ε2) eigenvalues with magnitude larger than εn. In particular,
if A is the tensor product of a 1/ε2× 1/ε2 random ±1 matrix and the ε2n× ε2n all ones matrix, the
bulk of its eigenvalues (of which there are 1/ε2) will concentrate around 1/ε · ε2n = εn. As a result
it remains unclear whether we can match the 1/ε2 dependence of the PSD case, or if a stronger
lower bound can be shown for indefinite matrices.

Outside the ε dependence, it is unknown if full eigenspectrum approximation can be performed
with sample complexity independent of the matrix size n. [BCJ20] achieve this for the easier posi-
tive semidefiniteness testing problem, giving sample complexity Õ(1/ε2). However our bounds have
additional log n factors. As discussed, in Appendix B we give an alternate analysis for Theorem 1,
which shows that sampling a O

(
logn
ε4δ

)
× O

(
logn
ε4δ

)
submatrix suffices for ±εn eigenvalue approxi-

mation, saving a log2 n factor at the cost of worse ε dependence. However, removing the final log n
seems difficult – it arises when bounding ‖Am,S‖2 via bounds on the spectral norms of random
principal submatrices [RV07]. Removing it seems as though it would require either improving such
bounds, or taking a different algorithmic approach.

Also note that our log n and ε dependencies for non-uniform sampling (Theorems 2 and 3)
are likely not tight. It is not hard to check that the lower bounds of [BCJ20] still hold in these
settings. For example, in the sparsity-based sampling setting, by simply having the matrix entirely
supported on a

√
nnz(A)×

√
nnz(A) submatrix, the lower bounds of [BCJ20] directly carry over.

Giving tight query complexity bounds here would also be interesting. Finally, it would be interesting
to go beyond principal submatrix based algorithms, to achieve improved query complexity, as in
Corollary 1. Finding an algorithm matching the Õ

(
1
ε2

)
overall query complexity lower bound of

[BCJ20] is open even in the much simpler PSD setting.

2 Notation and Preliminaries

We now define notation and foundational results that we use throughout our work. For any integer
n, let [n] denote the set {1, 2, . . . , n}. We write matrices and vectors in bold literals – e.g., A or x.
We denote the eigenvalues of a symmetric matrix A ∈ Rn×n by λ1(A) ≥ . . . ≥ λn(A), in decreasing
order. A symmetric matrix is positive semidefinite if all its eigenvalues are non-negative. For two

2In fact, via more refined eigenvalue perturbation bounds [Bha13] one can show an `2 norm bound on the eigenvalue
approximation errors, which can be much stronger than the `∞ norm bound of Theorem 1.
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matrices A,B, we let A � B denote that A−B is positive semidefinite. For any matrix A ∈ Rn×n
and i ∈ [n], we let Ai denote the ith row of A, nnz(Ai) denote the number of non-zero elements in
this row, and ‖Ai‖2 denote its `2 norm. We let nnz(A) denote the total number of non-zero elements
A. For a vector x, we let ‖x‖2 denote its Euclidean norm. For a matrix A, we let ‖A‖∞ denote the
largest magnitude of an entry, ‖A‖2 = maxx

‖Ax‖2
‖x‖2 denote the spectral norm, ‖A‖F = (

∑
i,j A2

ij)
1/2

denote the Frobenius norm, and ‖A‖1→2 denote the maximum Euclidean norm of a column. For
A ∈ Rn×n and S ⊆ [n] we let AS denote the principal submatrix corresponding to S. We let E2

denote the L2 norm of a random variable, E2[X] = (E[X2])1/2, where E[·] denotes expectation.
We use the following basic facts and identities on eigenvalues throughout our proofs.

Fact 1 (Eigenvalue of Matrix Product). For any two matrices A ∈ Cn×m,B ∈ Cm×n, the non-zero
eigenvalues of AB are identical to those of BA.

Fact 2 (Girshgorin’s circle theorem [Ger31]). Let A ∈ Cn×n with entries Aij. For i ∈ [n], let Ri be
the sum of absolute values of non-diagonal entries in the ith row. Let D(Aii,Ri) be the closed disc
centered at Aii with radius Ri. Then every eigenvalue of A lies within one of the discs D(Aii,Ri).

Fact 3 (Weyl’s Inequality [Wey12]). For any two Hermitian matrices A,B ∈ Cn×n with A−B = E,

max
i
|λi(A)− λi(B)| ≤ ‖E‖2.

Weyl’s inequality ensures that a small Hermitian perturbation of a Hermitian matrix will not sig-
nificantly change its eigenvalues. The bound can be extended to the case when the perturbation is
not Hermitian, with a loss of an O(log n) factor; to the best of our knowledge this loss is necessary:

Fact 4 (Non-Hermitian perturbation bound [Bha13]). Let A ∈ Cn×n be Hermitian and B ∈ Cn×n
be any matrix whose eigenvalues are λ1(B), . . . , λn(B) such that Re(λ1(B)) ≥ . . . ≥ Re(λn(B))
(where Re(λi(B)) denotes the real part of λi(B)). Let A−B = E. For some universal constant C,

max
i
|λi(A)− λi(B)| ≤ C log n‖E‖2.

Beyond the above facts, we use several theorems to obtain eigenvalue concentration bounds.
We first state a theorem from [Tro08a], which bounds the spectral norm of a principal submatrix
sampled uniformly at random from a bounded entry matrix. We build on this to prove the full
eigenspectrum concentration result of Theorem 1.

Theorem 4 (Random principal submatrix spectral norm bound [RV07, Tro08a]). Let A ∈ Cn×n
be Hermitian, decomposed into diagonal and off-diagonal parts: A = D + H. Let S ∈ Rn×n be a
diagonal sampling matrix with the jth diagonal entry set to 1 independently with probability s/n and
0 otherwise. Then, for some universal constant C,

E2‖SAS‖2 ≤ C

[
log n · E2‖SHS‖∞ +

√
s log n

n
· E2‖HS‖1→2 +

s

n
· ‖H‖2

]
+ E2‖SDS‖2.

For Theorems 2 and 3, we need an extension of Theorem 4 to the setting where rows are sampled
non-uniformly. We will use two bounds here. The first is a decoupling and recoupling result for
matrix norms. One can prove this lemma following an analogous result in [Tro08a] for sampling
rows/columns uniformly. The proof is almost identical so we omit it.
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Lemma 1 (Decoupling and recoupling). Let H be a Hermitian matrix with zero diagonal. Let δj be
a sequence of independent random variables such that δj = 1√

pj
with probability pj and 0 otherwise.

Let S be a square diagonal sampling matrix with jth diagonal entry set to δj. Then:

E2‖SHS‖2 ≤ 2E2‖SHŜ‖2 and E2‖SHŜ‖∞ ≤ 4E2‖SHS‖∞,

where Ŝ is an independent diagonal sampling matrix drawn from the same distribution as S.

The second theorem bounds the spectral norm of a non-uniform random column sample of a matrix.
We give a proof in Appendix D, again following a theorem in [Tro08b] for uniform sampling.

Theorem 5 (Non-uniform column sampling – spectral norm bound). Let A be an m×n matrix with
rank r. Let δj be a sequence of independent random variables such that δj = 1√

pj
with probability pj

and 0 otherwise. Let S be a square diagonal sampling matrix with jth diagonal entry set to δj.

E2‖AS‖2 ≤ 5
√

log r · E2‖AS‖1→2 + ‖A‖2

We use a standard Matrix Bernstein inequality to bound the spectral norm of random submatrices.

Theorem 6 (Matrix Bernstein [Tro15]). Consider a finite sequence {Sk} of random matrices in
Rd×d. Assume that for all k, E[Sk] = 0 and ‖Sk‖2 ≤ L. Let Z =

∑
k Sk and let V1,V2 be

semidefinite upper-bounds for the matrix valued variances Var1(Z) and Var2(Z):

V1 � Var1(Z)
def
= E

(
ZZT

)
=
∑
k

E
(
SkS

T
k

)
, and

V2 � Var2(Z)
def
= E

(
ZTZ

)
=
∑
k

E
(
STk Sk

)
.

Then, letting v = max(‖V1‖2, ‖V2‖2), for any t ≥ 0,

P(‖Z‖2 ≥ t) ≤ 2d · exp

(
−t2/2
v + Lt/3

)
.

For real valued random variables, we use the standard Bernstein inequality.

Theorem 7 (Bernstein inequality [Ber27]). Let {zj} for j ∈ [n] be independent random variables
with zero mean such that |zj | ≤M for all j. Then for all positive t,

P

∣∣∣∣∣∣
n∑
j=1

zj

∣∣∣∣∣∣ ≥ t
 ≤ exp

(
−t2/2∑n

i=1 E[z2
i ] +Mt/3

)
.

3 Sublinear Time Eigenvalue Estimation using Uniform Sampling

We now prove our main eigenvalue estimation result – Theorem 1. We give the pseudocode for our
principal submatrix based estimation procedure in Algorithm 1. We will show that any positive or
negative eigenvalue of A with magnitude ≥ εn will appear as an approximate eigenvalue in AS with
good probability. Thus, in step 5 of Algorithm 1, the positive and negative eigenvvalues of AS are
used to estimate the outlying largest and smallest eigenvalues of A. All other interior eigenvalues
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Algorithm 1 Eigenvalue estimator using uniform sampling

1: Input: Symmetric A ∈ Rn×n with ‖A‖∞ ≤ 1, Accuracy ε ∈ (0, 1), failure prob. δ ∈ (0, 1).
2: Fix s = c log(1/(εδ))·log3 n

ε3δ
where c is a sufficiently large constant.

3: Add each index i ∈ [n] to the sample set S independently with probability s
n . Let the principal

submatrix of A corresponding S be AS .
4: Compute the eigenvalues of AS : λ1(AS) ≥ . . . ≥ λ|S|(AS).
5: For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n

s · λi(AS). For all i ∈ [|S|] with λi(AS) < 0, let
λ̃n−(|S|−i)(A) = n

s · λi(AS). For all remaining i ∈ [n], let λ̃i(A) = 0.
6: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

of A are estimated to be 0, which will immediately give our ±εn approximation bound when the
original eigenvalue has magnitude ≤ εn.

Running time. Observe that the expected number of indices chosen by Algorithm 1 is s =
c log(1/(εδ))·log3 n

ε3δ
. A standard concentration bound can be used to show that with high probability

(1− 1/ poly(n)), the number of sampled entries is O(s). Thus, the algorithm reads a total of O(s2)
entries of A and runs in O(sω) time – the time to compute a full eigendecomposition of AS .

3.1 Outer and Middle Eigenvalue Bounds

Recall that we will split A into two symmetric matrices (Definition 1.1): Ao = VoΛoV
T
o which

contains its large magnitude (outlying) eigendirections with eigenvalue magnitudes ≥ ε
√
δn and

Am = VmΛmVT
m which contains its small magnitude (middle) eigendirections.

We first show that the eigenvectors in Vo are incoherent. I.e., that their (eigenvalue weighted)
squared row norms are bounded. This ensures that the outlying eigenspace of A is well-
approximated via uniform sampling.

Lemma 2 (Incoherence of outlying eigenvectors). Let A ∈ Rn×n be symmetric with ‖A‖∞ ≤ 1.
Let Vo be as in Definition 1.1. Let Vo,i denote the ith row of Vo. Then,

‖Λ1/2
o Vo,i‖22 ≤

1

ε
√
δ

and ‖Vo,i‖22 ≤
1

ε2δn
.

Proof. Observe that AVo = VoΛo. Let [AVo]i denote the ith row of the AVo. Then we have

‖[AVo]i‖22 = ‖[VoΛo]i‖22 =
r∑
j=1

λ2
j ·V2

o,i,j , (2)

where r = rank(Ao), Vo,i,j is the (i, j)th element of Vo and λj = Λo(j, j). ‖A‖∞ ≤ 1 by assumption
and since Vo has orthonormal columns, its spectral norm is bounded by 1, thus we have

‖[AVo]i‖22 = ‖[A]iVo‖22 ≤ ‖[A]i‖22 · ‖Vo‖22 ≤ n.

Therefore, by (2), we have:
r∑
j=1

λ2
j ·V2

o,i,j ≤ n. (3)
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Since by definition of Λo, |λj | ≥ ε
√
δn for all j, we finally have

‖Λ1/2
o Vo,i‖22 =

r∑
j=1

λj ·V2
o,i,j ≤

n

ε
√
δn

=
1

ε
√
δ

and

‖Vo,i‖22 =
r∑
j=1

V2
o,i,j ≤

n

ε2δn2
=

1

ε2δn
.

Let S̄ ∈ Rn×|S| be the scaled sampling matrix satisfying S̄TAS̄ = n
s ·AS . We next apply Lemma 2

in conjunction with a matrix Bernstein bound to show that Λ
1/2
o VT

o S̄S̄TVoΛ
1/2
o concentrates around

its expectation, Λo. Since by Fact 1, this matrix has identical eigenvalues to n
s ·Ao,S = S̄TVoΛoV

T
o S̄,

this allows us to argue that the eigenvalues of n
s ·Ao,S approximate those of Λo.

Lemma 3 (Concentration of outlying eigenvalues). Let S ⊆ [n] be sampled as in Algorithm 1 for
s ≥ c log(1/(εδ))

ε3
√
δ

where c is a sufficiently large constant. Let S̄ ∈ Rn×|S| be the scaled sampling matrix
satisfying S̄TAS̄ = n

s ·AS. Letting Λo,Vo be as in Definition 1.1, with probability at least 1− δ,

‖Λ1/2
o VT

o S̄S̄TVoΛ
1/2
o −Λo‖2 ≤ εn.

Proof. Define E = Λ
1/2
o VT

o S̄S̄TVoΛ
1/2
o −Λo. For all i ∈ [n], let Vo,i be the ith row of Vo and define

the matrix valued random variable

Yi =

{
n
sΛ

1/2
o Vo,iV

T
o,iΛ

1/2
o , with probability s/n

0 otherwise.
(4)

Define Qi = Yi − E [Yi]. Observe that Q1, . . . ,Qn are independent random variables and
that

∑n
i=1 Qi = Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o − Λo = E. Further, observe that ‖Qi‖2 ≤ max

(
1, ns − 1

)
·

‖Λ1/2
o Vo,iV

T
o,iΛ

1/2
o ‖2 ≤ max

(
1, ns − 1

)
· ‖Λ1/2

o Vo,i‖22. Now, ‖Λ
1/2
o Vo,i‖22 ≤ 1

ε
√
δ
by Lemma 2. Thus,

‖Qi‖2 ≤ n
ε
√
δs
. The variance Var(E)

def
= E(EET ) = E(ETE) =

∑n
i=1 E[Q2

i ] can be bounded as:

n∑
i=1

E[Q2
i ] =

n∑
i=1

[
s

n
·
(n
s
− 1
)2

+
(

1− s

n

)]
· (Λ1/2

o Vo,iV
T
o,iΛoVo,iV

T
o,iΛ

1/2
o )

�
n∑
i=1

n

s
· ‖Λ1/2

o Vo,i‖22 · (Λ1/2
o Vo,iV

T
o,iΛ

1/2
o ). (5)

Again by Lemma 2, ‖Λ1/2
o Vo,i‖22 ≤ 1

ε
√
δ
. Plugging back into (5) we can bound,

n∑
i=1

E[Q2
i ] �

n∑
i=1

n

s
· 1

ε
√
δ
· (Λ1/2

o Vo,iV
T
o,iΛ

1/2
o ) =

n

sε
√
δ
Λo �

n2

sε
√
δ
· I.
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Since Q2
i is PSD, this establishes that ‖Var(E)‖2 ≤ n2

sε
√
δ
. We then apply Theorem 6 (the matrix

Bernstein inequality) with L = n
sε
√
δ
, v = n2

sε
√
δ
, and d ≤ 1

ε2δ
since there are at most ‖A‖

2
F

δε2n2 ≤ 1
ε2δ

outlying eigenvalues with magnitude ≥
√
δεn in Λo. This gives:

P (‖E‖2 ≥ εn) ≤ 2

ε2δ
· exp

(
−ε2n2/2

v + Lεn/3

)

≤ 2

ε2δ
· exp

 −ε2n2/2
n2

sε
√
δ

+ εn2

3sε
√
δ


≤ 2

ε2δ
· exp

(
−sε3

√
δ

4

)
.

Thus, if we set s ≥ c log(1/(εδ))

ε3
√
δ

for large enough c, then the probability is bounded above by δ,
completing the proof.

We cannot prove an analogous leverage score bound to Lemma 2 for the interior eigenvectors of
A appearing in Vm. Thus we cannot apply a matrix Bernstein bound as in Lemma 3. However,
we can use Theorem 4 to show that the spectral norm of the random principal submatrix Am,S is
not too large, and thus that the eigenvalues of AS = Ao,S + Am,S are close to those of Ao,S .

Lemma 4 (Spectral norm bound – sampled middle eigenvalues). Let A ∈ Rn×n be symmetric with
‖A‖∞ ≤ 1. Let Am be as in Definition 1.1. Let S be sampled as in Algorithm 1. If s ≥ c logn

ε2δ
for

some sufficiently large constant c, then with probability at least 1− δ, ‖Am,S‖2 ≤ εs.

Proof. Let Am = Dm + Hm where Dm is the matrix of diagonal elements and Hm the matrix of
off-diagonal elements. Let S ∈ Rn×|S| be the binary sampling matrix with Am,S = STAmS. From
Theorem 4, we have for some constant C,

E2[‖Am,S‖2] ≤ C
[

log n · E2[‖STHmS‖∞] +

√
s log n

n
E2[‖HmS‖1→2] +

s

n
‖Hm‖2

]
+ E2[‖STDmS‖].

(6)
Considering the various terms in (6), we have ‖STHmS‖∞ ≤ ‖Am‖∞ and ‖STDmS‖2 =
‖STDmS‖∞ ≤ ‖Am‖∞. We also have

‖Hm‖2 ≤ ‖Am‖2 + ‖Dm‖2 ≤ ‖Am‖2 + ‖Am‖∞ ≤ εδ1/2n+ ‖Am‖∞

and
‖HmS‖1→2 ≤ ‖AmS‖1→2 ≤ ‖Am‖1→2 ≤

√
n.

