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Abstract

We study Lp polynomial regression. Given query access to a function f : [−1, 1] → R, the goal is to
find a degree d polynomial q̂ such that, for a given parameter ε > 0,

‖q̂ − f‖p ≤ (1 + ε) · min
q:deg(q)≤d

‖q − f‖p.

Here ‖ · ‖p is the Lp norm, ‖g‖p = (
∫ 1

−1
|g(t)|pdt)1/p. We show that querying f at points randomly drawn

from the Chebyshev measure on [−1, 1] is a near-optimal strategy for polynomial regression in all Lp

norms. In particular, to find q̂, it suffices to sample O(d polylog d
poly ε

) points from [−1, 1] with probabilities
proportional to this measure. While the optimal sample complexity for polynomial regression was well
understood for L2 and L∞, our result is the first that achieves sample complexity linear in d and error
(1 + ε) for other values of p without any assumptions.

Our result requires two main technical contributions. The first concerns p ≤ 2, for which we provide
explicit bounds on the Lp Lewis weight function of the infinite linear operator underlying polynomial
regression. Using tools from the orthogonal polynomial literature, we show that this function is bounded
by the Chebyshev density. Our second key contribution is to take advantage of the structure of polyno-
mials to reduce the p > 2 case to the p ≤ 2 case. By doing so, we obtain a better sample complexity than
what is possible for general p-norm linear regression problems, for which Ω(dp/2) samples are required.
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1 Introduction

We study the problem of learning a near optimal low-degree polynomial approximation to a function
f : [−1, 1] → R based on as few queries f(t1), . . . , f(tn) to the function as possible. Studied since at least
the 19th century with the work of Legendre and Gauss on least squares polynomial regression, this problem
remains fundamental in statistics, computational mathematics, and machine learning. Concretely, our goal
is to find a degree d polynomial q̂ that satisfies the guarantee:

‖q̂(t)− f(t)‖p ≤ (1 + ε) · min
degree d

polynomial q

‖q(t)− f(t)‖p,

where ε is an input accuracy parameter and ‖ · ‖p is the Lp-norm, i.e., ‖g‖p =
(∫ 1

−1
|g(t)|pdt

)1/p

.

The problem of near-optimal polynomial approximation, visualized in Figure 1 and Figure 2, finds ap-
plications ranging from learning half-spaces [KKMS08], to solving parametric PDEs [HD15], to surface
reconstruction [Pra87]. The choice of norm depends on the application: for example, p = 1 is used in robust
approximation, p = 2 is common in computational science settings [CM17], and p =∞ is popular in appli-
cations where f is smooth and known to admit a good minimax polynomial approximation [KKP17, Tre12].
Values of p between 2 and ∞ offer a compromise between robustness and uniform accuracy, and find appli-
cations, e.g., in the design of polynomial finite impulse response filters in signal processing [BBS94, Dum07].

Figure 1: We choose points t1, . . . , tn at which to
query a function f . Based on f(t1), . . . , f(tn), we
want to find a polynomial approximating f on [−1, 1].

Figure 2: The blue curve is a near optimal approx-
imating polynomial of degree 3 for p = 2, while the
red curve is near optimal for p =∞.

The above problem is an active learning or experimental design problem since we have the freedom to
choose the query locations t1, . . . , tn. Our goal is to answer two questions:

1. As a function of the degree d, norm p, and tolerance ε, how many queries n are required to find q̂?

2. How should the query locations t1, . . . , tn be chosen from [−1, 1]?

When f is already a degree d polynomial, via direct interpolation, d+ 1 queries are necessary and sufficient
to exactly fit f . When f is not a polynomial, we will require more than d+ 1 queries.

The above two questions have been studied extensively for p = 2 and p =∞ [Tre12, RW12, CM17, HD15].
It is well-known that it is sub-optimal to select t1, . . . , tn either from an evenly spaced grid or uniformly
at random: methods that try to recover q̂ from uniform samples suffer from Runge’s phenomenon [BX09,
CDL13]. Improved results are obtained by selecting more queries near the edges of the interval [−1, 1].
When p = ∞, the typical approach is to select queries at the Chebyshev nodes [Tre12]. Classical work in
approximation theory shows that, with d + 1 samples, this approach gives an O(log d) approximation in
the L∞ norm if either polynomial interpolation or a truncated Chebyshev series is used to construct the
approximation q̂ [Pow67, Tre12].

For p = 2, a recent line of work studies randomly querying according to the non-uniform Chebyshev
density, which is the asymptotic density of the Chebyshev nodes:

Definition 1.1 (Chebyshev density). For t ∈ [−1, 1] the Chebyshev density at t is 1
π
√

1−t2 .
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The Chebyshev density is larger for values of t near 1 and −1, and is smallest in the center of the interval,
as shown in Figure 4. Prior work proves that sampling query points independently according to this density
and then solving a weighted least squares problem returns a solution to the L2 polynomial regression problem
with accuracy (1 + ε) using O

(
d log d+ d

ε

)
queries [RW12, CDL13, CM17]. This bound is optimal up to a

log d factor: Chen and Price achieve an O
(
d
ε

)
result using an alternative approach [CP19a], with a matching

lower bound. It has also been shown that Chebyshev density sampling solves the L∞ problem to a constant
approximation factor with O(d log d) samples, improving on the O(log d) approximation guarantee for d+ 1
samples that can be obtained via classic techniques [KKP17].

In contrast to L∞ and L2, there have been far fewer results on near optimal polynomial regression for
general p. The case of L1 has been studied in the context of robust polynomial regression [KKP17], but
results are only given under the strong assumption that f is L∞ close to an unknown polynomial. With effort,
and at the cost of a computationally expensive sampling procedure, it is possible to extend existing results
on active linear regression to obtain near optimal sample complexity bounds for p ∈ [1, 2] (see Section 1.2
for details). However, for larger values of p, all prior methods either require super-linear sample complexity
(Ω(d2) or larger), or yield a constant factor instead of a (1 + ε) factor approximation.

1.1 Our Contributions

We give the first algorithm for active polynomial approximation that simultaneously achieves sample
complexity near-linear in d and a (1 + ε) approximation factor for all Lp norms. Moreover, our procedure
is simple, computationally efficient, and universal : we just sample points from the Chebyshev density,
regardless of the value of p. That is, the same approach that works for the L2 norm surprisingly extends to
all Lp norms. Our main result is:

Theorem 1.2. For any degree d, p ≥ 1, and accuracy parameter ε ∈ (0, 1), there is an algorithm1 that

queries f at n = d
(
p log(d)

ε

)O(p)

points t1, . . . , tn, each selected independently at random according to the

Chebyshev density on [−1, 1], and outputs a degree d polynomial q̂(t) such that, with probability at least 0.9,

‖q̂(t)− f(t)‖pp ≤ (1 + ε) · min
q:deg(q)≤d

‖q(t)− f(t)‖pp.

In addition to the simple sampling procedure, the algorithm for recovering q̂ is also simple: to achieve a
constant factor approximation, we show that it suffices to solve an `p polynomial regression problem to find
the best degree d polynomial approximating f at our queried points, reweighted appropriately2. To obtain a
(1 + ε) factor approximation, we first compute a constant factor approximation q(t), and then run the same
regression algorithm on the residual f(t)−q(t). This type of two-stage approach has been used several times
in prior work on active learning for linear regression problems [DDH+08, MMWY22].

The full pseudocode is included in Algorithm 1 and Algorithm 2 below.

Algorithm 1 Chebyshev sampling for Lp polynomial approximation, Constant Factor Approximation

Input: Access to function f , parameter p ≥ 1, degree d, number of samples n
Output: Degree d polynomial q(t)

1: Sample t1, . . . , tn ∈ [−1, 1] i.i.d. from the pdf 1
π
√

1−t2
2: Observe function samples bi := f(ti) for all i ∈ [n]

3: Build A ∈ Rn×(d+1) and diagonal S ∈ Rn×n with [A]i,j = tj−1
i and [S]ii =

(√
1− t2i

)1/p
4: Compute x = argminx∈Rd+1 ‖SAx− Sb‖p
5: Return q(t) =

∑d+1
i=1 xit

i−1

Theorem 1.2 has a near-optimal dependence on d, since a linear dependence is required. We show that
our dependence on ε is near optimal as well, proving the following lower bound:

1By an artifact of our analysis, we sample n ∼ B(n0,
m
n0

) and run Algorithm 2, where n0 = d6pO(p)

εO(p2)
and m = d(

p log(d)
ε

)O(p).

This has an overall sample complexity of d(
p log(d)

ε
)O(p) with very high probability.

2We use `p to denote norms on finite dimensional spaces and Lp to denote norms on infinite dimensional spaces.
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Algorithm 2 Chebyshev sampling for Lp polynomial approximation, Relative Error Approximation

Input: Access to function f , parameter p ≥ 1, degree d, number of samples n
Output: Degree d polynomial p(t)

1: Run Algorithm 1 on f with n
2 samples to get a polynomial q(t)

2: Run Algorithm 1 on f̂(t) := f(t)− q(t) with n
2 samples to get a polynomial q̂(t)

3: Return p(t) := q(t) + q̂(t)

Theorem 1.3. Let p ≥ 1 be a fixed constant. Any algorithm that can output a (1 + ε) approximation to Lp
polynomial regression with probability 2

3 must use n = Ω( 1
εp−1 ) queries.

It can be shown directly that no algorithm that queries f at a finite number of locations can output better
than a 2-factor approximation to the best polynomial approximation in the L∞ norm with good probability
(see Section 6 or [KKP17] for details). On the other hand, a (1 + ε) factor approximation is achievable
for p = 2 with just a 1/ε dependence in the sample complexity [CP19a]. Combined with Theorem 1.2,
Theorem 1.3 helps complete the picture on the accuracy achievable for all other Lp norms.

1.2 Our Approach and Comparison to Existing Techniques

Like prior work on optimal polynomial approximation in the L2 norm [CP19a, CM17], we prove Theo-
rem 1.2 by casting the general Lp problem as an active linear regression problem involving an infinitely tall
design matrix (i.e., a linear operator). In the finite active linear regression problem, we are given full access
to a design matrix A ∈ Rm×d and query access to a target vector b ∈ Rm. The goal is to query a small
number of entries from b, and based on their values, to approximately solve minx ‖Ax− b‖p.

To solve the active regression problem for p = 2, it is known that it suffices to sample O(d(log d)/ε) entries
of b with probabilities proportional to the `2 leverage scores of the corresponding rows in A [Sar06, CP19a].
This result generalizes to linear operators with an infinite number of rows in A and entries in b [AKM+19].
The only difference is that for linear operators, we cannot explicitly compute the `2 leverage scores (since there
are an infinite number of them). To address this challenge, prior results on L2 polynomial approximation are
based on showing that, for the infinite linear operator underlying polynomial regression, the leverage scores
can be tightly upper bounded by the Chebyshev measure [RW12, CM17]. Sampling by this measure thus
yields an upper bound of O(d(log d)/ε) samples.

To extend these results to general Lp norms, a natural starting point is to leverage generalizations of the
L2 leverage scores to other Lp norms. There are several possible generalizations in the finite matrix case,
including the `p leverage scores [DDH+08, CDW18], the `p sensitivities [CWW19, BDM+20, MMM+22], and
the `p Lewis weights [CP15, CD21, PPP21, MMM+22]. Unfortunately, näıve applications of these tools to
the Lp polynomial approximation problem all lead to sub-optimal guarantees. For example, it is possible to
upper bound the Lp sensitivities by a scaling of the Chebyshev measure. We could then apply recent work
on active regression via sensitivity sampling [MMWY22]. However, that work leads to at best a quadratic
dependence on d.

Alternatively, we might hope to take advantage of recent work on active regression via sampling by `p
Lewis weights – a conceptually different generalization of the `2 leverage scores than sensitivities [CD21,
PPP21, MMWY22]. However, there are a few major challenges. First, we cannot explicitly compute the
Lewis weights for the infinite dimensional polynomial operator, and it is much harder to obtain closed form
bounds on these weights than it is for the L2 leverage scores and Lp sensitivities. Second, for regression

problems with d features, like degree-d polynomial regression, Lewis weight sampling requires Õ(dmax(1,p/2))
rows [CP15, MMWY22]. So, the approach näıvely provides linear sample complexity results only for p ∈
[1, 2].3 For polynomial regression specifically, it is possible to use a technique from [MMM+22] to reduce
from the general p case to p ∈ [1, 2], which leads to a dp dependence, as in our Theorem 1.2. However,

3For p ∈ [1, 2], one option would be to first carefully discretize the regression operator before computing Lewis weights, e.g.,
using Lp sensitivity sampling (the “first stage” in Section 2.2). While less technically involved than the p ≥ 2 case, analyzing
this approach still requires proving a bound on the Lp sensitivities of the polynomial operator. Moreover, this stage gives

sub-optimal dimensionality reduction, so it would be necessary to compute the Lewis Weights of a Õ( d5p4

ε2+2p )× d matrix, using
significant space and time, and resulting in a sampling procedure that is not universally good for all p.
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this reduction yields at best a constant factor approximation. The limitations of existing techniques are
summarized in Figure 3.

To prove Theorem 1.2, we circumvent the above limitations for Lp Lewis weight sampling. First, for
p ≤ 2, we provide an explicit bound on Lewis weight function of the infinite linear operator underlying
polynomial regression, showing that the weight function is closely upper bounded by the Chebyshev measure.
This almost immediately yields our results for p ∈ [1, 2]. As discussed in Section 2, doing so requires a
significantly different approach than existing work on bounding leverage scores of the operator. To the
best of our knowledge, our bounds are the first on the Lewis weights of any natural infinite dimensional
regression problem, so we hope they will be helpful in related settings where leverage scores have proven
powerful. Examples include active learning for sparse Fourier functions, for bandlimited functions, and for
kernel methods in machine learning [CKPS16, CP19b, AKM+19, EMM20, MM20].

Second, for p > 2, we need to obtain tighter bounds for Lewis weight sampling than available from black-
box results that depend on dp/2. To do so, we provide a new analysis tailored to the polynomial operator.
We show that for any p, it actually suffices to collect d polylog(d) samples according to the Lewis weights
for some other p′ chosen in [ 2

3 , 2]. Our analysis requires opening up a net analysis used in [BLM89] and
[MMWY22] to analyze Lewis weight sampling for general linear operators. We leverage the fact that the Lp′
Lewis weights are close to the Lp sensitivities – both are approximated by the Chebyshev measure.

2 Technical Overview

The algorithm that achieves Theorem 1.2 is the same for all Lp norms (sample points via the Chebyshev
measure and then solve two weighted `p regression problems – see Algorithm 1 and Algorithm 2). Our
analysis differs for p ∈ [1, 2] and for p > 2. We first describe the p ∈ [1, 2] analysis, which is more direct.

As discussed, we solve the active polynomial approximation problem by casting it as an Lp regression
problem with an infinitely tall matrix. Concretely, let P : Rd+1 → L2([−1, 1]) be the polynomial operator,

which maps a coefficient vector x ∈ Rd+1 to its corresponding degree d polynomial: [Px](t) :=
∑d
k=0 xkt

k

for t ∈ [−1, 1]. Our original regression problem is equivalent to finding a vector x̂ such that

‖Px̂− f‖pp ≤ (1 + ε) min
x∈Rd+1

‖Px− f‖pp

Figure 5 visualizes this operator as matrix with infinite rows. The kth column of P is the polynomial t 7→ tk.
Each row of P, indexed by some t ∈ [−1, 1], is the vector

[
1 t t2 · · · td

]
.

As discussed, for p = 2, an effective approach to solving linear regression problems using a small number
of queries of the target function is via leverage score sampling. Specifically, entries of f are sampled inde-
pendently at random with probability proportional to the leverage score of the corresponding row in P. For

Approach Sample Complexity Approximation

Lp sensitivity sampling [MMWY22] d2
(

log d
ε

)O(p)

(1 + ε)

Lp sensitivity + Lewis weight sampling [MMWY22] dmax(1,p/2)
(

log d
ε

)O(p)

(1 + ε)

L1 Lewis weight sampling [MMM+22] dp2 (log dp)O(1) O(1)

Chebyshev measure sampling for all p ≥ 1 (our results) d
(

log d
εp

)O(p)

(1 + ε)

Figure 3: Summary of results for Lp polynomial regression. Our result is the first to obtain both an optimal
linear dependence on d for all p as well as a (1 + ε) factor approximation.
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Figure 4: Plot of the Chebyshev Measure on [−1, 1].
Sampling from the Chebyshev measure draws fewer
points from the middle of [−1, 1], and more points
from the ends of [−1, 1]

t
∈
[−

1,
1
]

i ∈ {1, . . . , d}

1 t t2 · · · td

x f

P

−

Figure 5: Visualization of the polynomial operator.
P’s column span is the set of degree d polynomi-
als. We can approximately minimize ‖Px − f‖p by
leveraging row-sampling methods for finite matrices.

a finite matrix A ∈ Rm×d, the leverage score of the ith row of A is

τ [A](i) := max
x∈Rd,‖x‖2>0

([Ax](i))2

‖Ax‖22
.

That is, τ [A](i) is the maximum contribution that the ith entry of a vector in A’s range can make to its `2
norm. This definition naturally extends to linear operators [AKM+19, EMM20], and we can define

τ [P ](t) := max
x∈Rd+1,‖x‖2>0

([Px](t))2

‖Px‖22
.

For finite matrices the sum of leverage scores is always equal to the rank of A, and similarly we have that∫ 1

−1
τ [P ](t)dt = d + 1. Recalling the particular definition of P, we can write τ [P ](t) = maxdeg(q)≤d

(q(t))2

‖q‖22
.

It turns out that this maximum is well-studied in the orthogonal polynomial literature, as it is equal to the

reciprocal of the Christoffel function λd(t) := mindeg(q)≤d
‖q‖22

(q(t))2 . While difficult to compute exactly, it can

be shown that λd(t) ≥ c
√

1−t2
d [Nev86]. This directly implies that, with appropriate scaling, the Chebyshev

density upper bounds the leverage function. That is, we have τ [P ](t) ≤ C v(t), where v(t) := d+1
π
√

1−t2 is an

appropriate scaling of the Chebyshev measure. Moreover, since
∫ 1

−1
v(t)dt = d+ 1, we know that this upper

bound is tight up to constants. Therefore, sampling from the Chebyshev density can be used to solve the L2

polynomial approximation problem with O(d log d+ d/ε) samples – only a constant factor more than would
be required if sampling by the true leverage scores, which integrate to d+ 1 [CP19b].

2.1 Bounding Lewis Weights of the Polynomial Operator

It has recently been shown that active regression results for finite matrices under general `p norms can
be obtained by sampling by the Lewis weights, a generalization of the `2 leverage scores [CD21, MMWY22].
For a matrix A ∈ Rm×d, the `p Lewis weights for A are the unique numbers w1, · · · , wm such that

τi(W
1
2− 1

pA) = wi for all i ∈ [m],

where W ∈ Rm×m is the diagonal matrix with Wii = wi. As for leverage scores, there are algorithms
that compute the Lewis weights for finite matrices. But since we want to apply the weights to sample from
infinite operators, it is necessary to obtain closed form bounds. It is much less clear how to do so: unlike the
leverage scores, the Lewis weights are defined in a circular fashion, instead of as the solution of a natural
optimization problem.
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-1 1(1− 1
d2

)−(1− 1
d2

)

v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)v(t)

τ [V1/2−1/pP](t)

t

Figure 6: Plot of the scaled Chebyshev Measure
( ) and corresponding reweighted leverage function

τ [V 1
2− 1

pP](t) ( ) on [−1, 1] for d = 6, p = 1.
For most values of t both curves are close, but for
|t| > 1− 1

d2 the curves diverge. This means that the
Chebyshev density itself does not directly approxi-
mate the Lp Lewis weights, motivating our study of
a clipped version of the measure, denoted w(t).

1(1− 1
d2

)0.5

w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)w(t)

τ [W1/2−1/pP](t)

q(t)

O(d2)

t

Figure 7: Plot of the clipped Chebyshev Measure
( ) and corresponding reweighted leverage function
( ) for t ∈ [0.5, 1] and d = 6, p = 1. As proven in
Theorem 2.2, these functions are within a constant
factor for all t, so the clipped measure approximates
the Lp Lewis weights for p ≤ 2. We also visualize the
“spike” polynomial q(t) ( ) and the upper bound
( ) used in the proof of Theorem 2.2.

To handle this challenge, we turn to the definition of C-almost Lewis weights for matrices given in [CP15].
Specifically, we say that w1, · · · , wm are C-almost Lewis weights for A if

1

C
wi ≤ τ [W

1
2− 1

pA](i) ≤ Cwi for all i ∈ [m] (1)

where W is again the matrix with wi on its diagonal. [CP15] prove that, for 0 < p ≤ 2, after scaling by a
factor of C, the C-almost Lewis weights are upper bounds for the true Lewis weights of a matrix.

This suggests a natural approach to bound the Lewis weights of a matrix: exhibit some weights w1, · · · , wm
and verify that the inequality above holds. In the case of the infinite operator P, our goal is to find a function
w(t) : [−1, 1]→ R such that

1

C
w(t) ≤ τ [W 1

2− 1
pP](t) ≤ Cw(t) for all t ∈ [−1, 1] (2)

where [Wf ](t) := w(t)f(t) is the linear operator equivalent to a diagonal matrix.
As a first possible candidate for the Lewis weight function, we consider the Chebyshev density v(t)

itself. To do so, we have to bound the leverage function τ [V 1
2− 1

pP](t), where [Wf ](t) := w(t)f(t). We

establish a surprisingly direct bound based on the fact that for each p, the weighting V 1
2− 1

p aligns with the
orthogonalization measure of certain Jacobi orthogonal polynomials. Specifically, we prove:

Theorem 2.1. Let J
(α,β)
i (t) denote the degree i Jacobi Polynomial with parameters α and β. Then, letting

α = β = 1
p − 1

2 , we have

τ [V 1
2− 1

pP](t) =
1

(1− t2)
1
2− 1

p

d∑
i=0

(J
(α,β)
i (t))2

That is, we can exactly characterize this Chebyshev-reweighted leverage function in terms of Jacobi
polynomials. Further, because Jacobi polynomials are well-studied in the orthogonal polynomial literature,
we can appeal to prior work on uniformly upper bounding these polynomials to bound the above sum of
squares. Overall, in Section 4 we prove:

1

C
v(t) ≤ τ [V 1

2− 1
pP](t) ≤ Cv(t) for all |t| ≤ 1− 1

d2
(3)
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This is very close to what we need to show, but unfortunately the almost-Lewis weight property does not
hold for large |t| > 1− 1

d2 . Figure 6 shows what goes wrong: the Chebyshev density v(t) diverges to +∞ while

the weighted leverage function τ [V 1
2− 1

pP](t) remains bounded. To resolve this issue, we adjust our proposed
Lewis weight function, and instead consider w(t) := max{c1(d+1)2, v(t)}, which clips the Chebyshev density
so that it cannot diverge to +∞. We can then show the following core theorem for small p:

Theorem 2.2. There are fixed constants c1, c2, c3 such that, letting w(t) = min
{
c1(d+ 1)2, v(t)

}
be the

clipped Chebyshev measure on [−1, 1] and letting W be the corresponding diagonal operator with [Wf ](t) =
w(t) · f(t), for any p ∈ [ 2

3 , 2] and t ∈ [−1, 1],

c2

log3 d
w(t) ≤ τ [W1/2−1/pP](t) ≤ c3w(t)

Theorem 2.2 shows that the clipped Chebyshev density gives a set of O(log3 d)-almost Lewis weights
for the polynomial operator. So we can upper bound the true Lewis weights by the clipped measure, and
only gain a polylog(d) factor in the final sample complexity in comparison to exact Lewis weight sampling.
Moreover, we can obtain the same bound via sampling by the Chebyshev measure itself, which tightly upper
bounds the clipped measure after scaling (i.e., it has the same integral on [−1, 1] up to a constant factor).
We also reiterate that when p ∈ [1, 2] we will directly appeal to this theorem for this value of p, but when
p > 2 we will appeal to this theorem for a different p′ ∈ [ 2

3 , 2], which is why we prove Theorem 2.2 for some
values of p < 1.

We prove Theorem 2.2 by separately considering the case when |t| ≤ 1 − 1
d2 and when |t| > 1 − 1

d2 .
The first case is easier: we show that for such values of t, the reweighted leverage function corresponding to
the clipped Chebyshev measure – i.e. τ [W1/2−1/pP](t) – very closely approximates the reweighted leverage
function corresponding to the unclipped measure. We can then directly appeal to Equation 3. The second
case is more challenging: when |t| > 1− 1

d2 , the density at t is different in the clipped and unclipped measure,
so the reweighted leverage scores differ significantly. To deal with this hard case, we separately prove an
upper and lower bound as follows:

Upper Bound: Because w(t) itself is bounded, we can bound τ [W1/2−1/pP](t) ≤ τ [P ](t), and we use the
Markov Brothers’ inequality to bound τ [P ](t) ≤ O(d2).

Lower Bound: Because τ [W1/2−1/pP](t) is a maximization over degree d polynomials, we can prove a

lower bound by exhibiting a specific “spike” polynomial q(t) which has ([W 1
2− 1

p q](t))2/‖W 1
2− 1

p q‖22 =

Ω( d2

log3 d
).

The detailed proof can be found in Section 4. The final result of Theorem 2.2 is visualized in Figure 7.

2.2 Active Lp Regression via Chebyshev Sampling

Now that we have now bounded the Lp Lewis weight function of the polynomial operator P by the
Chebyshev density for p ∈ [ 2

3 , 2], in order to prove Theorem 1.2 for p ∈ [1, 2], we can almost directly
apply existing Lewis weight sampling guarantees for active `p regression [MMWY22, CD21]. However, there
remains an outstanding challenge. Näıve Lewis weight sampling for `p regression on an m× d matrix incurs
a log(m) dependence in the sample complexity4. This rules out directly applying Lewis weight sampling to
our infinite operator P, for which m is infinite (recall Figure 5).

We address this challenge with a simple observation: sampling rows of P by the Chebyshev measure is
essentially equivalent5 to collecting a large uniform sample of rows of P and then subsampling those rows
according to the Chebyshev measure. We visualize this “two-stage” decomposition of our sampling method

4Some work on Lewis weight sampling, including by Cohen and Peng [CP15], implicitly assumes log m = O(log d). This is
reasonable in the finite matrix setting, but does not apply when m is infinite.

5Two subtleties emerge here. First, we say “essentially equivalent” since this two-stage sampling scheme is O( 1
poly(d)

) close

to our actual Chebyshev sampling in total variation, so these schemes are indistinguishable but not the same. Second, analyzing
the two-stage procedure will require a random choice of the sample number n – see the footnote on Theorem 1.2.
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in Figure 8, and emphasize that we do not algorithmically generate the first uniformly sampled matrix6.
Instead, so long as this hypothetical two-stage algorithm is correct, by the equivalence of these sampling
schemes, we know that our actual algorithm is correct.

Proving correctness requires two key ingredients. Let A ∈ Rn0×d+1 be this matrix created by uniformly

sampling n0 rows of P. First, we show that taking n0 = poly(d)
poly(ε) suffices to recover a (1 + ε) error solution

to the full regression problem on P. Second, we prove that the Chebyshev measure evaluated at A’s rows
tightly upper bounds A’s Lewis weight distribution. So, by prior work [MMWY22, CD21], this can be used
to show that sampling by the measure suffices to obtain a (1 + ε) error solution to the regression problem
involving A. This Lewis weight sampling stage only has a dependence on log(n0) = log(dε ), avoiding the
log(m) issue. Overall, combining the error guarantees of both stages ensures that our hypothetical two-stage
algorithm samples rows of P in the same way as Algorithm 1 and with the same sample complexity as
Theorem 1.2.

To prove the first point, that uniform sampling a large number of rows preserves a near-optimal solution,
we turn to a different tool from the matrix sampling literature: Lp sensitivity sampling. The Lp sensitivities
are a natural generalization of the L2 leverage scores, defined as

ψp[P ](t) := max
x∈Rd+1

|[Px](t)|p
‖Px‖pp

= max
deg(q)≤d

|q(t)|p
‖q‖pp

The value of using Lp sensitivity sampling is that standard concentration bounds and an ε-net argument

show that sampling n0 = poly(d)
poly(ε) rows proportionally to their sensitivities suffices to recover a (1 + ε) error

solution to the full Lp regression problem. While the dependence on d is polynomially worse than that of
Lewis weight sampling, it has no dependence on m. Since we want to sample rows of P uniformly, we will
need to show a uniform bound on ψp[P ](t) (i.e., an upper bound that does not depend on t). Using a classical
result on the smoothness of polynomials (specifically the Markov brothers’ inequality), we can indeed show

ψp[P ](t) ≤ d2(p+ 1), which in turn implies that n0 = poly(d)
poly(ε) uniform samples suffice.

To prove the second point, we need to show that the Chebyshev measure upper bounds A’s Lewis weights.
To do so, we prove that the clipped Chebyshev measure, which is an almost-Lewis weight measure for P, is
also an almost-Lewis weight distribution for A. Again the proof mostly follows from standard concentration
results combined with an ε-net argument, although we also need to use the fact that the clipped Chebyshev
measure is bounded.

We visualize the structure of our two-stage proof in Figure 8. Overall, the arguments above complete the
analysis of Lp polynomial regression for p ∈ [1, 2].

