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Abstract

We present a sublinear query algorithm for outputting a near-optimal low-rank approxi-
mation to any positive semidefinite Toeplitz matrix T ∈ Rd×d. In particular, for any integer
rank k ≤ d and ǫ, δ > 0, our algorithm makes Õ

(
k2 · log(1/δ) · poly(1/ǫ)

)
queries to the en-

tries of T and outputs a rank Õ
(
k · log(1/δ)/ǫ

)
matrix T̃ ∈ Rd×d such that ‖T − T̃‖F ≤

(1 + ǫ) · ‖T − Tk‖F + δ‖T ‖F . Here, ‖ · ‖F is the Frobenius norm and Tk is the optimal rank-

k approximation to T , given by projection onto its top k eigenvectors. Õ(·) hides polylog(d)

factors. Our algorithm is structure-preserving, in that the approximation T̃ is also Toeplitz. A
key technical contribution is a proof that any positive semidefinite Toeplitz matrix in fact has a
near-optimal low-rank approximation which is itself Toeplitz. Surprisingly, this basic existence
result was not previously known. Building on this result, along with the well-established off-grid
Fourier structure of Toeplitz matrices [Cybenko’82], we show that Toeplitz T̃ with near optimal
error can be recovered with a small number of random queries via a leverage-score-based off-grid
sparse Fourier sampling scheme.
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1 Introduction.

In scientific computing, engineering, and signal processing, highly structured matrices – such as
Toeplitz, circulant, hierarchical, and graph-structured matrices – arise in many problems, often due
to the discretization of an underlying physical system. Such matrices are intensely studied and in
many cases admit fast, even near-linear time algorithms for solving core linear algebraic problems.

We investigate the possibility of sublinear algorithms for such highly structured matrix classes,
focusing in particular on Toeplitz matrices. A matrix T ∈ R

d×d is Toeplitz if it is constant along
its diagonals, i.e., for any i, j, k, l ∈ [d], i − j = k − l implies that Ti,j = Tk,l. Toeplitz matrices
are ubiquitous in image and signal processing, where they arise as covariance matrices of stationary
processes – i.e., when the covariance between two measurements depends only on their distance
in space or time [17]. They also arise in queuing theory, the solution of differential and integral
equations, control theory, approximation theory, and beyond – see [6] for a review of their many
applications. Reversing the rows of a Toeplitz matrix yields a Hankel matrix. These matrices also
find wide applications in signal processing, system identification, and numerical computing [16,25].

A d × d Toeplitz matrix is specified by just O(d) parameters, and Toeplitz matrices are a
classic example of low displacement rank matrices. They admit fast algorithms for many problems.
A Toeplitz matrix can be multiplied by a vector in O(d log d) time via a fast Fourier transform.
Toeplitz linear systems can be solved exactly in O(d2) time via the Levinson algorithm, and to high
precision in O(d log2 d) time using randomized methods [39,40]. A full Toeplitz eigendecomposition
can be performed in O(d2 log d) time [29]. However, little is known about algorithms for Toeplitz
matrices with provable correctness on general input instances and running time or query complexity
scaling sublinearly in the input size d.

1.1 Our contributions.

In this work, we study sublinear query algorithms for symmetric positive semidefinite (PSD) Toeplitz
matrix low-rank approximation, which is a widely-studied problem [19,30] with applications to signal
and image recovery [7, 23, 28], signal direction of arrival estimation [1, 21], and beyond. We show
that a low-rank approximation to any PSD Toeplitz matrix with near-optimal error in the Frobenius
norm can be computed using a sublinear number of queries to the input matrix. In particular, letting

‖M‖F =
(∑d

i=1

∑d
j=1M

2
ij

)1/2
denote the Frobenius norm of a matrix M , and letting Õ(·) hide

poly-logarithmic factors in the argument and in d, we have the following theorem:

Theorem 1 (Sublinear query Toeplitz low-rank approximation). There is a randomized algorithm

that, given any PSD Toeplitz matrix T ∈ R
d×d, ǫ, δ ∈ (0, 1), and integer k ≤ d, reads Õ

(
k2 log(1/δ)

ǫ6

)

entries of T and returns a symmetric Toeplitz matrix T̃ with rank Õ
(
k log(1/δ)

ǫ

)
satisfying with

probability at least 97/100,

‖T − T̃‖F ≤ (1 + ǫ)‖T − Tk‖F + δ‖T‖F , (1)

where Tk = argmin
B:rank(B)≤k

‖T −B‖F is the best rank-k approximation to T in the Frobenius norm.

Theorem 1 gives a near-relative error approximation, up to an additive δ‖T‖F . However, the
dependence on δ in the sample complexity and output rank is just logarithmic. Thus, this additive
term is comparable to the error that would be introduced in any practical algorithm due to round-off
error. To the best of our knowledge, ours is the first sublinear query algorithm for Toeplitz low-rank
approximation achieving near-relative error. See Section 1.2 for a detailed comparison to prior work.
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Structure-preservation and bicriteria approximation. Observe that Theorem 1 outputs a
low-rank Toeplitz matrix T̃ , even though the optimal low-rank approximation Tk will in general
not be Toeplitz. This structure-preserving low-rank approximation is desirable in many applications
[7,10]. It allows fast methods for Toeplitz matrices to be applied to T̃ itself, and is useful when the
Toeplitz structure of the approximation has a physical meaning, in applications such as direction of
arrival estimation [21]. As we will discuss, T̃ ’s Toeplitz structure is also key to achieving sublinear
query complexity – it allows us to recover T̃ via query efficient sparse Fourier transform techniques.

Since T̃ is Toeplitz, the approximation bound of Theorem 1 is bicriteria – i.e., T̃ has rank larger
than the input rank k. This is necessary since as ǫ, δ go to zero, ‖T − T̃‖F becomes arbitrarily close
to ‖T −Tk‖F . However, one can find simple examples of T and k where there is a fixed gap between
‖T − Tk‖F and the error of the best rank-k Toeplitz approximation to T . See Figure 1. It is an
interesting open question if a sublinear query algorithm for Toeplitz low-rank approximation with the
same near-relative error bound as Theorem 1 can be achieved without any bicriteria approximation,
by abandoning the structure-preserving guarantee and allowing T̃ to be non-Toeplitz.

T =



2 1 0
1 2 1
0 1 2


 T1 =

2 +
√
2

4
·




1
√
2 1√

2 2
√
2

1
√
2 1


 T1,toep =

10

9
·



1 1 1
1 1 1
1 1 1




Figure 1: Example of a 3×3 positive semidefinite Toeplitz matrix T whose best rank-1 approximation
T1 = argminB:rank(B)≤k ‖T − B‖F differs from its best rank-1 Toeplitz approximation T1,toep =
argminB:rank(B)≤k,B is Toeplitz ‖T −B‖F . We can check that ‖T − T1,toep‖F − ‖T − T1‖F ≈ 0.1271.
Thus, any Toeplitz low-rank approximation to T achieving error (1+ ǫ)‖T −T1‖F for small enough
ǫ must have rank > 1. I.e., it must be a bicriteria approximation, as in Theorem 1. T1 is computed
via projection onto T ’s top eigenvector. T1,toep is computed by observing that any rank-1 Toeplitz
matrix must have all entries of the same magnitude. Thus, since T has all positive entries, the
optimal approximation is the all ones matrix scaled by the mean entry in T .

Runtime. In Theorem 1 we focus on query complexity rather than runtime, and our algorithm
requires time exponential in Õ(k/ǫ) to identify T̃ via a brute-force-search-based off-grid sparse
Fourier transform algorithm. This is not sublinear time unless k is sublogarithmic in d. However, we
conjecture that sublinear runtime is possible by adapting efficient off-grid sparse Fourier transform
techniques [8] to find T̃ .

Existence proof. A key challenge in proving Theorem 1 is to demonstrate that a Toeplitz T̃
achieving a near-optimal Frobenius norm low-rank approximation even exists. Surprisingly, this
was not previously known. We show

Theorem 2 (Existence of near-optimal Toeplitz low-rank approximation). For any PSD Toeplitz
T ∈ R

d×d , ǫ, δ ∈ (0, 1) and integer k ≤ d there exists a symmetric Toeplitz matrix T̃ ∈ R
d×d of

rank Õ
(
k log(1/δ)

ǫ

)
such that

‖T − T̃‖F ≤ (1 + ǫ)‖T − Tk‖F + δ‖T‖F ,

where Tk = argmin
B:rank(B)≤k

‖T −B‖F is the best rank-k approximation to T in the Frobenius norm.

We prove a similar result for spectral norm low-rank approximation – see Theorem 5. One
natural approach to proving Theorem 2 (and Theorem 5) is to note that, intuitively, if T is close to
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low-rank, its optimal low-rank approximation Tk – given by projection onto its top k eigenvectors –
should be nearly Toeplitz. Of course, rounding this matrix to be Toeplitz (by replacing the entries
on each diagonal by their average) can increase its rank, but one could plausibly try to bound
the increase in rank. This, however, would not naturally lead to a sublinear query algorithm for
recovering a low rank approximation. We take a different approach, exploiting the classical Fourier
structure of Toeplitz matrices, namely the Vandermonde decomposition [12]. In essence, instead
of rounding the best rank-k approximation to Toeplitz, we round the matrix T itself to a rank-
(almost)k matrix in Fourier domain, thereby preserving the Toeplitz property throughout. This
lets us use a number of powerful ideas from the literature on recovering Fourier sparse functions
from few measurements, and ultimately leads to a sublinear query algorithm – see Section 1.3 for a
more detailed overview.