The final bound follows since Am = VmVT
mA, where VmVT

m is an orthogonal projection matrix.
Thus, ‖Am‖1→2 ≤ ‖A‖1→2 ≤

√
n by our assumption that ‖A‖∞ ≤ 1. Plugging all these bounds

into (6) we have, for some constant C,

E2[‖Am,S‖2] ≤ C
[

log n · ‖Am‖∞ +
√

log n · s+ s · εδ1/2

]
. (7)
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It remains to bound ‖Am‖∞. We have A = Am + Ao and thus by triangle inequality,

‖Am‖∞ ≤ ‖A‖∞ + ‖Ao‖∞ = 1 + ‖Ao‖∞. (8)

Writing Ao = VoΛoV
T
o (see Definition 1.1), and letting Vo,i denote the ith row of Vo, the (i, j)th

element of Ao has magnitude

|Ao,i,j | = |Vo,iΛoV
T
o,j | ≤ ‖Vo,i‖2 · ‖ΛoV

T
o,j‖2,

by Cauchy-Schwarz. From Lemma 2, we have ‖Vo,i‖2 ≤ 1
εδ1/2

√
n
. Also, from (2), ‖ΛoV

T
o,j‖2 =

‖[AVo]j‖2 ≤
√
n. Overall, for all i, j we have Ao,i,j ≤ 1

εδ1/2
√
n
·
√
n = 1

εδ1/2 , giving ‖Ao‖∞ ≤ 1
εδ1/2 .

Plugging back into (8) and in turn (7), we have for some constant C,

E2[‖Am,S‖2] ≤ C
[

log n

εδ1/2
+
√
s log n+ sεδ1/2

]
.

Setting s ≥ c logn
ε2δ

for sufficiently large c, all terms in the right hand side of the above equation are
bounded by ε

√
δs and so

E2[‖Am,S‖2] ≤ 3ε
√
δs

Thus, by Markov’s inequality, with probability at least 1 − δ, we have ‖Am,S‖2 ≤ 3εs. We can
adjust ε by a constant to obtain the required bound.

3.2 Main Accuracy Bounds

We now restate our main result, and give its proof via Lemmas 3 and 4.

Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each in-
dex independently with probability s/n as in Algorithm 1. Let AS be the corresponding principal
submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with λi(AS) < 0, let

λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If s ≥ c log(1/(εδ))·log3 n

ε3δ
, for large

enough constant c, then with probability ≥ 1− δ, for all i ∈ [n],

λi(A)− εn ≤ λ̃i(A) ≤ λi(A) + εn.

Proof. Let S ∈ Rn×|S| be the binary sampling matrix with a single one in each column such that
STAS = AS . Let S̄ =

√
n/s·S Following Definition 1.1, we write A = Ao+Am. By Fact 1 we have

that the nonzero eigenvalues of ns ·Ao,S = S̄TVoΛoV
T
o S̄ are identical to those of Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o

where Λ
1/2
o is the square root matrix of Λo such that Λ

1/2
o Λ

1/2
o = Λo.

Note that Λo is Hermitian. However Λ
1/2
o may be complex, and hence Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o is not

necessarily Hermitian, although it does have real eigenvalues. Thus, we can apply the perturbation
bound of Fact 4 to Λo and Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o to claim for all i ∈ [n], and some constant C,

|λi(Λ1/2
o VT

o S̄S̄TVoΛ
1/2
o )− λi(Λo)| ≤ C log n‖Λ1/2

o VT
o S̄S̄TVoΛ

1/2
o −Λo‖2.
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By Lemma 3 applied with error ε
2C logn , with probability at least 1− δ, for any s ≥ c log(1/(εδ))·log3 n

ε3
√
δ

(for a large enough constant c) we have ‖Λ1/2
o VT

o S̄S̄TVoΛ
1/2
o −Λo‖2 ≤ εn

2C logn . Thus, for all i,∣∣∣λi(Λ1/2
o VT

o S̄S̄TVoΛ
1/2
o )− λi(Λo)

∣∣∣ < εn

2
. (9)

We note that the conceptual part of the proof is essentially complete: the nonzero eigenvalues of
n
s ·Ao,S are identical to those of Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o , which we have shown well approximate those

of Λo and in turn Ao. i.e., the non-zero eigenvalues of ns ·Ao,S approximate all outlying eigenvalues
of A. It remains to carefully argue how these approximations should be ‘lined up’ given the presence
of zero eigenvalues in the spectrum of these matrices. We also must account for the impact of the
interior eigenvalues in Am,S , which is limited by the spectral norm bound of Lemma 4.

Eigenvalue alignment and effect of interior eigenvalues. First recall that AS = Ao,S+Am,S .
By Lemma 4 applied with error ε/2, we have ‖Am,S‖2 ≤ ε/2 · s with probability at least 1− δ when
s ≥ c logn

ε2δ
. By Weyl’s inequality (Fact 3), for all i ∈ [|S|] we thus have∣∣∣n

s
λi(AS)− n

s
λi(Ao,S)

∣∣∣ ≤ n

s
· εs

2
=
εn

2
. (10)

Consider i ∈ [|S|] with λi(Ao,S) > 0. Since the nonzero eigenvalues of ns ·Ao,S are identical to those
of Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o , ns · λi(Ao,S) = λi(Λ

1/2
o VT

o S̄S̄TVoΛ
1/2
o ), and so by (9),∣∣∣n

s
· λi(Ao,S)− λi(Λo)

∣∣∣ < εn

2
. (11)

Analogously, consider i ∈ [|S|] such that λi(Ao,S) < 0. We have n
s · λi(Ao,S) =

λr−(|S|−i)(Λ
1/2
o VT

o S̄S̄TVoΛ
1/2
o ), where r is the dimension of Λo – i.e., the number of outlying eigen-

values in A. Again by (9) we have∣∣∣n
s
· λi(Ao,S)− λr−(|S|−i)(Λo)

∣∣∣ < εn

2
. (12)

Now the nonzero eigenvalues of Ao are identical to those of Λo. Consider i ∈ [|S|] such that
λi(AS) ≥ εs. In this case, by (10), (11), and the triangle inequality, we have λi(Λo) > 0 and thus
we have λi(Λo) = λi(Ao). In turn, again applying (10), (11), and the triangle inequality, we have∣∣∣n

s
λi(AS)− λi(Ao)

∣∣∣ ≤ ∣∣∣n
s
λi(Ao,S)− λi(Ao)

∣∣∣+
∣∣∣n
s
λi(AS)− λi(Ao,S)

∣∣∣ ≤ εn.
Analogously, for i ∈ [|S|] such that λi(AS) ≤ −εs, we have by (10) and (12) that λr−(|S|−i)(Λo) < 0.
Thus λr−(|S|−i)(Λo) = λn−(r−i)(Ao). Again by (10), (12), and triangle inequality this gives∣∣∣n

s
· λi(AS)− λn−(|S|−i)(Ao)

∣∣∣ ≤ εn.
Now, consider all i ∈ [n] such that λi(Ao) is not well approximated by one of the outlying

eigenvalues of AS as argued above. By (10), (11), and (12), all such eigenvalues must have |λi(Ao)| ≤
2εn. Thus, if we approximate them in any way either by the remaining eigenvalues of AS with
magnitude ≤ εs, or else by 0, we will approximate all to error at most 3εn. Thus, if (as in Algorithm
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1) for i ∈ [|S|] with λi(AS) ≥ 0, we let λ̃i(A) = n
s · λi(AS) and for i ∈ [|S|] with λi(AS) < 0, let

λ̃n−(|S|−i)(A) = n
s · λi(AS), and let λ̃i(A) = 0 for all other i, we will have for all i,∣∣∣λ̃i(A)− λi(Ao)

∣∣∣ ≤ 3εn.

Finally by definition, for all i, |λi(A) − λi(Ao)| ≤ ε
√
δn ≤ εn and thus, via triangle inequality,∣∣∣λ̃i(A)− λi(A)

∣∣∣ ≤ 4εn. This gives our final error bound after adjusting constants on ε.

Recall that we require s ≥ c log(1/(εδ))·log3 n

ε3
√
δ

for the outer eigenvalue bound of (9) to hold with

probability 1 − δ. We require s ≥ c logn
ε2δ

for ‖Am,S‖2 ≤ ε/2 · s to hold with probability 1 − δ by
Lemma 4. Thus, for both conditions to hold simultaneously with probability 1 − 2δ by a union
bound, if suffices to set s = c log(1/(εδ))·log3 n

ε3δ
≥ max

(
c log(1/(εδ))·log3 n

ε3
√
δ

, c logn
ε2δ

)
, where we use that

log(1/(εδ) ≤ O(log n), as otherwise our algorithm can take AS to be the full matrix A. Adjusting
δ to δ/2 completes the theorem.

Remark: The proof of Lemma 3 and consequently, Theorem 1 can be modified to give better
bounds for the case when the eigenvalues of Ao lie in a bounded range – between εa

√
δn and εbn

where 0 ≤ b ≤ a ≤ 1. See Theorem 9 in Appendix C for details. For example, if all the top
eigenvalues are equal, one can show that s = Õ

(
log2 n
ε2

)
suffices to give ±εn error, nearly matching

the lower bound of [BCJ20]. This seems to indicate that improving Theorem 1 in general requires
tackling the case when the outlying eigenvalues in Λo have a wide range.

4 Improved Bounds via Sparsity-Based Sampling

We now prove the ±ε
√

nnz(A) approximation bound of Theorem 2, assuming the ability to sample
each row with probability proportional to nnz(Ai)

nnz(A) . Pseudocode for our algorithm is given in Algo-
rithm 2. Unlike in the uniform sampling case (Algorithm 1), we cannot simply sample a principal
submatrix of A and compute its eigenvalues. We must carefully zero out entries lying at the in-
tersection of sparse rows and columns to ensure accuracy of our estimates. A similar approach is
taken for the norm-based sampling result of Theorem 3. We defer that proof to Appendix E.

4.1 Preliminary Lemmas

Our first step is to argue that zeroing out entries in sparse rows/columns in step 5 of Algorithm 2
does not introduce significant error. We define A′ ∈ Rn×n to be the extension of A′ to the original
matrix – i.e., A′ij = 0 whenever i = j or nnz(Ai) nnz(Aj) <

ε2 nnz(A)

c2 log2 n
. Otherwise A′ij = Aij . We

argue via a strengthening of Girshgorin’s theorem that |λi(A)− λi(A′)| ≤ ε
√

nnz(A) for all i.
After this step is complete, our proof follows the same general outline as that of Theorem 1 in

Section 3. We split A′ = A′o + A′m, arguing that (1) after sampling ‖A′m,S‖2 ≤ ε
√

nnz(A) and
(2) that the eigenvalues of A′o,S are ±ε

√
nnz(A) approximations to those of A′o. In both cases, we

critically use that the rescaling factors introduced in line 4 of Algorithm 2 do not introduce too
much variance, due to the zeroing out of entries in A′.
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Algorithm 2 Eigenvalue estimator using sparsity-based sampling

1: Input: Symmetric A ∈ Rn×n with ‖A‖∞ ≤ 1, Accuracy ε ∈ (0, 1), failure prob. δ ∈ (0, 1).
nnz(Ai) for all i ∈ [n] and nnz(A).

2: Fix s = c1 log8 n
ε8δ4 where c1 is a sufficiently large constant.

3: Add each i ∈ [n] to sample set S independently, with probability pi = min
(

1, s nnz(Ai)
nnz(A)

)
. Let

the principal submatrix of A corresponding to S be AS .
4: Let AS = DASD where D ∈ R|S|×|S| is diagonal with Di,i = 1√

pj
if the ith element of S is j.

5: Construct A′S ∈ R|S|×|S| from AS as follows:

[A′S ]i,j =

{
0 if i = j or nnz(Ai) nnz(Aj) <

ε2 nnz(A)

c2 log2 n
for sufficient large constant c2

[AS ]i,j otherwise.

6: Compute the eigenvalues of A′S : λ1(A′S) ≥ . . . ≥ λ|S|(A′S).
7: For all i ∈ [|S|] with λi(A

′
S) ≥ 0, let λ̃i(A) = λi(A

′
S). For all i ∈ [|S|] with λi(A

′
S) < 0, let

λ̃n−(|S|−i)(A) = λi(A
′
S). For all remaining i ∈ [n], let λ̃i(A) = 0.

8: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

Remark: Throughout, we will assume that A does not have any rows/columns that are all 0, as
such rows will never be sampled and will have no effect on the output of Algorithm 2. Additionally,
we will assume that nnz(A) ≥ c1 log8 n

ε8δ4 , as otherwise, A has at most s = c1 log8 n
ε8δ4 non-zero rows.

Thus, rather than running Algorithm 2, we can directly compute the eigenvalues of A.

Lemma 5. Let A ∈ Rn×n be symmetric with ‖A‖∞ ≤ 1 and nnz(A) ≥ 2/ε2. Let A′ ∈ Rn×n have
A′ij = 0 if i = j or nnz(Ai) · nnz(Aj) <

ε2 nnz(A)

c2 log2 n
for a sufficiently large constant c2 and A′ij = Aij

otherwise. Then, for all i ∈ [n],

|λi(A)− λi(A′)| ≤ ε
√

nnz(A).

Proof. We consider the matrix A′′, which is defined identically to A′ except we only set A′′ij = 0 if

nnz(Ai) · nnz(Aj) <
ε2 nnz(A)

c2 log2 n
. I.e., we do not have the condition requiring setting the diagonal to

0. We will show that |λi(A)− λi(A′′)| ≤ ε/2 ·
√

nnz(A). By Weyl’s inequality, and the assumption
that nnz(A) ≥ 2/ε2, we then have |λi(A)−λi(A′)| ≤ ε/2 ·

√
nnz(A) + 1 ≤ ε ·

√
nnz(A) as required.

Let Ik ⊂ [n] be the set of rows/columns with nnz(Ai) ∈
[

nnz(A)
2k

, nnz(A)
2k−1

)
and Akl = A(Ik, Il)

be the submatrix of A formed with rows in Ik and columns in Il. Define A′′kl in the same way and
observe that A′′kl = Akl whenever 2k+l ≤ c2 nnz(A) log2 n

ε2
.

When 2k+l > c2 nnz(A) log2 n
ε2

, we may zero out some entries of Akl to produce A′′kl. Let Âkl be
equal to Akl on this set of zeroed out entries, and 0 everywhere else. Observe that (ÂklÂ

T
kl)m,: =

(Âkl)m,:Â
T
kl. Next observe that (Âkl)m,: has at most nnz(Am) ≤ nnz(A)

2k−1 non-zero entries. Similarly,
each row of ÂT

kl has at most nnz(A)
2l−1 non-zero elements. Thus, for all m ∈ |Ik|, using that ‖A‖∞ ≤ 1,

‖(ÂklÂ
T
kl)m,:‖1 ≤

nnz(A)2

2k+l−2
=

4 nnz(A)2

2k+l
.
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Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

‖Âkl‖22 = ‖ÂklÂ
T
kl‖2 ≤ max

m
‖(ÂklÂ

T
kl)m,:‖1 ≤

4 nnz(A)2

2k+l
. (13)

Let Ākl ∈ Rn×n be a symmetric matrix such that Ākl(Ik, Il) = Âkl, Ākl(Il, Ik) = Âlk, and Ākl is
zero everywhere else. By triangle inequality and the bound of (13),

‖Ākl‖2 ≤ ‖Âkl‖2 + ‖Âlk‖2 ≤
4 nnz(A)

2(k+l)/2
.

Observe that, since we assume all rows have at least one non-zero entry, nnz(Ai) ≥ 1 and nnz(A) ≤
n2. Therefore, k, l can range from 1 to log(n2) = 2 log n. By triangle inequality,

‖A−A′′‖2 ≤
∑

(k,l):2k+l>
c2 nnz(A) log2 n

ε2

‖Ākl‖

≤
2 logn∑
k=1

4ε
√

nnz(A)
√
c2 · log n

·
2 logn∑
i=1

1

2i−1

≤
16ε
√

nnz(A)
√
c2

.

Finally, setting c2 large enough and using Weyls’ inequality (Fact 4) we have the required bound:

|λi(A)− λi(A′′)| ≤ ε/2
√

nnz(A).

We next give a bound on the coherence of the outlying eigenvectors of A′. This bound is
analogous to Lemma 2, but is more refined, taking into account the sparsity of each row.

Lemma 6 (Incoherence of outlying eigenvectors in terms of sparsity). Let A,A′ ∈ Rn×n be as in
Lemma 5. Let A′o = V′oΛ

′
oV
′T
o where Λ′o is diagonal, with the eigenvalues of A′ with magnitude

≥ ε
√
δ
√

nnz(A) on its diagonal, and V′o has columns equal to the corresponding eigenvectors. Let
V′o,i denote the ith row of V′o. Then,

‖Λ′1/2o V′o,i‖22 ≤
nnz(Ai)

ε
√
δ
√

nnz(A)
and ‖V′o,i‖22 ≤

nnz(Ai)

ε2δ nnz(A)
.

Proof. The proof is nearly identical to that of Lemma 2. Observe that A′V′o = V′oΛ
′
o. Letting

[A′V′o]i denote the ith row of the A′V′o, we have

‖[A′V′o]i‖22 = ‖[V′oΛ′o]i‖22 =
r∑
j=1

λ2
j ·V

′2
o,i,j , (14)

where r = rank(A′o), V′o,i,j is the (i, j)th element of V′o and λj = Λ′o(j, j). Since V′o has orthonormal
columns, we thus have ‖[A′V′o]i‖22 ≤ ‖A′i‖22 ≤ ‖Ai‖22 ≤ nnz(Ai). Therefore, by (14),

r∑
j=1

λ2
j ·V

′2
o,i,j ≤ nnz(Ai). (15)

Since by definition |λj | ≥ ε
√
δ
√

nnz(A) for all j, we can concluse that ‖Λ
′1/2
o V′o,i‖22 =

∑r
j=1 λj ·

V
′2
o,i,j ≤

nnz(Ai)

ε
√
δ
√

nnz(A)
and ‖V′o,i‖22 =

∑r
j=1 V

′2
o,i,j ≤

nnz(Ai)
ε2δ nnz(A)

, which completes the lemma.