2.3 Near-Linear Sample Complexity for p > 2

The next challenge is to extend our results to p > 2. We could use a similar approach as in Section 2.1
and Section 2.2, but doing so would lead to suboptimal sample complexity. In particular, `p matrix Lewis
weight sampling algorithms have a very different sample complexity for p ≤ 2 and p > 2. For p ∈ [0, 2], Lewis
weight sampling requires Õ(d) samples. For p > 2, Lewis weight sampling requires Õ(dp/2) samples, and
there are worst-case matrices that necessitate this sample complexity. So to achieve Õ(d) sample complexity,
we require a novel analysis of `p Lewis weight sampling for active regression that leverages the structure of
the polynomial operator P. Concretely, within the framing of Section 2.2, we keep the uniform sensitivity
sampling stage but provide a new analysis for the second Lewis weight sampling stage.

We start by describing a simple approach for achieving constant factor error (but not (1 + ε) factor)
which follows from an observation in [MMM+22]. In particular, if we only want constant factor error, it
suffices to find a subsampling matrix S that satisfies an `p subspace embedding property. Specifically, we
need that for all x ∈ Rd+1, ‖SAx‖pp ≈ ‖Ax‖pp. We argue that such a matrix can be constructed with a
number of rows linear in d (for any constant p) as follows: Let f be a degree d polynomial, and let r be an
integer such that q := p

r ∈ [1, 2]. Then, t 7→ (f(t))r is some degree rd polynomial. So, if A ∈ Rn0×d+1 is our
Vandermonde matrix resulting from uniform sampling, we can let B ∈ Rn0×rd+1 be another Vandermonde

6In principal, we could algorithmically generate the uniform subsampled matrix and numerically compute its `p Lewis
weights, although this would incur a much higher polynomial runtime dependence on d than our simpler approach of sampling
directly from the Chebyshev measure.
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t
∈
[−

1,
1]

P : Rd → L2

SA ∈ RÕ(d)×d

A ∈ RÕ(d5)×d

Linear Operator Vandermonde
Matrix

Subsampled
Vandermonde

Matrix

Sampling:
Uniform

Sampling:
Lewis Weight

1 t t2 · · · td
(theoretical)

1 t t2 · · · td

1 t t2 · · · td

Figure 8: Sketch of the two-stage proof technique described in Section 2.2. We show that the Chebyshev
measure sampling of Algorithm 1 is equivalent to a hypothetical two stage sampling procedure that first

uniformly samples O
(

poly(d)
poly(ε)

)
query points from [−1, 1] to form Vandermonde matrix A, and then further

samples the rows of A by the Chebyshev measure, which approximates A’s Lewis weight distribution.
Since we can uniformly bound the Lp sensitivities of the original regression problem by poly(d), we can
argue that both stages of sampling preserve the solution of the Lp regression problem, and thus that our
final solution gives a (1 + ε) approximation to the optimal.

matrix generated by the same time samples but describing polynomials of degree rd. Then, for all x ∈ Rd+1

there exists some y ∈ Rrd+1 such that (Ax)r = By, where we define the exponentiation elementwise. In
particular, we have ‖Ax‖pp = ‖By‖qq. Therefore, if we know that S provides an `q norm subspace embedding

for B, so that ‖SBy‖qq ≈ ‖By‖qq for all y ∈ Rrd+1, we also know that S is a subspace embedding for A:

‖SAx‖pp ≈ ‖Ax‖pp for all x ∈ Rd+1. Since B is exactly the Vandermonde matrix we would have generated
from uniformly sampling in Section 2.2 with degree rd and `q norm, we know that the Chebyshev measure
bounds the Lewis weights of B, and that the Lewis weight subsampling matrix S is a subspace embedding
for B, and therefore also for A.

Achieving (1 + ε) error regression is harder but takes a similar approach. In order to have Lewis weight
sampling imply (1+ε) error regression, a subspace embedding does not suffice and a more detailed argument
is needed [MMWY22]. A crucial step in this analysis is showing an affine embedding : that ‖S(Ax−b)‖p ≈
‖Ax − b‖p for all Ax with small `p norm. [BLM89] and [MMWY22] provide a way to prove this affine
embedding via a compact rounding argument, which designs a structured set of ε-nets which allow for a tight
Õ(dmax{1,p/2}) sample complexity to be obtained from Lewis weight sampling. To obtain a linear dependence
in d for all p, we reduce from the `p case to the `q case for q ≤ 2, as discussed above, but in a less direct way.
In particular, we show that a compact rounding for the range of B can be directly transformed to construct
a compact rounding of the same size for the range of A.

This approach is elaborated on in Section 5.3. Critically, we will now enforce that r is also an odd integer,
so that we not only get (Ax)r = By but also have Ax = (By)1/r. This does not hold when r is even since
negative entries of Ax get turned positive. For p ≥ 3, we let r be the largest odd integer smaller than p,
so that q = p

r ∈ [1, 2]. For p ∈ (2, 3), this would pick r = 1 which would not be helpful, so we instead take
r = 3, so that q = p

r ∈ [ 2
3 , 1]. Once we construct this compact rounding, we find that sampling the rows

of A by the `q Lewis weights of B achieves the affine embedding with sample complexity linear in d. And
since Section 2.1 bounds the Lewis weights of B by the Chebyshev measure, we conclude that Algorithm 2
achieves Theorem 1.2 for all p > 2.
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2.4 Lower Bounds and L∞ Polynomial Approximation

The linear dependence on d in Theorem 1.2 cannot be improved: when f is exactly equal to a degree d
polynomial, if we do not take at least d+ 1 samples it is not possible to recover a zero-error approximation
to the function. A natural question is if the 1/εO(p) dependence in the theorem is also tight – i.e., is it
necessary for the accuracy to depend exponentially on p?

We answer this question in the affirmative with the lower bound of Theorem 1.3, which has a short and
direct proof. For any algorithm that queries f at most n ≤ O( 1

εp−1 ) times, there must exist an interval
I ⊂ [−1, 1] of width εp−1 such that none of the algorithm’s queries lie in I with probability 2

3 . We then
randomly select a function f that is either +1 or −1 on I with equal probability, and 0 elsewhere. To obtain
a 1 + ε approximation in the Lp norm, the algorithm must distinguish between these two cases, but with
probability 2

3 , it does not even obtain a sample from the non-zero region.
Finally, we note that our techniques can be extended to give a constant factor approximation to the L∞

polynomial approximation problem with O(d polylog(d)) samples. Details are discussed in Section 6, where
we relate the L∞ problem to the Lp problem with p = O(log d). Results for the L∞ norm were already
shown in [KKP17] using a different approach but the same Chebyshev measure sampling distribution.

Markov Brothers’

Inequality

Matrix Lewis weights

/ leverage scores

Orthogonal polynomials

(Chebyshev / Jacobi)

Reduction

to `q space

Lp Sensitivity

Bounds, p ≥ 1

Uniform Sampling

(two stage)

Almost Lewis Weight

Bounds, p ∈
[

2
3 , 2
]

Compact

Rounding

Affine

Embedding

(1 + ε)-approximation,

p ≥ 2 (one stage)

(1 + ε)-approximation,

p ∈ [1, 2] (one stage)

Figure 9: Flowchart of proofs: dashed rectangles represent existing results, solid rectangles represent our
technical contributions.

Organization of the rest of the paper. We first consider the Lp regression problem for p ∈ [1, 2] in
Section 4. Specifically, we start by relating the Chebyshev density to the Lp Lewis weights for all p ∈ [ 2

3 , 2].
We first outline the proof for p = 1 in Section 4.2 and defer the proof for general p ∈ [ 2

3 , 2] to Section 4.3
and Section 7. We then prove correctness of Algorithm 1 for p ∈ [1, 2] in Section 4.4 and Section 4.5.

We handle p > 2 in Section 5. We first prove the correctness of constant-factor regression in Section 5.1,
prove the majority of (1 + ε) error analysis in Section 5.2, and prove a core technical claim for p > 2 in
Section 5.3. We present the lower bound Theorem 1.3 in Section 5.2. Finally, we address L∞ regression in
Section 6. A summary of our high-level ideas and their dependencies is shown in Figure 9.

3 Preliminaries

For an integer n > 0, we use [n] to denote the set {1, . . . , n}. We use poly(n) to denote a constant degree
polynomial in n and polylog(n) to denote a polynomial in log n.

Throughout this paper, unbold lowercase letters are scalars or functions, bold lowercase letters are vectors,
bold uppercase letters are matrices, and calligraphic uppercase letters are linear operators. The norm ‖ · ‖p
will interchangeably refer to the vector norm, defined by ‖x‖pp =

∑d
i=1 |xi|p, and the continuous norm

‖f‖pp =
∫ 1

−1
|f(t)|p dt. We say that a matrix A is a subspace embedding for another matrix or linear operator

A if for all x we have 1
α‖Ax‖pp ≤ ‖Ax‖pp ≤ α‖Ax‖pp for some constant α ≥ 1. More broadly, if two scalars x

and y have 1
αx ≤ y ≤ αx, then we write x ≈α y. For instance, the subspace embedding guarantee can be

written as ‖Ax‖pp ≈α ‖Ax‖pp for all x. We use brackets for indexing on both vectors and functions.
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The ith entries of the vectors x and Ax are denoted x(i) and [Ax](i). The `2 leverage score of the ith row
of matrix A is denoted τ [A](i). The `p Lewis weight of the ith row of matrix A is denoted wp[A](i). The
`p sensitivities of the ith row of matrix A is denoted ψp[A](i). We similarly denote the leverage function,
Lewis weight function, and sensitivity of an operator A at time t as τ [A](t), wp[A](t), and ψp[A](t).

Let P denote the polynomial operator of degree d:

P : Rd+1 → Lp([−1, 1]) [Px](t) :=
d∑
i=0

xit
i

Note that the maximum degree of a polynomial is d, but that the rank of P is d+ 1 because of the constant
degree-0 polynomial.

We recall the Markov brothers’ inequality that bounds the magnitude of the derivative of a polynomial
of degree d whose magnitude inside the interval [−1, 1] is bounded by 1.

Theorem 3.1 (Markov brothers’ inequality, e.g., Theorem 2.1 in [GM99]). Suppose q(t) is a polynomial of
degree at most d such that |q(t)| ≤ 1 for t ∈ [−1, 1]. Then for all t ∈ [−1, 1], |q′(t)| ≤ d2.

Throughout this paper, we will be analyzing Algorithm 1, and showing that this algorithm satisfies
Theorem 1.2.

4 Active Lp Regression for p ∈ [1, 2]

In this section, we start with the definition of leverage scores and prove that the L1 Lewis weights for
the polynomial operator are bounded by the Chebyshev measure. In particular, this section shows the
relationship between Lewis weights and uniform bounds on orthogonal polynomials. We then use this Lewis
weight bound to show that Õ(d) samples suffice for robust L1 regression.

4.1 Warm Up: Bounding the Leverage Scores for p = 2

We first start with leverage scores, which are a key building block underpinning Lewis weights. Before
discussing Lewis weights, we will look at bounding the leverage scores of P, which relates to solving L2

regression. We first look at the properties of Leverage Scores for matrices:

Definition 4.1. For a matrix A ∈ Rn×d, the leverage score for row i ∈ [n] is:

τ [A](i) := max
x∈Rd, ‖Ax‖2>0

([Ax](i))2

‖Ax‖22
The leverage scores of a matrix are well studied, and we will rely on two of their properties:

1. Leverage Scores are invariant to change of basis: for full-rank U ∈ Rd×d, we have τ [AU ](i) = τ [A](i).

2. If A has orthonormal columns, then τ [A](i) = ‖ai‖22 where ai is the ith row of A.

So, if we can find a matrix U such that AU has orthonormal columns, then we can compute τi(A) =
‖[AU ](i)‖22. We can use this argument to bound the Leverage Function of the polynomial operator:

Definition 4.2. For an operator A : Rd+1 → L2([−1, 1]), the leverage function for A at time t ∈ [−1, 1] is

τ [A](t) := max
x∈Rd+1, ‖Ax‖2>0

([Ax](t))2

‖Ax‖22
We can easily see that the leverage function is also rotationally invariant. As shown in Figure 5, P

has columns that represent the first degree d monomials. That is, we think of the ith column of P as the

polynomial pi(t) = ti−1. Since
∫ 1

−1
pi(t)pj(t)dt 6= 0 in general, these columns are not orthogonal.

While the first degree d monomials are not orthogonal, the Legendre polynomials are. So, we can find a
change-of-basis matrix U such that the columns of PU are Legendre polynomials instead. Under this basis,
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we have ‖PUx‖22 = ‖x‖22, which lets us simplify the leverage function. Letting Li(t) denote the degree i

Legendre polynomial, normalized so that
∫ 1

−1
(Li(t))

2dt = 1, we have

τ [P ](t) = max
x∈Rd+1

([PUx](t))2

‖PUx‖22
= max
‖x‖2=1

([PUx](t))2 = max
‖x‖2=1

(
d∑
i=0

xiLi(t)

)2

=
d∑
i=0

(Li(t))
2 (4)

The last equality follows because max‖x‖2=1(a>x)2 = ‖a‖22 for any a. If we view PU as an infinite matrix
whose rows correspond to t ∈ [−1, 1] and whose columns correspond to the Legendre polynomials, then
Equation 4 shows that τ [P ](t) equals the row-norm-squared of this matrix, matching the second property
we mentioned for matrix leverage scores.

So, to bound the leverage function for P, we now need to bound the sum-of-squared Legendre polynomials.
Here we appeal to existing uniform bounds on orthogonal polynomials. For instance, Lorch proved in 1983

that |Li(t)| ≤
√

2
π
√

1−t2 for all t ∈ [−1, 1] [Lor83]. So we conclude the bound

τ [P ](t) =
d∑
i=0

(Li(t))
2 ≤

d∑
i=0

2

π
√

1− t2
=

2(d+ 1)

π
√

1− t2
= 2v(t)

That is, the leverage function is upper bounded by the Chebyshev measure, which intuitively implies that
O(d log d) samples from the Chebyshev measure suffice to recover a polynomial for L2 regression. Formally,
for L2 regression, this technique can be analyzed using the tools in [CP19a] or [RW12].

4.2 Bounding the Lewis Weights for p = 1

Having covered the L2 case, we now focus on p = 1, where the leverage function is no longer sufficient.
We turn to Lewis weights, and start by considering the standard matrix setting:

Definition 4.3. Let A ∈ Rn×d, and p ≥ 0. Then the `p Lewis weights for A are the unique weights
wp[A](1), . . . , wp[A](n) such that

τ
[
W

1
2− 1

pA
]
(i) = wp[A](i)

for all i ∈ [n], where W ∈ Rn×n is the corresponding diagonal matrix with W i,i = wp[A](i).

[CP15] show several important properties of Lewis weights:

1. When p ∈ [1, 2], sampling O(d log d) rows of A with respect to its Lewis weights suffice to recover an
`p subspace embedding.

2. If some other weights w1, . . . , wn have 1
C ≤

τ [W
1
2
− 1
pA](i)

wi
≤ C for all i ∈ [n] and some constant C,

where Wi,i = wi, then w1, . . . , wn are close to the true Lewis weights.

In particular, if we can find any such w’s, then we can sample O(d log d) rows of A with respect to w1, . . . , wn
and still get an `p subspace embedding, which suffices to recover a near-optimal solution to `p regression.
This motivates our approach, where we show that the Chebyshev Measure v(t) nearly satisfies this guarantee.

We start by defining Lewis weights for operators:

Definition 4.4. For an operator A : Rd+1 → L1([−1, 1]), a Lewis weight function for A satisfies

wp[A](t) = τ [W
1
2− 1

pA](t)

for all t ∈ [−1, 1], where W is the corresponding diagonal operator such that [Wx](t) = wp[A](t) · x(t) for
any function x.

The Chebyshev Measure will not satisfy this strict equality criteria, so we instead consider the approxi-
mate criteria:
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Definition 4.5. For an operator A : Rd+1 → L1([−1, 1]), a function w(t) is a C−Almost Lewis Weight
Function for A if

1

C
≤ τ [W 1

2− 1
pA](t)

w(t)
≤ C

for all t ∈ [−1, 1], where W is the corresponding diagonal operator such that [Wx](t) = w(t) · x(t) for any

function x. We often refer to τ [W
1
2
− 1
pA](t)

w(t) as the Lewis Weight Fixpoint Ratio.

Similarly to the L2 case, we relate the leverage function to a class of orthogonal polynomials. However,

for p 6= 2, the Legendre polynomials do not make the columns of W 1
2− 1

pA orthogonal. For p = 1, we turn to

Chebyshev Polynomials of the Second Kind, denoted Ui(t), which satisfy
∫ 1

−1
Ui(t)Uj(t)

√
1− t2dt = π

21[i=j].

Theorem 4.6. Let v(t) := d+1
π
√

1−t2 , V be the diagonal operator for v(t), and Ui(t) be the degree i Chebyshev

polynomial of the second kind. Then,

τ [V− 1
2P](t)

v(t)
= 1 +

1− U2(d+1)(t)

2(d+ 1)

Proof. Let U be the change-of-basis matrix such that PU has columns that are Chebyshev polynomials
of the second kind. We first verify the orthogonality by simplifying the denominator of τ [V− 1

2P](t) =

maxx
([V− 1

2 PUx](t))2

‖V− 1
2 PUx‖22

:

‖V− 1
2PUx‖22 =

∫ 1

−1

(
d∑
i=0

xiUi(s)
1√
v(s)

)2

ds

=
π

d+ 1

d∑
i=0

d∑
j=0

xixj

∫ 1

−1

Ui(s)Uj(s)
√

1− s2ds

=
π2

2(d+ 1)
‖x‖22

With this orthogonality, we can rewrite the rescaled leverage scores as a squared row-norm:

τ [V− 1
2P](t) = max

x∈Rd+1

1
v(t) ([PUx](t))2

‖V− 1
2PUx‖22

=
2(d+ 1)

π2v(t)
max

x∈Rd+1

([PUx](t))2

‖x‖22

=
2(d+ 1)

π2v(t)
max
‖x‖2=1

(
d∑
i=0

xiUi(t)

)2

=
2(d+ 1)

π2v(t)

d∑
i=0

(Ui(t))
2

We now simplify this sum-of-squares term by using the specialized trigonometric structure of the Chebyshev

polynomials of the second kind. Letting θ := cos(t), note that Ui(t) = sin((i+1)θ)√
1−t2 and the Chebyshev

polynomials of the first kind have Ti(t) = cos(iθ). Then,

(Ui(t))
2 =

sin2((i+ 1)θ)

1− t2 =
1
2 − 1

2 cos(2(i+ 1)θ)

1− t2 =
1
2 − 1

2T2(i+1)(θ)

1− t2 =
1

2(1− t2)
· (1− T2(i+1)(t))

so that
∑d
i=0(Ui(t))

2 = 1
2(1−t2)

(
(d+ 1)−∑d

i=0 T2(i+1)(t)
)

. Using the relation Uk(t) = 2
∑k

even j=1 Tj(t)−1

for even k, we simplify this summation as
∑d
i=0 T2(i+1)(t) = 1

2U2(d+1)(t) + 1
2 − T0(t). Since T0(t) = 1,
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∑d
i=0 T2(i+1)(t) = 1

2U2(d+1)(t)− 1
2 . Returning to the rescaled leverage function,

τ [V− 1
2P](t) =

2(d+ 1)

π2v(t)

d∑
i=0

(Ui(t))
2

=
2(d+ 1)

π2v(t)
· d+ 1

2(1− t2)

(
1 +

1− U2(d+1)(t)

2(d+ 1)

)
= v(t)

(
1 +

1− U2(d+1)(t)

2(d+ 1)

)
,

which completes the proof.

Recall that for v(t) to be almost Lewis weights for P, we need τ [V− 1
2 P](t)
v(t) = Θ(1) for all t ∈ [−1, 1]. Since

−1√
1−t2 ≤ Ui(t) ≤

1√
1−t2 , we can see that Theorem 4.6 satisfies this criteria for almost all t:

Corollary 4.7. For |t| = 1−O( 1
d2 ), we have 1

C ≤
τ [V− 1

2 P](t)
v(t) ≤ C for some constant C.

We prove this formally in Section 7.1.2. For |t| → 1, we know that
∣∣U2(d+1)(t)

∣∣ → 2(d + 1), so that

τ [V− 1
2 P](t)
v(t) → 0, meaning that the almost Lewis weight property does not hold. So, while the Chebyshev

measure seems to match the Lewis weights for most t, it is wrong for t close to the “endcaps” at −1 and 1.
To understand why the Chebyshev measure fails at the endcaps, we note an important property of

the leverage function. By the Markov Brother’s Inequality, the leverage function is at most O(d2) for all
t ∈ [−1, 1]. However, the Chebyshev measure is unbounded as |t| → 1. So, there must be a gap between
these two distributions.

To resolve this gap, we analyze the Clipped Chebyshev Measure w(t), shown in Figure 4, which lies below
the true Chebyshev measure v(t), and which only differs in this endcap region:

Definition 4.8. The Clipped Chebyshev Measure is the function w(t) := min{C(d+ 1)2, (d+1)

π
√

1−t2 }.

With a more involved analysis relegated to Section 7, we show that 1) τ [W− 1
2P](t) = Θ̃(d2) in the

endcaps and 2) τ [W− 1
2P](t) = Θ(τ [V− 1

2P](t)) for |t| ≤ 1−O( 1
d2 ). This final step completes our first major

technical claim:

Lemma 4.9 (Theorem 2.2 for p = 1). There are fixed constants c1, c2 such that, for p = 1 and t ∈ [−1, 1],

c1

log3 d
≤ τ [W1/2−1/pP](t)

w(t)
≤ c2.

The full proof of Theorem 2.2 for general p ∈ [ 2
3 , 2], is discussed next, in Section 4.3.

4.3 Bounding the Lewis Weights for p ∈ (2
3
, 2)

To generalize the Lewis weight analysis for p = 1, we find a different orthogonal polynomial that nearly
achieves the C−almost Lewis weight property. We turn to Jacobi Polynomials:

Definition 4.10. The normalized Jacobi Polynomial of degree d with parameters α and β, denoted J
(α,β)
d ,

defines the polynomials orthogonal with
∫ 1

−1
J

(α,β)
i (t)J

(α,β)
j (t)(1− t)α(1 + t)β = 1[i=j].

In particular, we look at the subclass of Gegenbauer/Ultraspherical polynomials which have α = β, so we

use the truncated notation J
(α)
d and note they are orthogonal with

∫ 1

−1
J

(α)
i (t)J

(α)
j (t)(1− t2)α = 1[i=j]. Note

that Legendre polynomials coincide with α = 0, while Chebyshev polynomial of the second kind coincide
with α = 1

2 , so this class of polynomials certainly interpolates between the p = 1 and p = 2 orthogonal
polynomials. We now show that Gegenbauer polynomials are the correct orthogonal polynomial for Lp
Lewis weights:
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Theorem 4.11. For all p ∈ [ 2
3 , 2] and |t| ≤ 1− O( 1

d2 ), we have 1
C0
≤ τ [V

1
2
− 1
p P](t)

v(t) ≤ C0 for some universal

constant C0.

Proof. We first show that fixing α = 1
p − 1

2 and letting U be the corresponding change-of-basis matrix makes

V 1
2− 1

pPU have orthogonal columns:

‖V 1
2− 1

pPUx‖22 =

∫ 1

−1

((
d+ 1

π
√

1− s2

) 1
2− 1

p
d∑
i=0

xiJ
(α)
i (s)

)2

ds

=

(
d+ 1

π

)1− 2
p
∫ 1

−1

(
d∑
i=0

xiJ
(α)
i (s)

(
(1− s2)−

1
2

) 1
2− 1

p

)2

ds

=

(
d+ 1

π

)1− 2
p

d∑
i=0

d∑
j=0

xixj

∫ 1

−1

J
(α)
i (s) J

(α)
j (s) (1− s2)( 1

p− 1
2 )ds

=

(
d+ 1

π

)1− 2
p

d∑
i=0

d∑
j=0

xixj1[i=j]

=

(
d+ 1

π

)1− 2
p

‖x‖22

and so we can reduce τ [V 1
2− 1

pP](t) to a squared row-norm:

τ [V 1
2− 1

pP](t) = max
x∈Rd+1

([V 1
2− 1

pPx](t))2

‖V 1
2− 1

pPx‖22
= ( π

d+1 )1− 2
p max
‖x‖2=1

([V 1
2− 1

pPx](t))2

= ( π
d+1 )1− 2

p ( d+1
π
√

1−t2 )1− 2
p max
‖x‖2=1

([Px](t))2

= (1− t2)−( 1
2− 1

p )
d∑
i=0

(J
(α)
i (t))2

Unlike the p = 1 case, we are not aware of any way to simplify this sum of squares exactly, so we instead
provide nearly matching upper and lower bounds. For the upper bound, Theorem 1 from [NEM94] says that

(J
(α)
i (t))2 ≤ Cα

π · (1− t2)−(α+ 1
2 ). We then bound

τ [V 1
2− 1

pP](t) ≤ (1− t2)−( 1
2− 1

p )
d∑
i=0

Cα
π

(1− t2)−(α+ 1
2 )

= (1− t2)−( 1
2− 1

p )
d∑
i=0

Cα
π

(1− t2)−
1
p

= (1− t2)−
1
2 (d+ 1)

Cα
π

= Cα
d+ 1

π
√

1− t2
= Cαv(t)

To achieve the lower bound, we appeal to a different form of an orthogonal polynomial guarantee. We rephrase

τ [V 1
2− 1

pP](t) in terms of the Generalized Christoffel Function λd(z, 2, t) := minq:deg(q)≤d

∫ 1
−1

(q(s))2z(s)ds

(q(t))2 ,
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where z(s) := (1− s2)
1
p− 1

2 , as defined in Equation 1.5 of [EN92].

τ [V 1
2− 1

pP](t) = max
x∈Rd+1

([V 1
2− 1

pPx](t))2

‖V 1
2− 1

pPx‖22
= ( π

d+1 )1− 2
p (v(t))1− 2

p max
q:deg(q)≤d

(q(t))2∫ 1

−1
(q(s))

2
z(s)ds

= ( π
d+1 )1− 2

p (d+1
π )1− 2

p (1− t2)
−1
2 (1− 2

p ) max
q:deg(q)≤d

(q(t))2∫ 1

−1
(q(s))

2
z(s)ds

= (1− t2)
1
p− 1

2
1

minq:deg(q)≤d

∫ 1
−1

(q(s))2z(s)ds

(q(t))2

= (1− t2)
1
p− 1

2
1

λd(z, 2, t)

In Appendix E.1 we adapt Theorem 2.1 of [EN92] to show that λd(z, 2, t) ≤ C
d−1 (1− t2)

1
p for some universal

constant C when |t| ≤ 1 − O( 1
d2 ). With this bound, we get τ [V 1

2− 1
pP](t) ≥ (1 − t2)−

1
2
d−1
C , so we can show

the lower bound required by the almost Lewis weight property:

τ [V 1
2− 1

pP](t)

v(t)
≥ (1− t2)−

1
2
d−1
C

(1− t2)−
1
2
d+1
π

=
π(d− 1)

C(d+ 1)
≥ π

3C

And so, we find that π
3C ≤

τ [V
1
2
− 1
p P](t)

v(t) ≤ Cα, completing the proof.

Again, we see that the Chebyshev measure satisfies the almost Lewis weight property for most t ∈ [−1, 1],
but this does not work in the endcaps. To remedy this issue, we again appeal to the clipped Chebyshev
measure, resulting in Theorem 2.2

Theorem 2.2 Restated. There are universal constants c1, c2 such that, for all p ∈ [ 2
3 , 2] and t ∈ [−1, 1],

c1

log3 d
≤ τ [W1/2−1/pP](t)

w(t)
≤ c2.

The full proof using this clipped measure is deferred to Section 7.

4.4 Constant-Factor Approximation

In order to achieve a constant-factor approximation to the Lp polynomial regression problem, we want
to use Theorem 2.2 to create a subspace embedding guarantee. However, as discussed in Section 2.2, Lewis
weight guarantees have a logarithmic dependence on the number of rows of the full matrix, which is infinite
for P.

Beyond Lewis weight sampling, it is known that matrix Lp sensitivity sampling can be done with a
suboptimal dependence on the dimension d, but without any dependence on the number m of rows within
the analysis. So, we bound the Lp sensitivity function of P, showing that Õ(d5) samples drawn uniformly
from [−1, 1] creates a subspace embedding from the P operator to a tall-and-skinny matrix A. With this
sensitivity result, we can solve the problem in Theorem 1.2 with Õ(d5) samples:

Definition 4.12 (Lp sensitivity function). For an operator A : Rd+1 → Lp([−1, 1]), the Lp sensitivity
function for A at time t ∈ [−1, 1] is

ψp[A](t) := max
x∈Rd+1

|[Ax](t)|p
‖Ax‖pp

.