We believe that Theorem 2 is of interest beyond its application to proving Theorem 1. It
remains an open question if the δ‖T‖F term can be removed. Although we stated our guarantees as
applying to exactly Toeplitz matrices, they extend fairly directly to near-Toeplitz input matrices.
For example, our main existence result in Theorem 2 easily extends to arbitrary matrices which
are close in Frobenius norm to a PSD Toeplitz matrix, by the triangle inequality. Moreover, the
sublinear query complexity algorithm of Theorem 1 will extend to any matrix whose first column is
close to the first column of a PSD Toeplitz matrix, according to the weighted ℓ2 norm, as defined
in Claim 4.3. It would be interesting to extend this further, e.g. to any matrix that is close to a
PSD Toeplitz matrix in the Frobenius norm. Additionally, while T̃ must have a rank larger than
k when ǫ, δ are sufficiently small (see Figure 1), identifying the minimum rank required to achieve
the given error bound is also a very interesting problem.

1.2 Related work.

Significant prior work in numerical linear algebra and signal processing has studied the low-rank
approximation of Toeplitz and, relatedly, Hankel matrices [7, 19, 21, 23, 28, 30]. In signal processing
applications, the input Toeplitz matrix T is often a covariance matrix and thus positive semidefinite.

Due to the fact that a d × d Toeplitz matrix can be multiplied by a vector in O(d log d)
time via fast Fourier transform, a near-optimal low-rank approximation can be computed in near-
linear time. In particular, Shi and Woodruff present an algorithm that outputs rank-k T̃ with
‖T−T̃‖F ≤ (1+ǫ)‖T−Tk‖F in Õ(d+poly(k/ǫ)) time [33]. Significant other work focuses on comput-
ing a near-optimal low-rank approximation that preserves Toeplitz structure, as we do in Theorem 1.
Unlike unconstrained low-rank approximation, where the optimal solution can be computed directly
via eigendecomposition, no simple characterization of the optimal structure-preserving Toeplitz low-
rank approximation is known [10]. Computing such an optimal approximation in polynomial time re-
mains open outside the special cases of k = 1 and k = d−1 [10,20]. Practical heuristics apply a range
of techniques, based on convex relaxation [7, 16, 28], alternating minimization [10, 37], and sparse
Fourier transform [21]. Observe that our main result, Theorem 1 directly gives a near-relative error
bicriteria approximation algorithm for the optimal structure-preserving Toeplitz low-rank approxi-
mation problem, since ‖T−Tk‖F = minB:rank(B)≤k ‖T−B‖F ≤ minB:rank(B)≤k,B is Toeplitz ‖T−B‖F .

Several works also investigate sublinear query algorithms for Toeplitz matrices [1,9,15,22,31]. In
the signal processing community, these algorithms are often framed in terms of sparse array methods,
which can be thought of as reading a small principal submatrix of T from which an approximation
to the full matrix can be recovered. Most closely related to our work is that of Eldar, Li, Musco,
and Musco [15], which focuses on approximating a PSD Toeplitz matrix T ∈ R

d×d given samples
from a d-dimensional Gaussian distribution with covariance T . They focus on minimizing both
the number of samples taken from the distribution, as well as the number of entries read from
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each d-dimensional sample. For nearly low-rank T , they present an algorithm that estimates T
via a low-rank approximation of the sample covariance matrix, computed from a small number of
randomly selected entries of that matrix. One can check that this algorithm can be directly applied
to T itself. It gives Õ(k2 · log(1/δ)) query complexity, and outputs T̃ with rank O(k) achieving error

‖T − T̃‖F ≤ C ·
√

tr(T ) ·
(
‖T − Tk‖2 +

tr(T − Tk)

k

)
+ δ‖T‖F ,

for some constant C ≫ 1. The above guarantee is non-standard, and due to the tr(T ) term, it can be
much weaker than a relative error low-rank approximation. For example, tr(T ) ≫ ‖T − Tk‖F if the
eigenvalues of T decay quickly, which is typically the case in settings where low-rank approximation
is applied. In fact, we can observe that the above guarantee is strictly weaker than that of Theorem
1: letting the eigenvalues of T be denoted λ1(T ) ≥ . . . ≥ λn(T ) ≥ 0,

tr(T ) · ‖T − Tk‖2 =
n∑

i=1

λi(T ) · λk+1(T ) ≥
n∑

i=k+1

λi(T )
2 = ‖T − Tk‖2F .

Finally, the algorithm of [15] outputs T̃ which is not structure-preserving as in Theorem 1. Note that
in this sampling model of [15], it is not possible to achieve a ‘near-relative’ error guarantee like we
do. For example, even if the matrix is exactly rank-k, the sampling will lead to error approximately
δ‖T‖2, with a polynomial in δ number of samples. In contrast, our algorithm (with exact access
to the entries of T ) gives error δ‖T‖F with just a logarithmic dependence on δ. Consider e.g., the
setting when T is just a matrix with every entry equal to α for α = Θ(1). Approximating α to error
±δ will require 1/δ2 ‘vector samples’ in the model of [15], for any algorithm.

However, our algorithm is indeed robust to noise, and so a similar guarantee with some additional
additive error is achievable in the setting of [15]. One can take poly(d, 1/ǫ) vector samples and then
using e.g., Claim 2.2 of [15] one can argue that the sample covariance matrix will approximate the
true covariance matrix, in that its first column will be close to the first column of the true matrix
in the weighted ℓ2 norm, as defined in Claim 4.3. We can then directly apply our algorithm to
this sample covariance matrix. An interesting open problem here is to improve the vector sample
complexity to just depend on k, and in general, to explore vector/entrywise sample complexity in
more depth, as is done in [15].

Beyond Toeplitz matrices, significant recent work has focused on sublinear time low-rank ap-
proximation algorithms for other structured matrix classes. This includes positive semidefinite
matrices [4, 26], distance matrices [5, 18], and kernel matrices [2, 26, 41].

1.3 Technical overview.

The main results of the paper are the proof of the existence of a near optimal low-rank Toeplitz
approximation and the algorithm to recover it, presented in Sections 3 and 4 respectively. In this
section we give an overview of the techniques used to achieve both results.

We start by introducing some notation. From classical works on Toeplitz matrices [12] it is known
that any PSD Toeplitz matrix admits a Vandermonde decomposition T = FSDF ∗

S , where D is a
diagonal matrix with positive entries and FS is a Fourier matrix. The Vandermonde decomposition
is central to our work. We define Fourier matrices formally now.

Definition 1.1 (Frequency vector). For any frequency f ∈ C, we define the frequency vector
v(f) ∈ C

d as the column vector [1, e2πif , . . . , e2πif(d−1)].
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Definition 1.2 (Symmetric Fourier matrix). For any set S = {f1, f2, . . . , fs} ⊂ [0, 1/2], let FS ∈
C
d×2s be the Fourier matrix defined by the frequencies in S as FS = [F+S ;F−S ]. For every j ∈

{1, 2, . . . , s} the j-th column of F+S is v(fj). Similarly, for every j ∈ {1, 2, . . . , s} the j-th column
of F−S is v(−fj).

The formal statement of the Vandermonde decomposition is as follows.

Theorem 3 (Vandermonde decomposition, Corollary 1 of [12]). Any real-valued PSD Toeplitz ma-
trix T ∈ R

d×d of rank r can be expressed as FSDF ∗
S where FS ∈ C

d×r is a symmetric Fourier matrix
with the set of frequencies S ⊆ [0, 1/2] satisfying |S| = r/2, and D ∈ R

r×r is a diagonal matrix with
r positive entries. Moreover, for any f ∈ S the values in D corresponding to columns v(f), v(−f),
which we refer to as the weights of f,−f respectively, are identical. Thus D is uniquely defined by
values {af}f∈S.

A basic Fourier-based approach and why it fails. One approach to show the existence of a
near optimal low-rank approximation, which itself is Toeplitz, is to show that retaining only the top
(nearly) k entries in the diagonal matrix D in the Vandermonde decomposition T = FSDF ∗

S and
zeroing out the rest would give a near optimal low-rank approximation. This approach is natural,
as this operation trivially preserves the Toeplitz structure. However, to formally argue that such an
approach works would require us to relate the Vandermonde decomposition to the eigendecomposi-
tion of T . This is challenging in general because the Fourier matrix FS could potentially be highly
ill-conditioned [24], whereas the eigenvector matrix of T has condition number 1. Therefore, these
decompositions could be very far from each other.

The special case of circulant matrices. For the special but important case of circulant matrices,
as defined below, relating these two decompositions turns out to be much easier.

Definition 1.3. A Toeplitz matrix C ∈ R
d×d is called circulant if there exists a vector c ∈ R

d such
that Ci,j = ci+j−1 mod d.

Essentially, a circulant matrix C ∈ R
d×d is a matrix composed of all cyclic permutations of

some vector c ∈ R
d. Any circulant matrix is a Toeplitz matrix. A Vandermonde decomposition of

a symmetric circulant matrix has the property that all of its frequencies are multiples of 1/d [12].
Thus the FS matrix is actually the discrete Fourier transform matrix, and its frequency vectors are
orthogonal. In particular, the Vandermonde and eigendecompositions are identical in this special
case, and we can easily argue that the best rank-k approximation to a symmetric circulant matrix
itself is circulant! This is because the best rank-k approximation is given by retaining the top k
elements of D in FSDF ∗

S , which has the circulant property by definition.