20



4.2 Outer and Middle Eigenvalue Bounds

Using Lemma 6, we next argue that the eigenvalues of A′o,S will approximate those of A′, and in
turn those of A. The proof is very similar to Lemma 3 in the uniform sampling case.

Lemma 7 (Concentration of outlying eigenvalues with sparsity-based sampling). Let A,A′ ∈ Rn×n
be as in Lemmas 5 and 6. Let A′ = A′m + A′o, where A′m = V′mΛ′mV′Tm, and A′o = V′oΛ

′
oV
′T
o are

projections onto the eigenspaces with magnitude < ε
√
δ
√

nnz(A) and ≥ ε
√
δ
√

nnz(A) respectively
(analogous to Definition 1.1) As in Algorithm 2, for all i ∈ [n] let pi = min

(
1, s nnz(Ai)

nnz(A)

)
and let

S̄ be a scaled diagonal sampling matrix such that the S̄ii = 1√
pi

with probability pi and S̄ii = 0

otherwise. If s ≥ c log(1/(εδ))

ε3
√
δ

for a large enough constant c, then with probability at least 1 − δ,

‖Λ
′1/2
o V

′T
o S̄S̄TV′oΛ

′1/2
o −Λ′o‖2 ≤ ε

√
nnz(A).

Proof. Define E = Λ
′1/2
o V

′T
o S̄S̄TV′oΛ

′1/2
o − Λ′o. For all i ∈ [n], let Vo,i be the ith row of V′o and

define the matrix valued random variable

Yi =

{
1
pi

Λ
′1/2
o V′o,iV

′T
o,iΛ

′1/2
o , with probability pi

0 otherwise.
(16)

Define Qi = Yi − E [Yi]. We can observe that Q1,Q2, . . . ,Qn are independent random variables
and that

∑n
i=1 Qi = Λ

′1/2
o V

′T
o S̄S̄TV′oΛ

′1/2
o − Λ′o = E. Let P = {i ∈ [n] : pi < 1}. Then, observe

that
∑

i∈[n]\P Qi = 0. So, E =
∑

i∈P Qi. Then, similar to the proof of Lemma 3, we need to bound

‖Qi‖2 for all i ∈ P and Var(E)
def
= E(EET ) = E(ETE) =

∑
i∈P E[Q2

i ] using the improved row norm
bounds of Lemma 5. In particular, we have

∑
i∈P

E[Q2
i ] =

∑
i∈P

[
pi ·
(

1

pi
− 1

)2

+ (1− pi)

]
· (Λ1/2

o Vo,iV
T
o,iΛoVo,iV

T
o,iΛ

1/2
o )

�
∑
i∈P

1

pi
· ‖Λ1/2

o Vo,i‖22 · (Λ1/2
o Vo,iV

T
o,iΛ

1/2
o ). (17)

By Lemma 5, ‖Λ1/2
o Vo,i‖22 ≤

nnz(Ai)

ε
√
δ
√

nnz(A)
. Plugging back into (17),

∑
i∈P

E[Q2
i ] �

∑
i∈P

1

pi
· nnz(Ai)

ε
√
δ
√

nnz(A)
· (Λ1/2

o Vo,iV
T
o,iΛ

1/2
o )

�
√

nnz(A)

sε
√
δ

(
∑
i∈P

Λ1/2
o Vo,iV

T
o,iΛ

1/2
o )

=

√
nnz(A)

sε
√
δ

Λo �
nnz(A)

sε
√
δ
· I.

Since Q2
i is PSD this establishes that v ≤ ‖Var(E)‖2 ≤ nnz(A)

sε
√
δ
. Since there are at most nnz(A)

δε2 nnz(A)
=

1
ε2δ

eigenvalues with absolute value ≥ ε
√
δ
√

nnz(A), we can apply the matrix Bernstein inequality
exactly as in the proof of Lemma 3 with d = 1

ε2δ
to show that when s ≥ c log(1/(εδ))

ε3
√
δ

for large enough

c, with probability at least 1− δ, ‖E‖2 ≤ ε
√

nnz(A).
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We next bound the spectral norm of A′m,S . This is the most challenging part of the proof – the
rows of this matrix are sampled non-uniformly and scaled proportional to their inverse sampling
probabilities, so we cannot apply existing bounds on the spectral norms of uniformly sampled ran-
dom submatrices [RV07]. We extend these bounds to the non-uniform case, critically using that en-
tries which would be scaled up significantly after sampling (i.e. those lying in sparse rows/columns),
have already been set to 0 in A′m,S , and thus do not contribute to the spectral norm.

Lemma 8 (Concentration of middle eigenvalues with sparsity-based sampling). Let A,A′ ∈ Rn×n
be as in Lemmas 5 and 6. Let A′ = A′m + A′o, where A′m = V′mΛ′mV′Tm, and A′o = V′oΛ

′
oV
′T
o are

projections onto the eigenspaces with magnitude < ε
√
δ
√

nnz(A) and ≥ ε
√
δ
√

nnz(A) respectively
(analogous to Definition 1.1). As in Algorithm 2, for all i ∈ [n] let pi = min

(
1, s nnz(Ai)

nnz(A)

)
and

let S̄ be a scaled diagonal sampling matrix such that the S̄ii = 1√
pi

with probability pi and S̄ii = 0

otherwise. If s ≥ c log8 n
ε8δ4 for a large enough constant c, then with probability at least 1− δ,

‖S̄A′mS̄‖2 ≤ ε
√

nnz(A).

Proof. The initial part of the proof follows the outline of proof of the spectral norm bound for
uniformly random submatrices (Theorem 4) of [Tro08a]. From Lemma 6, we have ‖V′o,i‖2 ≤√

nnz(Ai)

ε
√
δ
√

nnz(A)
. Also, following the proof of Lemma 6, we have ‖Λ′oV′To,j‖2 = ‖[A′V′o]j‖2 ≤

√
nnz(Aj).

Thus, for all i, j ∈ [n], using Cauchy Schwarz’s inequality, we have

|A′o,i,j | = |V′o,iΛ′oV′To,j | ≤ ‖V′o,i‖2 · ‖Λ′oV′
T
o,j‖2 ≤

√
nnz(Ai)

ε
√
δ
√

nnz(A)
·
√

nnz(Aj). (18)

Let A′m = Hm + Dm where Hm and Dm contain the off-diagonal and diagonal elements of A′m
respectively. Note that while A′ is zero on the diagonal, A′m may not be. We have:

E2‖S̄A′mS̄‖2 ≤ E2‖S̄HmS̄‖2 + E2‖S̄DmS̄‖2.

Using Lemma 1 (decoupling) on E2‖SHmS̄‖2, we get

E2‖S̄A′mS̄‖2 ≤ 2E2‖S̄HmŜ‖2 + E2‖S̄DmS̄‖2, (19)

where Ŝ is an independent copy of S̄. Upper bounding the rank of Hm as n and applying Theorem
5 twice to E2‖S̄HmŜ‖2, once for each operator, we get

E2‖S̄HmŜ‖2 ≤ 5
√

log nE2‖S̄HmŜ‖1→2 + E2‖ŜHm‖2
≤ 5
√

log nE2‖S̄HmŜ‖1→2 + 5
√

log nE2‖HmŜ‖1→2 + ‖Hm‖2. (20)

Plugging (20) into (19), we have:

E2‖S̄A′mS̄‖2 ≤ 10
√

log n
(
E2‖S̄HmŜ‖1→2 + E2‖HmŜ‖1→2

)
+ 2‖Hm‖2 + E2‖S̄DmS̄‖2 (21)

We now proceed to bound each of the terms on the right hand side of (21). We start with
E2‖S̄DmS̄‖2. First, observe that E2‖S̄DmS̄‖2 ≤ maxi

1
pi
|(Dm)ii|. We consider two cases.
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Case 1: pi < 1. Then, pi = s nnz(Ai)
nnz(A) and |(Dm)ii| = |(A′m)ii| = |(A′o)ii| (since A′ii = 0). Then by

(18), we have 1
pi
|(Dm)ii| ≤

√
nnz(A)

sε
√
δ

.

Case 2: pi = 1. Then we have 1
pi
|(Dm)ii| = |(Dm)ii| ≤ maxj |(Dm)jj | ≤ ‖A′m‖2 ≤ ε

√
δ
√

nnz(A).
From the two cases above, for s ≥ 1

ε2δ
, we have:

E2‖S̄DmS̄‖2 ≤ ε
√
δ
√

nnz(A). (22)

We can bound ‖Hm‖2 similarly. Since Hm = A′m −Dm and ‖A′m‖2 ≤ ε
√
δ
√

nnz(A),

‖Hm‖2 ≤ ‖A′m‖2 + ‖Dm‖2
≤ ε
√
δ
√

nnz(A) + ε
√
δ
√

nnz(A)

= 2ε
√
δ
√

nnz(A) (23)

where the second step follows from the fact that ‖Dm‖2 ≤ maxi|(Dm)ii| ≤ ‖A′m‖2.
We next bound the term E2‖HmŜ‖1→2. Observe that E2‖HmŜ‖1→2 ≤ maxi ‖A′m,i‖2√

pi
, where

A′m,i is the ith column/row of A′m. We again consider the two cases when pi = 1 and pi < 1:
Case 1: pi = 1. Then ‖A′m,i‖2 ≤ ‖A′m‖2 ≤ ε

√
δ
√

nnz(A).
Case 2: pi < 1. Then ‖A′m,i‖2 ≤ ‖A′i‖2 ≤

√
nnz(Ai). Thus, setting s ≥ 1

ε2δ
we have:

‖A′m,i‖2√
pi

≤

√
nnz(A)

s nnz(Ai)
· ‖A′i‖2

≤
√

nnz(A)

s
≤ ε
√
δ
√

nnz(A).

Thus, from the two cases above, for all i ∈ [n], adjusting ε by a 1√
logn

factor, we have for s ≥ logn
ε2δ

:

E2‖HmŜ‖1→2 ≤
ε
√
δ
√

nnz(A)√
log n

. (24)

Overall, plugging (22), (23), and (24) back into (21), we have :

E2‖S̄A′mS̄‖2 ≤ 10
√

log n · E2‖S̄HmŜ‖1→2 + 15ε
√
δ
√

nnz(A). (25)

It remains to bound E2‖S̄HmŜ‖1→2, which is the most complex part of the proof. Since Ŝ is
an independent copy of S̄, we denote the norm of the ith column of S̄HmŜ as ‖(S̄Hm):,i‖2√

pi
. Then

E2‖S̄HmŜ‖1→2 ≤ E2

(
maxi:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
. We will argue that maxi:i∈[n]

‖(S̄Hm):,i‖2√
pi

is bounded

by ε
√
δ
√

nnz(A) with probability 1 − 1/ poly(n). Since our sampling probabilities are all at least
1/n2 and since ‖Hm‖F ≤ ‖A‖F ≤ n, this value is also deterministically bounded by n2. Thus, our
high probability bound implies the needed bound on E2

(
maxi:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
.

We begin by observing that since A′m = Hm + Dm, ‖(S̄A′m):,i‖2 ≥ ‖(S̄Hm):,i‖2, and so to
bound maxi:i∈[n]

‖(S̄Hm):,i‖2√
pi

, it suffices to bound ‖(S̄A′m):,i‖2√
pi

for all i ∈ [n]. Towards this end, for a
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fixed i and any j ∈ [n], define

zj =

{
1
pj
|A′m,i,j |2 with probability pj

0 otherwise.

Then
∑n

j=1 zj = ‖(S̄A′m):,i‖22 and E[
∑n

j=1 zj ] = ‖A′m,i‖22 ≤ ‖A′i‖22 ≤ nnz(Ai). Since
∑n

j=1 zj =

‖(S̄A′m):,i‖22 is a sum of independent random variables, we can bound this quantity by applying
Bernstein’s inequality. To do this, we must bound |zj | for all j ∈ [n] and Var

(∑n
j=1 zj

)
. We will

again consider the cases of pi < 1 and pi = 1 separately.
Case 1: pi < 1. Then, we have pi = s nnz(Ai)/ nnz(A). If A′i,j 6= 0 then

|zj | ≤
1

pj
|A′m,i,j |2 ≤ max

(
1,

nnz(A)

s nnz(Aj)

)
|A′m,i,j |2

≤ |A′m,i,j |2 +
2 nnz(A)

s nnz(Aj)

(
|A′i,j |2 + |A′o,i,j |2

)
≤ |A′m,i,j |2 +

2 nnz(A)

s nnz(Aj)

(
|A′i,j |2 +

nnz(Ai) nnz(Aj)

ε2δ nnz(A)

)
≤ |A′m,i,j |2 +

2 nnz(A)

s nnz(Aj)
|A′i,j |2 +

2 nnz(Ai)

ε2δs
,

where the fourth inequality uses (18). By the thresholding procedure which defines A′, if A′ij 6= 0,

nnz(Ai) · nnz(Aj) ≥
ε2 nnz(A)

c2 log2 n
⇒ nnz(Aj) ≥

ε2 nnz(A)

c2 log2 n nnz(Ai)
, (26)

and thus for pi < 1 and A′ij 6= 0 we have

|zj | ≤ |A′m,i,j |2 +
2c2 log2 n nnz(Ai)

sε2
+

2 nnz(Ai)

ε2δs
.

If A′i,j = 0 then we simply have

|zj | ≤ |A′m,ij |2 +
nnz(Ai)

sε2δ
.

Overall for all j ∈ [n],

|zj | ≤ |A′m,i,j |2 +
2 nnz(Ai)

sε2δ
+

2c2 log2 n nnz(Ai)

sε2
, (27)

and since |A′m,i,j |2 ≤
∑n

j=1 |A′m,i,j |2 = ‖A′m,i‖22 ≤ ‖A′i‖22 ≤ nnz(Ai),

|zj | ≤ nnz(Ai) +
2 nnz(Ai)

sε2δ
+

2c2 log2 n nnz(Ai)

sε2
. (28)

For s ≥ c
(

log2 n
ε2

+ 1
ε2δ

)
and large enough c, we thus have |zj | ≤ 2 nnz(A).
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We next bound the variance by:

Var

 n∑
j=1

zj

 ≤ n∑
j=1

E[z2
j ] ≤

n∑
j=1

pj
1

p2
j

|A′m,i,j |4

=
n∑
j=1

max

(
1,

nnz(A)

s nnz(Aj)

)
|A′m,i,j |4

≤
n∑
j=1

|A′m,i,j |4 +
n∑
j=1

12 nnz(A)

s nnz(Aj)

(
|A′i,j |4 + |A′o,i,j |4

)
≤ ‖A′m,i‖42 +

n∑
j=1

12 nnz(A)

s nnz(Aj)

(
|A′i,j |4 +

nnz(Ai)
2 nnz(Aj)

2

ε4δ2 nnz(A)2

)
,

where the last inequality uses (18). Now since A′ii = 0 for all i and ‖A′‖∞ ≤ 1 we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i‖42 +
∑

j:A′i,j 6=0

12 nnz(A)

s nnz(Aj)
+

n∑
j=1

12 nnz(Ai)
2 nnz(Aj)

sε4δ2 nnz(A)
. (29)

Combining (26) with the second term to the right of (29) we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i‖42 +
∑

j:A′i,j 6=0

12c2 log2 n · nnz(Ai)

sε2
+

n∑
j=1

12 nnz(Ai)
2 nnz(Aj)

sε4δ2 nnz(A)
,

and since |{j : A′i,j 6= 0}| = nnz(Ai), we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i‖42 +
12c2 log2 n · nnz(Ai)

2

sε2
+

n∑
j=1

12 nnz(Ai)
2 nnz(Aj)

sε4δ2 nnz(A)
. (30)

Finally since
∑n

j=1 nnz(Aj) = nnz(A) and ‖A′m,i‖42 ≤ ‖A′i‖42 ≤ nnz(Ai)
2 we have

Var

 n∑
j=1

zj

 ≤ nnz(Ai)
2 +

12c2 log2 n · nnz(Ai)
2

sε2
+

12 nnz(Ai)
2

sε4δ2
. (31)

For s ≥ c
(

log2 n
ε2

+ 1
ε4δ2

)
for large enough c, we have Var

(∑n
j=1 zj

)
≤ 2 nnz(Ai)

2.

Therefore, using (28) and (31) with s ≥ c
(

log2 n
ε2

+ 1
ε4δ2

)
, we can apply Bernstein inequality (Theo-

rem 7) (for some constant c) to get

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + t

)
≤ P

 n∑
j=1

zj ≥ nnz(Ai) + t


≤ exp

(
−t2/2

c nnz(Ai)2 + ct nnz(Ai)/3

)
.
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If we set t = log n · nnz(Ai), for some constant c′ we have

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + log n · nnz(Ai)

)
≤ exp

(
−(log n)2/2

c+ c(log n)/3

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

Since A′m = Hm + Dm, we have ‖(S̄A′m):,i‖2 ≥ ‖(S̄Hm):,i‖2. Then with probability at least
1− 1/nc

′ ≥ 1− δ, for any row i with pi < 1, we have

1

pi
· ‖(S̄Hm):,i‖22 ≤

nnz(A)

s nnz(Ai)
· c(log n) nnz(Ai) ≤

ε2δ nnz(A)

log n
,

for s ≥ c
(

log2 n
ε2

+ 1
ε4δ2

)
for large enough c. Observe that, as in Lemma 3 w.l.o.g. we have assumed

1− nc′ ≥ 1− δ, since otherwise, our algorithm would read all n2 entries of the matrix.
Case 2: pi = 1. Then, we have nnz(Ai) ≥ nnz(A)/s. As in the pi < 1 case, we have from (27):

|zj | ≤ |A′m,i,j |2 +
2 nnz(Ai)

sε2δ
+

2c2 log2 n nnz(Ai)

sε2
.