We show that the sensitivities of Lp regression are bounded.
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Lemma 4.13 (Uniform sensitivity bound). For all t ∈ [−1, 1] and p ≥ 1, we have ψp[P ](t) ≤ d2(p+ 1)

Proof. Note that ψp[P ] := maxx∈Rd+1
|[Px](t)|p
‖Px‖pp = maxq:deg(q)≤d

|q(t)|p∫ 1
−1
|q(s)|pds Without loss of generality we

take q(t) = 1. Let C := maxs∈[−1,1] |q(x)| and s∗ := argmaxs∈[−1,1] |q(x)|. By the Markov brothers’

inequality, we have |q(s∗ + s)| ≥ C − Cd2s ≥ 0 for any |s| ≤ 1
d2 . Then we can lower bound the integral in

the denominator of ψp by∫ 1

−1

|q(s)|p ds ≥
∫ 1

d2

0

(C − Cd2s)p ds =
−1

Cd2(p+ 1)
(C − Cd2x)p+1

∣∣∣∣1/d2
0

≥ 1

d2(p+ 1)

so that

ψp[P ](t) =
|q(t)|p∫ 1

−1
|q(x)|p dx

≤ d2(p+ 1)

Next we show that since uniform sampling is oversampling with respect to the sensitivities, we can get
an Lp subspace embedding with Õ(d5) samples:

Theorem 4.14. Let p ≥ 1 and suppose s1, . . . , sn0
are drawn uniformly from [−1, 1]. Let A ∈ Rn0×(d+1)

be the associated Vandermonde matrix, so that Ai,j = sj−1
i . Let b ∈ Rn0 be the evaluations of f , so that

b(i) = f(si). For n0 = O
(
d5p22p log d

)
, there exists a universal constant c such that the sketched solution

xc = argminx ‖Ax− b‖p satisfies

‖Pxc − f‖p ≤ c min
x∈Rd+1

‖Px− f‖p

with probability at least 11
12 .

Further, let ε ∈ (0, 1) and suppose ‖f‖p ≤ C minx ‖Px− f‖p. If n0 = O
(

1
εO(p2)

d5pO(p) log d
ε

)
, then

‖Px̂− f‖pp ≤ (1 + ε) min
x
‖Px− f‖pp

with probability at least 11
12 . In particular, suppose xc is computed from sampling f uniformly at least

O(d5p22p log(d))times, we let f̂(t) := f(t) − [Pxc](t), and compute x̂ by sampling f̂ uniformly at least

O
(

1
εO(p2)

d5pO(p) log d
ε

)
times. Then, if we let x̃ := xc + x̂, we have

‖Px̃− f‖pp ≤ (1 + ε) min
x∈Rd+1

‖Px− f‖pp

The proof of this theorem is a standard sensitivity sampling analysis combined with our bounds on the
Lp sensitivities, so it is deferred to Appendix A.

To decrease this sample complexity further, we apply Lewis weight subsampling to the matrix A. Since
the rows of A are drawn uniformly from [−1, 1], we can show that the Lewis weights of A closely approximate
the Lewis weights of P. So, by Theorem 2.2, we know that the Chebyshev measure upper bounds the Lewis
weights of A. That is, we can bound the Lewis weights of A without ever even building the matrix. Formally,
we give the following guarantee:

Theorem 4.15. Let A, and n0 as in either part of Theorem 4.14. Then, with probability 11
12 , for all i ∈ [n0],

the `p Lewis weight of A at row i is at most 1
n0
v(si) polylog(d) and at least 1

n0 polylog(d)w(si).

Proof. Let W ∈ Rn0×n0 be a diagonal matrix that represents our candidate `p Lewis weights for A, with
Wii := γw(si), where γ := 2

n0
is a rescaling factor. In Appendix B we use a standard ε-net argument to

show the spectral approximation

1

2
P>W1− 2

pP � γ− 2
pA>W 1− 2

pA � 2P>W1− 2
pP

holds with probability 11
12 . We condition on this event.
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Then note the inner-product form of the leverage scores: τ [A]i = a>i (A>A)−1ai where ai is the ith row
of A, and τ [P ](t) = p>t (P>P)−1pt where pt := [1 t t2 . . . td] is the row of P at time t (Theorem 5 from
[AKM+19] or Lemma 1 from [Mey22]). Then we can examine the rescaled leverage scores:

τ [W
1
2− 1

pA](i) = (Wii)
1− 2

p a>i (A>W 1− 2
pA)−1ai

≤ 2(Wii)
1− 2

p γ
2
p a>i (P>W1− 2

pP)−1ai

= 2(γw(si))
1− 2

p γ
2
pp>si(P>W−1P)−1psi

= 2γ τ [W−1P](si)

and we can similarly show that τ [W
1
2− 1

pA](i) ≥ 1
2 γτ [W 1

2− 1
pP](si). So now we can use Theorem 2.2 to show

the almost Lewis weight property holds on A:

τ [W
1
2− 1

pA](i)

Wii
≤ 2γ τ [W 1

2− 1
pP](si)

γ w(si)
= 2

τ [W 1
2− 1

pP](si)

w(si)
≤ log3(d)

and similarly we can show the lower bound τ [W
1
2
− 1
pA](i)

Wii
≥ log3(d). Therefore, Wii = 2

n0
w(t) are `p almost

Lewis weights for A. Further, since v(t) ≥ w(t), we have that C
n0
v(t) upper bound the `p Lewis weights for

A for some constant C.

This näıvely suggests an Õ(d5) runtime algorithm to pick O(d polylog d) samples that give optimal Lp
regression: sample n0 = O(d5 log d) times uniformly from [−1, 1], and for each sample, throw it away
with probability 1 −min{ 1

n0
v(si) polylog(d), 1}. Then, with high probability, O(d) samples remain and the

resulting subsampled matrix is an Lp subspace embedding. Formally, this argument uses the following result
from [CP15]:

Theorem 4.16 (Theorem 7.1 from [CP15]7). Let A ∈ Rn0×d+1 and p ∈ [1, 2]. Let wp[A](1), . . . , wp[A](n0)

be the `p Lewis weights of A, and let w̃i ≥ Cwp[A](i) for all i such that
∑
i w̃i = Õ(d). Define probabil-

ities pi := min{1, mn0
w̃i}, and build the diagonal matrix S ∈ Rn0×n0 such that Sii takes value 1

(pi)1/p
with

probability pi and is 0 otherwise. Remove the rows of S that are all zero. Suppose we pick m, the expected
number of remaining rows, to be m = O(d polylog(d)). Then with probability 11

12 , for all x ∈ Rd+1, we have
‖SAx‖p ≈2 ‖Ax‖p.

This Õ(d5) time algorithm certainly suffices to give the near-optimal sample complexity for constant ε,
but we can improve the time complexity. In particular, since we exactly know the distribution of s1, . . . , sn0

and the probabilities of the coins p1, . . . , pn0
, we can directly compute the marginal distribution of times

that result from both sampling procedures:

Lemma 4.17. Suppose n0 time samples are drawn uniformly from [−1, 1], and each sample is thrown away
with probability 1−min{mn0

1√
1−s2i

, 1}. Let n denote the number of remaining samples. Then n is distributed

as B(n0, O( mn0
)), and with probability 99

100 the resulting samples cannot be distinguished from iid samples from
the Chebyshev measure.

This short lemma is proven in Appendix C. Taking n0 = O(d5 polylog d) and m = O(d polylog d), we
get n ∼ B(n0, 1/Õ(d4)) so that n = d polylog d with very high probability. So, this lemma tells us that
instead of sampling Õ(d5) times uniformly, we can just sample d polylog(d) samples from the Chebyshev
distribution. In summary, we arrive at the following:

Corollary 4.18. Let A, and n0 as in either part of Theorem 4.14. Let m = O(d polylog d). Suppose an
algorithm samples n ∼ B(n0, O( mn0

)) and runs Algorithm 1. Then, the matrix SA on line 4 of the algorithm

is a subspace embedding for P: 1
C ‖Px‖pp ≤ ‖SAx‖pp ≤ C‖Px‖pp for all x ∈ Rd+1.

We now state the overall correctness of the algorithm for constant factor approximation for p ≥ 1:

7This is stated with a slightly different sampling method as in [CP15], but the theorem holds by applying standard methods
to their Rademacher analysis
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Algorithm 3 Constant factor active `p matrix regression

Input: Vandermonde matrix A ∈ Rn0×d+1, response vector b ∈ Rn0 , target number of samples m
Output: Approximate solution x̂ ∈ Rd+1 to minx ‖Ax− b‖p

1: Let pi = min{1, mn0

1√
1−s2i
} where si ∈ [−1, 1] is the time associated with row i of A

2: Let S ∈ Rn0×n0 be a diagonal matrix with Sii = 1
(pi)1/p

with probability pi, and Sii = 0 otherwise

3: return x̂ = argminx ‖SAx− Sb‖p

Algorithm 4 Relative error active `p matrix regression

Input: Matrix A ∈ Rn0×d+1, response vector b ∈ Rn0 , target number of samples n
Output: Approximate solution x̃ ∈ Rd+1 to minx ‖Ax− b‖p

1: Run Algorithm 3 on vector b with n
2 samples to get vector xc

2: Let z := b−Ax̂c
3: Run Algorithm 3 on vector z with n

2 samples to get vector x̂
4: return x̃ = xc + x̂

Theorem 4.19. Let p ≥ 1 and n0 = O
(
d5p22p log d

)
. Suppose an algorithm samples n ∼ B(n0, 1/Õ(d4))

and runs Algorithm 1. Then, with probability 2
3 , the resulting polynomial q̂ satisfies

‖q̂ − f‖pp ≤ O(1) min
q:deg(q)≤d

‖q − f‖pp

The correctness of this theorem follows from combining Corollary 4.18 with Lemma A.1 from [MMM+22],
which says that unbiased subspace embedding suffices for constant-factor error in regression. While there is
randomness in the sample complexity, we have that with very high probability n = O(d polylog d). Finally,
we emphasize that Theorem 4.19 holds for all p ≥ 1 due to the result from [MMM+22]. Thus we will
ultimately also use this algorithm as a subroutine for Lp polynomial regression for p ≥ 2.

4.5 (1 + ε)-Approximation

Given the constant factor approximation in the previous section, we can now build an algorithm that
outputs a (1 + ε)-approximation for the Lp regression problem when p ∈ [1, 2]. First, we recall an algorithm
from [MMWY22] that samples d poly(log d, 1

ε ) rows of a matrix by almost-Lewis weights, reads the corre-
sponding coordinates in the measurement vector b, and solves the subsampled `p matrix regression problem
twice, giving a (1 + ε) error solution. Since we know that the Chebyshev density describes the almost-Lewis
weights of A, we can directly appeal to this result. In particular, they prove that Algorithm 4 gives the
following guarantee:

Theorem 4.20. Let A ∈ Rm×d+1, b ∈ Rm, and p ≥ 1. Then, with probability 0.98, Algorithm 4 with

n = O(dmax(1,p/2) log2(d) log(m)
εmin(2p+5,p+7) ) returns a vector x̃ ∈ Rd+1 such that ‖Ax̃− b‖p ≤ (1 + ε) minx ‖Ax− b‖p.

We remark that although Theorem 4.20 matches the guarantee given by Theorem 3.4 in [MMWY22]8,
Algorithm 4 does not quite match the corresponding Algorithm 2 given by [MMWY22]. Observe that
each row is sampled without replacement with probability proportional to its Lewis weight in Algorithm 3,
whereas a fixed number of rows are sampled by [MMWY22], so that each row is sampled with replacement
with probability proportional to its Lewis weight. However, the correctness of Algorithm 3 follows from
the analysis of Theorem 3.4 in [MMWY22] by zooming into Claim 3.14 and just using a sampling matrix
S defined by without-replacement sampling instead of the with-replacement matrix used. None of the
concentrations actually change at the end of the day. We show an example of such a Bernstein bound later
in this paper, in the proof of Lemma 5.11.

Overall, Theorem 4.20 show that Algorithm 4 finds a near-optimal solution to the uniform-sampled
problem for p ∈ [1, 2]. By the reduction from two-stage to one-stage sampling, this then implies that

8This is following the first version of [MMWY22] uploaded to arXiv, which uses an analysis which makes especially simple
to see how Bernstein suffices for either sampling scheme.
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Algorithm 2 finds a near-optimal solution to the Lp polynomial regression problem. So, we have now proven
our Lp polynomial approximation guarantee for p ∈ [1, 2]:

Theorem 1.2 Restated (For 1 ≤ p ≤ 2). For any degree d, p ∈ [1, 2], and accuracy parameter ε ∈ (0, 1),
there is an algorithm that queries f at n = O( d

ε2p+5 polylog(dε )) points t1, . . . , tn, each selected independently
at random according to the Chebyshev density on [−1, 1], and outputs a degree d polynomial q̂(t) such that,
with probability at least 0.9,

‖q̂(t)− f(t)‖pp ≤ (1 + ε) · min
q:deg(q)≤d

‖q(t)− f(t)‖pp.

5 Active Lp Regression for p > 2

In this section, we analyze Lp regression for p > 2. Our analysis differs significantly from the case of
p ∈ [1, 2]. In particular, while we still analyze sampling by the Chebyshev measure, in contrast to p ∈ [1, 2],
we are not able to argue that the measure approximates the Lp Lewis weights of the polynomial operate
P. Moreover, even if we could bound them, sampling by Lp Lewis weights requires O(dp/2) samples in the
worst case to approximate a p-norm regression problem [MMWY22]. There are matrices which require this
rate, so to get sample complexity linear in d, we will leverage special structure of polynomials that lets us
avoid these worst-case instances.

We start with a simple but useful observation from [MMM+22]. Ssuppose f(t) is a polynomial of degree
d, and let r ≈ p be an integer with q := p

r ∈ [1, 2]. Then, we know that t 7→ (f(t))r is a degree rd polynomial.
Since A is a Vandermonde matrix, and letting x be the coefficient vector for f , we thus have that

‖Ax‖pp = ‖By‖qq,

where B ∈ Rn0×rd+1 is a Vandermonde matrix generated by the same time points as A but with more
columns, and where y is the coefficient vector for the degree rd polynomial t 7→ (f(t))r. This simple
observation implies that if some sampling procedure preserves the `q norm of all degree rd polynomials, then
that sampling procedure also preserves the `p norm of all degree d polynomials. In other words, it suffices
to use a sampling matrix S that samples rows of B with probability proportional to upper bounds on the `q
Lewis weights of B. By Theorem 4.15 we already know those Lewis weights are bounded by the Chebyshev
measure. So Algorithm 3, which samples rows of A by the Chebyshev measure, preserves the `p norm of Ax
for all x because it is sampling rows by the `q Lewis weights of B.

This argument suffices to get prove a subspace embedding result – i.e., that the matrix S from Algorithm 3
satisfies ‖SAx‖pp ≈C ‖Ax‖pp. This is sufficient to get a constant-factor regression solution, and we formally
work through this in Section 5.1. To achieve error (1 + ε), we need a more refined analysis that builds on the
first version of [MMWY22] uploaded to arXiv9. Our approach still reduces from the general p > 2 case to
some q ≤ 2, but in a less direct way than described above. An edge case of our analysis requires that when
p ∈ (2, 3), we use r = 3 so that q = p

r ∈ [ 2
3 , 1]. This is the case where we use the `q Lewis weight bounds for

q < 1.

5.1 Constant Factor Approximation for p > 2

We start by showing that running Algorithm 3 as done in line 1 of Algorithm 4 achieves a constant-factor

regression guarantee. Formally, we rely on the following result from [MMM+22], where ψp[A](i) := maxx
|[Ax](i)|p
‖Ax‖pp

is the `p sensitivity score of A at row i:

Theorem 5.1. [MMM+22] Given p > 2, let r be any integer such that q := p
r is in [ 2

3 , 2]. Given a
Vandermonde matrix A ∈ Rn0×d+1, let B be the Vandermonde matrix A extended to have rd+ 1 columns.
Then for every vector x ∈ Rd+1, there exists a vector y ∈ Rrd+1 such that |[Ax](i)|p = |[By](i)|q. Thus if
ψp[A](i) denotes the `p-sensitivity of the i-th row of A and ψq[B](i) denotes the `q-sensitivity of the i-th
row of B, then ψp[A](i) ≤ ψq[B](i).

9While that version is available on arXiv at time of publishing, since it is unpublished, we include a (slightly shortened and
corrected) copy of everything we use in Appendix D.
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For the constant-factor approximation step, given p > 2, we let r be an integer such that r ≤ p < 2r,
so that q := p

r ∈ [1, 2]. With this choice of r, chosen such that `q is a valid norm that satisfies the triangle
inequality, we will show that Algorithm 3, as run in the first line of Algorithm 4, returns a constant factor
solution to minx ‖Ax − b‖p. Recall that A ∈ Rn0×d+1 is a Vandermonde matrix obtained by uniformly
sampling n0 = poly(d, pp, 1

εp ) points from [−1, 1]. Then let B ∈ Rn0×rd+1 be an expanded Vandermonde
matrix, built using the same uniform samples but with maximum degree rd. Let dB := rd+1 be the number
of columns in B. We also let wq[B](i) be the `q-Lewis weight of B at row i. We will analyze sampling rows
of A with respect to wq[B](i).

We first show that the sampling matrix S from Algorithm 3 is a subspace embedding:

Lemma 5.2. Let A and S be the matrices as in Algorithm 3. Then, with probability 99
100 , so long as

m = O(pdε2 polylog(d)), we have that S is an `p subspace embedding:

‖SAx‖pp ∈ (1± ε)‖Ax‖pp ∀x ∈ Rd+1

Proof. Recall Theorem 5.1, in particular that for any x ∈ Rd+1, there exists a vector y ∈ Rrd+1 such that
([By](i))q = ([Ax](i))p for all i ∈ [n0]. We then expand the subspace embedding norm:

‖SAx‖pp =

n0∑
i=1

Spii |[Ax](i)|p =

n0∑
i=1

1

pi
|[By](i)|q = ‖S̄By‖qq

where S̄ii = (Sii)
p/q = 1

(pi)1/q
is the sampling matrix we would use when sampling B by `q Lewis weights.

So, we not only have ‖Ax‖pp = ‖By‖qq, but also have ‖SAx‖pp = ‖S̄By‖qq. Then we are sampling by

overestimates of the Lewis weights, since wq[B](i) ≤ 1
n0

rd+1√
1−s2i

polylog(d) ≤ m
n0

1√
1−s2i

= pi, which holds for

m ≥ d polylog(d). So, by Theorem 4.16, we have that S is a (1 ± 1
2 ) `q-subspace embedding for B so long

as m = O( rdε2 polylog(d)), and therefore that S̄ is a (1± ε) `p-subspace embedding for A.

Lemma 5.3. The vector xc returned by line 1 of Algorithm 3 is a constant-factor solution to the overall
optimization problem, with probability 99

100 :

‖Axc − b‖p ≤ Cz min
x∈Rd+1

‖Ax− b‖p

For some universal constant Cz. In particular, this implies that z from line 2 of Algorithm 3 has ‖z‖p ≤
Cz minx ‖Ax− b‖p.

Proof. Recall that xc := argminx ‖SAx − Sb‖p, and that Lemma 5.2 shows that S is an `p subspace
embedding for A. Let x∗ := argminx ‖Ax− b‖ be the true optimal regression solution. Then, by repeated
use of the triangle inequality,

‖Axc − b‖p ≤ ‖Axc −Ax∗‖p + ‖Ax∗ − b‖p
≤ 2‖SAxc − SAx∗‖p + ‖Ax∗ − b‖p
≤ 2(‖SAxc − Sb‖p + ‖SAx∗ − Sb‖p) + ‖Ax∗ − b‖p
≤ 4‖SAx∗ − Sb‖p + ‖Ax∗ − b‖p

where the last line follows from the optimality of x̃. Then, since E[‖SAx∗ − Sb‖pp] = ‖Ax∗ − b‖pp, by
Markov’s inequality we bound ‖SAx∗ − Sb‖pp ≤ 200‖Ax∗ − b‖pp, and we conclude that

‖Axc − b‖p ≤ 801‖Ax∗ − b‖p
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5.2 Relative Error Approximation

In this section, we show that the estimator x̃ recovered on by Algorithm 4 is a (1 + ε)-optimal estimator

for ‖Ax − b‖pp. First, note we assume that ε ≤ 1
p in this section, and prove that sampling Õ(d 2O(p)

ε6p+2 ) rows

suffices to recover a near-optimal estimator. If ε > 1
p , then we can just run the algorithm when ε = 1

p , which

yields a Õ(dpO(p)) sample complexity, so the sample complexity we promise in Theorem 1.2 suffices across
all possible ε ∈ (0, 1) and p ≥ 2.

Much of this section very closely tracks the proof of Theorem 3.4 in the first version of [MMWY22]
uploaded to arXiv, with the main difference being Lemma 5.5 which uses Theorem 5.1 to define the vector
z̄ with respect to the `q Lewis weights of B, where the original analysis uses the `p Lewis weights of A. The
core of the novel analysis is used to prove Theorem 5.7. While we state and use Theorem 5.7 in this section,
we do not prove it until later, in Section 5.3.

Most of this section analyzes the second call to Algorithm 3, from the line 3 of Algorithm 4. As such, we
explicitly write down the notation that will be used throughout most of this section:

Setting 5.4. A ∈ Rn0×d+1 is a Vandermonde matrix formed by sampling n0 = O( 1
εO(p2)

d5pO(p2) log d
ε ) times

s1, . . . , sn0
uniformly at random from [−1, 1]. r is an integer such that 1

2p ≤ r < 3
2p, and q := p

r ∈ [ 2
3 , 2].

B ∈ Rn0×dB is a Vandermonde matrix formed from the same time samples s1, . . . , sn0
, but with dB := rd+1

columns. wq[B](i) denotes the `q Lewis Weight of B at row i, and ψp[A](i) := maxx
|[Ax](i)|p
‖Ax‖pp denotes the

`p sensitivity of row i of A. z := b−Axc is the vector generated by line 2 of Algorithm 3. By Lemma 5.3,
‖z‖p ≤ CzOPT , where OPT = minx ‖Ax−b‖p. z̄ is equal to z except that it has several entries zeroed out:

z̄(i) :=

{
z(i) |z(i)| ≤ OPT

ε (wq[B](i))1/p

0 otherwise

Let S ∈ Rn0×n0 be the sample-and-rescale matrix generated in step 3 of Algorithm 4 with m = O( d
ε6.5p+2 polylog(dε )).

C0 := 400Cz is a large enough constant.

Note that r in this section might not be the same value of r taken in the constant factor analysis of
Section 5.1. We explain this new choice of r in Section 5.3 in full detail, but at a high level, we will
eventually want r to be odd for this analysis to go through, which will sometimes require q ∈ [ 2

3 , 1], for
instance.

In the majority of this proof, we constrict ourselves to looking at vectors in the range of A which are not
too much larger than OPT , defining a sort of “reasonable range of A” to focus on. Rigorously, this means
the upcoming lemmas will only look at vectors in the range of A with ‖Ax‖p ≤ C0OPT . We will eventually
ensure that both x∗ = argminx ‖Ax− z‖p and x̂ = argminx ‖SAx− Sz‖p lie within this reasonable range.

We first examine the vector z̄ defined in Setting 5.4. Intuitively, we say that the entries of z that get
zeroed out are so large that the reasonable range of A cannot fit them. So, we can approximate the true
error by ‖Ax − z‖pp ≈ ‖Ax − z̄‖pp + ‖z − z̄‖pp. That is, minimizing ‖Ax − z‖p is effectively equivalent to
minimizing ‖Ax− z̄‖p.

We define the zeroing-out procedure in terms of the `q Lewis weights of B here, so this is one place where
we adapt the prior work to use the special structure of Vandermonde matrices. Roughly, the `p sensitivity
ψp[A](i) measures how spikey a vector in the reasonable range can be. The Vandermonde structure lets
us bound the sensitivity of A with the sensitivity of B, since ψp[A](i) ≤ ψq[B](i). Then, we use the fact
that all matrices have their `q sensitivities bounded by their Lewis weights for q ≤ 2. So, we can bound the
spikeyness of the ith entry of a vector in the reasonable range by the `q Lewis weight of B at row i. For
general matrices, the `p sensitivity ψp[A](i) can be d

p
2−1 times larger than the `p Lewis weight, and this way

of bounding the entries of z is one central step to avoiding the Õ(dp/2) dependence.

Lemma 5.5. Consider Setting 5.4, and let

B =
{
i ∈ [n] : |z(i)| > OPT

ε (wq[B](i))1/p
}
.

So that z̄ ∈ Rn0 is equal to z but with all entries in B set to zero. Then for all x ∈ Rd+1 with ‖Ax‖p ≤
C0OPT , ∣∣‖Ax− z‖pp − ‖Ax− z̄‖pp − ‖z− z̄‖pp

∣∣ ≤ C1ε ·OPT p
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where C1 is a constant that depends only on C0, Cz, and p.

Proof. For any x ∈ Rd+1, by the definition of `p sensitivity,

|[Ax](i)|p
‖Ax‖pp

≤ ψp[A](i)

From the relationship of `p sensitivities and `q sensitivities for Vandermonde matrices, i.e., Theorem 5.1, we
have

|[Ax](i)|p
‖Ax‖pp

≤ ψp[A](i) ≤ ψq[B](i)

Next, by Lemma 2.5 from [MMWY22], which says that for q ∈ [0, 2], the `q sensitivities lower bound the `q
Lewis weights, we have

|[Ax](i)|p
‖Ax‖pp

≤ ψq[B](i) ≤ wq[B](i)

Thus for i ∈ B we have

|[Ax](i)|p ≤ wq[B](i) · ‖Ax‖pp ≤ εp‖Ax‖pp ·
|z(i)|p
OPT p

Since ‖Ax‖pp ≤ Cp0 OPT p by assumption, it follows that |[Ax](i)|p ≤ Cp0εp ·|z(i)|p, and thus |[Ax](i)− z(i)| ∈
(1± C0ε) |z(i)|. Using this fact and the fact that z̄(i) = 0,

|[Ax](i)− z(i)|p − |[Ax](i)− z̄(i)|p = |[Ax](i)− z(i)|p − |[Ax](i)|p

∈ (1± C0ε)
p |z(i)|p ± Cp0εp |z(i)|p

⊆ (1± 3C0pε) |z(i)|p ± Cp0εp |z(i)|p (Lemma E.4)

⊆ (1± C ′0ε) |z(i)|p (5)

where the last line sets C ′0 := 3C0p+ Cp0 . Then, summing over all i ∈ B,∑
i∈B
|[Ax](i)− z(i)|p −

∑
i∈B
|[Ax](i)− z̄(i)|p −

∑
i∈B
|z(i)− z̄(i)|p ≤ C ′0ε ·

∑
i∈B
|z(i)|p

We have by assumption that
∑
i∈B |z(i)|p ≤ ‖z‖pp ≤ Cp0 OPT

p. Finally, since z̄(i) = z(i) for i /∈ B, we
conclude that ∣∣‖Ax− z‖pp − ‖Ax− z̄‖pp − ‖z− z̄‖pp

∣∣ = C ′0C
p
z ε ·OPT p.

Next, we show the same intuition about z and z̄ holds when looking at the subsampled regression problem;
that minimizing ‖SAx− Sz‖p is roughly equivalent to minimizing ‖SAx− Sz̄‖p.
Lemma 5.6. Consider Setting 5.4. Then with probability at least 99

100 , ‖Sz‖p ≤ CsOPT and further for all
x ∈ Rd+1 with ‖Ax‖p ≤ C0OPT , we get∣∣‖SAx− Sz‖pp − ‖SAx− Sz̄‖pp − ‖S(z− z̄)‖pp

∣∣ ≤ C2ε ·OPT p

where Cs and C2 are constants that depend only on C0, p, and Cz.

Proof. The proof builds off of Lemma 5.5. For any x ∈ Rd+1 and i ∈ B, by multiplying both sides of
Equation 5 by Spii, we have that for all i ∈ B,

|[SAx](i)− [Sz](i)|p − |[SAx](i)− [Sz̄](i)|p ∈ (1± C ′0ε) |[Sz](i)|p

For all i /∈ B, |[SAx](i)− [Sz](i)|p − |[SAx](i)− [Sz̄](i)|p = 0. since z̄(i) = z(i) for i /∈ B. Summing over
all i ∈ [n0], we get

‖SAx− Sz‖pp − ‖SAx− Sz̄‖pp − ‖S(z− z̄)‖pp ∈ ±C ′0ε‖S(z− z̄)‖pp
Next, since z̄ is a partial zeroing of z, and since E[‖Sz‖pp] = ‖z‖pp we can use Markov’s inequality to bound

‖S(z̄− z)‖pp ≤ ‖Sz‖pp ≤ 100‖z‖pp ≤ 100CpzOPT
p, with probability 99

100 . We conclude:

‖SAx− Sz‖pp − ‖SAx− Sz̄‖pp − ‖S(z− z̄)‖pp ∈ ± 100C ′0Czε ·OPT
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Next we state our core technical contribution: the Affine Embedding guarantee. While the prior work
proves this same result, they require Õ(dp/2) samples to do so. In Section 5.3, we show that Vandermonde
matrices can do this by taking Õ(d) samples with probabilities proportional to the `q Lewis weights of B.

Theorem 5.7 (Affine Embedding). Consider Setting 5.4. Then with probability 99
100 , for all x ∈ Rd+1 with

‖Ax‖p ≤ C0OPT , we have ∣∣‖SAx− Sz̄‖pp − ‖Ax− z̄‖pp
∣∣ ≤ C3ε ·OPT p (6)

where C3 is a constant that depends only on C0, Cz, and p.

We prove Theorem 5.7 later, in Section 5.3, and instead first show that this affine embedding suffices to
prove the correctness of the overall algorithm.