Toeplitz matrices. In a similar spirit to the easy case of circulant matrices mentioned above,
for a general Toeplitz matrix T , it is natural to ask whether it is true that if the Vandermonde
decomposition of T contains k frequencies with large corresponding values, then the number of
large eigenvalues of T is also Ω(k). This is in general not the case. For example, if S = {f,−f, f +
ǫ,−f − ǫ . . . , f + (k/2)ǫ,−f − (k/2)ǫ} for some f ∈ [0, 1], D is the identity matrix and ǫ → 0, then
both FS and T tend to a rank 2 matrix, with the third eigenvalue tending towards 0. This happens
because when the frequencies are close, their frequency vectors are highly correlated. Thus, for the
purposes of our analysis it makes sense to consider a group of close frequencies as a single entity,
and this observation motivates our proof plan.

We first analyze the case when all frequencies in S are ‘close’ (this analysis is presented in
Section 3.1), then analyze the interaction of ‘clusters’ of frequencies in Section 3.2 and Section 3.3,
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and finally derive the main results of Section 3, namely Theorem 5 and Theorem 2, in Section 3.4.
Theorem 5 and Theorem 2 state that for any k, there exists a symmetric Toeplitz matrix T̃ of rank
almost k which is almost as good a low-rank approximation to T as Tk, the best rank-k approxi-
mation to T , in the spectral or Frobenius norm, respectively. We now give a high-level overview of
the organization of Section 3 and constituent proofs.

Clustered case. In Subsection 3.1, we consider the case where the distance between each pair
of frequencies in S is at most ∆ for some ∆ ∈ [0, 1/2] (we ultimately choose ∆ = O(1/d)). This
case is referred to as the clustered case, formalized in the definition below.

Definition 1.4. For f∗ ∈ [0, 1/2] and ∆ ∈ [0, 1/2] we say that a Toeplitz matrix T with Vander-
monde decomposition T = FSDF ∗

S is (f∗,∆)-clustered if S ⊂ [f∗−∆, f∗+∆] for some f∗ ∈ [0, 1/2]
and ∆ ≥ 0. Thus we can write any f ∈ S as f = f∗ + rf for some rf ∈ [−∆,+∆].

Intuitively, in this case all the columns (i.e. frequency vectors) of FS are nearly identical, so we
would expect FS (and thus T ) to be close to an almost constant rank matrix. Furthermore, we can
even show that this matrix T̃ is Toeplitz itself, as specified by the following lemma.

Lemma 1.5. There exists a universal constant C1 > 0 such that given any symmetric PSD Toeplitz
T = FSDF ∗

S that is (f∗,∆)-clustered for some f∗ ∈ [0, 1/2] and ∆ ≤ 1/d and 0 < ε, δ, γ < 1

satisfying γ ≤ ε/(tr(T )2C1 log7 d) the following conditions hold. There exists a symmetric Toeplitz
matrix T̃ = FS̃D̃F ∗

S̃
of rank at most O(ℓ) for ℓ = O(log d+ log(1/δ)) such that

1. S̃ = {f∗ + jγ}ℓ+1
j=1 ∪ {f∗ − jγ}ℓ+1

j=1 and D̃ is a diagonal matrix such that for any f ∈ S̃ the
weights corresponding to f and −f are identical.

2. ‖T − T̃‖F ≤ δ(
∑

f∈S af ) + εd.

Remark 1.6. The value of the diagonal elements in D̃ depends on ε, and in particular, the value of
the diagonal elements would go to infinity as ε goes to zero. However, we do not state this tradeoff
explicitly in the lemma, because we apply it later in Section 4 to obtain leverage score upper bounds
on Fourier sparse functions based on the work of [8]. These bounds do not depend on the magnitude
of the coefficients in the function, but only on its sparsity (as long as the coefficients are finite).
Thus ε can be set to any strictly positive number of one’s choice.

Note that the error term in point 2 of the above theorem is negligible, as the dependence of the
rank of T̃ on 1/δ is logarithmic. The proof of this result uses tools from polynomial approximation
and is achieved in three steps. First, we observe that since the t-th entry in the first column of T
is the linear combination of complex exponentials of form e2πi(f

∗+rf )t where rf ≤ ∆, this column

can be well approximated by a sum of polynomials of the form pj(t) = e(2πif
∗t)

∑l
m=0 af

(2πirf t)
m

m!
instead through the Taylor series. We then show that this sum of polynomials can be approximated
by another polynomial on complex exponentials of the form p̃(t) = e(2πif

∗t)
∑l+1

m=−l−1 αm(e2πimγt),

from which we can then finally construct the matrix T̃ . The details are presented in Section 3.1.

Relating Vandermonde and eigenvalue decompositions. We now discuss the high-level
strategy of how we relate the Vandermonde and eigenvalue decompositions for general Toeplitz
matrices. Central to our proof is the notion of a bucket. We divide the interval [0, 1/2] into d/2
equal-sized sub-intervals, and refer to the frequencies of FS (recall T = FSDF ∗

S is the Vandermonde
decomposition of T ) in each sub-interval as a bucket. Each bucket corresponds to a group of close
frequencies, corresponding to the clustered case discussed above. The weight of a bucket is the
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sum of the coefficients in D with corresponding frequencies in that bucket. Using this notion, our
first structural result that relates the two decompositions is as follows1:

Lemma 1.7. For every λ, k > 0, if T has at least k buckets with weight at least λ, then T has at
least k/ log3 d eigenvalues that have value Ω(dλ/ log d).

At a high level, this result follows from first showing that the interaction between frequencies,
measured as an inner product v(f1)

∗v(f2) of their frequency vectors, has a harmonic decay as a
function of the distance between f1 and f2. Then, we subsample the set of all heavy buckets to ensure
that interaction between any remaining pair of buckets is small. Finally, we use a strengthening of
Gershgorin’s circle theorem for block matrices to guarantee that the contribution to each eigenvalue
is dominated by only one bucket.

In Subsection 3.3, we apply the same tools to show a complementary result2:

Lemma 1.8. For every λ ≥ 0, if all buckets of T have weight at most λ, then ‖T‖2 ≤ O(dλ log d).

In other words, a uniform bound on bucket weight implies a uniform bound over eigenvalues.
Combined with the Lemma 1.7, this implies that the bucket structure characterizes the eigenvalue
structure in some sense, up to polylogarithmic precision. These structural statements can also be
seen as providing fine grained insights into the eigenvalue structure of arbitrary off-grid Fourier
matrices beyond just condition number bounds [24]. This completes the overview of our approach
of relating the potentially ill-conditioned Vandermonde decompostion and the eigenvalue decompo-
sition for general Toeplitz matrices.

Putting it together: Toeplitz low-rank approximation in Frobenius and spectral norm.

Finally, Subsection 3.4 uses the structural statements of Subsections 3.2 and 3.3 to prove Theorems
5 and 2.

We first prove Theorem 5, the high level idea of which is as follows. Consider the Toeplitz
matrix T̃ obtained by taking only those buckets of weight at least Ω̃(λk+1(T )/d), which we will call
heavy. By Lemma 1.8, ‖T − T̃‖2 ≤ Õ(λk+1(T )) ≤ Õ(1)‖T − Tk‖2. Moreover, by Lemma 1.7 the
matrix T̃ cannot contain more than Õ(k) heavy buckets. Each bucket corresponds to a Toeplitz
matrix with clustered frequencies, so replacing each bucket with its Õ(1)-rank approximation by
Lemma 1.5 incurs the additive error of δ‖T‖F and finishes the proof.

In general, however, a spectral norm low-rank approximation guarantee does not imply a Frobe-
nius norm low-rank approximation guarantee. The main idea behind Theorem 2 is to consider the
T̃ obtained by taking a few more buckets than in the proof of Theorem 5. Doing so ensures that T
is even closer to T̃ , such that even the top k eigenvalues of T − T̃ can be bounded in terms of the
d− k smallest eigenvalues of T . In particular, let T̃ be the Toeplitz matrix obtained by taking only
those buckets of weight at least Ω̃(λ

Õ(k/ǫ)
(T )/d). Again by Lemma 1.8, T̃ cannot contain more than

Õ(k/ǫ) heavy buckets. Lemma 1.7 bounds each of the top k+1 eigenvalues of T−T̃ by Õ(λ
Ω̃(k/ǫ)

(T )),

so their contribution to ‖T − T̃‖2F is at most kÕ(λ
Ω̃(k/ǫ)

(T )2) ≤ ǫ
∑Õ(k/ǫ)

i=k+1 λi(T )
2 ≤ ǫ‖T −Tk‖2F . On

the other hand, since T − T̃ � T , we can bound any eigenvalue of T − T̃ except the top k + 1 by
the corresponding eigenvalue of T . Thus the remaining eigenvalues’ contribution to ‖T − T̃‖2F can

be bounded by
∑d

i=k+2 λ
2
i (T ) = ‖T − Tk‖2F . Overall this results in ‖T − T̃‖F ≤ (1 + ǫ)‖T − Tk‖F .

1Note that the theorem below is a natural relaxation of the claim that k frequencies with coefficients at least λ in

the Vandermonde decomposition of a circulant matrix imply at least k eigenvalues of value at least λ.
2Again, note that the theorem below is a natural relaxation of the claim that if all frequencies in the Vandermonde

decomposition of a circulant matrix have coefficients bounded by λ, then the spectral norm of T is bounded by dλ.
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Replacing each bucket in T̃ with the Õ(1)-rank matrix from Lemma 1.5 incurs the additive error
and completes the proof.