Now, we observe that |A′m,i,j |2 ≤
∑n

j=1 |A′m,i,j |2 ≤ ‖A′m,i‖22 ≤ ‖A′‖22 ≤ ε2δ nnz(A), which gives us

|zj | ≤ ε2δ nnz(A) +
2 nnz(Ai)

sε2δ
+

2c2 log2 n nnz(Ai)

sε2
. (32)

Thus, for s ≥ c
(

log2 n
ε4δ

+ 1
ε4δ2

)
for a large enough constant c and adjusting for other constants we

have |zj | ≤ 2ε2δ nnz(A). Also observe that the expectation of
∑
zj can be bounded by:

E

 n∑
j=1

zj

 = E‖(S̄A′m):,i‖22 = ‖A′m,i‖22 ≤ ‖A′m‖22 ≤ ε2δ nnz(A).

Next, the variance of the sum of the random variables {zj} can again be bounded by following the
analysis presented in and prior to (30) and (31) we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i,j‖42 +
12c2 log2 n · nnz(Ai)

2

sε2
+

12 nnz(Ai)
2

sε4δ2

≤ ε4δ2 nnz(A)2 +
12c2 log2 n · nnz(Ai)

2

sε2
+

12 nnz(Ai)
2

sε4δ2
, (33)

where we again bound ‖A′m,i,j‖42 using

|A′m,i,j |2 ≤
n∑
j=1

|A′m,i,j |2 ≤ ‖A′m,i‖22 ≤ ‖A′‖22 ≤ ε2δ nnz(A).

Then for s ≥ c( log2 n
ε6δ2 + 1

ε8δ4 ), we have Var
(∑n

j=1 zj

)
≤ 2ε4δ2 nnz(A)2 for large enough constant c.
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Using (32) and (33) and noting that
∑n

j=1 E
(
z2
j

)
≥ Var

(∑n
j=1 zj

)
− E2

(∑n
j=1 zj

)
we can apply

the Bernstein inequality (Theorem 7):

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + t

)
≤ P

 n∑
j=1

zj ≥ ε2δ nnz(Ai) + t


≤ exp

(
−t2/2

cε4δ2 nnz(A)2 + cε2δ nnz(A)t/3

)
.

If we set t = (log n)ε2δ nnz(A), then for some constant c′ we have

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + t

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

This, since ‖(S̄Hm):,i‖22 ≤ ‖(S̄A′m):,i‖22, when pi = 1, setting s ≥ c( log2 n
ε6δ2 + 1

ε8δ4 ) for large enough c, we
have with probability ≥ 1−1/nc

′ 1
pi
‖(S̄Hm):,i‖22 = ‖(S̄Hm):,i‖22 ≤ ‖(S̄A′m):,i‖22 ≤ (log n)ε2δ nnz(A).

We thus have, that with probability ≥ 1 − 1/nc
′ , for both cases when pi < 1 and pi = 1,

‖(S̄Hm):,i‖22
pi

≤ (log n)ε2δ nnz(A). Taking a union bound over all i ∈ [n], with probability at least

1− 1/nc
′−1, maxi

‖(S̄Hm):,i‖2√
pi

≤
√

log nε
√
δ
√

nnz(A) for s ≥ c( log2 n
ε6δ2 + 1

ε8δ4 ). As stated before, since

pi ≥ 1
n2 for all i ∈ [n], and since ‖Hm‖F ≤ ‖A‖F ≤ n, we also have maxi

‖(S̄Hm):,i‖2√
pi

≤ n2. Thus,

E2

(
max
i:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤
√

log nε
√
δ
√

nnz(A)(1− 1

nc′−1
) +

1

nc′−3
≤
√

log nε
√
δ
√

nnz(A).

after adjusting ε by at most some constants. Overall, we finally get

E2‖S̄HmŜ‖1→2 ≤ E2

(
max
i:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤ ε
√

log n
√
δ
√

nnz(A).

Plugging this bound into (25), we have for s ≥ c( log2 n
ε6δ2 + 1

ε8δ4 ),

E2‖S̄A′mS̄‖2 ≤ (log n)ε
√
δ
√

nnz(A).

Finally after adjusting ε by a 1
logn factor, we have for s ≥ c( log8 n

ε6δ2 + log8 n
ε8δ4 ) or s ≥ c log8 n

ε8δ4 ,

E2‖S̄A′mS̄‖2 ≤ ε
√
δ
√

nnz(A).

The final bound then follows via Markov’s inequality on ‖S̄A′mS̄‖2.

4.3 Main Accuracy Bound

We are finally ready to prove our main result for sparsity-based sampling, which we restate below.

Theorem 2 (Sparse Matrix Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the ith

index independently with probability pi = min
(

1, s nnz(Ai)
nnz(A)

)
as in Algorithm 2. Here nnz(Ai) is the

number of non-zero entries in the ith row of A. Let AS be the corresponding principal submatrix of
A, and let λ̃i(A) be the estimate of λi(A) computed from AS as in Algorithm 2. If s ≥ c log8 n

ε8δ4 , for
large enough constant c, then with probability ≥ 1− δ, for all i ∈ [n], |λ̃i(A)−λi(A)| ≤ ε

√
nnz(A).
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Proof. With Lemmas 7 and 8 in place, the proof is nearly identical to that of Theorem 1, with the
additional need to apply Lemma 5 to show that the eigenvalues of A′ are close to those of A.

For all i ∈ [n] let pi = min
(

1, s nnz(Ai)
nnz(A)

)
and let S̄ be a scaled diagonal sampling matrix such

that the S̄ii = 1√
pi

with probability pi and S̄ii = 0 otherwise. Let A′ be the matrix constructed
from A by zeroing out its elements as described in Lemma 5. Then, note that S̄A′S̄ = A′S where
A′S is the submatrix constructed as in Algorithm 2. We first show that the eigenvalues of A′S
approximate those of A′ up to error ε

√
nnz(A). The steps are almost identical to those in the proof

of Theorem 1. We provide a brief outline of the steps but skip the details.
We split A′ as A′ = A′o + A′m where A′o and A′m contain eigenvalues of A′ of magnitudes

< ε
√
δ
√

nnz(A) and≥ ε
√
δ
√

nnz(A). This implies A′S = A′o,S + A′m,S where A′o,S = S̄A′oS̄ and
A′m,S = S̄A′mS̄. By Fact 1 we have that the nonzero eigenvalues of A′o,S = S̄V′oΛ

′
oV
′T
o S̄ are identical

to those of Λ
′1/2
o V

′T
o S̄S̄V′oΛ

′1/2
o . Thus, applying the perturbation bound of Fact 4, we have:∣∣∣λi(Λ′1/2o V

′T
o S̄S̄V′oΛ

′1/2
o )− λi(Λ′o)

∣∣∣ ≤ C log n‖Λ′1/2o V
′T
o S̄S̄V′oΛ

′1/2
o −Λ′o‖2.

From Lemma 7, we get ‖Λ
′1/2
o V

′T
o S̄S̄V′oΛ

′1/2
o −Λ′o‖2 ≤ ε

√
nnz(A) for s ≥ c log(1/(εδ))

ε3
√
δ

with proba-

bility at least 1− δ. Thus, setting the error parameter to ε
logn in Lemma 7, for s ≥ c log(1/(εδ)) log3 n

ε3
√
δ

,
with probability at least 1− δ we have:∣∣∣λi(Λ′1/2o V

′T
o S̄S̄V′oΛ

′1/2
o )− λi(Λ′o)

∣∣∣ < ε
√

nnz(A). (34)

We have thus shown that the non-zero eigenvalues of A′o,S approximate all outlying eigenvalues of
A′. Note that by Lemma 8, we also have ‖A′m,S‖2 ≤ ε

√
nnz(A) with probability at least 1− δ for

s ≥ c log8 n
ε8δ4 . Then, similarly to the section on eigenvalue alignment of Theorem 1, we can argue how

these approximations ‘line up’ in the presence of zero eigenvalues in the spectrum of these matrices,
concluding that, for all i ∈ [n], ∣∣∣λ̃i(A)− λi(A′)

∣∣∣ ≤ ε√nnz(A).

Finally, by Lemma 5, we have |λi(A′) − λi(A)| ≤ ε
√

nnz(A) for all i ∈ [n]. Thus, via triangle
inequality,

∣∣∣λ̃i(A)− λi(A)
∣∣∣ ≤ 2ε

√
nnz(A), which gives the required bound after adjusting ε to ε/2.

Recall that we require s ≥ c log(1/(εδ))·log3 n

ε3
√
δ

for (34) to hold with probability 1 − δ. We also

require s ≥ c log8 n
ε8δ4 for ‖A′m,S‖2 ≤ ε

√
nnz(A) to hold with probability 1− δ by Lemma 8. Thus, for

both conditions to hold simultaneously with probability 1− 2δ by a union bound, it suffices to set
s = c log8 n

ε8δ4 ≥ max
(
c log(1/(εδ))·log3 n

ε3
√
δ

, c log8 n
ε8δ4

)
, where we use that log(1/(εδ) ≤ O(log n), as otherwise

our algorithm can take AS to be the full matrix A. Adjusting δ to δ/2 completes the theorem.

5 Empirical Evaluation

We complement our theoretical results by evaluating Algorithms 1 (uniform sampling) and Algo-
rithm 2 (sparsity-based sampling) in approximating the eigenvalues of several symmetric matrices.
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We defer an evaluation of Algorithm 3 (norm-based sampling) to later work. Algorithm 1 and
Algorithm 2 perform very well. They seem to have error dependence roughly 1/ε2 in practice, as
compared to the 1/ε3 dependence proven in Theorem 1 and 1/ε8 dependence in Theorem 2. Closing
the gap between the theory and observed results would be very interesting.

5.1 Datasets

We test Algorithm 1 (uniform sampler) on three dense matrices. We also compare the relative
performance of Algorithm 1 and Algorithm 2 (sparsity sampler) on three other synthetic and real
world matrices.

The first two dense matrices, following [CNX21], are created by sampling 5000 points from a
binary image. We then normalize all the points in the range [0, 1] in both axes. The original image
and resulting set of points are shown in Figure 2. We then compute a similarity matrix for the points
using two common similarity functions used in machine learning and computer graphics: δ(x,y) =

tanh
(
〈x,y〉

2

)
, the hyperbolic tangent; and δ(x,y) = ‖x− y‖22 · log

(
‖x− y‖22

)
, the thin plane spline.

These measures lead to symmetric, indefinite, and entrywise bounded similarity matrices.
Our next dense matrix (called the block matrix) is based on the construction of the hard instance

for the lower bound in [BCJ20] which shows that we need Ω(1/ε2)×Ω(1/ε2) samples to compute εn
approximations to the eigenvalues of a bounded entry matrix. It is a 5000× 5000 matrix containing
a 2500×2500 principal submatrix of all 1s, with the rest of the entries set to 0. It has λ1(A) = 2500
and all other eigenvalues equal to 0.

We now describe the three matrices used to compare Algorithm 1 and Algorithm 2. All three are
graph adjacency matrices, which are symmetric, indefinite, entrywise bounded and sparse. Spectral
density estimation for graph structured matrices is an important primitive in network analysis
[DBB19]. The first is a dense Erdös-Rényi graph with 5000 nodes and connection probability 0.1.
The second two are real world graphs, taken from SNAP [LK14]; namely Facebook [ML12] and Arxiv
COND-MAT [LKF07]. The Facebook graph contains 4039 nodes and 88234 directed edges. We
symmetrize the adjacency matrix. Arxiv COND-MAT is a collaboration network between authors
of Condensed Matter papers published on arXiv, containing 23133 nodes and 93497 undirected
edges. Both these graphs are very sparse – the number of edges is ≤ 1% of the total edges in a
complete graph with same number of nodes.
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Figure 2: Kong dataset. The image on the left is the original synthetic binary image and the image
on the right shows the 5000 sampled points from the outline used as dataset in our experiments.
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5.2 Implementation Details

Apart from uniform random sampling (Algorithm 1), we also apply the sparsity-based sampling
technique in Algorithm 2 and a modification to Algorithm 2, where we do not zero out the elements
of the sampled submatrix AS (we call this simple sparsity sampler ). In practice, to apply Algorithm
2, we zero out element [AS ]i,j (line 5 of Algorithm 2) if i = j or nnz(Ai) nnz(Aj) <

nnz(A)
c2s

, where
c2 is a constant and s is the size of the sample. We set c2 = 0.1 experimentally as this results in
consistent behavior across datasets.

5.3 Experimental Setup

We subsample each matrix and compute its eigenvalues using numpy [Com21]. We then use
our approximation algorithms to estimate the eigenvalues of A by scaling the eigenvalues of the
sampled submatrix. For t trials, we report the logarithm of the average absolute scaled error,

log

(
1
t

∑ |λ̃i,t(A)−λi(A)|√
nnz(A)

)
, where λ̃i,t(A) is the estimated eigenvalue in the tth trial, λi(A) is the true

eigenvalue and nnz(A) is the number of non-zero elements in A. Recall that
√

nnz(A) ≥ ‖A‖F
is an upper bound on all eigenvalue magnitudes. Also note that for the fully dense matrices,√

nnz(A) ≈ n.
We repeat our experiments for t = 50 trials at different sampling rates and aggregate the

results. The resultant errors of estimation for dense matrices are plotted in Figure 3 and for the
graph matrices are plotted in Figure 4. The x-axis is the log proportion of the number of random
samples chosen from the matrix. If we sample 1% of the rows/columns, then the log comes to
around −4.5. In these log-log plots, if the sample size has polynomial dependence on ε, e.g., εn or
ε
√

nnz(A) error is achieved with sample size proportional to 1/εp, we expect to see error falling off
linearly, with slope equal to −1/p where p is the exponent on ε.

As a baseline we also show the error if we approximate all eigenvalues with 0 which results in
an error of λi√

nnz(A)
. This helps us to observe how the approximation algorithms perform for both

large and small order eigenvalues, as opposed to just approximating everything by 0.
Code. All codes are written in Python and available at https://github.com/archanray/
eigenvalue_estimation.

5.4 Summary of Results

Our results are plotted in Figures 3 and 4. We observe relatively small error in approximating all
eigenvalues, with the error decreasing as the number of samples increases. What is more interesting
is that the relationship between sample size and error εn seems to be generally on the order of
1/ε2, our expected lower bound for approximating eigenvalues by randomly sampling a principal
submatrix. This can be seen by observing the slope of approximately −1/2 on the log-log error
plots. In some cases, we do better in approximating small eigenvalues of A – if the eigenvalue lies
well within the range of middle eigenvalues, i.e. {−εn, εn}), we may achieve a very good absolute
error estimate simply by approximating it to 0.

As expected, on the graph adjacency matrices (in Figure 4), sparsity-based sampling techniques
generally achieve better error than uniform sampling. For the Erdös-Rényi graph, we expect the
node degrees (and hence row sparsities) to be similar. Thus the sampling probability for each
row will be roughly uniform, which leads to similar performance of sparsity-based techniques and
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uniform sampling. For the real world graphs, which have power law degree distributions, sparsity-
based sampling techniques has a significant effect. As a result Algorithm 2, and the simple sparsity
sampler variant significantly outperform uniform sampling.

Algorithm 2 almost always dominates simple sparsity sampler. In some cases simple sparsity
sampler performs better or equivalent to Algorithm 2. This may happen because for two reasons:
1) if Algorithm 2 zeroes out almost all of the sampled submatrix AS for small samples, the algo-
rithm will underestimate the corresponding eigenvalue, and 2) the cut-off threshold for the term
nnz(Ai) nnz(Aj) may be too high leading to no difference between simple sparsity sampler and
Algorithm 2.

We also observe that approximating all eigenvalues with 0 results in very good approximation
for small eigenvalues of the Erdös-Rényi graph. We believe this is because the smaller eigenvalues
are significantly less than the largest eigenvalue (of the order of 3500). We see similar trends of
approximating eigenvalues with zero for the real world graphs too. But since eigenvalues at the
extreme spectrum are of a larger order, we see reasonably good approximation for the sampling
algorithms. Algorithm 2 outperforms approximation by 0 in all of these cases.

In the dense matrices uniform sampling almost always outperforms approximation by 0 when
estimating any reasonably large eigenvalues. Additionally, note that the block matrix is rank-1
with true eigenvalues {2500, 0, . . . , 0}. Any sampled principal submatrix will also have rank at most
1. Thus, outside the top eigenvalue, the submatrix will have all zero eigenvalues. So, in theory,
our algorithm should give perfect error for all eigenvalues outside the top – we see that this is
nearly the case. The very small and sporadic error in the plots for these eigenvalues arises due to
numerical roundoff in the eigensolver. The only non-trivial approximation for this matrix is for the
top eigenvalue. This approximation seems to have error dependency around 1/ε2, as expected.

6 Conclusion

We present efficient algorithms for estimating all eigenvalues of a symmetric matrix with bounded
entries up to additive error εn, by reading just a poly(log n, 1/ε)×poly(log n, 1/ε) random principal
submatrix. We give improved error bounds of ε

√
nnz(A) and ε‖A‖F when the rows/columns are

sampled with probabilities proportional to their sparsities or squared `2 norms, respectively.
As discussed, our work leaves several open questions. In particular, it is open if our query

complexity for ±εn approximation can be improved, possibly to Õ(logc n/ε4) total entries using
principal submatrix queries or Õ(logc /ε2) entries using general queries. The later bound is open
even when A is PSD, a setting where we know that sampling a O(1/ε2)×O(1/ε2) principal submatrix
(with O(1/ε4) total entries) does suffice. Additionally, it is open if we can achieve sample complexity
independent of n, by removing all log n factors, as have been done for the easier problem of testing
positive semidefiniteness [BCJ20]. See Section 1.4 for more details.

It would also be interesting to extend our results to give improved approximation bounds for
other properties of the matrix spectrum, such as various Schatten-p norms and spectral summaries.
For many of these problems large gaps in understanding exist – e.g., for ±n3/2 approximation to the
Schatten-1 norm, which requires Ω(n) queries, but for which no o(n2) query algorithm is known.
Applying our techniques to improve sublinear time PSD testing algorithms under an `2 rather than
`∞ approximation requirement [BCJ20] would also be interesting. Finally, it would be interesting
to identify additional assumptions on A or on the sampling model where stronger approximation
guarantees (e.g., relative error) can be achieved in sublinear time.
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(a) Hyperbolic tangent similarity matrix.