Theorem 5.8. Consider Setting 5.4. Then, Algorithm 3 reads O( d
ε6.5p+2 polylog(dε )) entries of b and outputs

a vector x̃ such that with probability 0.9,

‖Ax̃− b‖p ≤ (1 + ε) min
x∈Rd+1

‖Ax− b‖p

Proof. By Lemma 5.3, we know that step 1 from Algorithm 3 returns a vector xc such that ‖Axc − b‖p ≤
Cz ·OPT . Recall that z := b−Axc, so we equivalently have ‖z‖p ≤ Cz ·OPT . Let z̄ ∈ Rn0 be the partially
zeroed out copy of z as in Setting 5.4. Combining Lemma 5.5, Lemma 5.6, and Theorem 5.7, for all x with
‖Ax‖p ≤ C0 ·OPT , we get

‖SAx− Sz‖pp ∈ ‖SAx− Sz̄‖pp + ‖Sz− Sz̄‖pp ± C2ε ·OPT p (Lemma 5.6)

⊆ ‖Ax− z̄‖pp + ‖Sz− Sz̄‖pp ± (C2 + C3)ε ·OPT p (Theorem 5.7)

⊆ ‖Ax− z‖pp − ‖z− z̄‖pp + ‖Sz− Sz̄‖pp ± (C1 + C2 + C3)ε ·OPT p (Lemma 5.5)

= ‖Ax− z‖pp − Ĉ ± (C1 + C2 + C3)ε ·OPT p

where Ĉ := ‖z − z̄‖pp − ‖Sz − Sz̄‖pp is independent of x. Note that since z̄ is a partial zeroing of z,

‖z− z̄‖p ≤ ‖z‖p ≤ Cz ·OPT . Similarly, ‖Sz−Sz̄‖p ≤ ‖Sz‖p ≤ Cs ·OPT . So, we have Ĉ ≤ (Cpz +Cps )OPT
and thus we can equivalently write this last bound as, for any x with ‖Ax‖p ≤ C0 ·OPT ,∣∣∣‖SAx− Sz‖pp − (‖Ax− z‖pp + Ĉ)

∣∣∣ ≤ C4ε ·OPT p (7)

where C4 := C1 + C2 + C3. We will apply Equation 7 twice, once to x̂ = argminx ‖SAx − Sz‖p and once
to x∗ := argminx ‖Ax − z‖p. To do so, we first have to verify that ‖Ax̂‖p and ‖Ax∗‖p are small enough
– i.e. are at most C0OPT . We first bound ‖Ax∗‖p ≤ ‖Ax∗ − z̄‖p + ‖z̄‖p ≤ 2‖z̄‖p ≤ 2CzOPT ≤ C0OPT .
Next, by Lemma 5.2, we have that S is an `p subspace embedding. So, we have ‖Ax̂‖p ≤ 2‖SAx̂‖p and by
Markov’s inequality, with probability 99

100 , we have:

2‖SAx̂‖p ≤ 2‖SAx̂− Sz‖p + 2‖Sz‖p ≤ 2‖SAx∗ − Sz‖p + 2‖Sz‖p ≤ 200(‖Ax∗ − z‖p + ‖z‖p) ≤ C0OPT

We proceed to apply Equation 7 twice, to get

‖Ax̂− z‖pp ≤ ‖SAx̂− Sz‖pp − Ĉ + C4εOPT
p (Equation 7)

≤ ‖SAx∗ − Sz‖pp − Ĉ + C4εOPT
p (Optimality of x̂)

≤ (‖Ax∗ − z‖pp + Ĉ)− Ĉ + 2C4εOPT
p (Equation 7)

= ‖Ax∗ − z‖pp + 2C4εOPT
p

And so the overall predictor x̃ = xc + x̂ has

‖Ax̃− b‖pp = ‖Axc + Ax̂− z−Axc‖pp
= ‖Ax̂− z‖pp
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≤ min
x
‖Ax− z‖pp + 2C4εOPT

p

= min
x
‖Ax− (b + Axc)‖pp + 2C4εOPT

p

= min
x
‖Ax− b‖pp + 2C4εOPT

p

= (1 + 2C4ε) min
x
‖Ax− b‖pp

Note that our proof ensures that Theorem 5.8 holds with a fixed constant probability.

5.3 Proving the Affine Embedding (Theorem 5.7)

To prove Theorem 5.7, we want a bound over all vectors Ax where ‖Ax‖pp ≤ Cp0OPT
p. Since a näıve

ε-net argument would lead to a suboptimal dependence on d, we follow the first arXiv version of [MMWY22],
and appeal to a more refined net analysis introduced in [BLM89]. In that work, the authors construct a
“compact rounding” for all vectors in the set {Ax : ‖Ax‖pp ≤ 1}. In particular, they construct a series of
nets D0, . . . ,D` (with different properties for each k ∈ {0, . . . , `}), such that every Ax with ‖Ax‖pp ≤ 1 can

be approximated as Ax ≈∑`
k=0 dk, where each dk ∈ Dk. After scaling these vectors by a factor of C0OPT

and applying a union bound over the nets D0, . . . ,D`, [BLM89] obtains a sampling result for `p Lewis weights

with an optimal d dependence of Õ(dmax{1,p/2}).
To avoid this large d dependence for p > 2, we return to the expanded Vandermonde matrix B ∈ Rn0×dB .

In Lemma 5.10, we show how to use the nets D0, . . . ,D` from the `q compact rounding on B to create
nets E0, . . . , E` for an `p compact rounding on A. Each `p net Ek will have the same cardinality as the
corresponding `q net Dk, which makes it significantly smaller than the black-box net that would be created
for Lewis weight sampling general matrices in the `p norm. Lastly, Lemma 5.10 also uses a technique from
[BLM89] to transform E0, . . . , E`, which approximate vectors of the form Ax, into new nets F0, . . . ,F`, which
have similar size and approximate vectors of the form Ax− z̄.

To get started, we use the following compact rounding lemma, proven in the first version of [MMWY22]
uploaded to arXiv, with a complete and simplified proof included in Appendix D for completeness. Specifi-
cally, we state the result from Appendix D in the special case when v = 0:

Lemma 5.9 (Compact Rounding, [MMWY22]). Let B ∈ Rn0×dB and q ∈ [0, 2]. Let Nεc be an εc-Net
over ‖By‖q = 1 with |Nε| ≤ O(d log( 1

ε )). Let ` = log1+εc((2dB)1/q). Then, there exists sets of vectors
D0, . . . ,D` ⊆ Rn0 , such that: For all u ∈ Nεc we can pick d0 ∈ D0, . . . ,d` ∈ D` to create a “compact

rounding” u′ =
∑`
k=0 dk where:

1. |u(i)− u′(i)| ≤ εc |u(i)| for all i ∈ [n0]

2. |dk(i)| ≤ 1
εc

( 1
2 (
wq [B](i)
dB

+ 1
n0

))1/q(1 + εc)
k+2 for all i ∈ [n0], k ∈ {0, . . . , `}

3. d0, . . . ,d` all have disjoints supports

Further, we have that the sets D0, . . . ,D` are not too large:

log |Dk| ≤ Cq
dB log(n0)

ε1+q
c (1 + εc)qk

,

where Cq is a fixed constant depending only on q.

Note that we can upper bound
wq [B](i)
dB

+ 1
n0
≤ wq [B](i)

dB
polylog(d), so we instead have |dk(i)| ≤ 1

ε (
wq [B](i)
dB

)1/q(1+

ε)k+2 polylog(d). To do this, note that by Theorem 4.15, wq[B](i) ≥ 1
n0
w′(si) · 1

polylog(d) , where w′ is the

clipped Chebyshev measure for degree rd. Then, wq[B](i) ≥ dB
n0
· 1

polylog(d) , so that 1
n0
≤ wq [B](i)

dB
polylog(d),

and so
wq [B](i)

db
+ 1

n0
≤ wq [B](i)

dB
polylog(d).

Lemma 5.10 (Vandermonde Compact Rounding). Let A ∈ Rn0×d+1 and p > 2. Let Nε be an ε-Net over
‖Ax‖p ≤ C0OPT , so that any x with ‖Ax‖p ≤ C0OPT has some u ∈ Nε such that ‖Ax − u‖p ≤ εOPT .
Then we can pick an odd integer r such that 1

2p ≤ r ≤ 3
2p, and let q = p

r ∈ [ 2
3 , 2]. Let ` = log1+ε((2dB)1/q).

There exists sets of vectors F0, . . . ,F` ⊆ Rn0 , such that: For any u ∈ Nε we let r := u− z̄ and we can pick
f0 ∈ F0, . . . , f ` ∈ F` to create a “compact rounding” r′ =

∑`
k=0 fk where:
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1. |r(i)− r′(i)| ≤ εmax{|[Ax](i)| , |z̄(i)|} for all i ∈ [n0]

2. |fk(i)| ≤ OPT
ε2 (

wq [B](i)
dB

polylog(d))1/p(1 + εr)
k+2
r for all i ∈ [n0], k ∈ {0, . . . , `}

3. f0, . . . , f ` all have disjoints supports

Further, we have that the sets F0, . . . ,F` are not too large:

log |Fk| ≤ Cq
dB log(n0)

εr(1+q)(1 + εr)qk

Proof. Depending on the value of p, we will pick q differently. If p ∈ (2, 3), we let r = 3 and q := p
r ∈ [ 2

3 , 1].
If p ≥ 3, we let r be an odd integer such that r ≤ p < 2r, and let q := p

r ∈ [1, 2]. In both cases r is an odd
integer, we have p = qr, we know that the `q Lewis weights of B are close to the Chebyshev measure, and
Lemma 5.9 accepts this value of q. The rest of this paper will not distinguish between the p ∈ (2, 3) and the
p ≥ 3 cases. Notably, the compact rounding requires being given Nq, an `q net over {By : ‖By‖q ≤ 1}.
But we want to make sure that all Ax ∈ Nε have (Ax)r ∈ Nq. So, formally, let Nq,0 be an arbitrary `q net
for {By : ‖By‖q ≤ 1}, and let Ninduced := {By : ([Ax](i))r = [By](i) for all i} be the mapping of Nε to
the range of B. By Lemma 2.4 of [BLM89], we have that both Nq,0 and Nε have cardinality at most ( 3

ε )d.
We then apply Lemma 5.9 on the net Nq := Nq,0

⋃Ninduced and with εc = εr.
Also, note that the vectors in Lemma 5.9 formally require ‖By‖q ≤ 1, while we have ‖By‖q = ‖Ax‖rp ≤

(C0OPT )r. So, we scale up the vectors dk returned by Lemma 5.9 by a factor of (C0OPT )r, so that

|dk(i)| ≤ (C0OPT )r

εr (
wq [B](i)
dB

+ 1
n0

)1/q(1 + εr)k+2.

With this in place, now we fix any u ∈ Ninduced, and let
∑`
k=0 dk be the compact rounding of u

as defined by Lemma 5.9. Using the fact that qr = p, we let αi := OPT
ε (

wq [B](i)
dB

polylog(d))1/p so that

|dk(i)| ≤ αri (1 + εr)k+2. We now intuitively round Ax ≈∑`
k=0(dk)1/r. We define e0, . . . , e` such that:

ek(i) := (dk(i))1/r

so that |ek(i)| ≤ αi(1 + εr)
k+2
r . Using the fact that r is an odd integer, we have sign(ek(i)) = sign(dk(i)).

Further, looking at the proof of the compact rounding in Appendix D with v = 0, we see from Lemma D.5
that sign(dk(i)) = sign(u(i)). So, we have that sign(ek(i)) = sign(Ax(i)). This definition of ek means that

|ek(i)| ≤ αi(1 + εr)
k+2
r , and further that∣∣∣∣∣Ax(i)−
∑̀
k=0

ek(i)

∣∣∣∣∣ =
∣∣∣(u(i))1/r − (dk(i))1/r

∣∣∣
=
∣∣∣|u(i)|1/r − |dk(i)|1/r

∣∣∣ (The signs are equal)

≤ ||u(i)| − |dk(i)||1/r (
∣∣x1/r − y1/r

∣∣ ≤ |x− y|1/r for all x, y ≥ 0)

≤ (εr |u(i)|)1/r

= ε |Ax(i)|
Also note that ek has the same support as dk, so that all the properties of Lemma 5.9 are preserved, just in
estimating a slightly different vector. We next examine rounding Ax− z̄ to a compact rounding. Borrowing
a proof strategy from Appendix D,

Bk,u :=
{
i ∈ [n0] : ek(i) 6= 0 , ε |z̄(i)| ≤ 2αi(1 + εr)

k+2
r

}
(for k ∈ {0, . . . , `})

Hk :=
{
i ∈ [n0] : 2αi(1 + εr)

k+1
r < ε |z̄(i)| ≤ 2αi(1 + εr)

k+2
r

}
(for k ∈ {1, . . . , `})

Gk,u := Hk \
⋃
k′≥k
{i ∈ [n0] : ek′(i) 6= 0} (for k ∈ {1, . . . , `})

Note that |z̄(i)| ≤ OPT
ε (wq[B](i))1/p < 2αi(1 + εr)

`+2
r , so all entries of z̄ are covered by our disjoint sets.

The sets B0,u, . . . , B`,u, G1,u, . . . , G`,u will define the support of the final compact rounding vectors we will
return, so we first show that these sets partition [n0]: In the following cases, consider any k, k′:
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◦ Bk,u
⋂
Bk′,u = ∅ since i ∈ Bk,u implies ek(i) 6= 0 implies ek′(i) = 0 implies i /∈ Bk′,u.

◦ Gk,u
⋂
Gk′,u ⊆ Hk

⋂
Hk′ = ∅ since Hk and Hk′ have no intersection by definition.

◦ For k ≥ k′, Bk,u
⋂
Gk′,u = ∅ since i ∈ Bk,u means ek(i) 6= 0 so i ∈ ⋃k′≥k{i ∈ [n0] : ek′(i) 6= 0} so

i /∈ Gk′,u.

◦ For k < k′, Bk,u
⋂
Gk′,u = ∅ since k′ ≥ k+1 and i ∈ Hk′ means ε |z̄(i)| > 2α(1+εr)

k′+1
r ≥ 2α(1+εr)

k+2
r ,

which contradicts i ∈ Bk,u.

So, we can now define the vectors f0, . . . , f ` as

fk(i) :=


ek(i)− z̄(i) i ∈ Bk,u
−z̄(i) i ∈ Gk,u
0 otherwise

Now, we show that r′ :=
∑`
k=0 fk satisfies the guarantees of Lemma 5.10. Fix any i ∈ [n0] and let

k ∈ {0, . . . , `} be the index10 where fk(i) 6= 0. Then, recalling that r = Ax− z̄,

|fk(i)− r(i)| = |ek(i)− [Ax](i)| ≤ ε |[Ax](i)| (when i ∈ Bk,u)

|fk(i)− r(i)| = |[Ax](i)| (when i ∈ Gk,u)

≤ (1 + ε) |ek′(i)| (for some k′ < k, by def of Gk,u)

≤ 2αi(1 + εr)
k′+2
r (|ek′(i)| ≤ αi(1 + ε)

k′+2
r )

≤ ε |z̄(i)| (def of Hk)

And so we find |r′(i)− r(i)| ≤ εmax{|[Ax](i)| , |z̄(i)|}. We also have that f0, . . . , f ` have disjoint supports
because B0,u, . . . , B`,u, G1,u, . . . , G`,u have disjoint supports.

Next, we bound the size of entries of fk. We have |fk(i)| ≤ |e(i)| + |z̄(i)| ≤ (1 + 2
ε )αi(1 + εr)

k+2
r ≤

OPT
ε2 (

wq [B](i)
dB

polylog(d))1/p(1 + εr)
k+2
r .

To bound the number of possible fk vectors, note that fk is a deterministic function in Bk,u and Gk,u.
So, let Bk := {Bk,u : u ∈ Nε} be the set of all possible “B” index sets generated at layer k, and similarly let
Gk := {Bk,u : u ∈ Nε}. Then, looking across all possible fixings of u ∈ Nε, each fk is deterministic in some
S1 ∈ Bk and some S2 ∈ Gk. So, the number of possible fk is at most

|Fk| = |{fk : u ∈ Nε}| ≤ |{(S1,S2) : S1 ∈ Bk, S2 ∈ Gk}| = |Bk| · |Gk|

Next, since Bk,u ⊆ {i ∈ [n0] : ek(i) 6= 0}, and since ek are a simple bijection with dk ∈ Dk, we have
|Bk| ≤ |Dk|. The same holds for Gk, so |Gk| ≤ |Dk|. We conclude that

log |Fk| ≤ log |Bk|+ log |Gk| ≤ 2 log |Dk| = 2Cr
dB log(n0)

εr(1+q)(1 + εr)qk

Lemma 5.11. Let pi := min{1, mn0

1√
1−s2i
}, where s1, . . . , sn0 are times samples uniformly at random from

[−1, 1], and where m = O( d
ε6.5p+2 log(d)). Consider the diagonal sampling matrix S ∈ Rn0×n0 which takes

Spii = 1
pi

with probability pi and Sii = 0 otherwise. Then consider the set of all possible rounding vectors r′

created by Lemma 5.10. With probability 98
100 , all such r′ have ‖Sr′‖pp ∈ ‖r′‖ ± εpOPT p.

10Technically, we don’t guarantee that all i ∈ [n0] are associated with some k ∈ {0, . . . , `}. But the relative error guarantee
from Lemma 5.9 and definitions of Bk,u and Gk,u imply that if u(i) 6= 0 or z̄(i) 6= 0 then such a k exists, which suffices to
prove our error guarantee.
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Proof. First, we simplify the probabilities pi. We know by Lemma E.5 that maxi
1√

1−s2i
≤ Cc

√
n0 with

probability 99
100 . So,

m

n0

1√
1− s2

i

≤ mCc√
n0
≤ 1

Where the last inequality holds so long as m ≤ O(
√
n0) = Õ(d2.5pO(p) 1

εO(p2)
), which is satisfied by our choice

of m. This means that pi = min{1, mn0

1√
1−s2i
} can be simplified to just pi = m

n0

1√
1−s2i

.

Now, we move onto proving the correctness of ‖Sr′‖pp. Fix any compact rounding r′ =
∑`
k=0 fk created

by Lemma 5.10. Then, since f0, . . . , f ` have disjoint support,

‖Sr‖pp =
∑̀
k=0

‖Sfk‖pp

So it suffices to just prove that ‖Sfk‖pp ∈ ‖fk‖pp ± εp

`+1OPT
p for all fk ∈ Fk for all k ∈ {0, . . . , `}. The rest

of this proof shows this concentration across all fk vectors.
Fix any fk ∈ Fk for any k ∈ {0, . . . , `}. Then, we have:

|fk(i)|p ≤ wq[B](i)

dB
· (1 + εr)q(k+2)

ε2p
OPT p polylog(d) (Lemma 5.10)

1

pi
|fk(i)|p ≤ 1

pi

wq[B](i)

dB
· (1 + εr)q(k+2)

ε2p
OPT p polylog(d)

=
n0

√
1− s2

i

mdB
· wq[B](i) · (1 + εr)q(k+2)

ε2p
OPT p polylog(d) (pi = m

n0

√
1−s2i

)

=
n0

√
1− s2

i

mdB
·
(
dB
n0

1√
1− s2

i

polylog(d)

)
· (1 + εr)q(k+2)

ε2p
OPT p polylog(d) (Theorem 4.15)

=
(1 + εr)q(k+2)

mε2p
OPT p polylog(d)

Next, we will let Xi := Spii |fk(i)|p − |fk(i)|p, which are mean-zero random variables such that
∑n0

i=1Xi =
‖Sfk‖pp − ‖fk‖pp. Letting B(n, p) be the binomial distribution, we then bound

E[X2
i ] = Var[Spii |fk(i)|p] = 1

p2i
|fk(i)|2p Var[B(1, pi)] ≤ 1

pi
|fk(i)|2p

n0∑
i=1

E[X2
i ] ≤

n0∑
i=1

1

pi
|fk(i)|2 ≤ ‖fk‖pp · max

i∈[n0]

1
pi
|fk(i)|p

And so, by Bernstein’s Inequality (Imported Theorem 1) and since |Xi| ≤ maxi
1
pi
|fk(i)|p, we get the

concentration

Pr[
∣∣‖Sfk‖pp − ‖fk‖pp

∣∣ ≤ γ OPT p] = Pr[|∑n0

i=1Xi| ≤ γ OPT p]

≤ 2 exp

(
−

1
2γ

2OPT 2p

(‖fk‖pp + γ
3 OPT

p) ·maxi
1
pi
|fk(i)|p

)

Since γ = εp

`+1 ≤ 1 and ‖fk‖pp ≤ ‖Ax− z̄‖pp ≤ (C0 + Cz)
pOPT p, and letting CB = 2((C0 + Cz)

p + 1):

≤ 2 exp

(
− γ2OPT 2p

CB OPT p ·maxi
1
pi
|fk(i)|p

)

≤ 2 exp

(
− γ2OPT p

Cb · (1+εr)q(k+2)

mε2p OPT p polylog(d)

)
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= 2 exp

(
−m γ2ε2p

(1 + εr)q(k+2) polylog(d)

)
≤ δ

This is less than δ for m = (1+εr)q(k+2)

ε2pγ2 polylog(d) log( 2
δ ). Union bounding over all fk ∈ Fk, we get

m =
(1 + εr)q(k+2)

ε2pγ2
· Cr

dB log(n0)

εr(1+q)(1 + εr)qk
· polylog(d) log( 2

δ )

= dB
(1 + εr)2q

ε3p+rγ2
· log(n0) polylog(d) log( 2

δ )

Note (1 + εr)2q ≤ 22q ≤ 24. Lastly, we union bound over all k ∈ [`], where ` = O( log(d)
ε ), so that γ =

εp

`+1 = O( ε
p+1

log(d) ), and also recall that n0 = O( 1
εO(p2)

d5pO(p2) log(dε )) so that log(n0) = O(p2 log(pdε )), and

that r ≤ 3
2p, so we conclude that

m =
dB

ε6.5p+2
· polylog(pdεδ )

samples suffice to achieve the embeddings for all fk and therefore for all r′.

Lemma 5.12. Let Nε be an ε-Net on {Ax : ‖Ax‖p ≤ C0OPT}, so that for any Ax in this set there exists
some u ∈ Nε such that ‖Ax − u‖p ≤ εOPT . Consider the set of possible residual vectors r = u− z̄ for all
u ∈ Nε, and the corresponding roundings r′ created by Lemma 5.10. Suppose the sampling matrix S ensures
that ‖Sr′‖pp ∈ ‖r′‖pp ± εOPT . Then, ‖Sr‖pp ∈ ‖r‖pp ± CN εp · OPT p, where CN is a constant that depends
only on C0, Cz, and p.

Proof. We start with a triangle inequality to show three individual terms we need to bound:

|‖Sr‖p − ‖r‖p| ≤ |‖Sr′‖p − ‖r′‖p|+ ‖r− r′‖p + ‖Sr− Sr′‖p

For two numbers b ≥ a ≥ 0, we have (b − a)p ≤ (b − a)bp−1 ≤ bp − abp−1 ≤ bp − ap. So, our given
assumption on ‖Sr′‖pp implies that |‖Sr′‖p − ‖r′‖p|p ≤

∣∣‖Sr′‖pp − ‖r′‖pp
∣∣ ≤ εpOPT p. That is, the first term

above is bounded by εOPT . The second term relies on the first property of Lemma 5.9, which bounds
|r(i)− r′(i)| ≤ εmax{|u(i)| , |z̄(i)|}. From there, we get

|r(i)− r′(i)| ≤ εmax{|u(i)| , |z̄(i)|}
|r(i)− r′(i)|p ≤ εp max{|u(i)|p , |z̄(i)|p}

≤ εp(|u(i)|p + |z̄(i)|p) (8)

‖r− r′‖pp ≤ εp(‖u‖pp + ‖z̄‖pp)
≤ εp(Cp0OPT p + CpzOPT

p)

‖r− r′‖p ≤ (Cp0 + Cpz )1/pεOPT

We lastly have to bound ‖Sr− Sr′‖p. Recall that S is a diagonal matrix. This lets us expand

‖S(r− r′)‖pp =
n∑
i=1

Sii |r(i)− r′(i)|p

≤ εp
n∑
i=1

Sii(|u(i)|p + |z̄(i)|p) (By Equation 8)

= εp(‖Su‖pp + ‖Sz̄‖pp)
≤ εp(2p‖u‖pp + 100‖z̄‖pp) (Subspace Embedding on u and Markov’s Inequality on z̄)

≤ εp(2pCp0OPT p + 100CpzOPT
p)
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‖S(r− r′)‖p ≤ (2pCp0 + 100Cpz )1/pεOPT

Which means we can overall bound

|‖Sr‖p − ‖r‖p| ≤ |‖Sr′‖p − ‖r′‖p|+ ‖r− r′‖p + ‖Sr− Sr′‖p
≤ (1 + 2(Cp0 + Cpz )1/p + 2(2pCp0 + 100Cpz )1/p)ε ·OPT

Lemma 5.13. Let Nε be an ε-Net on {Ax : ‖Ax‖p ≤ C0OPT}, so that for any Ax in this set there exists
some u ∈ Nε such that ‖Ax − u‖p ≤ εOPT . Consider the set of possible residual vectors r = u − z̄ for
all u ∈ Nε. Suppose the sampling matrix S ensures that ‖Sr‖pp ∈ ‖r‖pp ± CN ε · OPT . Then, for all x with
‖Ax‖p ≤ C0OPT , ‖S(Ax− z̄)‖pp ∈ ‖Ax− z̄‖pp ± C3ε · OPT p, where C3 is a constant that depends only on
C0, Cz, CN , and p.

Proof. Fix any x with ‖Ax‖p ≤ C0OPT . Let u ∈ Nε such that ‖Ax − y‖p ≤ εOPT . Then, by triangle
inequality

|‖S(Ax− z̄)‖p − ‖Ax− z̄‖p| ≤ |‖S(u− z̄)‖p − ‖u− z̄‖p|+ ‖S(Ax− u)‖p + ‖Ax− u‖p
≤ CN εOPT + 3‖Ax− u‖p (S is a subspace embedding)

≤ (CN + 3)ε ·OPT

Note that for a, b ∈ [0, 1
2 ] and p ≥ 2, we have |ap − bp| ≤ |a− b|. Therefore, for any c, d > 0, by setting a =

c
2 max{c,d} and b = d

2 max{c,d} and simplifying, we get |cp − dp| ≤ (2 max{c, d})p−1 |c− d|. In our setting, we

note that ‖Ax−z̄‖p ≤ ‖Ax‖p+‖z̄‖p ≤ (C0+Cz)OPT . Further, ‖S(Ax−z̄)‖p ≤ ‖Ax−z̄‖p+ε(3+CN )OPT ≤
(C0+3+CN )OPT . So, letting Cs := (C0+Cz+3+CN ), we have max{‖S(Ax−z̄)‖p, ‖Ax−z̄‖p} ≤ CsOPT ,
and so∣∣‖S(Ax− z̄)‖pp − ‖Az− z̄‖pp

∣∣ ≤ (2CsOPT )p−1 |‖S(Ax− z̄)‖p − ‖Az− z̄‖p| ≤ (2Cs)
p−1C ′ε ·OPT p

This concludes the proof of Theorem 5.7.

5.4 Lower Bounds for Lp Regression

We now show that (1 + ε)-approximation for Lp regression requires reading at least Ω
(

1
εp−1

)
entries of

the function f . Later, in Section 6, we show that even 2-approximation for L∞ regression requires reading
Ω(n) entries of f .

Theorem 5.14. Fix p > 1. Any algorithm that can output a (1 + ε) approximation to Lp polynomial
regression with probability at least 2

3 must use n = Ω( 1
εp−1 ) queries.

Proof. Suppose an algorithm uses n ≤ 1
4εp queries. Then there must exist an interval I ⊂ [−1, 1] of width

1
4n such that none of the algorithm’s queries land within I with probability 2

3 . We then define two functions:

f+(t) :=

{
+ 21/p

ε t ∈ I
0 t /∈ I

f−(t) :=

{
− 21/p

ε t ∈ I
0 t /∈ I

Both f+ and f− have ‖f+‖pp = ‖f−‖pp = 1
4n · 2

εp . Let C := 2−1/p − 1
2 ∈ (0, 1

2 ). Then both functions have
mindeg(q)≤d ‖q − f‖pp ≤ (1 − Cε)‖f‖pp, since the polynomials q+(t) := 1 and q−(t) := − 1 achieve this Lp
norm:

‖q+ − f+‖pp = 1
4n ( 21/p

ε − 1)p + (1− 1
4n )(0− 1)p

≤ 1
4n

(
( 21/p

ε − 1)p + (4n− 0)
)
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= 1
4n

(
2
εp (1− ε

21/p )p + 4n
)

≤ 1
4n

(
2
εp (1− ε

21/p ) + 1
εp

)
= 1

4n · 2
εp

(
1− (2−1/p − 1

2 ) ε
)

= (1− Cε)‖f+‖pp

Or equivalently, ‖f+‖pp ≥ 1
1−Cε mindeg(q)≤d ‖q − f‖pp > (1 + Cε) mindeg(q)≤d ‖q − f‖pp. Now suppose some

polynomial q̂ has ‖q̂ − f+‖pp ≤ (1− γ)‖f+‖pp. Since ‖f+ − f−‖p = 2‖f+‖p, we have

‖q̂ − f−‖p ≥ ‖f+ − f−‖p − ‖q̂ − f+‖p
= 2‖f+‖p − (1− γ)1/p‖f+‖p
= (2− (1− γ)1/p)‖f−‖p
≥ (1 + γ

p ε)‖f−‖p
‖q̂ − f−‖pp ≥ (1 + γ)‖f−‖pp

That is, if q̂ is a slightly good approximation to f+, then q̂ is a slightly bad approximation to f−. By
symmetry, the inverse claim also holds.

To complete the argument, suppose nature picks f+ or f− uniformly at random. Then with probability 2
3

the algorithm returns some polynomial q̂ without knowing which function nature chose. If ‖q̂−f+‖pp ≤ ‖f+‖pp
then ‖q̂ − f−‖pp ≥ ‖f−‖pp, and otherwise ‖q̂ − f+‖pp > ‖f+‖pp. So, with probability 2

3 · 1
2 = 1

3 the resulting
polynomial has error

‖q̂ − f‖pp ≥ ‖f‖pp > (1 + Cε) min
deg(q)≤d

‖q − f‖pp

By adjusting the value of ε, we complete the proof.