Sublinear query algorithm. Now we present the main ideas behind our recovery algorithm,
Algorithm 1, and its theoretical guarantees as stated in Theorem 1.

We treat the T̃ = FS̃D̃F ∗
S̃

that is guaranteed to exist by Theorem 2 as the true underlying
matrix and T as a noisy version of it that we have access to. Note that T is completely determined
by its first column T1 ∈ R

d and the first column of T̃ is FS̃ d̃ where d̃ ∈ R
Õ(k/ǫ) is the vector of

values on the diagonal of D̃.
This suggests the following strategy - if the algorithm knew S̃ exactly, it could try to find d̃

by solving the regression problem argmina∈Rd ‖FS̃a − T1‖2. We can solve this regression problem
approximately without reading too many entries of T1 using the technique of leverage score sam-
pling [13], and using universal leverage score upper bounds for off-grid Fourier matrices that are
independent of the set of frequencies S̃ defining FS̃ [8, 15].

The first issue with this strategy is the fact that the error bounds in fitting the first column
T1 would not translate to error bounds on fitting the entire matrix T in the Frobenius norm. This
is because each entry of T1 appears a different number of times in T . For example T1,1 appears d
times whereas Td,1 only appears twice. To circumvent this, we need to solve an alternate regression
problem where each row of [F

S̃
;T1] is weighted differently to account for the asymmetry in fitting

the first column T1 versus fitting the entire matrix T . Using a geometric grouping technique we are
able to obtain leverage score upper bounds for this modified regression problem that only suffer a
logarithmic overhead compared to those known for the unweighted case [15].

The second issue is the assumption on the knowledge of S̃ which can be circumvented by brute-
force searching over the set of all possible S̃ and choose the one with the smallest error.

This suggests the following algorithm. It first obtains a sample set containing a few entries of
T1 using this universal leverage score distribution that is valid for any off-grid Fourier matrix, then
searches for all possible sets of Õ(k) frequencies that could be the set S̃. For each such guess of
S̃ it finds an approximately optimal d̃ by approximately solving the weighted regression problem
described previously, using the same sample set that works for any set S̃. Finally, it returns the
best d̃ among all the guesses.

To prove that this algorithm works with good probability is still challenging. This is because
standard sample-efficient regression results based on leverage score sampling [32, 38] do not suffice
in our setting for two reasons. First, we search over many possible S̃ and thus solve many regression
problems – we must take a union bound to argue that our sample set gives a good approximation
for all these problems. This presents an issue for standard results, which typically require sample
complexity depending linearly on 1/η, where 1− η is the probability of success. Second, we require
identifying a frequency set S̃ with near minimal error – i.e., we must compare the errors of the
many regression problems that we solve. Standard leverage score based sampling results however,
typically do not output an estimate of the actual regression error, making it impossible to chose
a near optimal S̃. To overcome these issues, we use a two stage algorithm, as in [27]. Following
techniques of [15], we first find S̃1 achieving a constant factor of the optimal. We then find S̃2

which gives a (1 + ǫ) relative error fit to the residual remaining after regressing onto S̃1. Our final
frequency subset is S̃1 ∪ S̃2. This approach allows us to use a modified analysis of leverage score
sampling for fitting S̃2, which both gives high probability bounds (with log(1/η) dependence for
failure probability η) and regression error estimates, as required. A detailed description of the
algorithm together with its analysis are presented in Algorithm 4.
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2 Notation and preliminaries.

In this section, we introduce notation and preliminary concepts that are used throughout this paper.

2.1 Notation.

For any functions f, g : R → R, f(n) <∼ g(n) means that there exists a constant C > 0 such that
f(n) ≤ Cg(n). For any positive integer n, let [n] = {1, 2, . . . , n}. For any set S ⊂ R, let −S denote
the set obtained by negating each element in S and let +S denote S itself. For any set N , let
Nn denote the set of all subsets of N with n elements. For a matrix A, let AT and A∗ denote its
transpose and Hermitian transpose, respectively. For any vector x ∈ C

d, let ‖x‖2 =
√
x∗x denote

its ℓ2 norm. For a matrix A with d columns, let ‖A‖2 = supx∈Cd ‖Ax‖2/‖x‖2 denote its spectral

norm and ‖A‖F =
√∑

i∈[d]

∑
j∈[d]A

2
i,j denote its Frobenius norm. For a square matrix A, let tr(A)

denote its trace.
A Hermitian matrix A ∈ C

d×d is positive semidefinite (PSD) if for all x ∈ C
d, x∗Ax ≥ 0. Let

λ1(A) ≥ . . . ≥ λd(A) ≥ 0 denote its eigenvalues. Let � denote the Loewner ordering, that is A � B
if and only if B − A is PSD. Let A = UΣV ∗ denote the compact singular value decomposition
of A, and when A is PSD note that UΣU∗ is its eigenvalue decomposition and let A1/2 = UΣ1/2

denote its matrix square root, where Σ1/2 is obtained by taking the elementwise square root of Σ.
Let Ak = UkΣkV

∗
k denote the projection of A onto its top k singular vectors. Here, Σk ∈ R

k×k

is the diagonal matrix containing the k largest singular values of A, and Uk, Vk ∈ C
d×k denote

the corresponding k left and right singular vectors of A. Note that Ak is the optimal rank k
approximation to A in the spectral and Frobenius norms, that is Ak = argmin

rank k Ã
‖A − Ã‖2

and Ak = argmin
rank k Ã ‖A − Ã‖F . Finally, for any vector y ∈ R

d, let T (y) ∈ R
d×d denote the

symmetric Toeplitz matrix whose first column is y.

2.2 Fourier analytic and linear algebra tools.

Let T denote a d× d symmetric PSD Toeplitz matrix. We heavily rely on the Fourier structure of
Toeplitz matrices.

While circulant matrices can be diagonalized by the discrete Fourier transform, this does not
hold in general for Toeplitz matrices. However, a classical result called the Caratheodory-Fejer-
Pisarenko decomposition (also called the Vandermonde Decomposition), which we also stated in
Section 1.3, says that they still can be decomposed into a product of off-grid Fourier and diagonal
matrices; this is formalized in the following result below.

Theorem 3. Any real-valued PSD Toeplitz matrix T ∈ R
d×d of rank r can be expressed as FSDF ∗

S

where FS ∈ C
d×r is a symmetric Fourier matrix with frequencies S ⊆ [0, 1/2], |S| = r/2 and

D ∈ R
r×r is a diagonal matrix with r positive entries. Moreover, for any f ∈ S the values in D

corresponding to columns v(f), v(−f), which we refer to as the weights of f,−f respectively, are
identical. Thus D is uniquely defined by values {af}f∈S.

We also define the wrap around distance between two freqencies as follows.

Definition 2.1 (Wrap around distance). The wrap around distance between any two frequencies
f, g ∈ [−1/2, 1/2] is defined as |f − g|◦ = min{|fi − fj|, 1− |fi − fj|}.

Using the cyclic property of the trace, we can show the following Lemma, which relates the
entries in D to the eigenvalues of T .
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Lemma 2.2. 2d
∑

f∈S af = tr(T ) =
∑d

j=1 λj(T ).

Proof. Note that tr(FDF ∗) = tr(T ) = tr(UΣUT ) =
∑d

j=1 λj(T ). Here T = UΣUT is the eigen-
decomposition of T . Further, tr(FDF ∗) = tr(F ∗FD). Since each diagonal entry of F ∗F is d and
D is just a diagonal matrix with entries {af}f∈S , we get that tr(F ∗FD) = 2d

∑
f∈S af . Thus

2d
∑

f∈S af =
∑d

j=1 λj(T ).

We will need the notion of statistical leverage scores [13,34], which are used to define non-uniform
row sampling schemes. These schemes then enable randomized matrix compressions, which provide
spectral approximation guarantees and preserve significant information [11, 26]. Their precise defi-
nition is as follows.

Definition 2.3 (Leverage score). For any A ∈ C
d×r, let τj(A) denote the leverage score of the jth

row of A:

τj(A) = max
y∈Cs

|(Ay)i|2∑d
j=1 |(Ay)j |2

. (2)

Finally, we will repeatedly use Weyl’s eigenvalue perturbation bound for Hermitian matrices.

Theorem 4 (Weyl’s inequality). For any n > 0 and Hermitian matrices B,C ∈ R
n×n and A =

B + C, the following holds for all i ∈ [n]

λi(B)− ‖C‖2 ≤ λi(A) ≤ λi(B) + ‖C‖2.

For a proof of Weyl’s inequality, we refer the reader to Section 1.3 in [35].

3 Existence of a near optimal low-rank approximation which itself

is Toeplitz.

The goal of this section is to prove Theorems 5 and 2. Recall that we are given PSD Toeplitz matrix
T and T = FSDF ∗

S , where FS is a symmetric Fourier matrix (recall Definition 1.2), with frequencies
S ⊂ [0, 1/2] and D = diag({af }f∈S) in its Vandermonde decomposition. We briefly discuss how
this section is organized. In subsection 3.1, we consider the case when all the frequencies in S are
very close to each other; this is the clustered case. Then in subsection 3.2, we tackle the general case
when the frequencies in S are not necessarily clustered. We partition the frequency domain into
buckets, where the weight of each bucket is the sum of the weights of all frequencies in S landing
in that bucket. The formal definition of buckets is as follows.