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5
Log sampling rate

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

Lo
g 

of
 a

ve
ra

ge
 sc

al
ed

 a
bs

ol
ut

e 
er

ro
r

Kong: largest eigenvalue

uniform random sample
approximation by 0

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5
Log sampling rate

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

Lo
g 

of
 a

ve
ra

ge
 sc

al
ed

 a
bs

ol
ut

e 
er

ro
r

Kong: smallest eigenvalue

uniform random sample
approximation by 0

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5
Log sampling rate

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

Lo
g 

of
 a

ve
ra

ge
 sc

al
ed

 a
bs

ol
ut

e 
er

ro
r

Kong: fourth largest eigenvalue

uniform random sample
approximation by 0

(b) Thin plane spline similarity matrix.
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(c) Block matrix.

Figure 3: Approximation error of eigenvalues of dense matrices. Log scale absolute er-
ror vs. log sampling rate for Algorithm 1 and and approximation by 0, as described in Sec-
tion 5.3, for approximating the largest, smallest and fourth largest of three of the example ma-
trices. The corresponding true eigenvalues for each matrix in-order are: (hyperbolic tangent)
{4.52e+03,−7.85e+00, 3.18e−01}, (thin plane spline) {3.54e+02,−1.22e+03, 1.28e+02} and (block
matrix) {2.50e+03,−5.08e−14, 1.49e−23}.
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(a) Erdös-Rényi graph adjacency matrix [ER59].
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(b) Facebook graph adjacency matrix [ML12].
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(c) ArXiv collaboration network adjacency matrix [LKF07].

Figure 4: Approximation error of eigenvalues of sparse matrices. Log scale absolute er-
ror vs. log sampling rate for Algorithm 1, Algoithm 2, simple sparsity sampler and approxima-
tion by 0, as described in Section 5.3, for approximating the largest, smallest, and fourth largest
of remaining three example matrices. The corresponding true eigenvalues for each matrix in-
order are: (Erdös-Rényi) {500.57,−42.52, 42.02}, (Facebook) {162.37,−23.75, 73.28} and (arXiv)
{37.95,−15.58, 26.92}.
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A Eigenvalue Approximation for PSD Matrices

Here we give a simple proof that shows if Algorithm 1 is used to approximate the eigenvalues of
positive semidefinite (PSD) matrices (i.e., with all non-negative eigenvalues) using a O(1/ε2) ×
O(1/ε2) random submatrix, then the `2 norm of the error of eigenvalue approximations is bounded
by εn. This much stronger result immediately implies that each eigenvalue of a PSD matrix can be
approximated to ±εn additive error using just a O(1/ε2)× O(1/ε2) random submatrix. The proof
follows from a bound in [Bha13] which bounds the `2 norm of the difference vector of eigenvalues
of a Hermitian matrix and any other random matrix by the Frobenius norm of the difference of the
two matrices. This improves on the bound of Theorem 1 for general entrywise bounded matrices
by a 1/ε2 factor, and matches the O(1/ε4) lower bound for principal submatrix queries in [BCJ20].
Note that the hard instance used to prove the lower bound in [BCJ20] can in fact be negated to be
PSD, thus showing that our upper bound here is tight.

We first state the result from [Bha13] which we will be using in our proof.

Fact 5 (`2-norm bound on eigenvalues [Bha13]). Let A ∈ Cn×n be Hermitian and B ∈ Cn×n be
any matrix whose eigenvalues are λ1(B), . . . , λn(B) such that Re(λ1(B)) ≥ . . . ≥ Re(λn(B)) (where
Re(λi(B)) denotes the real part of λi(B)). Let A−B = E. Then(

n∑
i=1

|λi(A)− λi(B)|2
)1/2

≤
√

2‖E‖F .

Our result is based on the following Lemma, we prove at the end of the section.

Lemma 9. Consider a PSD matrix A = BBT with ‖A‖∞ ≤ 1. Let S be sampled as in Algorithm
1 for s ≥ 1

ε2δ
. Let S̄ ∈ Rn×|S| be the scaled sampling matrix satisfying S̄TAS̄ = n

s ·AS. Then with
probability at least 1− δ,

‖BT S̄S̄TB−BTB‖F ≤ εn.

From the above Lemma we have:

Corollary 2 (Spectral norm bound – PSD matrices). Consider a PSD matrix A with ‖A‖∞ ≤ 1.
Let S be a subset of indices formed by including each index in [n] independently with probability
s/n as in Algorithm 1. Let AS be the corresponding principal submatrix of A, with eigenvalues
λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0.

Then if s ≥ 2
ε2δ

, with probability at least 1− δ,(
n∑
i=1

∣∣∣λ̃i(A)− λi(A)
∣∣∣2)1/2

≤ εn,

which implies that for all i ∈ [n],

λi(A)− εn ≤ λ̃i(A) ≤ λi(A) + εn.
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Proof. Let S be sampled as in Algorithm 1 and let S̄ ∈ Rn×|S| be the scaled sampling matrix
satisfying S̄TAS̄ = n

s ·AS . Since A is PSD, we can write A = BBT for some matrix B ∈ Rn×rank(A).
From Lemma 9, for s ≥ 1

ε2δ
, we have with probability at least 1− δ:

‖BT S̄S̄TB−BTB‖F ≤ εn

Using Fact 5, we have,rank(A)∑
i=1

∣∣λi(BT S̄S̄TB)− λi(BTB)
∣∣21/2

≤
√

2‖BT S̄S̄TB−BTB‖F ≤
√

2εn. (35)

Also from Fact 1, we have λi(BTB) = λi(BBT ) = λi(A) for all i ≤ rank(A). Thus,rank(A)∑
i=1

∣∣λi(BT S̄S̄TB)− λi(A)
∣∣21/2

≤
√

2εn

Also by Fact 1, all non-zero eigenvalues of BT S̄S̄TB are equal to those of S̄TBBT S̄ = n
s ·AS . All

other eigenvalue estimates are set to 0. Further, for all i > rank(A), λi(A) = 0. Thus,(
n∑
i=1

∣∣∣λ̃i(A)− λi(A)
∣∣∣2)1/2

≤
√

2εn.

Adjusting ε to ε/
√

2 then gives us the bound.

We now prove Lemma 9, using a standard approach for sampling based approximate matrix
multiplication – see e.g. [DK01].

Proof of Lemma 9. For k = 1, . . . , n let Yk = n
s−1 with probability s

n and Yk = −1 with probability
1− s

n . Thus E[Yk] = 0 and

‖BT S̄S̄TB−BTB‖2F =
n∑
i=1

n∑
j=1

(
n∑
k=1

Yk ·BikBjk

)2

.

Fixing i, j, each the Yk ·BikBjk are 0 mean independent random variables. Thus we have:

E
[
‖BT S̄S̄TB−BTB‖2F

]
=

n∑
i=1

n∑
j=1

E

( n∑
k=1

Yk ·BikBjk

)2


=

n∑
i=1

n∑
j=1

Var

[
n∑
k=1

Yk ·BikBjk

]

=

n∑
i=1

n∑
j=1

n∑
k=1

Var [Yk ·BikBjk]

≤
n∑
i=1

n∑
j=1

n∑
k=1

n

s
·B2

ikB
2
jk.
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since Var[Yk] =
(
n
s − 1

)2 · sn +
(
1− s

n

)
= n

s −2 + s
n + 1− s

n = n
s −1. Rearranging the sums we have:

E[‖BT S̄S̄TB−BTB‖2F ] ≤ n

s

n∑
k=1

n∑
i=1

B2
ik

n∑
j=1

B2
jk.

Observe that
∑n

j=1 B2
jk = Akk ≤ ‖A‖∞ ≤ 1, thus overall we have:

E[‖BT S̄S̄TB−BTB‖2F ] ≤ n2

s
≤ ε2δn2.

So by Markov’s inequality, with probability ≥ 1− δ, ‖BT S̄S̄TB−BTB‖2F ≤ ε2n2. This completes
the theorem after taking a square root.

Remark: The proof of Lemma 9 can be easily modified to show that the ith row of A can be
sampled with probability proportional to |Aii|

tr(A) to approximate the eigenvalues of any PSD A up to

±ε · tr(A) error (tr(A) is the trace of A). When sampling with probability proportional to |Aii|
tr(A) ,

we do not require a bounded entry assumption on A.

B Alternate Bound for Uniform Sampling

In this section we provide an alternate bound for approximating eigenvalues with uniform sampling.
The sample complexity is worse by a factor of 1/ε for this approach, but better by a factor log2 n
as compared to Theorem 1. We start with an analog to Lemma 3, showing that the outlying
eigenspace remains nearly orthogonal after sampling. In particular, we show concentration of the
Hermitian matrix VT

o S̄S̄TVo about its expectation VT
o Vo = I rather than the non-Hermitian

Λ
1/2
o VT

o S̄S̄TVoΛ
1/2
o as in Lemma 3. This allows us to use Weyl’s inequality in our final analysis,

rather than the non-Hermitian eigenvalue perturbation bound of Fact 4, saving a log2 n factor in
the sample complexity.

Lemma 10 (Near orthonormality – sampled outlying eigenvalues). Let S be sampled as in Algorithm
1 for s ≥ c log(1/(εδ))

ε4δ
where c is a sufficiently large constant. Let S̄ ∈ Rn×|S| be the scaled sampling

matrix satisfying S̄TAS̄ = n
s ·AS. Then with probability at least 1− δ, ‖VT

o S̄S̄TVo − I‖2 ≤ ε.

Proof. The result is standard in randomized numerical linear algebra – see e.g., [CLM+15]. For
completeness, we give a proof here. Define E = VT

o S̄S̄TVo − I. For all i ∈ [n], let Vo,i be the ith

row of Vo and define the matrix valued random variable

Yi =

{
n
sVo,iV

T
o,i, with probability s/n

0 otherwise.

Then, similar to the proof of Lemma 3, define Qi = Yi−E [Yi]. Since Q1,Q2, . . . ,Qn are indepen-
dent random variables and

∑n
i=1 Qi = VT

o S̄S̄TVo − I = E , we need to bound ‖Qi‖2 for all i ∈ [n]

and Var(E)
def
= E(EET ) = E(ETE) =

∑n
i=1 E[Q2

i ]. Observe ‖Qi‖2 ≤ max
(
1, ns − 1

)
‖Vo,iV

T
o,i‖2 =
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max
(
1, ns − 1

)
‖Vo,i‖22 ≤ 1

ε2δs
, by row norm bounds of Lemma 2. Again, using Lemma 2 we have

n∑
i=1

E[Q2
i ] =

n∑
i=1

s

n
·
(n
s
− 1
)2

(Vo,iV
T
o,i)

2 +
(

1− s

n

)
(Vo,iV

T
o,i)

2

�
n∑
i=1

n

s
‖Vo,i‖22(Vo,iV

T
o,i)

�
n∑
i=1

n

s

1

ε2δn
(Vo,iV

T
o,i)

� 1

sε2δ
· I

where I is the identity matrix of appropriate dimension. By setting d = 1
ε2δ

, we can finally bound
the probability of the event ‖E‖2 ≥ εn using Theorem 6 (the matrix Bernstein inequality) with δ if
s ≥ c log(1/(εδ))

ε4δ
. Since these steps follow Lemma 3 nearly exactly, we omit them here.

With Lemma 10 in place, we can now give our alternate sample complexity bound.

Theorem 8 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each in-
dex independently with probability s/n as in Algorithm 1. Let AS be the corresponding principal
submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ {1, . . . , |S|} with

λi(AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If s ≥ c logn

ε4δ
, for a

large enough constant c, then with probability ≥ 1− δ, for all i ∈ [n],

λi(A)− εn ≤ λ̃i(A) ≤ λi(A) + εn.

Proof. Let S ∈ Rn×|S| be the binary sampling matrix with a single one in each column such that
STAS = AS . Let S̄ =

√
n/s · S. Following Definition 1.1, we write A = Ao + Am. By Fact 1 we

have that the nonzero eigenvalues of ns ·Ao,S = S̄TVoΛoV
T
o S̄ are identical to those of ΛoV

T
o S̄S̄TVo.

Note that H = VT
o S̄S̄TVo is positive semidefinite. Writing its eigendecomposition H = UWUT

we can define the matrix squareroot H1/2 = UW1/2UT with H1/2H1/2 = H. By Lemma 10 applied
with error ε/6, with probability at least 1− δ, all eigenvalues of H lie in the range [1− ε/6, 1 + ε/6].
In turn, all eigenvalues of H1/2 also lie in this range. Again using Fact 1, we have that the nonzero
eigenvalues of ΛoH, and in turn those of ns ·Ao,S , are identical to those of H1/2ΛoH

1/2.
Let E = H1/2 − I = UW1/2UT −UUT = U(W1/2 − I)UT . Since the diagonal entries of W1/2

lie in [1− ε/6, 1 + ε/6], those of W1/2 − I lie in [−ε/6, ε/6]. Thus, ‖E‖2 ≤ ε/6. We can write

λi(H
1/2ΛoH

1/2) = λi((I + E)Λo(I + E)) = λi(Λo + EΛo + ΛoE + EΛoE).

We can then bound

‖EΛo + ΛoE + EΛoE‖2 ≤ ‖EΛo‖2 + ‖ΛoE‖2 + ‖EΛoE‖2
≤ ‖E‖2‖Λo‖2 + ‖Λo‖2‖E‖2 + ‖E‖2‖Λo‖2‖E‖2
≤ εn/6 + nε/6 + ε2n/36

≤ ε/2 · n.
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Applying Weyl’s eigenvalue perturbation theorem (Fact 3), we thus have for all i,∣∣∣λi(H1/2ΛoH
1/2)− λi(Λo)

∣∣∣ < ε/2 · n. (36)

Note that we have shown that the nonzero eigenvalues of n
s · Ao,S are identical to those of

H1/2ΛoH
1/2, which we have shown well approximate those of Λo and in turn Ao i.e., the non-

zero eigenvalues of n
s · Ao,S approximate all outlying eigenvalues of A. We can also bound the

middle eigenvalues using Lemma 4 as in Theorem 1. Now the only thing left is to argue how these
approximations ‘line up’ in the presence of zero eigenvalues in the spectrum of these matrices. This
part of the proof again proceeds similarly to that of Theorem 1 in Section 3.2.

Analogous to Theorem 1, from Lemma 10 equation (36) holds with probability 1 − δ if s ≥
c log(1/(εδ))

ε4δ
. We also require s ≥ c logn

ε2δ
for ‖Am,S‖2 ≤ εn to hold with probability 1 − δ by Lemma

4. Thus, for both conditions to hold simultaneously with probability 1 − 2δ by a union bound, it
suffices to set s = c logn

ε4δ
≥ max

(
c log(1/(εδ))

ε4δ
, c logn

ε2δ

)
, where we use that log(1/(εδ)) = O(log n), as

otherwise our algorithm can take AS to be all of A. Adjusting δ to δ/2 completes the theorem.

C Refined Bounds

In this section, we show how it is possible to get better query complexity or tighter approximation
factors by modifying the proof of Theorem 1 and Lemmas 3 and 2 under some assumptions. We give
an extension to Theorem 1 in Theorem 9 for the case when the eigenvalues of Ao lie in a bounded
range – between εa

√
δn and εbn where 0 ≤ b ≤ a ≤ 1.

Theorem 9. Let A ∈ Rn×n be symmetric with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A).
Let Ao be as in Definition 1.1 such that for all eigenvalues λi(Ao) we have either εa

√
δn ≤ |λi(Ao)| ≤

εbn or λi(Ao) = 0 where 0 ≤ b ≤ a ≤ 1. Let S ⊆ [n] be formed by including each index independently
with probability s/n as in Algorithm 1. Let AS be the corresponding principal submatrix of A, with
eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with λi(AS) < 0,

let λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If s ≥ c log(1/(εδ)) log2+a−b n

ε2+a−bδ
, for

large enough c, then with probability at least 1− δ, for all i ∈ [n],

λi(A)− εn ≤ λ̃i(A) ≤ λi(A) + εn.

Proof. The proof follows by modifying the proofs of Theorem 1, Lemmas 2 and 3 to account for
the tighter intervals. First observe that since |λi(Ao)| ≥ εa

√
δn for all i, we can give a tighter row

norm bound for Vo from the proof of Lemma 2. In particular, from equation (3) we get:

‖Λ1/2
o Vo,i‖22 ≤

1

εa
√
δ

and ‖Vo,i‖22 ≤
n

ε2aδn2
=

1

ε2aδn
.

We can then bound the number of samples we need to take such that for Λ
1/2
o VT

o S̄S̄TVoΛ
1/2
o (as

defined in Theorem 8) we have ‖Λ1/2
o VT

o S̄S̄TVoΛ
1/2
o −Λo‖2 ≤ εn with probability at least 1− δ via

a matrix Bernstein bound. By appropriately modifying the proof of Lemma 3 to incorporate the
stronger row norm bound for Vo, we can show that sampling with probability s/n for s ≥ c log(1/(εδ))

ε2+a−bδ
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for large enough c suffices. Specifically, we get L ≤ n
εa
√
δs
, v ≤ n2

εa−b
√
δs

and d ≤ log(1/(ε2δ)) for
the Bernstein bound in Lemma 3 which enables us to get the tighter bound. Thus, we have
‖Λ1/2

o VT
o S̄S̄TVoΛ

1/2
o − Λo‖2 ≤ εn with probability 1 − δ for s ≥ c log(1/(εδ))

ε2+a−b
√
δ

following Lemma 3.

We also require s ≥ c logn
ε2δ

for ‖Am,S‖2 ≤ εn to hold with probability 1 − δ by Lemma 4. Then,
following the proof of Theorem 1, by Fact 4, for all i ∈ [n], and some constant C, we have:

|λi(Λ1/2
o VT

o S̄S̄TVoΛ
1/2
o )− λi(Λo)| ≤ C log n‖Λ1/2

o VT
o S̄S̄TVoΛ

1/2
o −Λo‖2.

As in the proof of Theorem 1, adjusting ε by a 1
C logn factor, we get |λi(Λ1/2

o VT
o S̄S̄TVoΛ

1/2
o )−

λi(Λo)| ≤ εn with probability 1 − δ for s ≥ c log(1/(εδ)) log2+a−b n

ε2+a−b
√
δ

. Then we follow the proof of
Theorem 1 to align the eigenvalues completing the proof.