6 Near-Optimal L∞ Regression

We now demonstrate how to extend these guarantees from Lp polynomial regression into L∞ polynomial
regression. We remark that the sample complexity and approximation factor guarantees in this section were
already shown in [KKP17], but with a different algorithm.

For a finite dimensional regression problem with m rows, we could achieve a (1 + ε)-approximation to `∞
regression by approximately solving `p regression with p = logm

ε [MMM+22]. However, since polynomials lie
within an infinite dimensional space, we cannot näıvely apply this argument. In fact, it can be shown that
even with arbitrarily many observations it is impossible to solve polynomial L∞ regression to better than a
2-factor approximation:

Theorem 6.1. There does not exist an algorithm that can output a 2-approximation to L∞ polynomial
regression with probability at least 2

3 .

Proof. Consider an algorithm that observes at most a finite number, say n < ∞, of queries from f . Then
there exists some interval I ⊂ [−1, 1] of nonzero width such that none of the algorithm’s queries land within
I with probability 2

3 . We then define two functions:

f+(t) :=

{
+1 t ∈ I
0 t /∈ I f−(t) :=

{
−1 t ∈ I
0 t /∈ I

Both f+ and f− have ‖f+‖∞ = ‖f−‖ = 1, and both have mindeg(q)≤d ‖q − f‖∞ ≤ 1
2 , since the polynomials

q+(t) := 1
2 and q−(t) := − 1

2 achieve uniform error 1
2 .

To complete the argument, suppose nature picks f+ or f− uniformly at random. Then with probability 2
3

the algorithm returns some polynomial q̂ without knowing which function nature chose. If q̂(t) ≥ 0 anywhere
on I then ‖q− f−‖∞ ≥ 1, and if q̂(t) ≤ 0 anywhere on I then ‖q− f+‖∞ ≥ 1. So, with probability 2

3 · 1
2 = 1

3
the resulting vector has error ‖q̂ − f‖ ≥ 1 ≥ 2 minq:deg(q)≤d ‖q − f‖∞.
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In light of the lower bound in Theorem 6.1, we aim to provide a constant-factor approximation for L∞
polynomial regression rather than (1 + ε)-approximation. This requires a slightly different algorithm than
Algorithm 1, shown below in Algorithm 5. The only changes are that the rescaling matrix now has p in the
numerator, and that x is computed by `∞ matrix regression.

Algorithm 5 Chebyshev sampling for L∞ polynomial regression

Input: Access to signal f , parameter p ≥ 1, degree d, number of samples n
Output: Degree d polynomial p(t)

1: Sample t1, . . . , tn ∈ [−1, 1] i.i.d. from the pdf 1
π
√

1−t2
2: Observe signal samples bi := f(ti) for all i ∈ [n]

3: Build A ∈ Rn×(d+1) and diagonal R ∈ Rn×n with [A]i,j = tj−1
i and [R]ii =

(
dp
n

√
1− t2i

)1/p
4: Compute x = argminx∈Rd+1 ‖RAx−Rb‖∞
5: Return p(t) =

∑d
i=0 xit

i

Theorem 6.2. Let B(n, r) denote the binomial distribution. Let n0 = O(d5 polylog d) and let p = O(log d).
Suppose an algorithm samples n ∼ B(n0, 1/Õ(d4)) and runs Algorithm 5. Then, with probability 2

3 , the
resulting polynomial q̂ satisfies

‖q̂ − f‖∞ ≤ O(1) min
q:deg(q)≤d

‖q − f‖∞

We prove this by mirroring a known proof technique found in Appendix A of [PPP21], which says that
having a subspace embedding suffices to constant-factor approximation guarantees in any normed space. So,
to apply this proof technique, we first have to have a subspace embedding in the L∞ norm:

Lemma 6.3. Suppose an algorithm samples n ∼ B(d4, O( 1
d3 )) and runs Algorithm 5. Then, the matrix

RA on line 4 of the algorithm is a subspace embedding for P: 1
C ‖Px‖∞ ≤ ‖RAx‖∞ ≤ C‖Px‖∞ for all

x ∈ Rd+1.

This is the conclusion of two shorter lemmas

Lemma 6.4. Let p > 2 be an integer. Suppose an algorithm samples n ∼ B(d4, O( 1
d3 )) and runs Algorithm 5.

Then, the matrix RA on line 4 of the algorithm is a subspace embedding for P: 1
C ‖Px‖pp ≤ ‖RAx‖pp ≤

C‖Px‖pp for all x ∈ Rd+1.

Proof. We start by using the same trick as Theorem 5.1 in Section 5.2 to build a subspace embedding for
large p. Let Q : Rdp+1 → L1([−1, 1]) be the extended polynomial operator, so that [Qv](t) =

∑dp
i=0 xit

i.
Notice that (Px)p is just some polynomial raised to integer power p. So, for any x ∈ Rd+1, there exists

a v ∈ Rdp+1 such that (Px)p = Qv. Then, we can write

‖Px‖pp =

∫ 1

−1

|[Px](t)|pdt =

∫ 1

−1

|[Qv](t)|dt = ‖Qv‖1

We then apply Corollary 4.18 to the L1 norm for polynomials of degree dp. This tells us that diagonal
S ∈ Rn×n with [S]ii = dp

n

√
1− t2i and Vandermonde B ∈ Rn×(dr+1) with [B]ij = tji enjoy

1

C
‖Qv‖1 ≤ ‖SBv‖1 ≤ C‖Qv‖1 for all v ∈ Rdp+1

Since A and B are just Vandermonde matrices of degree d and dp respectively, we can use the same
observation to equate ‖SBv‖1 = ‖RAx‖pp:

‖SBv‖1 =
n∑
i=1

Sii |[Qv](ti)| =
n∑
i=1

(Rii |[Px](ti)|)p = ‖RAx‖pp

Where we use the fact that [S]ii = [R]pii = dp
n

√
1− t2i . So, the subspace embedding guarantee is equivalent

to
1

C
‖Px‖pp ≤ ‖RAx‖pp ≤ C‖Px‖pp for all x ∈ Rd+1

This complete the process of making a subspace embedding for large p.
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Next, we take p = O(log d) and show this creates an L∞ subspace embedding.

Lemma 6.5. Let p = O(log d) be an integer. Suppose an algorithm samples n ∼ B(d5, Õ( 1
d4 )) and runs

Algorithm 5. Then, the matrix RA on line 4 of the algorithm is a subspace embedding for P: 1
C ‖Px‖∞ ≤

‖RAx‖∞ ≤ C‖Px‖∞ for all x ∈ Rd+1.

Proof. We achieve this by showing ‖Px‖p ≈O(1) ‖Px‖∞ and ‖RAx‖p ≈O(1) ‖RAx‖∞ for all x.
This is simple to show in the finite dimensional case. By standard finite dimensional `p norm inequalities,

‖RAx‖∞ ≤ ‖RAx‖p ≤ n
1
p ‖RAx‖∞. Since n = Õ(d), having p = O(log d) suffices for n

1
p to be O(1).

The infinite dimension case is more involved. We need to show that for any polynomial h(t) of degree d,
we have ‖h‖∞ ≈c ‖h‖p. One direction is simple to show:

‖h‖pp =

∫ 1

−1

|h(t)|pdt ≤ 2‖h‖∞

The other direction follows from the Markov Brothers’ Inequality, using an argument similar to Lemma 4.13.
Without loss of generality assume that ‖h‖∞ = 1, and that h(t0) = 1 for some t0 < 0. Then, by Markov
Brothers’, we have |h(t0 + x)| ≥ 1 − d2x for any 0 < x < 1

d2 . In particular, we have |h(t)| > 1 − 1
d for

t ∈ [t0, t0 + 1
d3 ]. Then,

‖h‖p =

(∫ 1

−1

|h(t)|pdt
)1/p

≥
(

1

d3
(1− 1

d )p
)1/p

=
1

d3/p
(1− 1

d )

= Ω(1)

Where the last line follows from d ≥ 2 and p = O(log d), so that 1 − 1
d ≥ 1

2 and d3/p = O(1). We conclude
that ‖h‖p = Ω(1) = Ω(1)‖h‖∞, and therefore that ‖Px‖p ≈C ‖Px‖∞.

Then, we finally combine this with the subspace embedding from the prior lemma to get

1

C
‖Px‖∞ ≤ ‖RAx‖∞ ≤ C‖Px‖∞

Now that we have a subspace embedding, we can complete the proof that Algorithm 5 is correct.

Proof. Let x∗ := argminx ‖Px− f‖∞ a true optimal solution. We first bound ‖RAx∗−Rb‖∞ ≤ C‖Px∗−
f‖∞:

[R]ii = (dpn
√

1− t2i )1/O(log d)

≤ (Θ( d·log d
d polylog d ))1/O(log d)

= (Θ( 1
polylog d ))1/O(log d)

= O(1)

‖RAx∗ −Rb‖∞ = sup
i∈[n]

∣∣∣Rii [Ax∗ − b]i

∣∣∣
= sup
i∈[n]

∣∣∣Rii ([Px∗ − f ](ti))
∣∣∣

≤ sup
t∈[−1,1]

O(1)
∣∣∣[Px∗](ti)− f(ti)

∣∣∣
= O(1)‖Px∗ − f‖∞ (9)
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And this bound suffices to prove our guarantee. Let x̂ := argminx ‖RAx−Rb‖∞ be the solution returned
in line 4 of Algorithm 5. Then,

‖Px̂− f‖∞ ≤ ‖Px̂− Px∗‖∞ + ‖Px∗ − f‖∞
≤ C‖RAx̂−RAx∗‖∞ + ‖Px∗ − f‖∞ (Subspace Embedding)

≤ C(‖RAx̂−Rb‖∞ + ‖RAx∗ −Rb‖∞) + ‖Px∗ − f‖∞
≤ 2C‖RAx∗ −Rb‖∞ + ‖Px∗ − f‖∞ (Optimality of x̂)

≤ O(1)‖Px∗ − f‖∞ + ‖Px∗ − f‖∞ (Equation 9)

= O(1)‖Px∗ − f‖∞

Which completes the proof.

7 Analysis of the Clipped Chebyshev Measure

As mentioned in Section 4, the Chebyshev measure itself is not sufficient to achieve the approximate
Lewis weight property for P, since the Chebyshev measure grows to infinity as |t| → 1 while the leverage
function is bounded. Thus we instead analyze the following clipped measure: w(t) := min{C(d+1)2, v(t)} =
min{C(d+ 1)2, d+1

π
√

1−t2 } and prove the following result:

Theorem 2.2 Restated. There are fixed constants c1, c2 such that, for all p ∈ [ 2
3 , 2] and t ∈ [−1, 1],

c1

log3 d
≤ τ [W 1

2− 1
pP](t)

w(t)
≤ c2.

The basic flow of the proof is broken into two portions. First, recall the overall shape of the rescaled
leverage function:

τ [W 1
2− 1

pP](t) = max
x∈Rd+1

([W 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22
= (w(t))1− 2

p max
q:deg(q)≤d

(q(t))2

‖W 1
2− 1

p q‖22
(10)

We need to show that this leverage function is close to w(t) for all t ∈ [−1, 1]. We split this analysis into
two parts:

1. The “Middle Region” with w(t) = v(t), so that |t| ≤ 1−O( 1
d2 ):

We show in Section 7.1 that ‖W 1
2− 1

pPx‖22 and ‖V 1
2− 1

pPx‖22 are similar enough that τ [W 1
2− 1

pP] ≈
τ [V 1

2− 1
pP] in this region, and so the analysis of Theorem 2.2 is tight enough to ensure the almost Lewis

weight property here.

2. The “Endcap Region” with w(t) = C(d+ 1)2, so that |t| ≥ 1−O( 1
d2 ):

We know that w(t) and v(t) are very different here, so we use the fact that w(t) = C(d + 1)2 is
independent of t. This endcap analysis also proceeds in two steps:

◦ Upper bound τ [W 1
2− 1

pP](t) ≤ O(w(t)) = O(d2):
In Section 7.2.1, we note that w(t) ≤ C(d + 1)2 for all t ∈ [−1, 1]. We use this to lower bound

‖W 1
2− 1

pPx‖22 ≥ 1
C(d+1)2 ‖Px‖22, and reduce the second form in Equation 10 to the unweighted

leverage function for P. We appeal to our earlier bound on the leverage function for P from
Section 4.1.

◦ Lower bound τ [W 1
2− 1

pP](t) ≤ Ω(w(t) log3(d)) = Ω(d2 log3(d)):

In Section 7.2.2, we plug in a spike polynomial that approximates t 7→ td
2

into the rightmost term
in Equation 10, and evaluate the numerator and denominator for that polynomial.
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We again break up the analysis into the slightly more approachable p = 1 setting and the more complete
p ∈ [ 2

3 , 2] setting. Additionally, in this section, we refer to the middle region as

Imid := {t | w(t) = v(t)} =
[√

1− 1
π2(d+1)2C2 ,

√
1 + 1

π2(d+1)2C2

]
and the endcap region as Icap := [−1, 1] \ Imid. We also often use the notation x ≈α y with α ≥ 1 to
mean that 1

αy ≤ x ≤ αy. Lastly, to reduce the messiness of the analysis, we omit the change-of-basis matrix
that was used in prior sections U . For p = 1 analysis, Chebyshev polynomials of the second kind are used.
For p = 2 analysis, Legendre polynomials are used. For p ∈ ( 2

3 , 2) analysis, Ultraspherical (i.e. Jacobi)
polynomials are used.

As an aside, when p > 2 this analysis breaks down in a few places since 1
2 − 1

p swaps from being negative

to positive. For instance, this means that t 7→ (w(t))
1
2− 1

p is maximized in the middle region for p < 2 but is
maximized in the endcap for p > 2.

7.1 Middle Region Analysis for p = 1

Our main goal in this section is to prove Lemma 7.5, which states that τ [W− 1
2 P](t)

w(t) = Θ(1). We first recall

our bound on the leverage function in Section 4.1:

Lemma 7.1. The leverage function for P has τ [P ](t) ≤ (d+1)2

2 for all t ∈ [−1, 1].

We use this lemma to (1) analyze the behavior of τ [W− 1
2 P](t)

w(t) on Imid by showing that the leverage functions

on the operators τ [W− 1
2P](t) and τ [V− 1

2P](t) are very similar inside this middle region Imid in Section 7.1.1

and (2) upper and lower bound the ratio of τ [V− 1
2 P](t)
v(t) in Section 7.1.2. Using these bounds, we then prove

Lemma 7.5 in Section 7.1.3.

7.1.1 Relating τ [W− 1
2P] to τ [V− 1

2P]

In this section, our main goal is to show in Corollary 7.3 that τ [W− 1
2 P](t)

w(t) ≈ 2
π2C2

τ [V− 1
2 P](t)
v(t) for t ∈ Imid,

where we recall that Imid is defined by

Imid := {t | w(t) = v(t)} =
[√

1− 1
π2(d+1)2C2 ,

√
1 + 1

π2(d+1)2C2

]
,

so that w(t) = v(t) for t ∈ Imid. To this end, we first remark that it suffices to show that ‖W− 1
2Px‖22 ≈ 2

π2C2

‖V− 1
2Px‖22. To see why this suffices, consider the definitions of the leverage functions:

τ [W− 1
2P](t) = max

x

([W− 1
2Px](t))2

‖W− 1
2Px‖22

= max
x

([V− 1
2Px](t))2

‖W− 1
2Px‖22

≈ 2
π2C2

max
x

([V− 1
2Px](t))2

‖V− 1
2Px‖22

= τ [V− 1
2P](t).

Hence, we first show in Lemma 7.2 that ‖W− 1
2Px‖22 ≈ π2C2

π2C2−1

‖V− 1
2Px‖22.

Lemma 7.2. For all x ∈ Rd+1, we have

‖W− 1
2Px‖22 ≈ π2C2

π2C2−1

‖V− 1
2Px‖22

Proof. We start by looking at the difference between ‖W− 1
2Px‖22 and ‖V− 1

2Px‖22.∣∣∣∣‖W− 1
2Px‖22 − ‖V−

1
2Px‖22

∣∣∣∣ =

∣∣∣∣∫ 1

−1

([W− 1
2Px](t))2 − ([V− 1

2Px](t))2 dt

∣∣∣∣
=

∣∣∣∣∣
∫
Icap

([W− 1
2Px](t))2 − ([V− 1

2Px](t))2 dt+

∫
Imid

([W− 1
2Px](t))2 − ([V− 1

2Px](t))2 dt

∣∣∣∣∣ .
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Since [W− 1
2Px](t) = [V− 1

2Px](t) for t ∈ Imid, then
∫
Imid([W− 1

2Px](t))2− ([V− 1
2Px](t))2 dt = 0. Moreover,

since w(t) is the clipped Chebyshev measure, we have that w(t) ≤ v(t) and thus (w(t))−
1
2 ≥ (v(t))−

1
2 . Hence,

∣∣∣‖W− 1
2Px‖22 − ‖V−

1
2Px‖22

∣∣∣ =

∣∣∣∣∣
∫
Icap

([W− 1
2Px](t))2 − ([V− 1

2Px](t))2 dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Icap

([W− 1
2Px](t))2 dt

∣∣∣∣∣ =

∫
Icap

([W− 1
2Px](t))2 dt.

Because (w(t))−1 = 1
C(d+1)2 on Icap, then∣∣∣‖W− 1

2Px‖22 − ‖V−
1
2Px‖22

∣∣∣ ≤ 1

C(d+ 1)2

∫
Icap

([Px](t))2dt

Since Lemma 7.1 implies ([Px](t))2 ≤ (d+1)2

2 ‖Px‖22, then∣∣∣‖W− 1
2Px‖22 − ‖V−

1
2Px‖22

∣∣∣ ≤ 1

C(d+ 1)2
· (d+ 1)2

2
‖Px‖22

∫
Icap

dt =
‖Px‖22

2C

∫
Icap

dt.

To upper bound the length of the interval Icap, note that 1−
√

1− 1
x2 ≤ 1

x2 for x2 ≥ 1. Hence,

∫
Icap dt = 2 ·

(
1−

√
1− 1

π2(d+1)2C2

)
≤ 2

π2(d+1)2C2 ,

so that ∣∣∣‖W− 1
2Px‖22 − ‖V−

1
2Px‖22

∣∣∣ ≤ ‖Px‖22
2C

· 2

π2(d+ 1)2C2
=

1

π2(d+ 1)2C3
‖Px‖22.

Next, we bound the norm ‖Px‖22 using the fact that w(t) ≤ C(d+ 1)2 to say that 1 ≤
√
C(d+ 1) · (w(t))−

1
2 ,

so that

‖Px‖22 =

∫ 1

−1

(1 · [Px](t))2dt

≤
∫ 1

−1

(√
C(d+ 1) · (w(t))−

1
2 · [Px](t)

)2

dt

= C(d+ 1)2‖W− 1
2Px‖22.

Therefore, ∣∣∣‖W− 1
2Px‖22 − ‖V−

1
2Px‖22

∣∣∣ ≤ C(d+1)2

π2(d+1)2C3 ‖W−
1
2Px‖22 = 1

π2C2 ‖W−
1
2Px‖22.

Rearranging this inequality, ∣∣∣∣∣1− ‖V−
1
2Px‖22

‖W− 1
2Px‖22

∣∣∣∣∣ ≤ 1

π2C2

or equivalently,

1− 1

π2C2
≤ ‖V

− 1
2Px‖22

‖W− 1
2Px‖22

≤ 1 +
1

π2C2
≤ 1

1− 1
π2C2

,

for C > 1
π . Since 1

1− 1
π2C2

= π2C2

π2C2−1 , then we have the multiplicative error guarantee

‖W− 1
2Px‖22 ≈ π2C2

π2C2−1

‖V− 1
2Px‖22

for C > 1
π ≈ 0.312.
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We now complete the formal proof of Corollary 7.3.

Corollary 7.3. τ [W− 1
2 P](t)

w(t) ≈ π2C2

π2C2−1

τ [V− 1
2 P](t)
v(t) for t ∈ Imid.

Proof. By Lemma 7.2, we have that ‖W− 1
2Px‖22 ≈ π2C2

π2C2−1

‖V− 1
2Px‖22 for all x ∈ Rd+1. Since w(t) = v(t) for

t ∈ Imid, Lemma 7.2 implies through the definition of the leverage functions that

τ [W− 1
2P](t)

w(t)
=

1

w(t)
max
x

([W− 1
2Px](t))2

‖W− 1
2Px‖22

=
1

v(t)
max
x

([V− 1
2Px](t))2

‖W− 1
2Px‖22

≈ π2C2

π2C2−1

1

v(t)
max
x

([V− 1
2Px](t))2

‖V− 1
2Px‖22

=
τ [V− 1

2P](t)

v(t)
,

as desired.

7.1.2 Relating τ [V− 1
2P] to v(t)

In this section, we relate τ [V− 1
2P] to v(t) for t ∈ Imid, which will ultimately allow us to relate τ [W− 1

2P]
to w(t) in Section 7.1.3, using Corollary 7.3.

Lemma 7.4. For t ∈ Imid, we have that τ [V− 1
2P](t) ≈( 5

4 +πC
2 ) v(t).

Proof. Note that the claim is equivalent to the statement that τ [V− 1
2 P](t)
v(t) ∈ ( 1

γ , γ) for γ ≤ 5
4 + πC

2 . We will

use the relationship −1√
1−t2 ≤ Ui(t) ≤

1√
1−t2 to prove this.

Specifically, we ensure the two traits

τ [V− 1
2P](t)

v(t)
≤ 1 +

1 + 1√
1−t2

2(d+ 1)
≤ γ

τ [V− 1
2P](t)

v(t)
≥ 1 +

1− 1√
1−t2

2(d+ 1)
≥ 1

γ
.

Solving these two inequalities on the right hand side yields

|t| ≤
√

1− 1
(2(d+1)(γ−1)−1)2 and |t| ≤

√
1− 1

(2(d+1)( 1
γ−1)−1)2

,

respectively. Observe that the guarantee on the left implies the guarantee on the right, so we just ensure
that one trait. Rather, we should think of

Iγ :=

{
t

∣∣∣∣ |t| ≤√1− 1
(2(d+1)(γ−1)−1)2

}
as the set of time points where we have τ [V− 1

2P](t) ≈γ v(t). We now ensure that this interval Iγ entirely
contains the middle region Imid, i.e., Imid ⊂ Iγ . Note that t ∈ Imid implies that

t ≤
√

1− 1

π2(d+ 1)2C2
.

For γ = 1 + π
2C + 1

2(d+1) , note that we have

t ≤
√

1− 1

(2(d+ 1)(γ − 1)− 1)2
,
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as desired. Hence, Imid = Iγ for π2(d+ 1)2C2 = (2(d+ 1)(γ− 1)− 1)2 or equivalently, γ = 1 + π
2C + 1

2(d+1) .

Since d ≥ 1 implies

1 +
π

2
C +

1

2(d+ 1)
≤ 1 +

π

2
C +

1

4
=

5

4
+
π

2
C,

then Imid ⊂ Iγ for γ ≤ 5
4 + π

2C. Therefore, the set Iγ where the leverage scores of V− 1
2P are γ-close to v(t)

covers the set of time-samples not in the cap for γ ≤ 5
4 + π

2C. Equivalently, we have that τ [V− 1
2P](t) ≈( 5

4 +πC
2 )

v(t) for t ∈ Imid.

7.1.3 Complete Result in the Middle

We now finally relate τ [W− 1
2 P](t)

w(t) by using Corollary 7.3 and Lemma 7.4.

Lemma 7.5. For t ∈ Imid, we have
τ [W− 1

2P](t)

w(t)
= Θ(1).

Proof. By Corollary 7.3 and Lemma 7.4, we have that for t ∈ Imid,

τ [W− 1
2P](t) ≈α v(t)

where α = π2C2

π2C2−1 ·
(

5
4 + πC

2

)
for some constant C > 1

π ≈ 0.312. Furthermore, since v(t) = w(t) in the

region t ∈ Imid, this further implies τ [W− 1
2P](t) ≈α w(t), as desired.

7.2 Endcap Region Analysis for p = 1

We now turn to t ∈ Icap, and we will show that

τ [W− 1
2P](t) ≈ 1

2C
w(t)

for t ∈ Icap. Thus it suffices to upper and lower bound the ratio τ [W− 1
2 P](t)

w(t) .

7.2.1 Upper Bounding the Ratio.

In this section, we provide an upper bound on the ratio τ [W− 1
2 P](t)

w(t) . Namely, we show in Lemma 7.6 that

there exists an absolute constant C, the same constant C > 1
π in the definition of the clipped Chebyshev

measure, such that τ [W− 1
2 P](t)

w(t) ≤ 1
2C for all t ∈ Icap.

Lemma 7.6. For t ∈ Icap, we have

τ [W− 1
2P](t)

w(t)
= O(1).

Proof. Since τ [W− 1
2P](t) = maxx

([W− 1
2 Px](t))2

‖W− 1
2 Px‖22

and w(t) ≤ C(d+1)2 for all t ∈ [−1, 1], we first lower bound

‖W− 1
2Px‖22 by

‖W− 1
2Px‖22 =

∫ 1

−1

1

w(t)
([Px](t))2 dt

≥
∫ 1

−1

1

C(d+ 1)2
([Px](t))2 dt =

1

C(d+ 1)2
‖Px‖22.

Then we can directly tackle the leverage function:

τ [W− 1
2P](t) = max

x

([W− 1
2Px](t))2

‖W− 1
2Px‖22

=
1

w(t)
max
x

([Px](t))2

‖W− 1
2Px‖22
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=
1

C(d+ 1)2
max
x

([Px](t))2

‖W− 1
2Px‖22

since w(t) = C(d+ 1)2 for t ∈ Icap. Thus,

τ [W− 1
2P](t) ≤ 1

C(d+ 1)2
max
x

([Px](t))2

1
C(d+1)2 ‖Px‖22

= τ [P ](t) ≤ (d+ 1)2

2
.

Then we can then conclude

τ [W− 1
2P](t)

w(t)
≤

(d+1)2

2

C(d+ 1)2
=

1

2C
.

7.2.2 Lower Bounding the Ratio.

In this section, we provide a lower bound on the ratio τ [W− 1
2 P](t)

w(t) . Namely, we show in Lemma 7.8 that

there exists an absolute constant C ′ such that τ [W− 1
2 P](t)

w(t) ≥ C′

log3 d
for all t ∈ Icap. We first require the

following structural result from polynomial approximation theory.

Theorem 7.7 (Low-degree approximation of high-degree polynomial, Theorem 3.3 in [SV14]). For any
positive integers s and d, there exists a degree d polynomial F such that

sup
t∈[−1,1]

|f(t)− ts| ≤ 2e−
d2

s .

Moreover, for any δ > 0 and d ≥
⌈√

2s log 2
δ

⌉
, there exists a polynomial f of degree d such that

sup
t∈[−1,1]

|f(t)− ts| ≤ δ.

Lemma 7.8. For t ∈ Icap, we have

τ [W− 1
2P](t)

w(t)
= Ω

(
1

log3 d

)
.

Proof. To lower bound the ratio τ [W− 1
2 P](t)

w(t) , we first note that for t ∈ Icap, we have that w(t) = C(d + 1)2

and thus it suffices to lower bound

τ [W− 1
2P](t) = max

x

([W− 1
2Px](t))2

‖W− 1
2Px‖22

by analyzing the quantity for a specific choice of x ∈ Rd+1.

Let q = O
(

(d+1)2

log d

)
so that by Theorem 7.7, there exists a degree d polynomial f such that

sup
t∈[−1,1]

|f(t)− tq| ≤ d−γ ,

for some constant γ > 0. We set x ∈ Rd+1 so that the operator Px corresponds to f(t) and lower bound
([W− 1

2 Px](t))2

‖W− 1
2 Px‖22

.

First, note that since tq = 1 at t = 1, then we have f(1) ≥ 1−d−γ . Similarly, since |t| ≥
√

1− 1
π2(d+1)2C2 ≥

1 − 1
2π2(d+1)2C2 for t ∈ Icap, then we have tq ≥ 1

4 since q = O
(

(d+1)2

log d

)
. Thus, we have f(t) ≥ 1

4 − d−γ for

all t ∈ Icap. Since w(t) = C(d+ 1)2 for all t ∈ Icap, then

([W− 1
2Px](t))2 ≥ 1

8C(d+ 1)2
.
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It remains to upper bound ‖W− 1
2Px‖22 when the operator Px corresponds to F (t). Since supt∈[−1,1] |f(t)−

tq| ≤ d−γ , then we have

‖W− 1
2 f‖22 =

∫ 1

−1

1

w(t)
(f(t))2 dt

≤ 2

∫ 1

−1

1

w(t)
d−2γ dt+ 2

∫ 1

−1

1

w(t)
t2q dt.

Since w(t) = min{C(d+ 1)2, d+1
π
√

1−t2 }, then 1
w(t) ≤ π

d+1 . Thus,

‖W− 1
2 f‖22 ≤

4πd−2γ

d+ 1
+ 4

∫ 1

0

1

w(t)
t2q dt.