Definition 3.1. For any PSD Toeplitz matrix T = FSDF ∗
S , where FS is a Fourier matrix with

frequencies S ⊂ [0, 1/2], D = diag({af}f∈S), and j is a positive integer, we define the j-th bucket
Bj by

Bj :=

[
j − 1

d
,
j

d

)
∩ S,

and let
w(Bj) =

∑

f∈Bj

af ,

denote the weight of the j-th bucket.
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The main claim in this subsection is to show that having heavy buckets implies that T has many
large eigenvalues. This claim is shown in two steps. First, we show the claim for Toeplitz matrices
that have a well-separated spectrum as defined formally below.

Definition 3.2 ((λ,w)-well separated). A PSD Toeplitz matrix T = FSDF ∗
S is said to be (λ,w)-well

separated if all non-empty buckets of T have weight exactly λ, and for any two non-empty buckets,
the minimum wrap-around distance between any two frequencies in these two buckets is at least w.

Second, we show how to reduce from proving the claim for general Toeplitz matrices, to proving
it for well separated Toeplitz matrices. In subsection 3.3, we use the same tools to complete the
characterization relating buckets and eigenvalues. In particular, we show that if all buckets have
weight smaller than λ, then all eigenvalues of T are smaller than O(dλ log d). Finally, in subsection
3.4, we show how to use the structural statements proven in subsections 3.2 and 3.3 to prove
Theorems 2 and 5.

3.1 Case of clustered frequencies.

We begin with the case when all the frequencies in S are clustered, as formalized by Definition
1.4. We first state some preliminaries. Define the tth entry of the kth column denoted by Tk(t) for
t ∈ [0, d − 1] as follows

Tk(t) =
∑

f∈S

afe
2πi(f∗+rf )(t−(k−1)) +

∑

f∈S

afe
−2πi(f∗+rf )(t−(k−1)) ∀k ∈ [d].

Then the following lemma, which follows trivially from expanding T ’s Vandermonde decomposition
FSDF ∗

S , says that the kth column of T is the evaluation of Tk(t) at t = 0, . . . , d− 1.

Lemma 3.3. For all (m,k) ∈ [d]× [d], Tm,k = Tk(m− 1).

Proof. Denote by FS,i the i-th row of FS . Then

Tm,k = (FSDF ∗
S)m,k = FS,mDF ∗

S,k =
∑

f∈S

afe
2πi(f∗+rf )me−2πi(f∗+rf )k +

∑

f∈S

afe
−2πi(f∗+rf )me2πi(f

∗+rf )k =

∑

f∈S

afe
2πi(f∗+rf )(m−k) +

∑

f∈S

afe
−2πi(f∗+rf )(m−k) = Tk(m− 1).

This concludes the proof of the lemma.

Our main result in this section is stated in the following lemma.

Lemma 1.5. There exists a universal constant C1 > 0 such that, given any symmetric PSD Toeplitz
T that is (f∗,∆)-clustered for some f∗ ∈ [0, 1/2] and ∆ ≤ 1/d, and for 0 < ε, δ, γ < 1 satisfying

γ ≤ ε/(tr(T )2C1 log7 d), the following conditions hold. There exists a symmetric Toeplitz matrix
T̃ = F

S̃
D̃F ∗

S̃
of rank at most O(ℓ) for ℓ = O(log d+ log(1/δ)) such that

1. S̃ = {f∗ + jγ}ℓ+1
j=1 ∪ {f∗ − jγ}ℓ+1

j=1, and D̃ is a diagonal matrix such that for any f ∈ S̃, the
weights corresponding to f and −f are identical.

2. ‖T − T̃‖F ≤ δ(
∑

f∈S af ) + εd.
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Remark 3.4. The value of the diagonal elements in D̃ depends on ε, and in particular the value of
the diagonal elements would go to infinity as ε goes to zero. However, we do not state this tradeoff
explicitly in the lemma, since we use this lemma later in Section 4 to obtain leverage score upper
bounds on Fourier sparse functions (based on the work of [8]). These bounds do not depend on the
magnitude of the coefficients in the function; instead, they depend only on its sparsity, as long as
the coefficients are finite. Thus ε can be set to any strictly positive number of one’s choice.

Proof. Define for all t ∈ [−d, d]

T (t) =
∑

f∈S

afe
2πi(f∗+rf )t +

∑

f∈S

afe
−2πi(f∗+rf )t.. (3)

Note that Tk(t) is just the restriction of T (t) to t ∈ [−(k − 1), d − k] for all k ∈ [d]. Thus we
focus on uniformly approximating T (t) over t ∈ [−d, d], as this will yield uniform approximations
for each Tk(t) simultaneously.

The next Lemma shows how to approximate T (t) with a modulated low degree polynomial. The
proof of this Lemma is deferred to the end of this subsection.

Lemma 3.5. For polynomials p1, p2 of degree ℓ = O(log d+ log(1/δ)) defined as

p1(t) =
∑ℓ

m=0

[∑
f∈S af

(2πirf )
m

m!

]
tm and p2(t) =

∑ℓ
m=0

[∑
f∈S af

(−2πirf )
m

m!

]
tm, the following

equality holds:

|T (t)− e2πif
∗tp1(t)− e−2πif∗tp2(t)| ≤ δ(

∑

f∈S

af ) ∀t ∈ [−d, d].

Observe that we can write the p1(t) and p2(t) obtained from Lemma 3.5 as p1(t) = peven(t) +
ipodd(t) and p2(t) = peven(t) − ipodd(t), where peven and podd contain the even and odd powered

terms in
∑ℓ

m=0

[∑
f∈S af

(2πirf )
m

m!

]
tm respectively. Now we can use the following lemma, which is

a minor variation of Lemma 8.8 in [8], to express peven(t) and podd(t) as O(log d+ log(1/δ))-Fourier
sparse functions. For completeness, we present its proof at the end of this section.

Lemma 3.6 (Lemma 8.8 in [8]). Let p(t) be a degree ℓ polynomial with coefficients c1, . . . , cℓ, defined
over t ∈ [−d, d] and containing only even powers of t. For every ε ∈ (0, 1) and γ ∈ (0, 1) satisfying

γ ≤ ε/(d2Θ(ℓ3 log(ℓ)) max
1≤i≤p

|ci|),

there exists p̃(t) =
∑ℓ+1

j=1 αj(e
2πi(jγ)t + e−2πi(jγ)t) such that

|p(t)− p̃(t)| ≤ ε ∀t ∈ [−d, d].

If p(t) has only odd powers of t, then there exists p̃(t) = −i
∑ℓ+1

j=1 βj(e
2πi(jγ)t − e−2πi(jγ)t) that

satisfies the above guarantee.

We apply Lemma 3.6 to approximate peven(t) by p̃even(t) =
∑ℓ+1

j=1 αj(e
2πi(jγ)t + e−2πi(jγ)t) and

podd(t) by p̃odd(t) = −i
∑ℓ+1

j=1 βj(e
2πi(jγ)t − e−2πi(jγ)t). Note that since rf ∈ [0, 1] for all f ∈ S, we

can trivially upper bound the absolute value of the jth coefficient of peven and podd by d
∑

f∈S af .

Thus we can choose any γ ≤ ε/(d(
∑

f∈S af )2
C1 log

7 d) while applying Lemma 3.6, since ℓ3 log(ℓ) ≤
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O(log7 d). Now define T̃ (t) as follows:

T̃ (t) = e2πif
∗t(p̃even(t) + ip̃odd(t)) + e−2πif∗t(p̃even(t)− ip̃odd(t))

=
ℓ+1∑

j=1

αj

[
(e2πi(f

∗+jγ)t + e−2πi(f∗+jγ)t) + (e2πi(f
∗−jγ)t + e−2πi(f∗−jγ)t)

]

+

ℓ+1∑

j=1

βj

[
(e2πi(f

∗+jγ)t + e−2πi(f∗+jγ)t)− (e2πi(f
∗−jγ)t + e−2πi(f∗−jγ)t)

]

=

ℓ+1∑

j=1

(αj + βj)
[
(e2πi(f

∗+jγ)t + e−2πi(f∗+jγ)t)
]
+ (αj − βj)

[
(e2πi(f

∗−jγ)t + e−2πi(f∗−jγ)t)
]
.

Let T̃k(t) be the restriction of T̃ (t) to t ∈ [−(k − 1), d − k]. Thus applying the error guarantees of
Lemma 3.5 and 3.6 and applying triangle inequality, we get that for all k ∈ [d]

|Tk(t)− T̃k(t)| ≤ δ(
∑

f∈S

af ) + ε ∀t ∈ [−(k − 1), d − k].

Now T̃k(t) for k ∈ {1, . . . , d} naturally defines the rank 4(ℓ + 1) symmetric Toeplitz matrix
T̃ = F

S̃
D̃F ∗

S̃
, where S̃ = {f∗ + jγ}ℓ+1

j=1 ∪ {f∗ − jγ}ℓ+1
j=1 and D̃ = diag({αj + βj}ℓ+1

j=1 ∪ {αj − βj}ℓ+1
j=1).

The previous equation and this observation immediately that for T̃ ,

‖T − T̃‖F ≤
√ ∑

(i,j)∈[d]×[d]

(δ(
∑

f∈S

af ) + ε)2 = δd(
∑

f∈S

af ) + εd.

We redefine δ as δ/d. This concludes the proof of statement 2 in Lemma 1.5. Lemma 2.2 implies

that choosing γ ≤ ε/(d(
∑

f∈S af )2
C1 log

7 d) = ε/(tr(T )2C1 log7 d) suffices for the first claim of the
lemma to hold.

We now state the proof of Lemma 3.5.