D Spectral Norm Bounds for Non-Uniform Random Submatrices

Theorem 5 (Non-uniform column sampling – spectral norm bound). Let A be an m×n matrix with
rank r. Let δj be a sequence of independent random variables such that δj = 1√

pj
with probability pj

and 0 otherwise. Let S be a square diagonal sampling matrix with jth diagonal entry set to δj.

E2‖AS‖2 ≤ 5
√

log r · E2‖AS‖1→2 + ‖A‖2
Proof. The proof follows from [Tro08b]. We begin by first defining the following term

E := E2‖AS‖2.

Now we have

E2 = E‖AS‖22 = E‖ASSA∗‖2 = E

∥∥∥∥∥∥
n∑
j=1

δ2
jAjA

∗
j

∥∥∥∥∥∥
2

,

where δj is the sequence of independent random variables such that δj = 1√
pj

with probability pj and

0 otherwise, and Aj is the jth column of A. Then, µj = E[(δj)
2] = 1. Let {δ′j} be an independent

copy of the sequence {δj}. Subtracting the mean and applying triangle inequality we have

E2 ≤ E

∥∥∥∥∥∥
n∑
j=1

(δ2
j − E[(δ̂)2])AjA

∗
j

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑
j=1

AjA
∗
j

∥∥∥∥∥∥
2

.

Using Jensen’s inequality we have

E2 ≤ E

∥∥∥∥∥∥
n∑
j=1

(δ2
j − (δ′j)

2)AjA
∗
j

∥∥∥∥∥∥
2

+ ‖AA∗‖2 .

The random variables (δ2
j − (δ′j)

2) are symmetric and independent. Let {εj} be i.i.d Rademacher
random variables for all j ∈ [n]. Then applying the standard symmetrization argument followed by
triangle inequality, we have:

E2 ≤ 2E

∥∥∥∥∥∥
n∑
j=1

εjδ
2
jAjA

∗
j

∥∥∥∥∥∥
2

+ ‖AA∗‖2 .
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Let Ω = {j : δj = 1√
pj
}. Let E be the partial expectation with respect to {εj}, keeping the other

random variables fixed. Then, we get:

E2 ≤ 2EΩ

[
Eε

∥∥∥∥∥∑
Ω

εjδ
2
jAjA

T
j

∥∥∥∥∥
2

]
+ ‖A‖22.

Using Rudelson’s Lemma 11 of [Tro08b] for any matrix X with columns x1,x2, · · · ,xn and any
q = 2 log n we have E

∥∥∥∥∥∥
n∑
j=1

εjxjx
∗
j

∥∥∥∥∥∥
q

2

1/q

≤ 1.5
√
q‖X‖1→2‖X‖2.

Since (.)1/q is concave for q ≥ 1, using Jensen’s inequality we get:

E

∥∥∥∥∥∥
n∑
j=1

εjxjx
∗
j

∥∥∥∥∥∥
2

≤ 1.5
√
q‖X‖1→2‖X‖2

Applying the above result to the matrix AS, we get:

E2 ≤ 3
√
q [E(‖AS‖1→2‖AS‖2)] + ‖A‖22.

Applying Cauchy Schwartz we get:

E2 ≤ 3
√
q(E‖AS‖21→2)1/2(E‖AS‖22)1/2 + ‖A‖22.

The above equation is of the form E2 ≤ bE+ c. Thus, the values of E fro which the above equation
is true is given by E ≤ b+

√
b2+4c
2 ≤ b+

√
c. Thus, we get:

E2‖AS‖2 ≤ 3
√
qE2‖AS‖1→2 + ‖A‖2.

This gives us the final bound.

E Improved Bounds via Row-Norm-Based Sampling

Building on the sparsity-based sampling results presented in Section 4, we now show how to obtain
improved approximation error of ±ε‖A‖F assuming we can sample the rows of A with probabilties
proportional to their squared `2 norms. The ability to sample by norms also allows us to remove
the assumption that A has bounded entries – our results apply to any symmetric matrix.

For technical reasons, we mix row norm sampling with uniform sampling, forming a ran-
dom principal submatrix by sampling each index i ∈ [n] independently with probability pi =

min
(

1,
s‖Ai‖22
‖A‖2F

+ 1
n2

)
and rescaling each sampled row/column by 1/

√
pi. As in the sparsity-based

sampling setting, we must carefully zero out entries of the sampled submatrix to ensure concentra-
tion of the sampled eigenvalues. Pseudocode for the full algorithm is given in Algorithm 3.
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E.1 Preliminary Lemmas

Our proof closely follows that of Theorem 2 in Section 4. We start by defining A′ ∈ Rn×n obtained
by zeroing out entries of A as described in Algorithm 3. We have A′ij = 0 whenever 1) i = j and

‖Ai‖22 < ε2

4 ‖A‖
2
F or 2) i 6= j and ‖Ai‖22 ·‖Aj‖22 <

ε2‖A‖2F ·|Aij |2

c2 log4 n
. Otherwise A′ij = Aij . Similar to the

sparsity sampling case, we argue that the eigenvalues of A′ are close to A i.e., zeroing out entries of
A according to the given condition doesn’t change it’s eigenvalues by too much (Lemma 11. Then,
we again split A′ = A′o + A′m such that ‖A′m‖2 ≤ ε

√
δ‖A‖F . We argue that after sampling, we

have ‖A′m,S‖2 ≤ ε‖A‖F and the eigenvalues of A′o,S approximate those of A′o up to ±ε‖A‖F error.

Algorithm 3 Eigenvalue estimator using `2 norm-based sampling

1: Input: Symmetric A ∈ Rn×n, Accuracy ε ∈ (0, 1), failure prob. δ ∈ (0, 1). ‖Ai‖2 for all i ∈ [n].

2: Fix s = c1 log10 n
ε8δ4 where c1 is a sufficiently large constant.

3: Add each i ∈ [n] to sample set S independently, with probability pi = min
(

1,
s‖Ai‖22
‖A‖2F

+ 1
n2

)
.

Let the principal submatrix of A corresponding to S be AS .
4: Let AS = DASD where D ∈ R|S|×|S| is diagonal with Di,i = 1√

pj
if the ith element of S is j.

5: Construct A′S ∈ R|S|×|S| from AS as follows:

[A′S ]i,j =


0 if i = j and ‖Ai‖22 < ε2

4 ‖A‖
2
F

0 if i 6= j and ‖Ai‖22 · ‖Aj‖22 <
ε2‖A‖2F ·|Aij |2

c2 log4 n
for sufficient large constant c2

[AS ]i,j otherwise.

6: Compute the eigenvalues of A′S : λ1(A′S) ≥ . . . ≥ λ|S|(A′S).
7: For all i ∈ [|S|] with λi(A

′
S) ≥ 0, let λ̃i(A) = λi(A

′
S). For all i ∈ [|S|] with λi(A

′
S) < 0, let

λ̃n−(|S|−i)(A) = λi(A
′
S). For all remaining i ∈ [n], let λ̃i(A) = 0.

8: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

Lemma 11. Let A ∈ Rn×n be symmetric. Let A′ ∈ Rn×n have A′ij = 0 if either 1) i = j and

‖Ai‖22 < ε2

4 ‖A‖
2
F or 2) i 6= j and ‖Ai‖22 · ‖Aj‖22 <

ε2‖A‖2F ·|Aij |2

c2 log4 n
for a sufficiently large constant c2.

Otherwise, A′ij = Aij. Then, for all i ∈ [n],

|λi(A)− λi(A′)| ≤ ε‖A‖F .

Proof. Consider the matrix A′′, which is defined identically to A′ except we only set A′′ij = 0 if i 6= j

and ‖Ai‖22 · ‖Aj‖22 <
ε2‖A‖2F |Aij |2

c2 log4 n
. I.e., we do not zero out any entries on the diagonal as in A′. We

will show that ‖A−A′′‖2 ≤ ε
2‖A‖F . If Aii is zeroed out in A′ this implies that ‖Ai‖22 < ε2

4 ‖A‖
2
F .

Thus, |Aii| ≤ ‖Ai‖2 ≤ ε
2‖A‖F and so ‖A′′ − A′‖2 ≤ ε

2‖A‖F . So, by triangle inequality, we will
then have ‖A−A′‖2 ≤ ε · ‖A‖F . The lemma then follows from Weyl’s inequality

To show that ‖A−A′′‖2 ≤ ε
2‖A‖F , we use a variant of Girshgorin’s theorem, as in the proof of

Lemma 5. First, we split the entries of A into level sets, according to their magnitudes. Let A =∑log n
ε

k=0 Ak where (A0)ij = Aij if |Aij | ∈
[
0, εn‖A‖F

)
and (A0)ij = 0 otherwise. For 1 ≤ k ≤ log n

ε ,
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(Ak)ij = Aij if |Aij | ∈
[
‖A‖F

2k
, ‖A‖F

2k−1

)
and (Ak)ij = 0 otherwise. We can also define A′′ =

∑log n
ε

k=0 A′′k

where each A′′k are defined similarly. By triangle inequality, ‖A − A′′‖2 ≤
∑logn/ε

k=0 ‖Ak − A′′k‖2.
First observe that ‖A0 − A′′0‖2 ≤ ‖A0 − A′′0‖F ≤ n · ‖A0‖∞ ≤ ε‖A‖F . Further, we can assume
without loss of generality that ε > 1/n and so log(n/ε) ≤ 2 log n, as otherwise our algorithm can
afford to read all of A. So, it suffices to show that for all k ≥ 1,

‖Ak −A′′k‖2 ≤
ε

log n
· ‖A‖F . (37)

This will give ‖A −A′′‖2 ≤ ε · ‖A‖F +
∑logn/ε

k=1
ε

logn · ‖A‖F ≤ 3ε · ‖A‖F , which gives the lemma
after adjusting ε by a constant factor.

We now prove (37) for each k ≥ 1. For p ∈ {0, 1, . . . log(n2)}, let Ip ⊂ [n] be the set of
rows/columns in Ak with nnz((Ak)i) ∈

[
nnz(Ak)

2p , nnz(Ak)
2p−1

)
and let Akpq = Ak(Ip, Iq) be the sub-

matrix of Ak formed with rows in Ip and columns in Iq. Define the submatrix A′′kpq of A′′k in the
same way. Let Âkpq = Akpq − A′′kpq and finally, let Ākpq ∈ Rn×n be the symmetric error matrix
such that Ākpq(Ip, Iq) = Âkpq and Ākpq(Iq, Ip) = ÂT

kpq.
Note that all rows from which we zero out entries must have at least one non-zero entry

nnz((Ak)i) ≥ 1 (otherwise all entries in that row/column are already zero), thus all such rows
have nnz((Ak)i) ≥ nnz(Ak)

n2 and so are covered by the submatrices Akpq. Thus, by triangle inequal-
ity, we can bound

‖Ak −A′′k‖2 ≤
log(n2)∑
p=0

log(n2)∑
q=0

‖Ākpq‖2. (38)

To prove (37), we need to bound ‖Akpq −A′′kpq‖2 for all k ≥ 1 and p, q. We use a case analysis.

Case 1: 4 nnz(Ak)2·c2 log4 n
ε2·22k > 2p+q. In this case, first observe that since the nonzero entries of Ak lie

in
[
‖A‖F

2k
, ‖A‖F

2k−1

)
, for any i ∈ Ip, j ∈ Ij ,

‖Ai‖22 · ‖Aj‖22 ≥ ‖(Ak)i‖22 · ‖(Ak)j‖22

≥
‖A‖4F

24k
· nnz((Ak)i) · nnz((Ak)j)

≥
‖A‖4F

24k · 2p+q
· nnz(Ak)

2.

Thus, by the assumed bound on 2p+q, we have for any i, j where (Ak)ij is nonzero,

‖Ai‖22 · ‖Aj‖22 ≥
ε2‖A‖4F

4 · 22kc2 log4 n
≥
ε2‖A‖2F · |Aij |2

c2 log4 n
,

where the second inequality follows again from the fact that the nonzero entries of Ak lie in[
‖A‖F

2k
, ‖A‖F

2k−1

)
. Thus, any i, j with (Akpq)ij nonzero is not zeroed out in line 5 of Algorithm 3.

So Ākpq = 0. Plugging into (38), we thus have:

‖Ak −A′′k‖2 ≤
log(n2)∑
p=0

∑
q:2p+q≥ 16 nnz(Ak)2·c2 log4 n

ε2·22k

‖Ākpq‖2. (39)
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Case 2: 16 nnz(Ak)2·c2 log4 n
ε2·22k ≤ 2p+q. In this case, observe that (ÂkpqÂ

T
kpq)m = (Âkpq)mÂT

kpq. We

can see that (Âkpq)m has at most nnz((Ak)m) ≤ nnz(Ak)
2p−1 non-zero entries. Similarly, each row of

ÂT
kpq has at most nnz(Ak)

2q−1 non-zero elements. Thus, for all m ∈ |Ip|, using the fact that all non-zero

entries of Akpq are bounded by ‖A‖F
2k−1 , we have:

‖(ÂkpqÂ
T
kpq)m‖1 ≤

nnz(Ak)
2

2p+q−2
·
‖A‖2F
22k−2

.

Applying Girshgorin’s circle theorem (Theorem 2) we thus have:

‖Âkpq‖22 = ‖ÂkpqÂ
T
kpq‖2 ≤

nnz(Ak)
2

2p+q−2
·
‖A‖2F
22k−2

and so

‖Ākpq‖2 ≤ 2‖Âkpq‖2 ≤
8 · ‖A‖F · nnz(Ak)

2k2
(p+q)

2

.

Plugging to (39), we thus have:

‖Ak −A′′k‖2 ≤
log(n2)∑
p=0

∑
q:2p+q≥ 16 nnz(Ak)2·c2 log4 n

ε2·22k

8 · ‖A‖F · nnz(Ak)

2k2
(p+q)

2

≤
log(n2)∑
p=0

2ε · ‖A‖F√
c2 log2 n

·
∞∑
i=0

1√
2
≤ 8ε‖A‖F√

c2
.

Setting c2 ≥ 64, we thus have (37), and in turn the lemma.

We next give a bound on the incoherence of the outlying eigenvectors of A′. This bound is again
similar to Lemmas 2 and 6.

Lemma 12 (Incoherence of outlying eigenvectors in terms of `2 norms). Let A,A′ ∈ Rn×n be as in
Lemma 11. Let A′o = V′oΛ

′
oV
′T
o where Λ′o is diagonal, with the eigenvalues of A′ with magnitude

≥ ε
√
δ‖A‖F on its diagonal, and V′o has columns equal to the corresponding eigenvectors. Let V′o,i

denote the ith row of V′o. Then,

‖Λ′1/2o V′o,i‖22 ≤
‖Ai‖22

ε
√
δ‖A‖F

and ‖V′o,i‖22 ≤
‖Ai‖22
ε2δ‖A‖2F

.

Proof. The proof is again nearly identical to that of Lemma 2. Observe that A′V′o = V′oΛ
′
o. Letting

[A′V′o]i denote the ith row of the A′V′o, we have

‖[A′V′o]i‖22 = ‖[V′oΛ′o]i‖22 =

r∑
j=1

λ2
j ·V

′2
o,i,j , (40)

where r = rank(A′o), V′o,i,j is the (i, j)th element of V′o and λj = Λ′o(j, j). Since V′o has orthonormal
columns, we have ‖[A′V′o]i‖22 ≤ ‖A′i‖22 ≤ ‖Ai‖22. Therefore, by (40),

r∑
j=1

λ2
j ·V

′2
o,i,j ≤ ‖Ai‖22. (41)
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Since by definition |λj | ≥ ε
√
δ‖A‖F for all j, we can conclude that ‖Λ

′1/2
o V′o,i‖22 =

∑r
j=1 λj ·V

′2
o,i,j ≤

‖Ai‖22
ε
√
δ‖A‖F

and ‖V′o,i‖22 =
∑r

j=1 V
′2
o,i,j ≤

‖Ai‖22
ε2δ‖A‖2F

, which completes the lemma.

E.2 Outer and Middle Eigenvalue Bounds

Using Lemma 12, we next argue that the eigenvalues of A′o,S will approximate those of A′, and in
turn those of A. The proof is very similar to Lemmas 3 and 7.

Lemma 13 (Concentration of outlying eigenvalues with `2 norm based sampling). Let A,A′ ∈ Rn×n
be as in algorithm 3. Let A′ = A′m + A′o, where A′m = V′mΛ′mV′Tm, and A′o = V′oΛ

′
oV
′T
o are

projections onto the eigenspaces with magnitude < ε
√
δ‖A‖F and ≥ ε

√
δ‖A‖F respectively. For all

i ∈ [n] let pi = min
(

1,
s‖Ai‖22
‖A‖2F

+ 1
n2

)
and let S̄ be a scaled diagonal sampling matrix such that the

S̄ii = 1√
pi

with probability pi and S̄ii = 0 otherwise. If s ≥ c log(1/(εδ))

ε3
√
δ

for a large enough constant c,

then with probability at least 1− δ, ‖Λ
′1/2
o V

′T
o S̄S̄TV′oΛ

′1/2
o −Λ′o‖2 ≤ ε‖A‖F .

Proof. We define the random variables Q1, · · ·Qn and the set P = {i ∈ [n] : pi < 1} exactly as
in the proof of Lemma 7. Then, as explained in the proof of Lemma 7 it is sufficient to bound∑

i∈P E[Q2
i ]. From 17 we have

∑
i∈P E[Q2

i ] �
∑

i∈P
1
pi
·‖Λ1/2

o Vo,i‖22 · (Λ
1/2
o Vo,iV

T
o,iΛ

1/2
o ). Also from

Lemma 11, we have ‖Λ1/2
o Vo,i‖22 ≤

‖Ai‖22
ε
√
δ‖A‖F

and for all i ∈ P , 1
pi
≤ ‖A‖2F

s‖Ai‖22
. We thus get,

∑
i∈P

E[Q2
i ] �

∑
i∈P

1

pi
· ‖Ai‖22
ε
√
δ‖A‖F

· (Λ1/2
o Vo,iV

T
o,iΛ

1/2
o )

� ‖A‖F
sε
√
δ

(
∑
i∈P

Λ1/2
o Vo,iV

T
o,iΛ

1/2
o )

=
‖A‖F
sε
√
δ

Λo �
‖A‖2F
sε
√
δ
· I.