We decompose the interval [0, 1] into I1 =
[
0,
√

1− C2π2 log2 d
(d+1)2

)
and I2 =

[√
1− C2π2 log2 d

(d+1)2 , 1
]
. Note that

for t ∈ I1, we have t ≤ 1 − C2π2 log2 d
2(d+1)2 and thus t2q ≤ exp

(
−O

(
C2π2 log d

))
for q = O

(
(d+1)2

log d

)
. Hence for

sufficiently large C > 0, we have that t2q ≤ 1
16π(d+1)3 for all t ∈ I1. Thus since 1

w(t) ≤ π
d+1 , then

4

∫
I1

1

w(t)
t2q dt ≤ 16π

d+ 1

∫
I1
t2q dt ≤ 1

(d+ 1)4
.

Note that |I2| ≤ C2π2 log2 d
2(d+1)2 and t2q ≤ 1 for t ∈ I2. Moreover for t ∈ I2, we have d+1

π
√

1−t2 ≥
C(d+1)2

log d so that
1

w(t) ≤
log d

C(d+1)2 . Hence, ∫
I2

1

w(t)
t2q dt ≤

∫
I2

log d

C(d+ 1)2
dt

≤ log d

C(d+ 1)2
· C

2π2 log2 d

2(d+ 1)2
=
Cπ2 log3 d

2(d+ 1)4
.

Therefore in summary, we have

‖W− 1
2 f‖22 ≤

4πd−2γ

d+ 1
+ 4

∫ 1

0

1

w(t)
t2q dt

=
4πd−2γ

d+ 1
+ 4

∫
I1

1

w(t)
t2q dt+ 4

∫
I2

1

w(t)
t2q dt

≤ 4πd−2γ

d+ 1
+

1

(d+ 1)4
+
Cπ2 log3 d

2(d+ 1)4
.

Hence for sufficiently large γ > 0, we have that

‖W− 1
2 f‖22 = O

(
log3 d

d4

)
.

Combined with the previous bound of ([W− 1
2Px](t))2 ≥ 1

8C(d+1)2 = Ω
(

1
d2

)
, then

([W− 1
2Px](t))2

‖W− 1
2Px‖22

= Ω

(
d2

log3 d

)
.

Finally, since w(t) ≤ C(d+ 1)2, then

τ [W− 1
2P](t)

w(t)
= Ω

(
1

log3 d

)
.
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7.3 Putting It All Together

We finally obtain Theorem 2.2 from Lemma 7.5, Lemma 7.6, and Lemma 7.8.

Theorem 2.2 Restated. There are fixed constants c1, c2, c3 such that, letting w(t) = min
(
c1(d+ 1)2, d+1

π
√

1−t2
)

be the clipped Chebyshev measure on [−1, 1] and letting W be the corresponding diagonal operator with
[Wx](t) = w(t) · x(t), for any t ∈ [−1, 1],

c2

log3 d
≤ τ [W− 1

2P](t)

w(t)
≤ c3.

Proof. We consider casework on t ∈ [−1, 1]. Recall that

Imid := {t | w(t) = v(t)} =
[√

1− 1
π2(d+1)2C2 ,

√
1 + 1

π2(d+1)2C2

]
and Icap := [−1, 1] \ Imid. We have from Lemma 7.5 that there exists a constant C0 ≥ 1 such that

1
C0
≤ τ [W− 1

2 P](t)
w(t) ≤ C0 for all t ∈ Imid. We have from Lemma 7.6 and Lemma 7.8 that there exist constants

C3, C4 such that
C3

log3 d
≤ τ [W− 1

2P](t)

w(t)
≤ C4

for all t ∈ Icap. Thus by setting C1 = min
(
C3,

1
C0

)
and C2 = max(C0, C4), we have that

C1

log3 d
≤ τ [W− 1

2P](t)

w(t)
≤ C2

for all t ∈ [−1, 1].

We now move onto the slightly messier analysis which works for all p ∈ [1, 2]. The core ideas are all the
same, but the mathematical arguments are slightly more nuanced.

7.4 Middle Region Analysis for p ∈ [2
3
, 2]

In this section, we show that τ [W
1
2
− 1
p P](t)

w(t) = Θ(1) for t ∈ Imid defined by

Imid := {t | w(t) = v(t)} =
[√

1− 1
π2(d+1)2C2 ,

√
1 + 1

π2(d+1)2C2

]
and the clipped Chebyshev measure w(t) defined by

w(t) := min{C(d+ 1)2, v(t)} = min{C(d+ 1)2, d+1
π
√

1−t2 }.

7.4.1 Relating τ [W 1
2− 1

pP] to τ [V 1
2− 1

pP]

We first show that τ [W
1
2
− 1
p P](t)

w(t) ≈ 2
π2C2

τ [V
1
2
− 1
p P](t)

v(t) for t ∈ Imid. Observe that since Imid is defined by

Imid := {t | w(t) = v(t)} =
[√

1− 1
π2(d+1)2C2 ,

√
1 + 1

π2(d+1)2C2

]
,

then we have w(t) = v(t) for t ∈ Imid. Thus it suffices to show that ‖W 1
2− 1

pPx‖22 ≈ 2
π2C2

‖V 1
2− 1

pPx‖22 since

τ [W 1
2− 1

pP](t) = max
x

([W 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22
= max

x

([V 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22

≈ 2
π2C2

max
x

([V 1
2− 1

pPx](t))2

‖V 1
2− 1

pPx‖22
= τ [V 1

2− 1
pP](t).

Therefore, we first show that ‖W 1
2− 1

pPx‖22 ≈ 2
π2C2

‖V 1
2− 1

pPx‖22.
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Lemma 7.9. For all x ∈ Rd+1, we have

‖W 1
2− 1

pPx‖22 ≈ π2C2

π2C2−1

‖V 1
2− 1

pPx‖22

Proof. We first bound the difference between ‖W 1
2− 1

pPx‖22 and ‖V 1
2− 1

pPx‖22.∣∣∣∣‖W 1
2− 1

pPx‖22 − ‖V
1
2− 1

pPx‖22
∣∣∣∣ =

∣∣∣∣∫ 1

−1

([W 1
2− 1

pPx](t))2 − ([V 1
2− 1

pPx](t))2 dt

∣∣∣∣
=

∣∣∣∣∣
∫
Icap

([W 1
2− 1

pPx](t))2 − ([V 1
2− 1

pPx](t))2 dt+

∫
Imid

([W 1
2− 1

pPx](t))2 − ([V 1
2− 1

pPx](t))2 dt

∣∣∣∣∣ .
Because [W 1

2− 1
pPx](t) = [V 1

2− 1
pPx](t) for t ∈ Imid, then it follows that

∫
Imid([W 1

2− 1
pPx](t))2−([V 1

2− 1
pPx](t))2 dt =

0. Since w(t) is the clipped Chebyshev measure, we have that w(t) ≤ v(t) and thus (w(t))
1
2− 1

p ≥ (v(t))
1
2− 1

p .
Therefore,∣∣∣‖W 1

2− 1
pPx‖22 − ‖V

1
2− 1

pPx‖22
∣∣∣ =

∣∣∣∣∣
∫
Icap

([W 1
2− 1

pPx](t))2 − ([V 1
2− 1

pPx](t))2 dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Icap

([W 1
2− 1

pPx](t))2 dt

∣∣∣∣∣ =

∫
Icap

([W 1
2− 1

pPx](t))2 dt.

Since w(t) = C(d+ 1)2 on Icap,∣∣∣‖W 1
2− 1

pPx‖22 − ‖V
1
2− 1

pPx‖22
∣∣∣ ≤ (C(d+ 1)2)1− 2

p

∫
Icap

([Px](t))2dt.

By Lemma 7.1, we have that ([Px](t))2 ≤ (d+1)2

2 ‖Px‖22. Thus,∣∣∣‖W 1
2− 1

pPx‖22 − ‖V
1
2− 1

pPx‖22
∣∣∣ ≤ (C(d+ 1)2)1− 2

p · (d+ 1)2

2
‖Px‖22

∫
Icap

dt

= C
1− 2

p (d+1)
4− 4

p

2 ‖Px‖22
∫
Icap

dt.

We upper bound the length of the interval Icap by observing that 1−
√

1− 1
x2 ≤ 1

x2 for x2 ≥ 1 and thus,

∫
Icap dt = 2 ·

(
1−

√
1− 1

π2(d+ 1)2C2

)
≤ 2

π2(d+ 1)2C2
.

Therefore,∣∣∣‖W 1
2− 1

pPx‖22 − ‖V
1
2− 1

pPx‖22
∣∣∣ ≤ 2

π2(d+ 1)2C2
· C

1− 2
p (d+1)

4− 4
p

2 ‖Px‖22 =
(d+ 1)2− 4

p

C
2
p+1π2

· ‖Px‖22.

We then bound the norm ‖Px‖22 by noting that w(t) ≤ C(d+ 1)2. Thus, 1 ≤ C 1
p− 1

2 (d+ 1)
2
p−1 · (w(t))

1
2− 1

p ,
so that

‖Px‖22 =

∫ 1

−1

(1 · [Px](t))2dt

≤
∫ 1

−1

(
C

1
p− 1

2 (d+ 1)
2
p−1 · (w(t))

1
2− 1

p · [Px](t)
)2

dt

= C
2
p−1(d+ 1)

4
p−2‖W 1

2− 1
pPx‖22.
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Therefore,∣∣∣‖W 1
2− 1

pPx‖22 − ‖V
1
2− 1

pPx‖22
∣∣∣ ≤ (d+ 1)2− 4

p

C
2
p+1π2

· C 2
p−1(d+ 1)

4
p−2‖W 1

2− 1
pPx‖22 = 1

π2C2 ‖W
1
2− 1

pPx‖22.

Rearranging this inequality, we have that∣∣∣∣∣1− ‖V
1
2− 1

pPx‖22
‖W 1

2− 1
pPx‖22

∣∣∣∣∣ ≤ 1

π2C2

or equivalently,

1− 1

π2C2
≤ ‖V

1
2− 1

pPx‖22
‖W 1

2− 1
pPx‖22

≤ 1 +
1

π2C2
≤ 1

1− 1
π2C2

,

for C > 1
π . Since 1

1− 1
π2C2

= π2C2

π2C2−1 , then we have the multiplicative error guarantee

‖W 1
2− 1

pPx‖22 ≈ π2C2

π2C2−1

‖V 1
2− 1

pPx‖22

for C > 1
π ≈ 0.312.

We now relate τ [W
1
2
− 1
p P](t)

w(t) to τ [V
1
2
− 1
p P](t)

v(t) for t ∈ Imid

Corollary 7.10. τ [W
1
2
− 1
p P](t)

w(t) ≈ π2C2

π2C2−1

τ [V
1
2
− 1
p P](t)

v(t) for t ∈ Imid.

Proof. By Lemma 7.9, ‖W 1
2− 1

pPx‖22 ≈ π2C2

π2C2−1

‖V 1
2− 1

pPx‖22 for all x ∈ Rd+1. Since w(t) = v(t) for t ∈ Imid,
it follows from the definition of the leverage functions that

τ [W 1
2− 1

pP](t)

w(t)
=

1

w(t)
max
x

([W 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22

=
1

v(t)
max
x

([V 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22

≈ π2C2

π2C2−1

1

v(t)
max
x

([V 1
2− 1

pPx](t))2

‖V 1
2− 1

pPx‖22

=
τ [V 1

2− 1
pP](t)

v(t)
,

as desired.

7.4.2 Complete Result in the Middle

We now show that τ [W 1
2− 1

pP](t) and w(t) are within a constant factor for t ∈ Imid.
Lemma 7.11. For t ∈ Imid, we have

τ [W 1
2− 1

pP](t)

w(t)
= Θ(1).

Proof. By Corollary 7.10 and Corollary 4.7, we have that for t ∈ Imid,

τ [W 1
2− 1

pP](t) ≈α v(t)

for α = π2C2

π2C2−1 ·C0 for some constants C0 and C > 1
π ≈ 0.312. Furthermore, since v(t) = w(t) in the region

t ∈ Imid, this further implies τ [W 1
2− 1

pP](t) ≈α w(t), as desired.
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7.5 Endcap Region Analysis for p ∈ [2
3
, 2]

We now bound the ratio for t ∈ Icap, and we will show that

τ [W 1
2− 1

pP](t) ≈ 1
2C

w(t)

for t ∈ Icap. Thus it suffices to upper and lower bound the ratio τ [W
1
2
− 1
p P](t)

w(t) .

7.5.1 Upper Bounding the Ratio.

In this section, we provide an upper bound on the ratio τ [W
1
2
− 1
p P](t)

w(t) .

Lemma 7.12. For t ∈ Icap, we have

τ [W 1
2− 1

pP](t)

w(t)
= O(1).

Proof. Since τ [W 1
2− 1

pP](t) = maxx
([W

1
2
− 1
p Px](t))2

‖W
1
2
− 1
p Px‖22

and w(t) ≤ C(d+1)2 for all t ∈ [−1, 1], then for p ∈ [ 2
3 , 2],

we can first lower bound ‖W 1
2− 1

pPx‖22 by

‖W 1
2− 1

pPx‖22 =

∫ 1

−1

(w(t))1− 2
p ([Px](t))2 dt

≥
∫ 1

−1

(C(d+ 1)2)1− 2
p ([Px](t))2 dt = (C(d+ 1)2)1− 2

p ‖Px‖22.

On the other hand, the leverage function τ [W 1
2− 1

pP] satisfies

τ [W 1
2− 1

pP](t) = max
x

([W 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22
= (w(t))1− 2

p max
x

([Px](t))2

‖W 1
2− 1

pPx‖22
= (C(d+ 1)2)1− 2

p max
x

([Px](t))2

‖W 1
2− 1

pPx‖22
because w(t) = C(d+ 1)2 for t ∈ Icap. Therefore, from the above inequality, we have

τ [W 1
2− 1

pP](t) ≤ (C(d+ 1)2)1− 2
p max

x

([Px](t))2

(C(d+ 1)2)1− 2
p ‖Px‖22

= τ [P ](t) ≤ (d+ 1)2

2
.

Hence,

τ [W 1
2− 1

pP](t)

w(t)
≤

(d+1)2

2

C(d+ 1)2
=

1

2C
,

as desired.

7.5.2 Lower Bounding the Ratio.

We now lower bound the ratio τ [W
1
2
− 1
p P](t)

w(t) .

Lemma 7.13. For t ∈ Icap, we have

τ [W 1
2− 1

pP](t)

w(t)
= Ω

(
1

log3 d

)
.
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Proof. To lower bound the ratio τ [W
1
2
− 1
p P](t)

w(t) , we observe that w(t) = C(d + 1)2 for t ∈ Icap. Hence, it

suffices to lower bound

τ [W 1
2− 1

pP](t) = max
x

([W 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22
by choosing a specific polynomial represented by x ∈ Rd+1.

We choose q = O
(

(d+1)2

log d

)
so that by Theorem 7.7, there exists a degree d polynomial f such that

sup
t∈[−1,1]

|f(t)− tq| ≤ d−γ ,

for some fixed constant γ > 0 to be set at a later point in the analysis. We choose x ∈ Rd+1 so that the

operator Px corresponds to f(t). We then lower bound ([W
1
2
− 1
p Px](t))2

‖W
1
2
− 1
p Px‖22

.

Because tq = 1 at t = 1, then f(1) ≥ 1−d−γ . Since |t| ≥
√

1− 1
π2(d+1)2C2 ≥ 1− 1

2π2(d+1)2C2 for t ∈ Icap,

then tq ≥ 1
4 for q = O

(
(d+1)2

log d

)
. Hence, f(t) ≥ 1

4 − d−γ for all t ∈ Icap. Since w(t) = C(d + 1)2 for all

t ∈ Icap, then

([W 1
2− 1

pPx](t))2 ≥ 1

8
(C(d+ 1)2)1− 2

p = Ω
(
d2− 4

p

)
.

We now upper bound ‖W 1
2− 1

pPx‖22 for the operator Px that corresponds to f(t). Since supt∈[−1,1] |f(t)−
tq| ≤ d−γ , then

‖W 1
2− 1

p f‖22 =

∫ 1

−1

(w(t))1− 2
p (F (t))2 dt

≤ 2

∫ 1

−1

(w(t))1− 2
p d−2γ dt+ 2

∫ 1

−1

(w(t))1− 2
p t2q dt.

Since w(t) = min{C(d+ 1)2, d+1
π
√

1−t2 }, then (w(t))1− 2
p = O

(
d1− 2

p

)
for p ∈ [ 2

3 , 2]. Thus,

‖W 1
2− 1

p f‖22 ≤ O
(
d1− 2

p−2γ
)

+ 4

∫ 1

0

(w(t))1− 2
p t2q dt.

Consider a decomposition of the interval [0, 1] into intervals I1 =
[
0,
√

1− C2π2 log2 d
(d+1)2

)
and I2 =

[√
1− C2π2 log2 d

(d+1)2 , 1
]
.

For t ∈ I1, we have t ≤ 1 − C2π2 log2 d
2(d+1)2 so that t2q ≤ exp

(
−O

(
C2π2 log d

))
for q = O

(
(d+1)2

log d

)
. Thus for

sufficiently large C > 0, we have that t2q = O
(

1
d7

)
for all t ∈ I1. Because (w(t))1− 2

p ≤ 1 for p ∈ [ 2
3 , 2], then

4

∫
I1

(w(t))1− 2
p t2q dt = O

(
1

d7

)
.

On the other hand, |I2| ≤ C2π2 log2 d
2(d+1)2 and t2q ≤ 1 for t ∈ I2. For t ∈ I2, we also have either w(t) = C(d+ 1)2

or w(t) = d+1
π
√

1−t2 ≥
(d+1)2

Cπ log d so that either way w(t) ≥ (d+1)2

Cπ log d , and so (w(t))1− 2
p = O

(
d2− 4

p log2 d
)

. Hence,

4

∫
I2

(w(t))1− 2
p t2q dt4 ≤

∫
I2
O
(
d2− 4

p log2 d
)
dt

≤ O
(
d2− 4

p log2 d
)
· C

2π2 log2 d

2(d+ 1)2
= O

(
d−

4
p log4 d

)
.

Thus in all,

‖W 1
2− 1

p f‖22 ≤ O
(
d1− 2

p−2γ
)

+ 4

∫ 1

0

(w(t))1− 2
p t2q dt
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= O
(
d1− 2

p−2γ
)

+ 4

∫
I1

(w(t))1− 2
p t2q dt+ 4

∫
I2

(w(t))1− 2
p t2q dt

= O
(
d1− 2

p−2γ
)

+O

(
1

d7

)
+O

(
d−

4
p log4 d

)
.

Hence for γ = 5, for all p ∈ [ 2
3 , 1], we have that

‖W 1
2− 1

pF‖22 = O
(
d−

4
p log4 d

)
.

Combined with our previous bound that ([W 1
2− 1

pPx](t))2 ≥ Ω
(
d2− 4

p

)
for p ∈ [ 2

3 , 2] and therefore,

([W 1
2− 1

pPx](t))2

‖W 1
2− 1

pPx‖22
= Ω

(
d2

log4 d

)
.

Finally, because w(t) ≤ C(d+ 1)2, then

τ [W 1
2− 1

pP](t)

w(t)
= Ω

(
1

log4 d

)
.

7.6 Putting It All Together

We finally obtain Theorem 2.2 from Lemma 7.11, Lemma 7.12, and Lemma 7.13.

Theorem 2.2 Restated. There are fixed constants c1, c2, c3 such that, letting w(t) = min
(
c1(d+ 1)2, d+1

π
√

1−t2
)

be the clipped Chebyshev measure on [−1, 1] and letting W be the corresponding diagonal operator with
[Wx](t) = w(t) · x(t), for any p ∈ [ 2

3 , 2] and t ∈ [−1, 1],

c2

log3 d
≤ τ [W− 1

2P](t)

w(t)
≤ c3.

Proof. We consider casework on t ∈ [−1, 1]. Recall that

Imid := {t | w(t) = v(t)} =
[√

1− 1
π2(d+1)2C2 ,

√
1 + 1

π2(d+1)2C2

]
and Icap := [−1, 1] \ Imid. By Lemma 7.11, there exists a constant C0 ≥ 1 such that 1

C0
≤ τ [W

1
2
− 1
p P](t)

w(t) ≤ C0

for all t ∈ Imid. By Lemma 7.12 and Lemma 7.13, there exists a constant C3 such that

C3

log4 d
≤ τ [W 1

2− 1
pP](t)

w(t)
≤ C3

for all t ∈ Icap. Thus by setting C1 = min
(
C3,

1
C0

)
and C2 = max(C0, C3), we have that

C1

log4 d
≤ τ [W 1

2− 1
pP](t)

w(t)
≤ C2

for all t ∈ [−1, 1].
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A Operator Sensitivity Sampling

In this section, we show Theorem 4.14, which shows that uniform sampling can achieve a constant factor
approximation to the Lp polynomial regression problem.

Theorem 4.14 Restated. Let p ≥ 1 and suppose s1, . . . , sn0 are drawn uniformly from [−1, 1]. Let A ∈
Rn0×(d+1) be the associated Vandermonde matrix, so that Ai,j = sj−1

i . Let b ∈ Rn0 be the evaluations of
f , so that bi = f(si). For n0 = O

(
d52pp2 log d

)
, there exists a universal constant c such that the sketched

solution x̂ = argminx ‖Ax− b‖p satisfies

‖Px̂− f‖p ≤ c min
x∈Rd+1

‖Px− f‖p

with probability at least 11
12 . Further, let ε ∈ (0, 1) and suppose ‖f‖p ≤ C minx ‖Px − f‖p. If n0 =

O
(

1
εO(p2)

d5pO(p) log d
ε

)
, then

‖Px̂− f‖pp ≤ (1 + ε) min
x
‖Px− f‖pp

with probability at least 11
12 .

Throughout this paper, we use two formulations of Bernstein’s inequality in the analysis for general p.

Imported Theorem 1 (Bernstein’s Inequality, Theorems 3.6 and 3.7 from [CL06]). Let X1, . . . , Xn be
independent zero-mean random variables with |Xi| ≤M for all i. Then,

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ γ
]
≤ 2 exp

(
−

1
2γ

2∑n
i=1 E[X2

i ] + 1
3Mt

)
Imported Theorem 2 (Bounded Differences Concentration, Theorem 17 from [CL06]). Let X1, . . . , Xn be
independent random variables such that |Xi − E[Xi]| < ci for all i ∈ [n]. Let X =

∑
iXi and γ > 0. Then

Pr[|X − E[X]| ≥ γ] ≤ exp

( −γ2

2
∑
i c

2
i

)
We first show the constant-factor regression guarantee using O(d5p22p log(d) samples.
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Lemma A.1. Let A be the Vandermonde matrix formed by sampling n0 = O(d5p22p log(d)) points from
[−1, 1] uniformly at random, and let b be the corresponding observations of f . Then, with probability at least
11
12 , the sketched solution x̂ := minx ‖Ax− b‖p has

‖Px̂− f‖p ≤ C min
x∈Rd+1

‖Px− f‖p

for some universal constant C > 1.

Proof. This proof is completed in two standard arguments. First, we show that uniformly sampling enough
points yields a `p subspace embedding, via an ε−Net argument. Second, we use a standard argument that
triangle inequality and subspace embedding suffice for constant factor regression [ELMM20, MM20, PPP21].

Let s1, ..., sn0
denotes the uniformly sampled times. First, fix any vector x ∈ Rd+1. Then let Yi := 2

n0
|Px(si)|p,

so that E[Yi] = 1
n0
‖Px‖pp. Note that |Px(si)|p ≤ d2(p+ 1) by Lemma 4.13, so that Yi ≤ 2d2(p+1)

n0
‖Px‖pp and

therefore |Yi − E[Yi]| ≤ 3d2(p+1)
n0

‖Px‖pp. Then by letting Y =
∑n0

i=1 Yi = ‖rAx‖pp, where r = ( 1
n0

)1/p is a

rescaling factor, and applying the Bounded Differences Inequality (Imported Theorem 2) for γ = 2−p‖Px‖pp,
yields

Pr
[∣∣‖rAx‖pp − ‖Px‖pp

∣∣ ≥ 2−p‖Px‖pp
]
≤ 2 exp

 −2−p‖Px‖2pp
2n0

9d4(p+1)2

n2
0
‖Px‖2pp


= 2 exp

( −n0

9 · 2pd4(p+ 1)2

)
≤ 1

exp(O(d log d))

Where the last line uses the fact that n0 = O(d5p22p log(d)). Note that |a− b| ≤ |ap − bp|1/p for all a, b > 0

and p ≥ 1. So, we get |‖rAx‖p − ‖Px‖p| ≤
∣∣‖rAx‖pp − ‖Px‖pp

∣∣1/p ≤ 1
2‖Px‖p with high probability. That is,

Pr

[
|‖rAx‖p − ‖Px‖p| ≥

1

2
‖Px‖p

]
≤ 1

exp(O(d log d))
(11)

We now union bound this guarantee over a net. We first define the ball B =
{
x
∣∣ ‖Px‖p = 1

}
. The let

N denote a net over B such that, for any x ∈ B, there exists some y ∈ N such that ‖Px− Py‖p ≤ 0.1. By
Lemma 2.4 of [BLM89], N has at most 10O(d) elements.

Next, note that any x ∈ B can be written as x =
∑∞
i=0 αiyi where α0 = 1 and |αi| ≤ 0.1i and yi ∈ N .

So, we can union bound Equation 11 over all y ∈ N to upper bound

‖rAx‖p ≤
∞∑
i=0

αi‖rAyi‖p

≤ 1.5
∞∑
i=0

αi‖Pyi‖p

≤ 1.5
∞∑
i=0

0.1i

=
1.5

1− 0.1

≤ 1.825

And lower bound

‖rAx‖p ≥ α0‖rAy0‖p −
∞∑
i=1

αi‖rAyi‖p
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≥ (1− 0.5)α0‖Py0‖p − (1 + 0.5)
∞∑
i=1

αi‖Pyi‖p

≥ 0.5− 1.5
∞∑
i=1

0.1i

= 0.3

That is, ‖rAx‖p = 1± 0.9 for any x such that ‖Px‖p = 1. So, just by scaling this guarantee, we have shown
that for all x ∈ Rd+1 we have ∣∣∣∣‖rAx‖p − ‖Px‖p

∣∣∣∣ ≤ 0.9‖Px‖p

This is the complete subspace guarantee. We now bound the error of the sketched solution x̂.
Let x∗ := argminx ‖Px−f‖p attain the best optimal loss. Then, by repeated use of the triangle inequality

and our subspace embedding,

‖Px̂− f‖p ≤ ‖Px̂− Px∗‖p + ‖Px∗ − f‖p
≤ 2r‖Ax̂−Ax∗‖p + ‖Px∗ − f‖p
≤ 2r(‖Ax̂− b‖p + ‖Ax∗ − b‖p) + ‖Px∗ − f‖p
≤ 4r‖Ax∗ − b‖p + ‖Px∗ − f‖p (Optimality of x̃)

Then, noting that E[‖r(Ax∗−b)‖pp] = ‖Px∗− f‖pp so that by Markov’s inequality we have ‖r(Ax∗−b)‖p ≤
10‖Px∗ − f‖pp with probability 0.9, we conclude that

‖Px̂− f‖p ≤ 41‖Px∗ − f‖p

which completes the proof.

We next show that any near-optimal solution to the Lp matrix regression problem formed from subsam-
pling a large number of points in [−1, 1] also corresponds to a near-optimal solution to the Lp polynomial
regression problem.

Lemma A.2. Let A be the Vandermonde matrix formed by sampling n0 = O(d5p22p log(d)) points on
[−1, 1], and let b be the corresponding observations of f . Let OPT = minx∈Rd+1 ‖Px − f‖p. Then with
probability at least 0.9, all x̂ ∈ Rd+1 with ‖Ax̂− b‖p ≤ 11OPT have ‖Px̂− f‖p ≤ 24OPT .

Proof. Let x∗ be a minimizer of ‖Px− f‖p so that OPT = ‖Px∗ − f‖p. We now suppose by contradiction
that ‖Px̂− f‖p > 24OPT . By triangle inequality,

‖Ax̂− b‖p ≥ ‖A(x̂− x∗)‖p − ‖Ax∗ − b‖p.

Since A is formed by uniform sampling with n0 = poly(dp/ε) points from [−1, 1], then with high probability,

23

24
‖Ax‖p ≤ ‖Px‖p ≤

25

24
‖Ax‖p

for all x ∈ Rd+1. Formally, we prove such a bound in the proof of Lemma A.1. Moreover, note that since
x∗ = argminx∈Rd+1 ‖Px − f‖p has OPT = ‖Px∗ − f‖p, then we have E[‖Ax∗ − b‖pp] = OPT p. Thus by
Jensen’s inequality for p ≥ 1, we have E[‖Ax∗ − b‖p] ≤ OPT and by Markov’s inequality,

Pr [‖Ax∗ − b‖p ≥ 11OPT ] ≤ 1

11
.

Thus with probability at least 0.9,

‖Ax̂− b‖p ≥
23

24
‖P(x̂− x∗)‖p − 11OPT.
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By triangle inequality,

‖Ax̂− b‖p ≥
23

24
‖Px̂− f‖p − ‖Px∗ − f‖p − 11OPT.

Thus if ‖Px̂− f‖p > 24OPT , then

‖Ax̂− b‖p > 23OPT −OPT − 11OPT = 11OPT,

which contradicts the given fact that ‖Ax̂− b‖p ≤ 11OPT . Hence we must have

‖Px̂− f‖p ≤ 24OPT.