Proof. First, using a Taylor expansion we can write T (t) as follows

T (t) =
∑

f∈S

afe
2πi(f∗+rf )t +

∑

f∈S

afe
−2πi(f∗+rf )t

= e2πif
∗t



∑

f∈S

af (

∞∑

m=0

(2πirf t)
m

m!
)


+ e−2πif∗t



∑

f∈S

af (

∞∑

m=0

(−2πirf t)
m

m!
)




= e2πif
∗t

ℓ∑

m=0



∑

f∈S

af
(2πirf )

m

m!


 tm + e−2πif∗t

ℓ∑

m=0



∑

f∈S

af
(−2πirf )

m

m!


 tm

+ e2πif
∗t



∑

f∈S

af (
∞∑

m=ℓ

(2πirf t)
m

m!
)


+ e−2πif∗t



∑

f∈S

af (
∞∑

m=ℓ

(−2πirf t)
m

m!
)


 .
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Using the fact that |rf | ≤ ∆ and t ∈ [−d, d], we have that |2πirf | < 10∆d for all f ∈ S. Also note
that for any m > 1,m! ≥ (m/2)m/2. This implies that the following holds for all rf and t ∈ [−d, d]

∣∣∣∣∣∣

∞∑

m=ℓ

(2πirf t)
m

m!

∣∣∣∣∣∣
≤

∞∑

m=ℓ

∣∣∣∣
(2πirf t)

m

m!

∣∣∣∣ ≤
∞∑

m=ℓ

(10∆d)m/(m/2)m/2

≤
∞∑

m=ℓ

(10∆d/
√

m/2)m ≤
∞∑

m=ℓ

(10/100
√

log d)m

=
∞∑

m=ℓ

(0.1)m ≤ (0.1)O(log(1/δ))/0.9 ≤ δ/2.

Thus letting p1(t) =
∑ℓ

m=0

[∑
f∈S af

(2πirf )
m

m!

]
tm and p2(t) =

∑ℓ
m=0

[∑
f∈S aj

(−2πirf )
m

m!

]
tm, we

get that

|T (t)− e2πif
∗tp1(t)− e−2πif∗tp2(t)| ≤

∑

f∈S

aj




∣∣∣∣∣∣

∞∑

m=ℓ

(2πirf t)
m

m!

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∞∑

m=ℓ

(−2πirf t)
m

m!

∣∣∣∣∣∣




≤ δ(
∑

f∈S

aj),

where in the second inequality we used that all the aj ’s are non-negative.

We finish this subsection with the proof of Lemma 3.6.

Proof. The proof of this is almost identical to the proof of Lemma 8.8 in [8]. We first consider the

case when the degree ℓ polynomial p(t) has only even powers of t. Let p(t) =
∑ℓ/2

j=0 c2jt
2j . First,

note we can write p̃(t) as

p̃(t) =

ℓ+1∑

j=1

αj(e
2πi(γj)t + e−2πi(γj)t)

=

ℓ+1∑

j=1

2αj(

∞∑

k=0:k even

(2πiγjt)k

k!
)

=

∞∑

k=0:k even

2
(2πiγt)k

j!

ℓ+1∑

j=1

αjj
k

=

ℓ∑

k=0:k even

2
(2πiγt)k

j!

ℓ+1∑

j=1

αjj
k +

∞∑

k=ℓ+1:k even

2
(2πiγt)k

j!

ℓ+1∑

j=1

αjj
k

= p(t) + (
ℓ∑

k=0:k even

2
(2πiγt)k

j!

ℓ+1∑

j=1

αjj
k − p(t)) +

∞∑

k=ℓ+1:k even

2
(2πiγt)k

j!

ℓ+1∑

j=1

αjj
k.

We will show that there exists some γ and α1, . . . , αℓ+1 such that
∑ℓ

k=0:k even 2
(2πiγt)k

j!

∑ℓ+1
j=1 αjj

k −
p(t) is identically zero. The ℓ + 1 × ℓ + 1 Vandermonde matrix A′ is the same as in the proof of
Lemma 8.8 in [8]; however, the ℓ+1 dimensional vector c′ is slightly different: c′j = cjj!/(2πiγ)

j for
j even and c′j = 0 for j odd. The rest of the argument is identical to the proof of Lemma 8.8 in [8].
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Now, the argument to show that the absolute value of C2 =
∑∞

k=ℓ+1:k even 2
(2πiγt)k

j!

∑ℓ+1
j=1 αjj

k is less
than ǫ for all |t| ≤ d (for the choice of γ and α1, . . . , αℓ+1 shown to exist previously) is also nearly
identical to the proof of Lemma 8.8 in [8]. The only difference is that, while upper bounding the
value of |C2|, we replace tj with |t|j for all j ∈ [ℓ+ 1,∞].

The proof for the case when p(t) has only odd powered terms is identical to the proof discussed
above, with the exception that the goal is to show the existence of p̃(t) = −i

∑ℓ+1
j=1 βj(e

2πi(γj)t −
e−2πi(γj)t) satisfying the claim of the theorem.

3.2 Many heavy buckets implies many large eigenvalues.

In this subsection, we present our first structural result relating the Vandermonde decomposition
T = FSDF ∗

S to the eigenvalue decomposition of T = UΣUT . We first bucket the frequencies in the
Vandermonde decomposition, as described in Definition 3.1.

Equipped with this definition, we now state the main result of this section.

Lemma 1.7. For every λ, k > 0, if T has at least k buckets with weight at least λ, then T has at
least k/ log3 d eigenvalues that have value Ω(dλ/ log d).

Before we prove Lemma 1.7, we state the following helper lemmas. We will then present the
proof of Lemma 1.7 using these helper lemmas, and finally end this subsection with their proofs.

Lemma 3.7. For any two frequencies f, g ∈ [−1/2, 1/2],

|v(f)∗v(g)| ≤ O(1/|f − g|◦),

where v(f), v(g) are the corresponding frequency vectors (recall Definition 1.1 of frequency vectors)
and |f − g|◦ is the wrap-around distance between f and g.

The next lemma essentially is a strengthening of Gershgorin’s circle theorem for block matrices.

Lemma 3.8 (Section 1.13 in [36], or Corollary 3.2 in [14]). Let A = (Aij) ∈ C
dn×dn be a Hermitian

matrix composed of blocks Aij ∈ C
d×d. Then each Aii is Hermitian, and the following is true:

‖A‖2 ≤ max
i∈[n]

(‖Aii‖2 +
∑

j∈[n]
j 6=i

‖Aij‖2).

The final helper lemma will help us upper bound the norms of the off-diagonal blocks when
applying Lemma 3.8.

Lemma 3.9. For any λ ≥ 0, σ1, σ2 ∈ {+,−}, sets of frequencies S1, S2 ⊆ [0, 1/2] and corresponding

diagonal weight matrices D1,D2 both of whose traces are at most λ, A = D
1/2
1 F ∗

σ1S1
Fσ2S2

D
1/2
2

satisfies ‖A‖F ≤ O(λ/d(σ1S1, σ2S2)). Here recall that for any set of frequencies S ⊂ [0, 1/2], +S
and −S contain the frequencies in S and their negations, respectively, and d(A,B) for any sets
A,B ⊆ [−1/2, 1/2] is the minimum wraparound distance between any two frequencies in A,B.

We first consider a Toeplitz matrix with a well separated spectrum (as per Definition 3.2) and
prove Lemma 1.7 for this case. Then, we reduce the general case to the well separated case, which
proves Lemma 1.7 in full generality.

It can be seen from the following lemma that, essentially, we can reduce from a general Toeplitz
matrix to the well-separated case.
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Lemma 3.10. For any w, λ, k > 0 and a PSD Toeplitz matrix T having at least k buckets with
weight at least λ, there exists a (λ,w)-well separated PSD Toeplitz matrix Tseparated having at least
k/dw non-empty buckets satisfying Tseparated � T .

The following lemma essentially proves Lemma 1.7 for the special case of well-separated matrices.

Lemma 3.11. For every λ,w, k > 0 and a (λ,w)-well separated T having at least k non-empty
buckets, T has at least k eigenvalues that have value at least Ω(λ(d/ log d− log d/w)).

Equipped with these helper lemmas, we are ready to present the proof of Lemma 1.7.

Proof. Refer to the k buckets with weight at least λ as heavy buckets. Without loss of generality,
we can assume that each bucket has weight exactly λ. This can be seen by the following argument.
We reduce the weight of each heavy bucket if needed to ensure that each heavy bucket has weight
exactly λ. This change will only make T PSD smaller, and thus it suffices to lower bound eigenvalues
of T after this operation. We can easily obtain a (λ,w)-well separated Toeplitz matrix from T as
per Claim 3.10.

Consider the matrix Tseparated guaranteed to exist by Lemma 3.10. Thus, invoking Lemma 3.11
for Tseparated with parameters λ, k/dw,w for w = log3 d/d, we get that Tseparated has at least k/ log3 d
eigenvalues of value Ω(dλ(1/ log d − 1/ log2 d)) = Ω(dλ/ log d). Since Tseparated � T , T also has at
least k/ log3 d eigenvalues of value Ω(dλ(1/ log d−1/ log2 d)) = Ω(dλ/ log d). This finishes the proof
of Lemma 1.7.

Now we present the proof of the well separated case (Lemma 3.11).