Since Q2
i is PSD this establishes that v ≤ ‖Var(E)‖2 ≤

‖A‖2F
sε
√
δ
. We can then apply the matrix

Bernstein inequality exactly as in the proof of Lemma 3 to show that when s ≥ c
ε3
√
δ
for large

enough c, with probability at least 1− δ, ‖E‖2 ≤ ε‖A‖F .

We now bound the middle eignevalues.

Lemma 14 (Concentration of middle eigenvalues with `2- norm based sampling). Let A,A′ ∈
Rn×n be as in Lemma 12. Let A′ = A′m + A′o, where A′m = V′mΛ′mV′Tm, and A′o = V′oΛ

′
oV
′T
o

are projections onto the eigenspaces with magnitude < ε
√
δ‖A‖F and ≥ ε

√
δ‖A‖F respectively

(analogous to Definition 1.1). As in Algorithm 2, for all i ∈ [n] let pi = min
(

1,
s‖Ai‖22
‖A‖2F

+ 1
n2

)
and

let S̄ be a scaled diagonal sampling matrix such that the S̄ii = 1√
pi

with probability pi and S̄ii = 0

otherwise. If s ≥ c log10 n
ε8δ4 for a large enough constant c, then with probability at least 1− δ,

‖S̄A′mS̄‖2 ≤ ε‖A‖F .
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Proof. First observe that since s ≥ 4
ε2

(for large enough c), the results of Lemmas 11 and 12 still
hold. The proof follows the same structure as the proof of bounding the middle eigenvalues for
sparsity sampling in Lemma 8. From Lemma 12, we have ‖V′o,i‖2 ≤ ‖Ai‖2

ε
√
δ‖A‖F

. Also, following the

proof of Lemma 12, we have ‖Λ′oV′To,j‖2 = ‖[A′V′o]j‖2 ≤ ‖Aj‖2. Thus, for all i, j ∈ [n], using
Cauchy Schwarz’s inequality, we have

|A′o,i,j | = |V′o,iΛ′oV′To,j | ≤ ‖V′o,i‖2 · ‖Λ′oV′
T
o,j‖2 ≤

‖Ai‖2
ε
√
δ‖A‖F

· ‖Aj‖2. (42)

Let A′m = Hm + Dm where Hm and Dm contain the off-diagonal and diagonal elements of A′m
respectively. Then following the proof of Lemma 8, we get:

E2‖S̄A′mS̄‖2 ≤ 10
√

log n
(
E2‖S̄HmŜ‖1→2 + E2‖HmŜ‖1→2

)
+ 2‖Hm‖2 + E2‖S̄DmS̄‖2 (43)

We now proceed to bound each of the terms on the right hand side of (43). We start with
E2‖S̄DmS̄‖2. First, observe that E2‖S̄DmS̄‖2 ≤ maxi

1
pi
|(Dm)ii|. We consider two cases.

Case 1: pi < 1. Then, as pi ≥
s‖Ai‖22
‖A‖2F

we have ‖A‖2F ≤
1
s‖Ai‖22 since 1

s <
ε2

4 . So we must have that

have |(Dm)ii| = |(A′m)ii| = |(A′o)ii| (since A′ii = 0). Then by (42), we have 1
pi
|(Dm)ii| ≤ ‖A‖Fsε

√
δ
.

Case 2: pi = 1. Then we have 1
pi
|(Dm)ii| = |(Dm)ii| ≤ maxj |(Dm)jj | ≤ ‖A′m‖2 ≤ ε

√
δ‖A‖F .

From the two cases above, for s ≥ 1
ε2δ

, we have:

E2‖S̄DmS̄‖2 ≤ ε
√
δ‖A‖F . (44)

We can bound ‖Hm‖2 similarly. Since Hm = A′m −Dm and ‖A′m‖2 ≤ ε
√
δ‖A‖F .,

‖Hm‖2 ≤ ‖A′m‖2 + ‖Dm‖2
≤ ε
√
δ‖A‖F + ε

√
δ‖A‖F .

= 2ε
√
δ‖A‖F . (45)

where the second step follows from the fact that ‖Dm‖2 ≤ maxi|(Dm)ii| ≤ ‖A′m‖2.
We next bound the term E2‖HmŜ‖1→2. Observe that E2‖HmŜ‖1→2 ≤ maxi ‖A′m,i‖2√

pi
, where

A′m,i is the ith column/row of A′m. We again consider the two cases when pi = 1 and pi < 1:
Case 1: pi = 1. Then ‖A′m,i‖2 ≤ ‖A′m‖2 ≤ ε

√
δ‖A‖F .

Case 2: pi < 1. Then ‖A′m,i‖2 ≤ ‖A′i‖2 ≤ ‖A‖F . Thus, setting s ≥ 1
ε2δ

we have:

‖A′m,i‖2√
pi

≤ ‖A‖F√
s‖Ai‖2

· ‖A′i‖2

≤ ‖A‖F√
s
≤ ε
√
δ‖A‖F .

Thus, from the two cases above, for all i ∈ [n], adjusting ε by a 1√
logn

factor, we have for s ≥ logn
ε2δ

:

E2‖HmŜ‖1→2 ≤
ε
√
δ‖A‖F√
log n

. (46)
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Overall, plugging (44), (45), and (46) back into (43), we have :

E2‖S̄A′mS̄‖2 ≤ 10
√

log n · E2‖S̄HmŜ‖1→2 + 15ε
√
δ‖A‖F . (47)

Finally we bound E2‖S̄HmŜ‖1→2. As in the proof of Lemma 8, we have E2‖S̄HmŜ‖1→2 ≤
E2

(
maxi:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
and we will argue that maxi:i∈[n]

‖(S̄Hm):,i‖2√
pi

is bounded by ε
√
δ‖A‖F

with probability 1 − 1/ poly(n). Also as argued in the proof of Lemma 8, since pi ≥ 1
n2 , it suffices

to bound ‖(S̄A′m):,i‖2√
pi

for all i ∈ [n] with high probability. Again, for a fixed i and any j ∈ [n], define
the random variables zj as:

zj =

{
1
pj
|A′m,i,j |2 with probability pj

0 otherwise.

Then
∑n

j=1 zj = ‖(S̄A′m):,i‖22 and E[
∑n

j=1 zj ] = ‖A′m,i‖22 ≤ ‖A′i‖22 ≤ ‖A‖2F . We will again use
Bernstein’s inequality to bound

∑n
j=1 zj = ‖(S̄A′m):,i‖22 by bounding bound |zj | for all j ∈ [n] and

Var
(∑n

j=1 zj

)
. We consider the cases of pi < 1 and pi = 1 separately.

Case 1: pi < 1. Then, we have pi ≥ s‖Ai‖22/‖A‖2F . If A′i,j 6= 0 then

|zj | ≤
1

pj
|A′m,i,j |2 ≤ max

(
1,
‖A‖2F
s‖Aj‖22

)
|A′m,i,j |2

≤ |A′m,i,j |2 +
2‖A‖2F
s‖Aj‖22

(
|A′i,j |2 + |A′o,i,j |2

)
≤ |A′m,i,j |2 +

2‖A‖2F
s‖Aj‖22

(
|A′i,j |2 +

‖Ai‖22‖Aj‖22
ε2δ‖A‖2F

)
≤ |A′m,i,j |2 +

2‖A‖2F
s‖Aj‖22

|A′i,j |2 +
2‖Ai‖22
ε2δs

,

where the fourth inequality uses (42). By the thresholding procedure which defines A′, if i 6= j and
A′ij 6= 0,

‖Ai‖22 · ‖Aj‖22 ≥
ε2‖A‖2F |A′ij |2

c2 log4 n
⇒ ‖Aj‖22
|A′i,j |2

≥
ε2‖A‖2F

c2 · log4 n · ‖Ai‖22
, (48)

and thus for pi < 1 and A′ij 6= 0 we have

|zj | ≤ |A′m,i,j |2 +
2c2 log4 n · ‖Ai‖22

sε2
+

2‖Ai‖22
ε2δs

.

Also A′ii = 0 since we must have ‖Ai‖22 < ε2

4 ‖A‖
2
F as pi < 1. If A′i,j = 0 or i = j, then we simply

have

|zj | ≤ |A′m,i,j |2 +
2‖Ai‖22
sε2δ

.
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Overall for all j ∈ [n],

|zj | ≤ |A′m,i,j |2 +
2‖Ai‖22
sε2δ

+
2c2 log4 n · ‖Ai‖22

sε2
, (49)

and since |A′m,i,j |2 ≤
∑n

j=1 |A′m,i,j |2 = ‖A′m,i‖22 ≤ ‖A′i‖22 ≤ ‖Ai‖22,

|zj | ≤ ‖Ai‖22 +
2‖Ai‖22
sε2δ

+
2c2 · log4 n · ‖Ai‖22

sε2
. (50)

For s ≥ c
(

log4 n
ε2

+ 1
ε2δ

)
and large enough c, we thus have |zj | ≤ 2‖Ai‖22.

We next bound the variance by:

Var

 n∑
j=1

zj

 ≤ n∑
j=1

E[z2
j ] ≤

n∑
j=1

pj
1

p2
j

|A′m,i,j |4

=

n∑
j=1

max

(
1,
‖A‖2F
s‖Aj‖22

)
|A′m,i,j |4

≤
n∑
j=1

|A′m,i,j |4 +

n∑
j=1

12‖A‖2F
s‖Aj‖22

(
|A′i,j |4 + |A′o,i,j |4

)
≤ ‖A′m,i‖42 +

n∑
j=1

12‖A‖2F
s‖Aj‖22

(
|A′i,j |4 +

‖Ai‖42‖Aj‖42
ε4δ2‖A‖4F

)
,

where the last inequality uses (42). We thus get:

Var

 n∑
j=1

zj

 ≤ ‖A′m,i‖42 +
∑

j:A′i,j 6=0

12‖A‖2F |A′ij |4

s‖Aj‖22
+

n∑
j=1

12‖Ai‖42‖Aj‖22
sε4δ2‖A‖2F

. (51)

Now A′ii = 0 as pi < 1 (and thus, ‖A‖2i < ε2

4 ‖A‖
2
F ). Combining (48) with the second term to the

right of (51) we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i‖42 +
∑

j:A′i,j 6=0

12c2 log4 n · ‖Ai‖22 · |A′ij |2

sε2
+

n∑
j=1

12‖Ai‖42‖Aj‖22
sε4δ2‖A‖2F

,

and since
∑

j |A′ij |2 = ‖Ai‖22, we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i‖42 +
12c2 log4 n · ‖Ai‖42

sε2
+

n∑
j=1

12‖Ai‖42‖Aj‖22
sε4δ2‖A‖2F

. (52)

Finally since
∑n

j=1 ‖Aj‖22 = ‖A‖2F and ‖A′m,i‖42 ≤ ‖A′i‖42 ≤ ‖Ai‖42 we have

Var

 n∑
j=1

zj

 ≤ ‖Ai‖42 +
12c2 log4 n · ‖Ai‖42

sε2
+

12‖Ai‖42
sε4δ2

. (53)
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For s ≥ c
(

log4 n
ε2

+ 1
ε4δ2

)
for large enough c, we have Var

(∑n
j=1 zj

)
≤ 2‖Ai‖42.

Therefore, using (50) and (53) with s ≥ c
(

log4 n
ε2

+ 1
ε4δ2

)
, we can apply Bernstein inequality (Theo-

rem 7) (for some constant c) to get

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + t

)
≤ P

 n∑
j=1

zj ≥ ‖Ai‖22 + t


≤ exp

(
−t2/2

c‖Ai‖42 + ct‖Ai‖22/3

)
.

If we set t = log n · ‖Ai‖22, for some constant c′ we have

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + log n · ‖Ai‖22

)
≤ exp

(
−(log n)2/2

c+ c(log n)/3

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

Since A′m = Hm + Dm, we have ‖(S̄A′m):,i‖2 ≥ ‖(S̄Hm):,i‖2. Then with probability at least
1− 1/nc

′ ≥ 1− δ, for any row i with pi < 1, we have

1

pi
· ‖(S̄Hm):,i‖22 ≤

‖A‖2F
s‖Ai‖22

· c(log n)‖Ai‖22 ≤
ε2δ‖A‖2F

log n
,

for s ≥ c
(

log4 n
ε2

+ 1
ε4δ2

)
for large enough c. Observe that, as in Lemma 3 w.l.o.g. we have assumed

1− 1
nc
′ ≥ 1− δ, since otherwise, our algorithm would read all n2 entries of the matrix.

Case 2: pi = 1. Then, we have ‖Ai‖22 ≥ ‖A‖2F /s. As in the pi < 1 case, when Aii = 0, (and this
A′ii = Aii = 0) we have from (49):

|zj | ≤ |A′m,i,j |2 +
2‖Ai‖22
sε2δ

+
2c2 log4 n · ‖Ai‖22

sε2
.

Now, we observe that |A′m,i,j |2 ≤
∑n

j=1 |A′m,i,j |2 ≤ ‖A′m,i‖22 ≤ ‖A′m‖22 ≤ ε2δ‖A‖2F , which gives us

|zj | ≤ ε2δ‖A‖2F +
2‖Ai‖22
sε2δ

+
2c2 log4 n · ‖Ai‖22

sε2
. (54)

Note that if Aii 6= 0, the second term in (49) is bounded as 2‖A‖2F
s‖Ai‖22

· |A′ii|2 ≤
2‖A‖2F

s ≤ 2ε2δ‖A‖2F for

s ≥ O( 1
ε2δ

). Thus, for s ≥ c
(

log4 n
ε4δ

+ 1
ε4δ2

)
for a large enough constant c and adjusting for other

constants we have |zj | ≤ 2ε2δ‖A‖2F . Also observe that the expectation of
∑
zj can be bounded by:

E

 n∑
j=1

zj

 = E‖(S̄A′m):,i‖22 = ‖A′m,i‖22 ≤ ‖A′m‖22 ≤ ε2δ‖A‖2F .

Next, the variance of the sum of the random variables {zj} can again be bounded by following the
analysis presented in and prior to (52) and (53) we have

Var

 n∑
j=1

zj

 ≤ ‖A′m,i,j‖42 +
12c2 log2 n · ‖Ai‖42

sε2
+

12‖Ai‖42
sε4δ2

≤ ε4δ2‖A‖4F +
12c2 log2 n · ‖Ai‖42

sε2
+

12‖Ai‖42
sε4δ2

, (55)
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where we again bound ‖A′m,i,j‖42 using

|A′m,i,j |2 ≤
n∑
j=1

|A′m,i,j |2 ≤ ‖A′m,i‖22 ≤ ‖A′‖22 ≤ ε2δ‖A‖2F .

Then for s ≥ c( log4 n
ε6δ2 + 1

ε8δ4 ), we have Var
(∑n

j=1 zj

)
≤ 2ε4δ2‖A‖4F for large enough constant c.

Using (54) and (55) and noting that
∑n

j=1 E
(
z2
j

)
≥ Var

(∑n
j=1 zj

)
− E2

(∑n
j=1 zj

)
we can apply

the Bernstein inequality (Theorem 7):

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + t

)
≤ P

 n∑
j=1

zj ≥ ε2δ‖Ai‖22 + t


≤ exp

(
−t2/2

cε4δ2‖A‖4F + cε2δ‖A‖2F t/3

)
.

If we set t = (log n)ε2δ‖A‖2F , then for some constant c′ we have

P
(
‖(S̄A′m):,i‖22 ≥ E‖(S̄A′m):,i‖22 + t

)
≤ exp(−c′ log n) ≤ 1/nc

′
.

This, since ‖(S̄Hm):,i‖22 ≤ ‖(S̄A′m):,i‖22, when pi = 1, setting s ≥ c( log4 n
ε6δ2 + 1

ε8δ4 ) for large enough c, we
have with probability ≥ 1−1/nc

′ 1
pi
‖(S̄Hm):,i‖22 = ‖(S̄Hm):,i‖22 ≤ ‖(S̄A′m):,i‖22 ≤ (log n)ε2δ nnz(A).

We have proven that with probability ≥ 1 − 1/nc
′ , for both cases when pi < 1 and pi = 1,

‖(S̄Hm):,i‖22
pi

≤ (log n)ε2δ‖A‖2F . Taking a union bound over all i ∈ [n], with probability at least

1− 1/nc
′−1, maxi

‖(S̄Hm):,i‖2√
pi

≤
√

log nε
√
δ‖A‖F for s ≥ c( log4 n

ε6δ2 + 1
ε8δ4 ). Also, since pi ≥ 1

n2 for all

i ∈ [n], ‖(S̄Hm):,i‖2√
pi

≤
√∑n

j=1

A2
m,i,j

pi·pj ≤
n·‖A‖F√

s
. Thus, maxi

‖(S̄Hm):,i‖2√
pi

≤ n‖A‖F and we get,

E2

(
max
i:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤
√

log nε
√
δ‖A‖F +

1

nc′−3
≤
√

log nε
√
δ‖A‖F .

after adjusting ε by at most some constants. Overall, we finally get

E2‖S̄HmŜ‖1→2 ≤ E2

(
max
i:i∈[n]

‖(S̄Hm):,i‖2√
pi

)
≤ ε
√

log n
√
δ‖A‖F .

Plugging this bound into (47), we have for s ≥ c( log4 n
ε6δ2 + 1

ε8δ4 ),

E2‖S̄A′mS̄‖2 ≤ (log n)ε
√
δ‖A‖F .

Finally after adjusting ε by a 1
logn factor, we have for s ≥ c( log10 n

ε6δ2 + log8 n
ε8δ4 ) or s ≥ c log10 n

ε8δ4 ,

E2‖S̄A′mS̄‖2 ≤ ε
√
δ‖A‖F .

The final bound then follows via Markov’s inequality on ‖S̄A′mS̄‖2.
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E.3 Main Accuracy Bound

We are finally ready to state our main result for `2 norm based sampling.