Lemma A.3. Let OPT = minx∈Rd+1 ‖Px− f‖p and suppose that ‖f‖p ≤ C ·OPT for some fixed constant

C ≥ 1. Let A be the Vandermonde matrix formed by sampling n0 = O
(

1
εO(p2)

d5pO(p2) log d
ε

)
random points

uniformly from [−1, 1]. Let b be the corresponding evaluations of f . Then with probability at least 0.9, the
minimizer x̂ to minx∈Rd+1 ‖Ax− b‖p satisfies

‖Px̂− f‖p ≤ (1 + ε)OPT.

Proof. We first note that by Lemma 4.13, all sensitivities of P are at most M := d2(p+ 1).
Note that if x∗ = argminx∈Rd+1 ‖Px− f‖p, so that OPT = ‖Px∗ − f‖p, then we have E[‖Ax∗ − f‖pp] =

OPT p. By Jensen’s inequality for p ≥ 1, we have E[‖Ax∗ − f‖p] ≤ OPT . Thus by Markov’s inequality,

Pr [‖Ax∗ − b‖p ≥ 11OPT ] ≤ 1

11
.

We condition against this event. Then, we have ‖Ax̂− b‖p ≤ ‖Ax∗ − b‖p ≤ 11OPT , so by Lemma A.2 we
also have ‖Px̂− f‖p ≤ 24OPT .

For the rest of this proof, let z ∈ Rd+1 be any vector such that ‖Pz − f‖p ≤ 24OPT . By triangle
inequality, we have

‖Pz‖p ≤ ‖Pz− f‖p + ‖f‖p ≤ 25C ·OPT
Since the sensitivities of P are all at most M , then by definition of sensitivities, we have that for all u ∈ [−1, 1],

|[Pz](u)|p
‖Pz‖pp

≤M

In particular, for all u ∈ [−1, 1],
|[Pz](u)|p ≤ τ := M25pCpOPT p.

We partition the points of interval [−1, 1] into two groups. We define G = {t : |f(t)|p ≤ τp2p/εp
2} and

B = {t : |f(t)|p > τp2p/εp
2}. Intuitively, B is a set of “bad times” where f is so large that polynomials

cannot fit it, and G is the remaining set of “good times”. So for any z with ‖Pz− f‖p ≤ 24OPT , we have

|[Pz](t)| ≤ τ1/p as before, and also for any u ∈ B we have |f(u)| > p2

εp τ
1/p. Thus, for any u ∈ B, we have(

1− εp

p2

)
|f(u)| ≤ |[Pz](u)− f(u)| ≤

(
1 +

εp

p2

)
|f(u)|

Therefore,

(1− ε)|f(u)|p ≤ |[Pz](u)− f(u)|p ≤ (1 + ε)|f(u)|p. (12)

This formalizes the idea that f cannot be fit by a polynomial on B. On the other hand, for G, we have

‖Az− b‖pp = ‖AGz− bG‖pp + ‖ABz− bB‖pp, (13)

where AG and bG are the rows of A and b associated with points sampled in G, and where AB and bB are
similarly the rows associated with points sampled in B. We will next show via an ε-Net argument that the
residual ‖AGz− bG‖p is preserved for all valid z vectors.
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Accuracy of A on a single coefficient vector z at points in G. For each sample si with i ∈ [n0], if
si ∈ G, we define Xi = 2

n0
|Pz(si)− f(si)|p to be the corresponding contribution to the empirical residue by

the sample. Otherwise, if si /∈ G, we define Xi = 0. Since we sample uniformly, i.e., the probability density
function for si satisfies p(t) = 1

2 for all t ∈ [−1, 1], then

E [Xi] =
1

n0

∫
t∈G
|Pz(t)− f(t)|p dt =

1

n0
‖Pz− f‖pG,

where ‖f‖pG :=
∫
t∈G |f |

p
dt is the integral only over the set G. Because |Pz(u)|p ≤ τ and |f(u)|p ≤ τp2p/εp

2

for all u ∈ G, we have

|Pz(u)− f(u)| ≤ 2p2

εp
τ1/p

so that

|Xi − E [Xi]| ≤
2

n0
|Pz(si)− f(si)|p +

1

n0
‖Pz− f‖pG ≤

4

n0

(
2p2

εp

)p
τ

Then let X =
∑
i∈[n0]Xi so that, letting r := ( 2

n0
)1/p be a rescaling factor,

E[‖r(AGz− bG)‖pp] = E [X] = ‖Pz− f‖pG

Setting γ = εp

2O(p2)
‖f‖pp in the formulation of Bernstein’s concentration inequality in Imported Theorem 2,

we have

Pr [|X − E[X]| ≥ γ] ≤ exp

(
− εp

2O(p2)
‖f‖2pp

2
∑
i∈[n0](

4
n0

( 2p2

εp )pτ)2

)
≤ exp

(
−ε2+2p2

32(50Cp2)2pM22O(p2)
· n0

)
.

Thus for n0 = O
(

1
ε2+2p2

d ·M2pO(p2) log d
ε

)
, we have

Pr

[∣∣∣∣‖r(AGz− bG)‖pp − ‖Pz− f‖pG
∣∣∣∣ ≥ εp

2O(p2)
‖f‖pp

]
≤ 1

exp(O(dp log d/ε))
,

which implies by concavity (and therefore subadditivity) of t 7→ t1/p for p ≥ 1,

Pr

[∣∣∣∣‖r(AGz− bG)‖p − ‖Pz− f‖G
∣∣∣∣ ≥ ε

2O(p)
‖f‖p

]
≤ 1

exp(O(dp log d/ε))
. (14)

By a similar argument, let Yi := 2
n0
|Pz(si)|p for all si, so that E[Yi] = 1

n0
‖Pz‖pp and |Yi − E[Yi]| ≤ 3M

n0
‖Pz‖pp.

Then Y :=
∑
i∈[n0] Yi, by Imported Theorem 2 for γ = εp+1‖Pz‖pp, yields

Pr

[∣∣∣∣‖rAz‖p − ‖Pz‖p
∣∣∣∣ ≤ ε‖Pz‖p

]
≤ 1

exp(O(d log d/ε))
. (15)

Since M = (p+ 1)(d+ 1)2, the total number of samples is n0 = O
(

1
ε2+2p2

d5pO(p2) log d
ε

)
.

The arguments so far, when combined carefully (see the last part of this proof), imply that the error
from uniform sampling does not matter on B, and that for any fixed z such that ‖Pz− f‖p ≤ 24OPT , the
error on G is preserved. So, for any such z, we can say with high probability that

(1− ε)‖Pz− f‖pp ≤ ‖Az− b‖pp ≤ (1 + ε)‖Pz− f‖pp

However, the epsilon-net argument needs to be applied to just G on its own, so we now construct a net under
the ‖ · ‖G norm.
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ε-net argument for subspace embedding. We now union bound over a net by first defining the ball
B =

{
x
∣∣ ‖Px‖p = 1

}
. The let N denote a net over B such that, for any x ∈ B, there exists some y ∈ N

such that ‖Px− Py‖p ≤ ε. By Lemma 2.4 of [BLM89], N has at most ( 1
ε )O(d) elements.

Next, note that any x ∈ B can be written as x =
∑∞
i=0 αiyi where α0 = 1 and |αi| ≤ εi and yi ∈ N . So,

we can union bound Equation 15 over all y ∈ N to upper bound

‖rAx‖p ≤
∞∑
i=0

αi‖rAyi‖p

≤ (1 + ε)
∞∑
i=0

αi‖Pyi‖p

≤ (1 + ε)
∞∑
i=0

εi

=
1 + ε

1− ε
≤ 1 + 4ε

And lower bound

‖rAx‖p ≥ α0‖rAy0‖p −
∞∑
i=1

αi‖rAyi‖p

≥ (1− ε)α0‖Py0‖p − (1 + ε)

∞∑
i=1

αi‖Pyi‖p

≥ (1− ε)− (1 + ε)
∞∑
i=1

εi

≥ 1− 6ε

That is, ‖rAx‖p = 1± 6ε for any x such that ‖Px‖p = 1. So, just by scaling this guarantee, we have shown
that for all x ∈ Rd+1 we have ∣∣∣∣‖rAx‖p − ‖Px‖p

∣∣∣∣ ≤ 6ε‖Px‖p

ε-net argument over all coefficient vectors. Now again consider any z such that ‖Pz−f‖p ≤ 24OPT .
Then ‖Pz‖p ≤ 25‖f‖p:

‖Pz‖p ≤ ‖Pz− f‖p + ‖f‖p ≤ 24 min
x
‖Px− f‖p + ‖f‖p ≤ 25‖f‖p

Then let y = αy0 be the corresponding net vector as in the previous paragraph. Then we have ‖Py− f‖p ≤
26OPT for ε ≤ O(1):

‖Py− f‖p ≤ ‖Pz− f‖p + ‖Pz−Py‖p ≤ 24OPT + 6ε‖Px′‖p ≤ 24OPT + 6ε21‖f‖p ≤ (20 + 21 · 6εC)OPT

Let N ′ be a net over B′ := {z | ‖Pz‖p ≤ 26OPT} such that any z ∈ B′ has some y ∈ B′ such that
‖Pz−Py‖p ≤ ε

2O(p) ·26OPT . Since 1
26OPTN ′ is a ε-Net for the unit ball in the range of P, Lemma 2.4 from

[BLM89] tells us that this net has size ( 2O(p)

ε )O(d). We union bound Equation 14 over all y ∈ N ′.
Then, we can write z =

∑∞
i=0 αiyi with α0 = 1, αi ≤ ε, and yi ∈ N ′. We will then write z = y0 + ∆

where ∆ :=
∑∞
i=1 αiyi and apply the triangle inequality:

∣∣∣∣‖r(AGz− bG)‖p − ‖Pz− f‖G
∣∣∣∣ ≤ ∣∣∣∣‖r(AGy0 − bG)‖p − ‖Py0 − f‖G

∣∣∣∣+ ‖rAG∆0‖p + ‖P∆0‖G

≤
∣∣∣∣‖r(AGy0 − bG)‖p − ‖Py0 − f‖G

∣∣∣∣+ ‖rA∆0‖p + ‖P∆0‖p
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≤
∣∣∣∣‖r(AGy0 − bG)‖p − ‖Py0 − f‖G

∣∣∣∣+ (1 + 6ε)‖P∆0‖p

≤ ε
2O(p) ‖f‖p + (1 + 6ε)

∞∑
i=1

( ε
2O(p) )i · 26OPT

≤ O( ε
2O(p) )‖f‖p

In other words, we have that with high probability for all z with ‖Pz− f‖p ≤ 24OPT ,

‖Pz− f‖G −O( ε
2O(p) )‖f‖p ≤ ‖r(AGz− bG)‖p ≤ ‖Pz− f‖G +O( ε

2O(p) )‖f‖p (16)

Now we extend Equation 16 to holds for norms with the exponent of p on them. We do this by case analysis,
with either ‖Pz − f‖G ≤ 1

2‖f‖p or ‖Pz − f‖G ≥ 1
2‖f‖p. If ‖Pz − f‖G ≤ 1

2‖f‖p, then we use the bound
(u+ ε)p ≤ up + 2εp for u+ ε ≤ 1, as proven later in Lemma A.4:

‖AGz− bG‖pp ≤ (‖Pz− f‖G +O( ε
2O(p) )‖f‖p)p

= ‖f‖pp(‖Pz−f‖G‖f‖p +O( ε
2O(p) ))p

≤ ‖f‖pp(
‖Pz−f‖pG
‖f‖pp +O( ε

2O(p) p)) (‖Pz−f‖G‖f‖p +O( ε
2O(p) ) ≤ 1)

= ‖Pz− f‖pG +O( ε
2O(p) p)‖f‖pp

≤ ‖Pz− f‖pG +O(ε)‖f‖pp
and similarly the lower bound is

‖AGz− bG‖pp ≥ (‖Pz− f‖G −O( ε
2O(p) )‖f‖p)p

= ‖f‖pp(‖Pz−f‖G‖f‖p −O( ε
2O(p) ))p

≥ ‖f‖pp(
‖Pz−f‖pG
‖f‖pp −O( ε

2O(p) p)) (‖Pz−f‖G‖f‖p +O( ε
2O(p) ) ≤ 1)

= ‖Pz− f‖pG −O( ε
2O(p) p)‖f‖pp

≥ ‖Pz− f‖pG −O(ε)‖f‖pp

Which completes the first case. For the second case, where ‖Pz − f‖G ≥ 1
2‖f‖p so that

‖f‖p
‖Pz−f‖G ≤ 2, we

use the bound (1± u)p ∈ 1± p(2e)p/2u for u ∈ [0, 1], as proven later in Lemma A.4:

‖AGz− bG‖pp ∈ (‖Pz− f‖G ±O( ε
2O(p) )‖f‖p)p

= ‖Pz− f‖pG(1 +O( ε
2O(p) )

‖f‖p
‖Pz−f‖G )p

∈ ‖Pz− f‖pG(1±O( ε
2O(p) 2O(p))

‖f‖p
‖Pz−f‖G )

= ‖Pz− f‖p ±O(ε)‖f‖p‖Pz− f‖p−1
G

∈ ‖Pz− f‖p ±O(ε)‖f‖pp (‖Pz− f‖G ≤ C‖f‖p)

Which concludes the case analysis, and we find that all z with ‖Pz− f‖p ≤ 24OPT have

‖Pz− f‖pG −O(ε)‖f‖pp ≤ ‖r(AGz− bG)‖pp ≤ ‖Pz− f‖pG +O(ε)‖f‖pp

Finishing the argument. Recall that the interval [−1, 1] is partitioned into two groups G and B and
that we analyze the samples si with i ∈ [n0] depending on whether si ∈ G or si ∈ B. Moreover, recall that
by Equation 13, we have

‖Az− b‖pp = ‖AGz− bG‖pp + ‖ABz− bB‖pp
where AG and bG contain the points in G while AB and bB contain the points in B. For any z with
‖Pz− f‖p ≤ 24OPT and u ∈ B, we have by Equation 12,

(1− ε)|f(u)|p ≤ |Pz(u)− f(u)|p ≤ (1 + ε)|f(u)|p.

55



Since this loss is independent of the value of z, we can view
∑
i:si∈B |f(si)|p effectively as the sample

error of any z on the bad set. Since E[
∑
i:si∈B |f(si)|p] =

∑n0

i=1 E[1[si∈B] |f(si)|p] = n0

2 ‖f‖
p
B , we get∑

i:si∈B |f(si)|p ≤ 50n0‖f‖pBwith probability 99
100 by Markov’s Inequality. Recalling that rp = 1

n0
, we get

‖r(ABz− bB)‖pp =
∑
i:si∈B

1

n0
|Pz(si)− f(si)|p

∈
∑
i:si∈B

1

n0
(|f(si)|p ± ε |f(si)|p)

=
∑
i:si∈B

1

n0
|f(si)|p ± ε

(
1

n0

∑
i:si∈B

|f(si)|p
)

⊆ ‖rbB‖pp ±O(ε)‖f‖pB
⊆ ‖rbB‖pp ±O(ε)‖f‖pp

Next recall that for any z with ‖Pz− f‖p ≤ 24OPT , we have

‖AGz− bG‖pp ≥ ‖Pz− f‖pG −O(ε)‖f‖pp
‖AGz− bG‖pp ≤ ‖Pz− f‖pG +O(ε)‖f‖pp

Thus, the minimizer x̂ to minx∈Rd+1 ‖Ax− b‖p and x∗ = argminx∈Rd+1 ‖Px− f‖p must satisfy

‖Px̂− f‖pG ≤ ‖r(AGx̂− bG)‖pp +O(ε)‖f‖pp
= ‖r(Ax̂− b)‖pp − ‖r(ABx̂− bB)‖pp +O(ε)‖f‖pp
≤ ‖r(Ax̂− b)‖pp − ‖rbB‖pp +O(ε)‖f‖pp
≤ ‖r(Ax∗ − b)‖pp − ‖rbB‖pp +O(ε)‖f‖pp
≤ ‖r(Ax∗ − b)‖pp − ‖r(ABx∗ − bB)‖pp +O(ε)‖f‖pp
= ‖r(AGx∗ − bG)‖pp +O(ε)‖f‖pp
≤ ‖Px∗ − f‖pG +O(ε)‖f‖pp

Since ‖f‖p = O(OPT ), it follows that

‖Px̂− f‖pG ≤ ‖Px∗ − f‖pG +O(εCp)OPT p

Finally, since for u ∈ B we have both

(1− ε)|f(u)|p ≤ |Px̂(u)− f(u)|p ≤ (1 + ε)|f(u)|p
(1− ε)|f(u)|p ≤ |Px∗(u)− f(u)|p ≤ (1 + ε)|f(u)|p

by Equation 12, it then follows that∫
t∈B
|Px̂(t)− f(t)|p dt ≤

∫
t∈B
|Px∗(t)− f(t)|p dt+O(εCp)OPT p

Therefore, we have ∫ 1

−1

|Px̂(t)− f(t)|p dt ≤ O(εCp)OPT p

The claim then follows from rescaling ε to ε
Cp .

Lemma A.4. Fix u ≥ 0, ε ≥ 0, and even integer p ≥ 1. If u+ ε ≤ 1, then (u+ ε)p ≤ up + 2εp. If u ∈ [0, 1],
then (1± u) ∈ 1± p(2e)p/2u.
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Proof. Since u+ ε ≤ 1 and up + 2εp ≥ 1 for p ≥ 1
ε , then we have that

(u+ ε)p ≤ 1 ≤ up + 2εp,

for all p ≥ 1
ε and thus it remains to consider the case where p < 1

ε .
To that end, note that by the binomial expansion, we have

(u+ ε)p = up
(

1 +
ε

u

)p
= up

(
1 +

(
p

1

)
ε

u
+

(
p

2

)( ε
u

)2

+

(
p

3

)( ε
u

)3

+ . . .+
εp

up

)
≤ up

(
1 +

εp

u
+
ε2p2

2!u2
+
ε3p3

3!u3
+ . . .+

εppp

p!up

)
.

For p < 1
ε , we thus have

(u+ ε)p ≤ up
(

1 +
εp

u
+
ε2p2

2!u2
+
ε3p3

3!u3
+ . . .+

εppp

p!up

)
< up

(
1 +

εp

u
+

εp

2!u2
+

εp

3!u3
+ . . .+

εp

p!up

)
< up + up

(
εp

up
+

εp

2!up
+

εp

3!up
+ . . .+

εp

p!up

)
≤ up + εp

(
1 +

1

2!
+

1

3!
+ . . .+

1

p!

)
< up + εp

(
1 +

1

2!
+

1

3!
+ . . .

)
= up + εp(e− 1) < up + 2εp,

as desired.
For the second claim, consider any u ∈ [0, 1].

(1 + u)p = 1 +

p∑
k=1

(
p

k

)
uk

≤ 1 +

p∑
k−1

(
p

p/2

)
uk (

(
p
k

)
≤
(
p
p/2

)
)

≤ 1 + p( pep/2 )p/2u (
(
p
k

)
≤ (pek )k)

= 1 + p(pe)p/2u

(1− u)p = 1 +

p∑
k=1

(
p

k

)
(−u)k

≥ 1−
p∑
k=1

(
p

p/2

)
uk

≥ 1− p(pe)p/2u

A.1 Tighter Bounds for Lp Sensitivities

In this section, we show tighter bounds for the Lp sensitivities. While we do not use this result in the
paper, we find that it may be useful for future research on polynomial regression. We first require the
following results from polynomial approximation theory.

When t is not near the boundaries of the interval [−1, 1], we have a sharper upper bound on the magnitude
of the derivative when compared to the Markov brothers’ inequality.
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Theorem A.5 (Bernstein’s inequality, e.g., Theorem 2.8 in [GM99]). Suppose q(t) is a polynomial of degree
at most d such that |q(t)| ≤ 1 for t ∈ [−1, 1]. Then for all t ∈ [−1, 1], |q′(t)| ≤ d√

1−t2 .

Theorem A.6 (Polynomial approximation of the inverse exponential function, e.g., Theorem 4.1 in [SV14]).

For every c > 0 and ε ∈ (0, 1], there exists a polynomial qc,ε with degree O
(√

max
(
c, log 1

ε

)
· log 1

ε

)
such

that
max
x∈[0,c]

|e−x − qc,ε(x)| ≤ ε

Corollary A.7 (Polynomial approximation of the Gaussian kernel). There exists a polynomial q with degree
O(d log(pd)) such that |q(x)| ≤ 1 for all x ∈ [−2, 2] and

max
x∈[−2,2]

|e−20d2 log(d)x2 − q(x)| ≤ 1

pd4

Proof. By Theorem A.6, there exists a polynomial q̂ of degree O(d log(pd)) such that

max
x∈[0,80d2 log(d)]

∣∣e−x − q̂(x)
∣∣ ≤ 1

2pd4

By taking the polynomial q̃(x) = q̂(20d2 log(d)x2), we find a polynomial q with degree O(d log d) such that

max
x∈[−2,2]

∣∣∣e−20d2 log(d)x2 − q(x)
∣∣∣ ≤ 1

2pd4

Then, since 0 ≤ e−4d2 log(d)x2 ≤ 1, it suffices to take q(t) = q̃(t) − 1
2pd4 to ensure |q(x)| ≤ 1 for all x ∈

[−2, 2].

We now prove an upper bound on the Lp sensitivities that is linear in d in the interior of the interval
[−1, 1], which crucially improves upon known quadratic bounds, e.g., Lemma 4.13.

Theorem A.8 (Upper bound on sensitivity). Let p ≥ 1 be a fixed constant and let q be a polynomial of
degree at most d ≥ 12. Then for t ∈ [−1, 1], the Lp sensitivity of t satisfies

ψp[P ](t) := max
deg(q)≤d

|q(t)|p∫ 1

−1
|q(x)|p dx

≤ d2(p+ 1).

Moreover for |t| ≤ 1− 1
d , the Lp sensitivity of t satisfies

ψp[P ](t) := max
deg(q)≤d

|q(t)|p∫ 1

−1
|q(x)|p dx

= O

(
dp log(dp)√

1− t2
)

Proof. The first bound is just Lemma 4.13 restated, which directly relied on the Markov brothers’ bound.
So here we show that for |t| ≤ 1− 1

d , we have

|q(t)|p∫ 1

−1
|q(x)|p dx

= O

(
dp log(dp)√

1− t2
)

For this sharper bound on the sensitivity in the middle of the interval [−1, 1], we need a more sophisticated
argument.

Let q := argmax‖q‖∞=1
|q(t)|p
‖q‖pp maximize the sensitivity at t.

We would ideally like to use Bernstein’s Inequality (Theorem A.5) to lower bound the mass of q around
t, much like the proof of Lemma 4.13. Indeed, if q were maximized at t, then such a proof would be as
simple as Lemma 4.13. That proof picks any t∗ such that |q(t∗)| = 1 and lower bounds ‖q‖pp by integrating

over an interval of length 1
d2 around t∗. Crucially, this is tight because even if t∗ is far from t, the Markov

Brothers’ bound on |q′(x)| is independent of x. However, Bernstein’s bound |q′(x)| ≤ d√
1−x2

would give very

58



different results depending on how far t∗ is from t. So, the weight of this proof is in showing that q must be
maximized near t.

We first show that q(t) is not terribly small. Since ‖q‖∞ = 1, by the proof of Lemma 4.13, we know that
‖q‖pp ≥ 1

d2(p+1) . Let c(t) := 1 be the constant function. Since q maximizes the sensitivity function, we get

have |q(t)|
p

‖q‖pp ≥
|c(t)|p
‖c‖pp = 1

2 . So, |q(t)|p ≥ ‖q‖
p
p

2 ≥ 1
2d2(p+1) . Without loss of generality q(t) > 0, so we just write

q(t) ≥ 1
d2/p(2p+2)1/p

≥ 1
4d2 (since (2p+ 2)1/p ≤ 4 for p ≥ 1).

Next, we multiply q with a degree Õ(d) polynomial approximation of a Gaussian pdf centered at t, which
effectively erases q outside of a small interval of t. Intuitively, this negligibly changes the degree of q but
ensures that the maximum is achieved near t.

We first argue that multiplying by an exact Gaussian bump maximizes q near t. Let a(x) := e−4(x−t)2d2 log(d)

be this Gaussian bump. Let C := q(t). By Markov Brothers’, |q′(x)| ≤ d2. So, we can bound the growth of
q around t:

|q(t+ x)| ≤ C + d2 |x| ≤ 1 + d2 |x|
Scaling by the Gaussian,

|a(t+ x)q(t+ x)| ≤ (1 + d2 |x|)e−5x2d2 log(d)

For |x| > 1
2d , we have e−20x2d2 log(d) < e−5 log d = 1

d5 . So, for |x| > 1
2d ,

|a(t+ x)q(t+ x)| ≤ 1

d5
(1 + d2 |x|) ≤ 3

d3

And since a(t)q(t) = q(t) = C > 1
4d2 , we guarantee that argmax[−1,1] a(x)q(x) ∈ [t− 1

2d , t+ 1
2d ] for d ≥ 12.

Next, we substitute a(x) with the polynomial approximation b(x) guaranteed by Corollary A.7. Namely,
we know that b(x) has degree at most ξd log(pd) for some constant ξ > 1, and that |b(x)− a(x)| ≤ 1

d4 for
all x ∈ [−1, 1]. Then, we get that f(x) := b(x)q(x) is a degree d+ ξd log(pd) ≤ 2ξd log(pd) polynomial with
f(t) ≥ 1

4d2 − 1
d4 and |f(t+ x)| ≤ 3

d3 + 1
d4 , so that f is still maximized in [t − 1

2d , t+ 1
2d ].

Now, we can appeal to Bernstein’s bound to control the sensitivity of f . Let r(x) := 1
f(t)f(x) be a

rescaling of f so that ‖r‖∞ = 1
f(t) and r(t) = 1. By Bernstein’s bound, we have |r′(x)| ≤ 2ξd log(pd)

f(t)
√

1−x2
, and

therefore that |r′(t+ x)| ≤ 4ξd log(pd)

f(t)
√

1−t2 for x ∈ [0, 1
2d ] (via the smoothness of the Chebyshev measure – see

Lemma E.3 in the appendix). Let mt := 4ξd log(pd)√
1−t2 be this locally accurate bound on the derivative (but

without f(t)), and let t∗ := argmax[−1,1] r(x) ∈ [t− 1
2d , t+ 1

2d ], so that we have:

r(t∗ + x) ≥ 1

f(t)
− mt

f(t)
x ≥ 1−mtx ≥ 0 ∀x ∈ [0, 1

mt
]

which follows since f(t) ≤ q(t) ≤ 1. Then, we get

‖r‖pp ≥
∫ 1/mt

0

(1−mtx)pdx =
1

mt(p+ 1)

So that
|f(t)|p
‖f‖pp

=
|r(t)|p
‖r‖pp

≤ 1
1

mt(p+1)

=
4ξ(p+ 1)d log(pd)√

1− t2

Then, since |b(x)| ≤ 1, we have |q(x)| ≥ |f(x)|, so that ‖q‖pp ≥ ‖f‖pp. Further, since q(t) = f(t)
b(t) ≤

f(t)

1− 1
pd4

, we

get |q(t)|p ≤ (1− 1
pd4 )−p |f(t)|p ≤ 2 |f(t)|p. We conclude:

|q(t)|p
‖q‖pp

≤ 2
|f(t)|p
‖f‖pp

≤ 8ξ(p+ 1)d log(pd)√
1− t2

We also offer the following lower bound on the Lp sensitivities.
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Lemma A.9 (Lower bound on sensitivity). For any t ∈ [−1, 1], p ≥ 1, and d ≥ Ω(p) we have

ψp[P ](t) = max
q:deg(q)≤d

|q(t)|p∫ 1

−1
|q(x)|p dx

= Ω

(
d
√
p√

log d

)
Proof. Let t ∈ [−1, 1]. By Corollary A.7, there exists a polynomial q with degree d such that

max
x∈[−1,1]

|e−(Cd/
√

log d)2(x−t)2 − q(x)| ≤ 1

d
,

for a fixed constant C > 0. Let f(x) = e−(Cd/
√

log d)2(x−t)2 so that f(t) = 1 and for p ≥ 1,∫ 1

−1

|f(x)|p dx =

∫ 1

−1

(f(x))p dx <

∫ ∞
−∞

e−p(Cd/
√

log d)2x2

dx =

√
π log d

Cd
√
p

Hence, |f(t)|p∫ 1
−1
|f(x)|p dx ≥

Cd
√
p√

π log d
. Since maxx∈[−1,1] |e−(Cd/

√
log d)2(x−t)2 − q(x)| ≤ 1

d , then it follows that

|q(t)| ≥ 1

2

and

‖q − f‖pp ≤
∫ 1

−1

1

dp
dt =

2

dp

Therefore,

‖q‖pp ≤ (‖f‖p + ‖q − f‖p)p

≤
((√

π log d

Cd
√
p

)1/p

+
21/p

d

)p

≤
((

1 +
1

p
p−1
p

)(√
π log d

Cd
√
p

)1/p
)p

=

(
1 +

1

p
p−1
p

)p
·
√
π log d

Cd
√
p

≤ 2

√
π log d

Cd
√
p

where the third inequality comes showing that 21/p

d ≤ 1

p

p−1
p

(
√
π log d
Cd
√
p )1/p, which holds when d ≥ p(2C√p) 1

p−1 =

Ω(p). We therefore conclude that

|q(t)|p∫ 1

−1
|q(x)|p dx

≥
1
2

2
√
π log d
Cd
√
p

=
d
√
p

4
√
π log(d)

B Reweighted Operator L2 Subspace Embedding

Theorem B.1. Suppose s1, . . . , sn0
are drawn uniformly from [−1, 1]. Let A ∈ Rn0×(d+1) be the associated

Vandermonde matrix, so that Ai,j = sj−1
i . Let γ := 2

n0
. Let W ∈ Rn0×n0 be diagonal with Wii = γw(si).