Proof. Let T = FSDF ∗
S denote the Vandermonde decomposition of T . Observe that FSDF ∗

S has
the same eigenvalues as D1/2F ∗

SFSD
1/2. This is because, for any matrix A, A∗A and AA∗ have the

same eigenvalues; apply this fact to A = FSD
1/2. It can be easily seen that D1/2F ∗

SFSD
1/2 is a

block matrix, where each of its blocks is of the form D
1/2
m F ∗

Bm
FBnD

1/2
n for some m,n, and Dm is

the diagonal matrix containing weights of the frequencies in bucket Bm for every m. We can pad
each block with enough zero rows and columns to ensure that the dimensions of each block are the
same, without affecting its spectral norm. Thus we can express D1/2F ∗

SFSD
1/2 = A + E, where

A contains the diagonal blocks with zero matrices on the off diagonal blocks, and E contains the
off-diagonal blocks with zero matrices on the diagonal blocks. Our high level strategy is to prove
the theorem statement for A by using the fact that it is block diagonal. Then, we show that E has
small spectral norm, so the eigenvalues of A+ E are close to the eigenvalues of A.

Lower bounding largest eigenvalue of diagonal blocks. A is block diagonal with at least

k blocks. Consider any of its blocks D
1/2
m F ∗

Bm
FBmD

1/2
m for some m. We know that FBmDmF ∗

Bm
is

((m− 1/2)/d, 1/d)-clustered. Thus by Lemma 1.5 with δ = 1/2d11 and ε = λ/2d12,FBmDmF ∗
Bm

is

δ(
∑

f∈Bm
af )+ εd = λ/d11 close to a symmetric Toeplitz matrix T̃ with rank at most C log d in the

Frobenius norm for some universal constant C > 0. Thus by Weyl’s inequality (Theorem 4), we get
the following for any k > C log d

λk(FBmDmF ∗
Bm

) ≤ λk(T̃ ) + ‖FBmDmF ∗
Bm

− T̃‖2
≤ 0 + ‖FBmDmF ∗

Bm
− T̃‖F

≤ λ/d11.
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Thus we get the following bound on the trace of FBmDmF ∗
Bm

tr(FBmDmF ∗
Bm

) ≤ C log dλ1(FBmDmF ∗
Bm

) + λ/d10.

This implies that

λmax(D
1/2
m F ∗

Bm
FBmD

1/2
m ) = λ1(FBmDmF ∗

Bm
)

≥ tr(FBmDmF ∗
Bm

)/(C log d)− λ/(Cd10 log d)

= dλ/(C log d)− λ/(Cd10 log d) = Ω(dλ/ log d).

Since A is a block diagonal matrix with at least k blocks, and each block has largest eigenvalue
Ω(dλ/ log d), we get that A has at least k eigenvalues which are at least Ω(dλ/ log d) in value.

Upper bounding the contribution of off-diagonal blocks. In the rest of the proof, we bound
the spectral norm of E. We do this by applying Lemma 3.8 to E where its diagonal blocks are

0 and any off diagonal block is of the form D
1/2
m F ∗

Bm
FBnD

1/2
n for some buckets Bm, Bn satisfying

m 6= n. Consider an arbitrary but fixed bucket index m. In order to apply Lemma 3.8, we need

to upper bound
∑

n:n 6=m ‖D1/2
m F ∗

Bm
FBnD

1/2
n ‖2 ≤

∑
n:n 6=m ‖D1/2

m F ∗
Bm

FBnD
1/2
n ‖F . We recall that for

any n, FBn = [F+Bn ;F−Bn ] as per the notation in Definition 1.2. We apply Lemma 3.9 to bound

‖D1/2
m F ∗

Bm
FBnD

1/2
n ‖F as follows

‖D1/2
m F ∗

Bm
FBnD

1/2
n ‖F ≤ ‖D1/2

m F ∗
+Bm

F+BnD
1/2
n ‖F + ‖D1/2

m F ∗
+Bm

F−BnD
1/2
n ‖F

+ ‖D1/2
m F ∗

−Bm
F+BnD

1/2
n ‖F + ‖D1/2

m F ∗
−Bm

F−BnD
1/2
n ‖F

≤ O(λ(1/d(+Bm,+Bn) + 1/d(+Bm,−Bn)+

1/d(−Bm,+Bn) + 1/d(−Bm,−Bn))).

Thus, we need to upper bound the following

∑

n:n 6=m

O(λ(1/d(+Bm,+Bn) + 1/d(+Bm,−Bn) + 1/d(−Bm,+Bn) + 1/d(−Bm,−Bn))).

It is easy to see that the maximum value the above expression can take will correspond to the
case when, informally, there are as many buckets as possible in S, while still ensuring that any
two buckets have separation at least w. More formally, this corresponds to the case when for every
n ∈ [m− d/(2w),m + d/(2w)], there is a bucket at distance dm,n = Θ(|m − n|w) from Bm. Thus,
the above expression is bounded by

m+d/(2w)∑

n=m+1

O(λ/((n −m)w)) +
m−1∑

n=m−d/(2w)

O(λ/((m− n)w))

≤ 2
d∑

l=1

O(λ/(lw))

= O(λ/w)

d∑

l=1

1/l

= O(λ log d/w).
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Since any diagonal block has spectral norm 0 and the previous bound holds for all m, Lemma 3.8
applied to E implies that ‖E‖2 ≤ O(λ log d/w). Now, applying Weyl’s inequality for all i such that
λi(A) = Ω(dλ/ log d), we have

λi(A+ E) ≥ λi(A)− ‖E‖2 = Ω(dλ/ log d)− ‖E‖2 ≥ Ω(λ(d/ log d− log d/w)).

Since there are at least k such indices i, this completes the proof of the Lemma.

We now present the proof of Lemma 3.7.

Proof. Denote by δ = |f − g|◦ the wrap around distance between f and g. Since |v∗fvg| = |v∗fvg|, we
have the following.

|v(g)∗v(f)| =

∣∣∣∣∣∣

d−1∑

l=0

exp(2πiδl)

∣∣∣∣∣∣
=

∣∣∣∣
exp(2πiδd) − 1

exp(2πiδ) − 1

∣∣∣∣ =
∣∣∣∣
exp(πiδd)

exp(πiδ)
· sin(πδd)
sin(πδ)

∣∣∣∣ .

Therefore, it holds that

|v(g)∗v(f)| =
∣∣∣∣
sin(πδd)

sin(πδ)

∣∣∣∣ ≤
1

| sin(πδ)| ≤ O

(
1

δ

)
.

Here, the last inequality follows by the fact that sin(πx) ≥ 2x for x ∈ [0, 1/2], and the wrap around
distance between any two frequencies lies between 0 and 1/2.

Now, we present the proof of Lemma 3.9.

Proof. We have the following for all i, j:

|(A)i,j | =
√

(D1)i(D2)j |v(fi)∗v(fj)| ≤ O(
√

(D1)i(D2)j/|fi−fj|) ≤ O(
√

(D1)i(D2)j/d(σ1S1, σ2S2)),

where (D1)i, (D2)j and fi, fj are the weights and frequencies of the ith frequency in the σ1S1 and
jth frequency in the σ2S2 respectively. Also, note that the second to last inequality follows from
Lemma 3.7. This implies

‖A‖2F ≤ O(
∑

i,j

(D1)i(D2)j/d(σ1S1, σ2S2)
2)

= O((
∑

i

(D1)i)(
∑

j

(D2)j)/d(σ1S1, σ2S2)
2)

≤ O(λ2/d(σ1S1, σ2S2)
2).

Thus ‖A‖F ≤ O(λ/d(σ1S1, σ2S2)).

We finally end this sub-section with the proof of Claim 3.10.

Proof. Sort the k heavy buckets of T according to their central frequency, and index them by [k].
Now consider the Toeplitz matrix Tseparated, obtained by taking the buckets indexed by the residue
class 1 mod dw out of the k heavy buckets of T . There are at least k/dw such buckets, and the
pairwise separation between any two such buckets is at least w. This implies Tseparated is (λ,w)-well
separated and has k/dw non-empty buckets. Moreover, since Tseparated is obtained by taking a
subset of the non-empty buckets of T , this implies that Tseparated � T .
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3.3 All buckets being light implies all eigenvalues are small.

In this subsection, we show that if all buckets of T have small weight, then all eigenvalues of T are
small. This result, combined with the previous section, will suffice to prove Theorems 5 and 2. This
is formalized in the lemma below.

Lemma 1.8. For every λ ≥ 0, if all buckets of T have weight at most λ, then ‖T‖2 ≤ O(dλ log d).

Proof. We need to upper bound ‖FSDF ∗
S‖2 = ‖D1/2F ∗

SFSD
1/2‖2. Again, A := D1/2F ∗

SFSD
1/2

is a block matrix, where its blocks are of the form Am,n := D
1/2
m F ∗

Bm
FBnD

1/2
n for some buckets

Bm, Bn. Here FBm and Dm are the Fourier and diagonal weight matrices, respectively, of the mth

bucket. To prove the Lemma, we will apply Lemma 3.8 on A. To do so, we need to upper bound
‖Am,m‖2+

∑
n:n 6=m ‖Am,n‖2 ≤ ‖Am,m‖2+

∑
n:n 6=m ‖Am,n‖F for all m. Since Am,m is PSD, we upper

bound ‖Am,m‖2 as follows

‖Am,m‖2 ≤ tr(Am,m) = d
∑

i

(Dm)i = dw(Bm) ≤ dλ.

We can trivially upper bound ‖Am,m+1‖F by first applying Cauchy-Schwarz to each entry (Am,m+1)i,j :

|(Am,m+1)i,j| =
√

(Dm)i(D(m+1))j |v(fi)∗v(fj)| ≤
√

(Dm)i(D(m+1))j‖v(fi)‖2‖v(fj)‖2

=
√
(Dm)i(D(m+1))jd,

where fi, (Dm)i are the ith frequency and its corresponding weight in the mth bucket respectively.
Then we use the previous bound to get that the following holds for any m:

‖Am,m+1‖F ≤
√

(
∑

i

(Dm)i)(
∑

j

(Dm)j)d2 = dλ.