Theorem 3 (Row Norm Based Matrix Eigenvalue Approximation). Let A ∈ Rn×n be symmetric
and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the ith index independently
with probability pi = min

(
1,

s‖Ai‖22
‖A‖2F

+ 1
n2

)
as in Algorithm 3. Here ‖Ai‖2 is the `2 norm of the ith

row of A. Let AS be the corresponding principal submatrix of A, and let λ̃i(A) be the estimate of
λi(A) computed from AS as in Algorithm 3. If s ≥ c log10 n

ε8δ4 , for large enough constant c, then with
probability ≥ 1− δ, for all i ∈ [n], |λ̃i(A)− λi(A)| ≤ ε‖A‖F .

Proof. The proof follows exactly the same structure as the proofs of Theorems 1 and 2 for uni-
form and sparsity based sampling respectively. We use the results of Lemmas 14 and 13 on the
concentration of the middle and large eigenvalues for `2 norm based sampling.

Analogous to Theorem 2, from Lemma 13 with error parameter ε
logn the eigenvalues of A′o,S

approximate those of A′o up to error ε‖A‖F with probability 1− δ if s ≥ c log(1/(εδ))·log3 n

ε3
√
δ

. We also

require s ≥ c log10 n
ε8δ4 for ‖A′m,S‖2 ≤ ε‖A‖F to hold with probability 1 − δ by Lemma 14. Thus, for

both conditions to hold simultaneously with probability 1− 2δ by a union bound, if suffices to set
s = max

(
c log(1/(εδ))·log3 n

ε3
√
δ

, c log10 n
ε8δ4

)
= c log10 n

ε8δ4 , where we use that log(1/(εδ) ≤ log n, as otherwise
our algorithm can take AS to be the full matrix A. Adjusting δ to δ/2 completes the theorem.

F Eigenvalue Approximation via Entrywise Sampling

In this section we show that sampling Õ(n/ε2) entries from a bounded entry matrix preserves its
eigenvalues up to error ±εn. We use this result to improve the sample complexity of Theorem 1
from Õ

(
log6 n
ε6

)
to Õ

(
log3 n
ε5

)
by applying entrywise sampling to further sparsify the submatrix AS

that is sampled in Algorithm 1. Entrywise sampling results similar to what we show are well-known
in the literature. See for example [AM07] and [BKKS21]. For completeness, we give a proof here
using standard matrix concentration bounds.

Theorem 10 (Entrywise sampling – spectral norm bound). Consider A ∈ Rn×n with ‖A‖∞ ≤ 1.
Let C ∈ Rn×n be constructed by setting Ci,i = Ai,i for all i ∈ [n] and

Cj,i = Ci,j =

{
1
p ·Ai,j with probability p
0 otherwise.

For any ε, δ ∈ (0, 1), if p ≥ c log(n/δ)
nε2

for a large enough constant c, then with probability at least
1− δ, ‖A−C‖2 ≤ εn.

Note that by Weyl’s inequality (Fact 3), Theorem 10 immediately implies that the eigenvalues
of C approximate those of A up to ±εn error with good probability.

Proof. For any i < j, define the symmetric random matrix E(ij) with

E
(ij)
i,j = E

(ij)
j,i =

{
(1
p − 1) ·Ai,j with probability p
−Ai,j otherwise.
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. Observe that C − A =
∑

i,j∈[n],i<j E(ij). Further, each E(ij) has just two non-zero values in
different rows and columns. So

‖E(ij)‖2 = |Ci,j −Ai,j ]| ≤
(

1

p
− 1

)
· |Ai,j | ≤

1

p
,

where the last inequality uses that ‖A‖∞ ≤ 1. Additionally, E(ij)E(ij)T is diagonal with two
diagonal entries at (i, i) or (j, j) equal to (Ci,j−Ai,j)

2. Thus, V =
∑

i,j∈[n],i<j E[E(ij)E(ij)T ] is also
diagonal. We have

Vi,i =
∑
j 6=i

E[(Ci,j −Ai,j)
2] =

∑
j 6=i

A2
i,j ·

(
p ·
(

1

p
− 1

)2

+ (1− p) · (−1)2

)

=
∑
j 6=i

A2
i,j ·

(
1

p
− 1

)
≤ n

p
,

where in the final inequality we use that ‖A‖∞ ≤ 1. Thus, since V is diagonal, ‖V‖2 ≤ n
p . Putting

the above together using Theorem 6 we get,

P (‖A−C‖2 ≥ εn) = P

∥∥∥∥∥∥
∑

i,j∈[n],i<j

E(ij)

∥∥∥∥∥∥
2

≥ εn

 ≤ 2n · exp

(
−ε2n2/2
n
p + εn

3p

)
.

Thus, for p ≥ c log(n/δ)
nε2

for large enough c, with probability at least 1−δ we have ‖A−C‖2 ≤ εn.

F.1 Improved Sample Complexity via Entrywise Sampling

We can combine Theorem 10 directly with Theorem 1 to give an improved sample complexity for
eigenvalue estimation. we have:

Corollary 1 (Improved Sample Complexity via Entrywise Sampling). Let A ∈ Rn×n be symmetric
with ‖A‖∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). For any ε, δ ∈ (0, 1), there is an algorithm
that reads Õ

(
log3 n
ε5δ

)
entries of A and returns, with probability at least 1− δ, λ̃i(A) for each i ∈ [n]

satisfying |λ̃i(A)− λi(A)| ≤ εn.

Proof. Letting s = c1 log(1/(εδ))·log3 n
ε3δ

for large enough constant c1, by Theorem 1, for a random
principal submatrix AS formed by sampling each index with probability s/n, the eigenvalues of
AS , after scaling up by a factor of n/s approximate those of A to error ±εn with probability at
least 1− δ. By Theorem 10, if we sample off-diagonal entries of AS with probability p ≥ c2 log(|S|/δ)

|S|·ε2
to produce C, then we preserve its eigenvalues to error ±ε|S|. Thus, after scaling by n

s , the
eigenvalues of C approximate those of A to error ±

(
εn+ n

s · ε|S|
)
. Finally, observe that by a

standard Chernoff bound, |S| ≤ 2s with probability at least 1 − δ. So adjusting ε by a constant,
the scaled eigenvalues of C give ±εn approximations to A’s eigenvalues. The expected number of
entries read is |S| + p · |S|2 = Õ

(
s·log(1/δ)

ε2

)
= Õ

(
log3 n
ε5δ

)
. Additionally, by a standard Chernoff

bound at most Õ
(

log3 n
ε5δ

)
are read with probability at least 1− δ.
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G Singular Value Approximation via Sampling

We now show how to estimate the singular values of a bounded-entry matrix via random subsam-
pling. Unlike in eigenvalue estimation, instead of sampling a random principal submatrix, here
we sample a random submatrix with independent rows and columns. This allows us to apply
known interior eigenvalue matrix Chernoff bounds to bound the perturbation in the singular values
[GT11, BCJ20]. We first state a simplified version of Theorem 4.1 from [GT11] (also stated as The-
orem 4.6 in [BCJ20]), simplified using standard upper bounds on the Chernoff bounds in [MU17].

Theorem 11 (Interior Eigenvalue Matrix Chernoff bounds – Theorem 4.1 of [GT11]). Let {Xj}
be a finite sequence of independent, random, positive-semidefinite matrices with dimension n, and
assume that ‖Xj‖2 ≤ L for some value L almost surely. Given an integer k ≤ n, define

µk = λk

∑
j

E[Xj ]

 .

Then we have the tail inequalities:
P
(
λk(
∑

j Xj) ≥ (1 + ∆)µk

)
≤ (n− k + 1) · e−

∆µk
3L , for ∆ ≥ 1

P
(
λk(
∑

j Xj) ≥ (1 + ∆)µk

)
≤ (n− k + 1) · e−

∆2µk
3L , for ∆ ∈ [0, 1)

P
(
λk(
∑

j Xj) ≤ (1−∆)µk

)
≤ k · e−

∆2µk
2L , for ∆ ∈ [0, 1)

We are now ready to state and prove the main theorem.

Theorem 12. Let A ∈ Rn×n be a matrix with ‖A‖∞ ≤ 1 and singular values σ1(A) ≥ . . . ≥ σn(A).
Let S̄ ∈ Rn×n be a scaled diagonal sampling matrix such that S̄ii =

√
n
s with probability s

n and S̄ii = 0
otherwise. Let T̄ ∈ Rn×n be an independent and identically distributed random sampling matrix.
Let Z = S̄AT̄ be the sampled submatrix from A with singular values σ1(Z) ≥ . . . ≥ σn(Z). Then,
if s ≥ c log(n/δ)

ε2
for some constant c, with probability at least 1− δ, for all i ∈ [n],

σi(A)− εn ≤ σi(Z) ≤ σi(A) + εn.

Proof. We first prove that singular values of S̄A are close to those of A. Let Xi ∈ Rn×n be matrix
valued r.v.’s for i ∈ [n] such that:

Xi =

{
n
sAiA

T
i , with probability s/n

0 otherwise

where Ai is the ith row of A written as a column vector. Then,
∑

i Xi = (S̄A)T (S̄A) and E[
∑

i Xi] =

ATA. We have ‖Xi‖2 ≤ maxj
n
s ‖Aj‖22 ≤ n2

s and λk(E[
∑

i Xi]) = λk(A
TA) = σ2

k(A) for k ∈ [n].

Case 1: We will first prove that σk(A)− εn ≤ σk(S̄A) for all k ∈ [n]. Note that when σk(A) ≤ εn,
σk(A)− εn ≤ σk(S̄A) is trivially true. We now consider all k ∈ [n] such that σk(A) > εn. Setting
µk = λk(A

TA), L = n2

s and ∆ = εn
σk(A) (note that ∆ < 1) in Theorem 11, we get:

P
(
λk((S̄A)T (S̄A)) ≤ (1−∆)λk(A

TA)
)
≤ k · e−c

∆2
1λk(ATA)

L ≤ k · e
−c ε2n2

λk(ATA)
·λk(ATA)

(n2/s)
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where c is constant. So, for s ≥ O( log(n/δ)
ε2

) for any k, we have λk((S̄A)T (S̄A)) = σ2
k(S̄A) ≥

(1−∆)σ2
k(A) with probability at least 1− δ

n . Taking a square root on both sides we get σk(S̄A) ≥√
1−∆σk(A) ≥ (1 −∆)σk(A) = σk(A) − εn. Taking a union bound over all k with σk(A) > εn,

σk(A)− εn ≤ σk(S̄A) holds for all such k with probability at least 1− δ.

Case 2: We now prove that σk(S̄A) ≤ σk(A) + εn for all k ∈ [n]. We first consider the case when
σk(A) ≤ εn. Setting µk = λk(A

TA), L = n2

s and ∆ = ε2n2

σ2
k(A)

(note that ∆ ≥ 1) in Theorem 11, we
get (for some constant c):

P
(
λk((S̄A)T (S̄A)) ≥ (1 + ∆)λk(A

TA)
)
≤ n.e−

c∆λk(ATA)

L

≤ n · e
− cε2n2

λk(ATA)
·λk(ATA)

(n2/s)

Thus, if s ≥ O( log(n/δ)
ε2

), we have λk((S̄A)T (S̄A)) ≤ (1 + ∆)λk(A
TA) ≤ λk(A

TA) + ε2n2 for all
k ∈ [n] such that σk(A) ≤ εn with probability at least 1 − δ via a union bound. Taking square
root on both sides and using the facts that λk(ATA) = σ2

k(A), λk((S̄A)T (S̄A)) = σ2
k(S̄A) and√

a+ b <
√
a+
√
b, we get σk(S̄A) ≤ σk(A) + εn.

We now consider the case σk(A) > εn. Setting µk = λk(A
TA), L = n2

s and ∆ = εn
σk(A) (note

that ∆ < 1) in Theorem 11, we get (for some constant c):

P
(
λk((S̄A)T (S̄A)) ≥ (1 + ∆)λk(A

TA)
)
≤ n.e−

c∆2λk(ATA)

L

≤ n · e
− cε2n2

λk(ATA)
·λk(ATA)

(n2/s) .

Thus, if s ≥ O( log(n/δ)
ε2

), we have λk((S̄A)T (S̄A)) ≤ (1 + ∆)λk(A
TA) for all k ∈ [n] such that

σk(A) > εn with probability at least 1 − δ via a union bound. Taking square root on both sides
and using the fact that λk(ATA) = σ2

k(A), λk((S̄A)T (S̄A)) = σ2
k(S̄A) and

√
a < a for any a > 1,

we get σk(S̄A) ≤ (1 + ∆)σk(A) ≤ σk(A) + εn. Thus, via a union bound over all k ∈ [n], we have
σk(S̄A) ≤ σk(A) + εn with probability 1− 2δ.

Thus, via a union bound over the two cases above, for all k ∈ [n] with probability at least 1−3δ

for s ≥ O( log(n/δ)
ε2

) we have, for all k ∈ [n],

|σk(S̄A)− σk(A)| ≤ εn. (56)

Next we prove that the singular values of S̄AT̄ are close to those of S̄A, using essentially the same
approach as above. Let Yi be a matrix values random variable for i ∈ [n] such that:

Yi =

{
n
s (S̄A)i(S̄A)Ti , with probability s/n
0 otherwise

where (S̄A)i is the ith column of S̄A. Then,
∑

i Yi = (S̄AT̄)T (S̄AT̄). Also, we have
λk(E[

∑
i Yi]) = λk((S̄A)T (S̄A)) = σ2

k(S̄A). First, using a standard Chernoff bound, we can claim
that S̄ will sample at most 2s rows from A with probability at least 1− δ for any s ≥ O(log(1/δ)).
Thus, we have ‖Yi‖2 = n

s ‖S̄A‖22 ≤ n
s ·

n
s · 2s ≤

2n2

s with probability 1− δ. Let this event be called
E2. We now consider two cases conditioned on the event E2.

57



Case 1: We first prove that σk(S̄A) − εn ≤ σk(S̄AT̄) for all k ∈ [n]. Again note that when
σk(S̄A) ≤ εn this is trvially true. So we consider all k ∈ [n] such that σk(S̄A) > εn. Setting
µk = λk((S̄A)T (S̄A)), L = 2n2

s (as we have conditioned on E2) and ∆ = εn
σk(S̄A)

(note that ∆ < 1)
in Theorem 11, we get:

P
(
λk((S̄AT̄)T (S̄AT̄)) ≤ (1−∆)λk(A

TA)
)
≤ k · e−c

∆2
1λk((S̄A)T (S̄A))

L ≤ k · e
−c ε2n2

λk((S̄A)T (S̄A))
·λk((S̄A)T (S̄A))

(n2/s)

where c is some constant. So, for s ≥ O( log(n/δ)
ε2

) for any k, we have λk((S̄AT̄)T (S̄AT̄)) =

σ2
k(S̄AT̄) ≥ (1−∆)σ2

k(S̄A) with probability at least 1− δ
n . Taking a square root on both sides we

get σk(S̄AT̄) ≥
√

1−∆σk(S̄A) ≥ (1−∆)σk(S̄A) = σk(S̄A) − εn. Taking a union bound over all
k with σk(A) > εn, σk(S̄A)− εn ≤ σk(S̄AT̄) holds for all such k with probability at least 1− δ.
Case 2: We now prove σk(S̄AT̄) ≤ σk(S̄A) + εn for all k ∈ [n]. We again first consider the case
σk(S̄A) ≤ εn. Setting µk = λk(A

TA), L = n2

s and ∆ = ε2n2

σ2
k(S̄A)

(note that ∆ ≥ 1) in Theorem 11:

P
(
λk((S̄AT̄)T (S̄AT̄)) ≥ (1 + ∆)λk((S̄A)T (S̄A))

)
≤ n · e−

c∆λk((S̄A)T (S̄A))

L

≤ n · e
− cε2n2

λk((S̄A)T (S̄A))
·λk((S̄A)T (S̄A))

(n2/s)

Then, similar to the case σk(A) ≤ εn in the previous case 2, taking square root of both sides and via a
union bound, we get σk(S̄AT̄) ≤ σk(S̄A)+εn for all k ∈ [n] such that σk(S̄A) ≤ εn with probability
at least 1− δ for s ≥ O( log(n/δ)

ε2
). The case σk(S̄A) > εn will again be similar as σk(A) > εn in the

previous case 2. We set ∆ = εn
σk(S̄A)

and apply Theorem 11 and take the square root on both sides

to get σk(S̄AT̄) ≤ σk(S̄A) + εn with probability 1− δ for all k ∈ [n] for s ≥ O( log(n/δ)
ε2

). Thus, with
probability 1 − 2δ, conditioned on the event E2, we have σk(S̄AT̄) ≤ σk(S̄A) + εn for all k ∈ [n].
Finally, via a union bound over the two cases above, and conditioned on E2, for all k ∈ [n] with
probability at least 1− 2δ for s ≥ O( log(n/δ)

ε2
) we get

|σk(S̄AT̄)− σk(S̄A)| ≤ εn. (57)

Thus, taking a union bound over all the cases above (including E2), from equation (56) and (57)
and via a triangle inequality, we get: |σk(S̄AT̄) − σk(A)| ≤ 2εn with probability at least 1 − cδ
(where c is a small constant) for s ≥ O( log(n/δ)

ε2
). Adjusting ε and δ by constant factors gives us the

final bound.

Remark on Rectangular Matrices: Though we have considered A to be a square matrix for
simplicity, notice that Theorem 12 also holds for any arbitrary (non-square) matrix A ∈ Rn×m,
with n replaced by max(n,m) in the sample complexity bound.

Remark on Non-Uniform Sampling: As discussed in Section 1.3.1, simple non-uniform random
submatrix sampling via row/column sparsities or norms does not suffice to estimate the singular
values up to improved error bounds of ε

√
nnz(A) or ε‖A‖F . A more complex strategy, such as the

zeroing out used in Theorems 2 and 3 must be used. It is worth noting that following the same
proof as Theorem 12, it is easy to show that if S̄ is sampled according to row norms or sparsities
and appropriately weighted, then the singular values of S̄A do approximate those of A up to these
improved error bounds. The proof breaks down when analyzing S̄AT̄. T̄ would have to be sampled
according to the row norms/sparsities of S̄A, not A, for the proof to go through. However, in
general, these sampling probabilities can differ significantly between S̄A and A.
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