Then for n0 = Ω(d4 log d), we have that with probability at least 11
12 ,

1

2
P>W1− 2

pP � γ− 2
pA>W 1− 2

pA � 2P>W1− 2
pP,

where W is the operator that rescales by the truncated Chebyshev density w(t) and p ∈ [1, 2].
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To prove this claim, it will be more convenient to shift where the γ term is located, into the matrix A:

Theorem B.2. Suppose s1, . . . , sn0 are drawn uniformly from [−1, 1], and we construct the associated scaled

Vandermonde matrix A ∈ Rn0×(d+1), so that Ai,j = ( 2
n0

)
1
2 sj−1
i . Let W ∈ Rn0×n0 be the diagonal matrix

with Wi,i = w(ti). If n0 = Ω(d5 log d), then with probability at least 11
12 , we have

1

2
P>W1− 2

pP � A>W 1− 2
pA � 2P>W1− 2

pP,

where W is the operator that rescales by the truncated Chebyshev density w(t) and p ∈ [ 2
3 , 2].

Proof. We first prove a more general statement by considering a general operatorW , which we eventually set

to be the Lewis weight operator. LetW : L2([−1, 1])→ R be any operator so that maxt∈[−1,1],x∈Rd+1
|WPx(t)|2
‖|WPx|‖22

≤
S for some S <∞. Consider a fixed x ∈ Rd+1 and suppose we uniformly sample n0 = O

(
S2

ε2 log d
ε

)
points

from [−1, 1]. For each i ∈ [n0], let Xi be the random variable with value |[WAx](i)| = 2
n0
|WPx(si)|2. Then

E [Xi] = 1
n0
‖WPx‖22. Moreover, since |WPx(t)|2 ≤ S ·‖WPx‖22, we get |Xi − E[Xi]| ≤ 1

n0
(2S+1)‖WPx‖22.

LetX =
∑
i∈[n0]Xi = ‖WAx‖22 so that by linearity of expectation, E [X] = ‖WPx‖22. Setting γ = ε‖WPx‖22

in the formulation of Bernstein’s concentration inequality in Imported Theorem 2, we thus have

Pr
[
|‖WAx‖22 − ‖WPx‖22| ≤ ε‖WPx‖22

]
≤ exp(−O(d log d/ε))

for any fixed x ∈ Rd+1. That is, we have

(1− ε)‖WPx‖22 ≤
1

n0
‖WAx‖22 ≤ (1 + ε)‖WPx‖22,

with probability at least 1 − exp(−O(d log d/ε)).

ε-net argument over all coefficient vectors. We now union bound over an ε-net over all coefficient
vectors x ∈ Rd+1. Let B =

{
WPx

∣∣ ‖WPx‖22 ≤ 1
}

. By Lemma 2.4 of [BLM89], we construct a net N over

B by greedily adding in points that are within L2 distance
(
ε
d

)
, so that |N | ≤

(
d
ε

)O(d)
= eO(d log d/ε). Note

that since we have (1 + ε)-accuracy for any WPx ∈ N with probability 1− exp(−O(d log d/ε)) by sampling

n0 = O
(

S2

ε2 log d
ε

)
points from [−1, 1], then by a union bound, we have (1 + ε)-accuracy for all points in N

with high probability.
For any WPx with ‖WPz‖2 = 1, we construct a sequence WPy1,WPy2, . . . such that ‖WPz −∑i
j=1WPyj‖2 ≤ εi and such that there exists constants γi ≤ εi−1 with 1

γi
WPyi ∈ N for all i. For-

mally, we let WPy1 be the point in the net N that is closest to WPx, so that ‖WPz − WPy1‖2 ≤ ε.
We can then define the remaining points WPyi inductively: For a sequence WPy1, . . . ,WPyi−1 such that
γi := ‖WPs −∑i−1

j=1WPyj‖2 ≤ εi−1, observe that 1
γi
‖WPs −∑i−1

j=1WPyj‖2 = 1. Thus, there exists a

function WPyi ∈ N that is within distance ε of WPs−∑i−1
j=1WPyj , which completes the induction.

Therefore, for the matrix A sampled by the algorithm, by triangle inequality,

|‖WPx‖2 − ‖WAx‖2| ≤
∞∑
i=1

|‖WPyi‖2 − ‖WAyi‖2| ≤
∞∑
i=1

εi‖WPyi‖2 = O(ε)‖WPx‖2

The correctness over all x ∈ Rd+1 then follows from a rescaling of ε. Hence, we have that with high
probability all x ∈ Rd+1 enjoy

(1− ε)‖WPx‖22 ≤ ‖WAx‖22 ≤ (1 + ε)‖WPx‖22

or equivalently

(1− ε)P>WP � A>W 1− 2
pA � (1 + ε)P>WP
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Finishing the argument for the Chebyshev density. Observe that the Chebyshev density satisfies

w(t) ∈ [d, (d + 1)2] for each t ∈ [−1, 1]. Since maxt∈[−1,1],q:deg(q)≤d
|q(t)|2
‖q‖22

≤ O(d2), then by substituting the

Lewis weight operator W 1
2− 1

p in place of the general operator W in the above analysis, we have that

S = max
t∈[−1,1],x∈Rd+1

|W 1
2− 1

pPx(t)|p

‖W 1
2− 1

pPx‖pp
≤ O(d3) max

t∈[−1,1],x∈Rd+1

|Px(t)|
‖Px‖22

≤ O(d5p)

for the operator W that corresponds to the Chebyshev weights. Hence the claim follows by taking ε =
O(1).

C From Two-Stage Sampling to One-Stage Sampling

Lemma C.1. Fix parameter n0 and function f : [−1, 1]→ [0, 1]. Suppose s1, . . . , sn0
are drawn iid uniformly

from [−1, 1], and we sample biased coins ci ∼ B(1, f(si)) for i = 1, . . . , n0. Then, the marginal distribution

of {si|ci = 1} is a distribution with B(n0,
1
2

∫ 1

−1
f(τ)dτ) i.i.d. samples with PDF proportional to f .

Proof. For intuition, we can think of the event ci = 1 as indicating that sample i is accepted. Then {si|ci = 1}
is the set of time samples returned by this rejection sampling scheme. We now formalize this intuition.

Let pt denote the PDF of the t variables. We first write simplify two probabilities for a fixed i ∈ [n0].
First we expand the marginal distribution of the coins:

Pr[ci = 1] =

∫ 1

−1

Pr[ci = 1 | si = τ ]pt(τ)dτ

=
1

2

∫ 1

−1

f(τ)dτ

=
1

2
‖f‖1

Since each coin is marginally distributed as a B(1, 1
2‖f‖1) random variable, and the number of items in the

set {ti|ci = 1} is the sum of the coins, we conclude that |{ti|ci = 1}| ∼ B(n0,
1
2‖f‖1).

Let pti|ci=1 denote the PDF for ti when conditioned on ci = 1. Using Bayes’ Theorem for continuous
and discrete random variables,

pt|ci=1(τ) =
Pr[ci = 1|ti = τ ] · pt(τ)

Pr[ci = 1]

=
f(τ) · 1

2
1
2‖f‖1

=
f(τ)∫ 1

−1
f(s)ds

Thus, each item in {ti|ci = 1} (which are trivially independent of each-other), is distributed with PDF
proportional to f .

Lemma 4.17 Restated. Suppose n0 time samples are drawn uniformly from [−1, 1], and each sample is
thrown away with probability 1−min{mn0

1
1−s2i

, 1}. Let n denote the number of remaining samples. Then n is

distributed as B(n0, O( mn0
)), and with probability 99

100 the resulting samples cannot be distinguished from iid
samples from the Chebyshev measure.

Proof. Below this paragraph, we isolate a simple probability theory claim. Specifically, we apply the below
lemma with f(t) = min{1, mn0

1√
1−t2 }, so that the remaining number of samples are distributed as B(n0,

m
2n0

).

Since the total variation distance between sampling 1 time with respect to f and with respect to v is O(( mn0
)2),

the distance between m i.i.d. samples from the two distributions is O(m
3

n2
0

) = 1
Õ(d7)

. So, the difference in

success probability of our algorithm and one that samples by f is at most 1
Õ(d7)

≤ 1
100 .
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D Compact Rounding

Lemma D.1. Let B ∈ Rn0×dB and q ∈ [0, 2]. Let v ∈ Rn0 with |v(i)| ≤ 1
ε (wq[B](i))1/q. Let Nε be an ε-Net

over ‖By‖q = 1 with log |Nε| = O(d log( 1
ε )). Let ` = log1+ε((2dB)1/q). Then, there exists sets of vectors

D0, . . . ,D` ⊆ Rn0 , such that: For all u ∈ Nε we can define r := u − v and pick d0 ∈ D0, . . . ,d` ∈ D` to
create a “compact rounding” r′ =

∑`
k=0 dk where:

1. |r(i)− r′(i)| ≤ εmax{|u(i)| , |v(i)|} for all i ∈ [n0]

2. |dk(i)| ≤ 2
ε ( 1

2 (
wq [B](i)
dB

+ 1
n0

))1/q(1 + ε)k+2 for all i ∈ [n0], k ∈ {0, . . . , `}

3. d0, . . . ,d` all have disjoints supports

Further, we have that the sets D0, . . . ,D` are not too large:

log |Dk| ≤ Cr
dB log(n0)

ε1+q(1 + ε)qk

To prove Lemma D.1, we need the following structural statement from [MMWY22], attributed to Corol-
lary 4.7 and Proposition in [BLM89] as well as Proposition 3.1 and Remark 3.2 in [SZ01].

Lemma D.2 (Entropy estimates, [BLM89, MMWY22, SZ01]). Let B ∈ Rn0×dB with n0 ≥ dB and let

q ∈ (0, 2) be a fixed constant. Let W ∈ Rn0×n0 be the diagonal matrix with Wi,i = 1
2

(
wq [B](i)
dB

+ 1
n0

)
. Let

Bq = {By : ‖By‖q ≤ 1}. Then for any γ ∈ [1, d1/q], there exists a net N∞ ⊂ Rn0 such that for any u ∈ Bq,
there exists f ∈ N∞ with ‖W−1/q(u− f)‖∞ ≤ γ and

log |N∞| ≤ cq ·
dB log n0

γq

where cq is a constant that only depends on q.

We next define the index sets and state a structural property on the index sets. The following proof is
almost identical to the structural property on the index sets by [MMWY22].

Lemma D.3 (Index sets, [BLM89, MMWY22]). For each k ∈ {0, . . . , `}, let Nk be the net defined by
Lemma D.2 for γ = 1

3ε(1 + ε)k > 1. Otherwise if γ ≤ 1, let Nk = Nε. For each u ∈ Nε and k ∈ {0, . . . , `},
let fk,u ∈ Nk satisfy

‖W−1/q(fk,u − u)‖∞ ≤ 1
3ε(1 + ε)k

as defined in Lemma D.2. Define the index sets

Ck,u :=
{
i ∈ [n]

∣∣∣ W−1/q
ii |fk,u(i)| ≥ (1 + ε)k−1

}
Dk,u := Ck,u \

⋃
k′>k

Ck′,u

D0,u := [n0] \
⋃
k≥1

Ck,u

Then for each k, we have log |Nk| = O
(

d logn0

(ε(1+ε)k)q

)
and for every i ∈ Dk,u, we have

W
1/q
ii (1 + ε)k−2 ≤ |u(i)| ≤W 1/q

ii (1 + ε)k+2

Proof. First note that the largest γ value we use is 1
3ε(1 + ε)` = ε

3 (2d)1/q ≤ d1/q, so we can safely create all

of these Nk sets. Because ‖W−1/q(fk,u − u)‖∞ ≤ 1
3ε(1 + ε)k, we get that all i ∈ Ck,u have

|u(i)| ≥ |fk,u(i)| − 1
3W

1/q
ii ε(1 + ε)k

≥W 1/q
ii

(
(1 + ε)k−1 − 1

3ε(1 + ε)k
)
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≥W 1/q
ii (1 + ε)k−2

where the second inequality follows from the definition that |fk,u(i)| ≥ W
1/q
ii (1 + ε)k−1 for i ∈ Ck,u. We

similarly have |u(i)| ≤W 1/q
ii (1 + ε)k+2 for i /∈ Ck,u. Hence for i ∈ Dk,u = Ck,u \

⋃
k′>k+1 Ck′,u for k ∈ [1, `),

we have
W

1/q
ii (1 + ε)(k−2) ≤ |u(i)| ≤W 1/q

ii (1 + ε)k+2

as desired. We next show this bound holds for all i ∈ D`,u. The lower bound follows from the same argument
as above, but the upper bound needs to be argued separately since there is no C`+1,u. We do this by going
through the sensitivity bounds on u, which is in the range of B:

|u(i)| ≤ (ψq[B](i))1/q‖u‖q
≤ (wq[B](i))1/q (Lemma 3.8 from [CWW19])

= (
wq[B](i)

2dB
)1/q(1 + ε)` (` = log1+ε(2dB)1/q)

≤W 1/q
ii (1 + ε)`+2

Lemma 3.8 from [CWW19] simply says that for q ∈ [1, 2], the `q sensitivities lower bound the `q Lewis

weights. This then completes the bulk of the proof since 1
2dB

wq[B](i) ≤ 1
2 (
wq [B](i)
dB

+ 1
n0

) = Wii. As a last

note, when γ ≤ 1, or equivalently k ≤ log1+ε
3
ε , we take fk,u = u since Nk = Nε, which trivially gives

‖W−1/q(fk,u − u)‖∞ ≤ 1
3ε(1 + ε)k. Further log |Nk| = log |Nε| ≤ O(d log 1

ε ) ≤ O(d log(n0)) = O( d log(n0)
(ε(1+ε)k)q

)

by Lemma 2.4 of [BLM89], and since 1
ε ≤ n0.

We similarly define index sets on the measurement vector v, though we remark that the definition is
conceptual and not algorithmic, in the sense that the entries of v do not need to be read.

Lemma D.4 (Index sets for v). [MMWY22] Fix some u ∈ Nε. Consider the following sets:

Bk,u :=
{
i ∈ Dk,u : |v(i)| ≤ 1

εW
1/q
ii (1 + ε)k+2

}
(for k ∈ {0, . . . , `})

Hk :=
{
i ∈ [n0] : 1

εW
1/q
ii (1 + ε)k+1 < |v(i)| ≤ 1

εW
1/q
ii (1 + ε)k+2

}
(for k ∈ {1, . . . , `})

Gk,u := Hk \
⋃
k′≥k

Ck′,u (for k ∈ {1, . . . , `})

Then B0,u, . . . , B`,u, G1,u, . . . , G`,u form a partition of [n0].

Proof. We first prove that B0,u, . . . , B`,u, G1,u, . . . , G`,u are disjoint. We then prove that their union is [n0].
First note that D0,u, . . . , D`,u are clearly disjoint by their definition. Further, since D0,u is defined by

subtracting away all other Dk,u from [n0], we know that the union of all D0,u, . . . , D`,u is [n0]. That is,
D0,u, . . . , D`,u partition [n0].

Now consider any k, k′. Then,

◦ Bk,u
⋂
Bk′,u = ∅ since i ∈ Bk,u implies i ∈ Dk,u implies i /∈ Dk′,u implies i /∈ Bk′,u.

◦ Gk,u
⋂
Gk,u ⊆ Hk

⋂
Hk′ = ∅ since Hk and Hk′ have no intersection by definition.

◦ For k ≥ k′, Bk,u
⋂
Gk′,u = ∅ since i ∈ Bk,u ⊆ Dk,u ⊆ Ck,u implies i ∈ ⋃k′′≥k′ Ck′,u, so that i /∈ Gk′,u

by definition.

◦ For k < k′, Bk,u
⋂
Gk′,u = ∅ since k′ ≥ k + 1 and i ∈ Gk′,u ⊆ Hk′ means |x(i)| > 1

εW
1/q
ii (1 + ε)k

′+1 ≥
1
εW

1/q
ii (1 + ε)k+2, which contradicts i ∈ Bk,u ⊆ Dk,u.

So, B0,u, . . . , B`,u, G1,u, . . . , G`,u are disjoint.

Now, consider any i ∈ [n0]. Then there exists some k such that i ∈ Dk,u. If |v(i)| ≤ 1
εW

1/q
ii (1 + ε)k+1,

then we immediately get that i ∈ Bk,u. Otherwise, if |v(i)| > 1
εW

1/q
ii (1 + ε)k+1, then there exists some
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k′ > k such that i ∈ Hk′ . Notably, this uses the fact that H` can contain the largest entries of |v(i)|, since

|v(i)| ≤ 1
ε (wq[B](i))1/q ≤ 1

εW
1/q
ii (1 + ε)`+2. Since i ∈ Dk,u = Ck,u \

⋃
k′′>k Ck′′,u, we know that i /∈ Ck′′,u

for any k′′ > k. Therefore, we know that i ∈ Gk′,u, since both i ∈ Hk′ and i ∈ ⋃k′′≥k′ Ck′′,u. Therefore, all
i ∈ [n0] belongs to exactly one of B0,u, . . . , B`,u, G1,u, . . . , G`,u. In other words, B0,u, . . . , B`,u, G1,u, . . . , G`,u
partitions [n0].

Lemma D.5 (`∞ error bound). [MMWY22] Fix some u ∈ Nε. Then we let r′ = e +
∑`
k=0 dk with e and

dk as follows:

d0(i) := u(i)− v(i) i ∈ B0,u

dk(i) := fk,u(i)− v(i) k ∈ [`], i ∈ Bk,u
dk(i) := (1 + ε)k ·W 1/q

ii − v(i) k ∈ [`], i ∈ Bk,u
dk(i) := − v(i) i ∈ Gk,u
dk(i) := 0 otherwise

Then |r(i)− r′(i)| ≤ εmax{|u(i)|, |v(i)|} for all i ∈ [n0].

Proof. Fix any i ∈ [n0]. Since B0,u, . . . , B`,u, G1,u, . . . , G`,u partition [n0], it suffices to show that if i ∈ B0,u

or i ∈ Bk,` or i ∈ Gk` then |r(i)− r′(i)| ≤ εmax{|u(i)| , |v(i)|}. That is, this proof proceeds by case analysis
over these three possible cases. First, if i ∈ B0,u then r′(i) = u(i)− v(i), so that |r(i)− r′(i)| = 0. Second,
if i ∈ Bk,u for k ≥ 1, then r′(i) = fk,u(i)− v(i), and since i ∈ Dk,u we get

|r(i)− r′(i)| = |fk,u(i)− u(i)| ≤ ε (1+ε)2

3 ·W 1/q
ii (1 + ε)k−2 ≤ ε · |u(i)|

Third, if i ∈ Gk,u then r′(i) = −v(i), so that |r(i)− r′(i)| = |u(i)|. We have |v(i)| ≥ 1
εW

1/q
ii (1 + ε)k+1, and

since i ∈ Gk,u implies i /∈ Ck′,u for all k′ ≥ k, we also have |u(i)| ≤W 1/q
ii (1 + ε)k+2 So,

|r(i)− r′(i)| = |u(i)| ≤W 1/q
ii (1 + ε)k+2 ≤ ε |v(i)|

We now prove the compact rounding of Lemma D.1:

Lemma D.1 Restated. Let B ∈ Rn0×dB and q ∈ [0, 2]. Let v ∈ Rn0 with |v(i)| ≤ 1
ε (wq[B](i))1/q. Let Nε

be an ε-Net over ‖By‖q = 1 with log |Nε| = O(d log( 1
ε )). Let ` = log1+ε((2dB)1/q). Then, there exists sets of

vectors D0, . . . ,D` ⊆ Rn0 , such that: For all u ∈ Nε we can define r := u−v and pick d0 ∈ D0, . . . ,d` ∈ D`
to create a “compact rounding” r′ =

∑`
k=0 dk where:

1. |r(i)− r′(i)| ≤ εmax{|u(i)| , |v(i)|} for all i ∈ [n0]

2. |dk(i)| ≤ 2
ε ( 1

2 (
wq [B](i)
dB

+ 1
n0

))1/q(1 + ε)k+2 for all i ∈ [n0], k ∈ {0, . . . , `}

3. d0, . . . ,d` all have disjoints supports

Further, we have that the sets D0, . . . ,D` are not too large:

log |Dk| ≤ Cr
dB log(n0)

ε1+q(1 + ε)qk

Proof. Fix any u ∈ Nε. Observe that the first property follows from Lemma D.5. Moreover, note that
{d0, . . . ,d`} are disjoint by Lemma D.4, since the vectors dk only have nonzero support on the indices in
Bk,u and Gk,u. Hence, the third property holds.

Furthermore, note that |dk(i)| ≤ |v(i)| + max
(
|u(i)| , (1 + ε)kW

1/q
ii

)
for i ∈ Bk,u ∪Gk,u. In particular,

|v(i)| ≤ 1
εW

1/q
ii (1 + ε)k+2. Similarly, we have from Lemma D.3 that |u(i)| ≤ W

1/q
ii (1 + ε)k+1. Therefore,

|dk(i)| ≤ 2
εW

1/q
ii (1 + ε)k+2, which gives the second property.
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To bound the number of possible vectors dk, note that dk is a deterministic function of fk,u, Bk,u, and
Gk,u. So, let Bk := {Bk,u : u ∈ Nε} be the set of all possible “B” index sets generated by the net Nε at
layer k, and similarly let Gk := {Gk,u : u ∈ Nε}. Then, looking across all possible fixings of u ∈ Nε, each
dk is deterministic in some fk,u ∈ Nk, in some S1 ∈ Bk, and in some S2 ∈ Gk. So, the number of possible
dk is at most

|Dk| = |{dk : u ∈ Nε}| ≤ |{(fk,u,S1,S2) : fk,u ∈ Nk, S1 ∈ Bk, S2 ∈ Gk}| = |Nk| · |Bk| · |Gk|

Next, recall that Bk,u ⊆ Dk,u, so |Bk,u| ≤ |Dk,u|. Further, recall that Dk,u = Ck,u \
⋃
k′>k Ck′,u and that

all Ck,u are deterministic in some vector fk,u from the net Nk. So, Ek := {Dk,u : u ∈ Nε} has11

|Bk| ≤ |Ek| = |{Dk,u : u ∈ Nε}| ≤ |{(fk,u, . . . , f `,u) : u ∈ Nε}| ≤
∏̀
k′=k

|Nk′ |

By Lemma D.2, we have log |Nk′ | ≤ cq dB logn0

(3ε(1+ε)k′ )q
, so that

log(|Bk|) ≤
∑̀
k′=k

3qcq
dB log n0

(ε(1 + ε)k′)q
≤ 2 · 3qcq

dB log n0

ε1+q(1 + ε)qk

Where the last inequality comes from bounding
∑`
k′=k

1
(1+ε)qk

≤ ∑∞
k′=k

1
(1+ε)qk

= 1
(1+ε)qk

· (1+ε)q

(1+ε)q−1 ≤
1

(1+ε)qk
· (1+ε)2

1+ε−1 ≤ 2
ε(1+ε)qk

. Similarly, since Gk,u = Hk \
⋃
k′≥k Ck′,u where Hk is a fixed set independent of

u, we again get log |G| ≤∏`
k′=k |Nk′ |, and so we conclude:

log |Dk| ≤ log |Nk|+ log |Bk|+ log |Gk| ≤ 6cq3
q dB log n0

ε1+q(1 + ε)qk

which completes the bulk of the proof.

E Smaller Relegated Proofs

E.1 Bounding the Generalized Christoffel Function

Lemma E.1. Let f(s) be a differentiable concave function on interval [a−∆, a+ ∆]. Then,
∫ a+∆

a−∆
f(s)ds ≤

2∆f(a).

Proof. First recall that concave functions have f(s) ≤ f(a) + f ′(a)(s− a), so we have∫ a+∆

a−∆

f(s)dx ≤
∫ a+∆

a−∆

(f(a)− f ′(a)(s− a)) ds = 2∆f(a) + f ′(a)

∫ a+∆

a−∆

((s− a)) ds = 2∆f(a) + 0

Lemma E.2. The generalized Christoffel function λd(α, 2, t) := minq:deg(q)≤d

∫ 1
−1

(q(s))2α(s)ds

(q(t))2 , where α(s) := (1−
s2)

1
p− 1

2 , has λd(z, 2, t) ≤ C
d−1 (1− t2)

1
p for some universal constant C, for all t ∈ Imid, for all p ∈ [ 2

3 , 2].

Proof. By Theorem 2.1 of [EN92], we know that

λd(α, 2, t) ≤ CΓ+3αM (t)

where C is a universal constant, Γ = 2
p−1 ≤ 1, and αM (t) :=

∫
|s−t|≤∆M (t)

α(s)ds where ∆M (s) := max{
√

1−s2
M , 1

M2 }
and M = 1 + 2(d−1)

Γ+3 = 1 + p
p+1 (d − 1) ∈ [d−1

3 , d]. To bound the integral within αM (t), we use the above

lemma about concave functions. Since d2

ds2α(s) = −2( 1
p − 1

2 )(1− t2)
1
p− 5

2 (( 1
p − 3

2 )t− 1) ≤ 0 for all t ∈ [−1, 1]

11We use Ek instead of Dk to avoid confusion with Dk.
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for all p ≥ 2
3 , we know that α is concave. Then, since α(s) is concave on [−1, 1], we find that for any t such

that |t|+ ∆M (t) ≤ 1 (for which |t| ≤
√

1− 4
M2 suffices), we get

∫ t+∆M (t)

t−∆M (t)

α(s)ds ≤ 2∆M (t)α(t) = 2

√
1− t2
M

(1− t2)
1
p− 1

2 ≤ 2

M
(1− t2)

1
p

Putting this together,

λd(α, 2, t) ≤ CΓ+3αM (t) ≤ C4 2
d−1

3

(1− t2)
1
p =

3C4

d− 1
(1− t2)

1
p

E.2 Smoothness of the Chebyshev Measure

Lemma E.3. Let x ∈ (−1, 1), and let y ∈ (−1 + ∆, 1−∆) for ∆ = 1−x
2 . Then,

1√
1− y2

≤ 2√
1− x2

In particular, if x = 1− 1
d , then we get y ∈ [1− 1

d , 1− 1
2d ].

Proof. WLOG, we consider x > 0. Since x 7→ 1√
1−x2

is monotonically increasing on x > 0, we just need to

show that 1√
1−(x+∆)2

≤ 2√
1−x2

. Rearranging that equation, we get

4∆2 + 8x∆ + (3x2 − 3) ≤ 0

Plugging in ∆ = 1−x
2 and simplifying, we see the bound holds for all x < 1.

E.3 Binomial Approximation

Lemma E.4. Let x > 0, p > 2, and x ≤ 1
p . Then,

1− 1
2px ≤ (1− x)p (1 + x)p ≤ 1 + 3px

In other words, (1± x)p = 1 + Θ(px).

Proof. Let f(u) := (1 + u)p, so that the Taylor Approximation f̃(u) := f(0) + f ′(0)u = 1 + pu has the
following residual for u ∈ [−x, x]:∣∣∣f(u)− f̃(u)

∣∣∣ ≤ max
ξ∈I

f ′′(ξ)
2

u2 =
1

2
p(p− 1)u2 max

ξ∈I
(1 + ξ)p−2 ≤ 1

2
p2u2 max

ξ∈I
(1 + ξ)p−2

Where I = [0, x] if u ≥ 0 and where I = [−x, 0] if u < 0. For u < 0, we have maxξ∈[−x,0](1 + ξ)p−2 = 1,

so that
∣∣∣f(u)− f̃(u)

∣∣∣ ≤ 1
2p

2u2. So, |(1− x)p − (1− px)| =
∣∣∣f(−x) + f̃(−x)

∣∣∣ ≤ 1
2p

2x2 ≤ 1
2px, and so

(1− x)p ≥ 1− px− 1
2px = 1− 3

2px.
For u ≥ 0, we need to be more detailed. We get maxξ∈I(1 + ξ)p−2 = (1 + x)p−2. Since x ≤ 1

p ≤ 1
p−2 , we

get p < 2 + 1
x , so that (1 + x)p−2 ≤ (1 + x)

1
x ≤ 3. So,

|(1 + x)p − (1 + px)| ≤ 1

2
p2x2(1 + x)p−2 ≤ 3

2
p2x2 ≤ 3

2
px

And therefore

(1 + x)p ≤ 1 + px+
3

2
px ≤ 1 + 3px
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Lemma E.5. Suppose we sample n0 times s1, . . . , sn0
uniformly from [−1, 1]. Then, maxi v(si) ≤ d+1

π

√
n0 ln(2)

ln( 1
1−δ )

=

Θ(
d
√
n0√
δ

) with probability 1− δ.

Proof.

Pr[max
i
|v(si)| ≤ F ] = (Pr[v(s1) ≤ F ])n0

=

(
Pr

[
si ∈ ±

√
1− (d+1)2

π2F 2

])n0

(Inverse Function of v(s))

=

(
1−

(
d+ 1

πF

)2
)n0/2

=

(
1− 1

x

)x·n0
2x

(Let x := ( πFd+1 )2)

≥ 0.25
n0
2x (x ≥ 2)

= 2
−n0
x (0.25 = 2−2)

Making this fail with probability δ, we get

2
−n0
x ≥ 1− δ

−n0

x
ln(2) ≥ ln(1− δ)

x ≤ − n0 ln(2)

ln(1− δ)

(
πF

d+ 1
)2 ≤ n0 ln(2)

ln( 1
1−δ )

F ≤ d+ 1

π

√
n0 ln(2)

ln( 1
1−δ )
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