The same bound holds for ‖Am,m−1‖F . Thus we obtain the bound

‖Am,m‖2 +
∑

n:n 6=m

‖Am,n‖F ≤ 3dλ+
∑

n:n/∈{m−1,m,m+1}

‖Am,n‖F .

Since d(+Bm,+Bm+1) and d(+Bm,+Bm−1) could be arbitrarily close to 0 (adjacent buckets could
have frequencies very close to each other), the bound ‖Am,m+1‖F ≤ dλ is tight. For the remaining
n /∈ {m,m− 1,m+ 1}, we use Lemma 3.9 to bound ‖Am,n‖F as follows:

‖Am,n‖F ≤ O(λ(1/d(+Bm,+Bn) + 1/d(+Bm,−Bn)+

1/d(−Bm,+Bn) + 1/d(−Bm,−Bn))).

Similar to the proof in the previous subsection, it is easy to see that the maximum value∑
n:n/∈{m−1,m,m+1} ‖Am,n‖F can take will correspond to the case when all buckets in [0, 1/2] are

non-empty. More formally, for every n ∈ [m− d/2,m+ d/2] \ {m− 1,m,m+ 1}, there is a bucket
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at distance Θ(|m− n|/d) from bucket Bm. Thus we get that the above is bounded by

m+d/2∑

n=m+2

O(λ/((n −m)/d))+

m−2∑

n=m−d/2

O(λ/((m − n)/d))

≤ 2

d∑

l=1

O(λ/(l/d))

= O(dλ)
d∑

l=1

1/l

= O(dλ log d).

Thus applying Lemma 3.8 to A, we get that ‖T‖2 = ‖A‖2 ≤ 3dλ+O(dλ log d) = O(dλ log d). This
completes the proof of Lemma 1.8.

3.4 Existence of Toeplitz low-rank approximation in the spectral and Frobenius

norm.

In this section, we use Lemma 1.7 and Lemma 1.8 to show the existence of a near optimal low-rank
approximation in the both the spectral and Frobenius norm, which itself is Toeplitz. The first claim
is formalized in the following theorem.

Theorem 5. For any PSD Toeplitz T ∈ R
d×d, 0 < δ < 1 and any integer k ≤ d, there exists a

symmetric Toeplitz matrix T̃ of rank Õ(k log(1/δ)) such that the following holds

‖T − T̃‖2 ≤ Õ(1)‖T − Tk‖2 + δ‖T‖F .
where Tk = ‖T −B‖2

B:rank(B)≤k

is the best rank-k approximation to T in the spectral norm.

Proof. Let T = FSDFS be T ’s Vandermonde decomposition and let λ = λk+1(T ) log d/c
′d, where

c′ is the same constant appearing in the big-O notation in Lemma 1.7. Bucket the frequencies in S
as per Definition 3.1. Let Theavy be PSD Toeplitz matrix obtained by considering all buckets with
weight strictly more than λ. Then T − Theavy is also a PSD Toeplitz matrix, which contains only
buckets of T that have weight bounded by λ. Thus by Lemma 1.8 we have the following

‖T − Theavy‖2 ≤ O(dλ log d) = Õ(1)‖T − Tk‖2.
Now we claim that T has at most (k+2) log3 d buckets with weight strictly more than λk+1(T ) log d/c

′d.
(If not, then by Lemma 1.7, T has at least k+2 eigenvalues with value strictly more than λk+1(T );
this contradicts the definition of λk+1(T ) being the (k+ 1)th largest eigenvalue of T .) Thus, Theavy

contains at most (k + 2) log3 d non-empty buckets. Let r ≤ (k + 2) log3 d be the number of these
heavy buckets, and define FS1

, . . . , FSr and D1,D2, . . . ,Dr to be the Fourier and diagonal weight
matrices corresponding to these r heavy buckets which define Theavy. We can therefore write Theavy

as

Theavy =
r∑

m=1

FSmDmF ∗
Sm

.

Since each FSmDmF ∗
Sm

is (f, 1/d)-clustered for some f ∈ [0, 1/2], we use Theorem 1.5 to approximate

each FSmDmF ∗
Sm

with a rank O(log d + log(1/δ)) symmetric Toeplitz matrix F
S̃m

D̃mF ∗
S̃m

that

satisfies
‖FSmDmF ∗

Sm
− FS̃m

D̃mF ∗
S̃m

‖F ≤ δ(
∑

i

(Dm)i) + εd.
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This implies that
∥∥∥∥∥∥
T −

r∑

m=1

F
S̃m

D̃mF ∗
S̃m

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
T −

r∑

m=1

FSmDmF ∗
Sm

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥

r∑

m=1

(FSmDmF ∗
Sm

− F
S̃m

D̃mF ∗
S̃m

)

∥∥∥∥∥∥
2

= ‖T − Theavy‖2 +

∥∥∥∥∥∥

r∑

m=1

(FSmDmF ∗
Sm

− FS̃m
D̃mF ∗

S̃m
)

∥∥∥∥∥∥
2

≤ ‖T − Theavy‖2 +
r∑

m=1

∥∥∥FSmDmF ∗
Sm

− F
S̃m

D̃mF ∗
S̃m

∥∥∥
F

≤ Õ(1)‖T − Tk‖2 + δ(
∑

m,i

(Dm)i) + εrd

≤ Õ(1)‖T − Tk‖2 + δ(
∑

i

(D)i) + εrd.

Now using Lemma 2.2, we get the following:

∑

i

(D)i =

d∑

i=1

λi(T )/d ≤




√√√√d

d∑

i=1

λi(T )2


 /d = ‖T‖F /

√
d.

Setting ε = δ‖T‖F /rd, we finally get that

∥∥∥∥∥∥
T −

r∑

m=1

FS̃m
D̃mF ∗

S̃m

∥∥∥∥∥∥
2

≤ Õ(1)‖T − Tk‖2 + δ‖T‖F .

Defining T̃ as T̃ =
∑r

m=1 FS̃m
D̃mF ∗

S̃m
, which has rank at most r(O(log d+log(1/δ)) = Õ(k log(1/δ)),

we find that T̃ satisfies the claim of the theorem.

Next, we state the our main result on the existence of a near optimal Toeplitz low-rank approx-
imation in the Frobenius norm.

Theorem 2. Given any PSD Toeplitz matrix T ∈ R
d×d, 0 < ǫ, δ < 1 and an integer k ≤ d, let

r1 = O(k log8 d/ǫ) and r2 = O(log d + log(1/δ)). Then there exists a symmetric Toeplitz matrix
T̃ = FS̃D̃F ∗

S̃
of rank r = 2r1r2 = Õ((k/ǫ) log(1/δ)) such that,

1. ‖T−T̃‖F ≤ (1+ǫ)‖T−Tk‖F+δ‖T‖F , where Tk = ‖T −B‖F
B:rank(B)≤k

is the best rank-k approximation

to T in the Frobenius norm.

2. F
S̃
, D̃ are Fourier and diagonal matrices respectively. The set of frequencies S̃ can be parti-

tioned into r1 sets S̃1, . . . , S̃r1 where each S̃i is as follows:

S̃i =
⋃

1≤j≤r2

{fi + γj, fi − γj}.

3. fi ∈ N for all i ∈ [r1], where N := {1/2d, 3/2d, . . . , 1−1/2d}. Furthermore, γ = δ/(2C2 log7 d),
where C2 > 0 is a fixed constant.
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Proof. Let T = FSDFS be T ’s Vandermonde decomposition and let λ = λCk log5 d/ǫ(T ) log d/c
′d,

where c′ is the same constant as in Lemma 1.7 and C is some large constant. Bucket the frequencies
in S as per Definition 3.1. Let Theavy be the matrix obtained by considering all buckets of T with
weight strictly more than λ. Then T − Theavy is also a Toeplitz matrix defined by the remaining
buckets, all of which have weight at most λ. Thus by Lemma 1.8, we have the following

‖T − Theavy‖2 ≤ O(λd log d) = O(log2 d)λCk log5 d/ǫ(T ).

Since T−Theavy just corresponds to retaining a subset of the frequencies in S and their corresponding
weights, it is a PSD change. More formally, 0 � T − Theavy � T . Thus by Weyl’s inequality, this
implies that λi(T − Theavy) ≤ λi(T ) for all i ∈ [d]. Thus we have that

‖T − Theavy‖2F =
d∑

i=1

λ2
i (T − Theavy) =

k+1∑

i=1

λ2
i (T − Theavy) +

d∑

i=k+2

λ2
i (T − Theavy)

≤ (k + 1)λ2
1(T − Theavy) +

d∑

i=k+2

λ2
i (T − Theavy)

≤ (k + 1)λ2
1(T − Theavy) +

d∑

i=k+2

λ2
i (T ).

Here, we used the fact that λi(T−Theavy) ≤ λ1(T−Theavy) for all 1 ≤ i ≤ k+1 and λi(T−Theavy) ≤
λi(T ) for i > k+1. Now, using that λ1(T −Theavy) ≤ O(log2 d)λCk log5 d/ǫ(T ), we get the following:

‖T − Theavy‖2F ≤ (k + 1)λ2
1(T − Theavy) +

d∑

i=k+2

λ2
i (T )

≤ O(k log4 d)λ2
Ck log5 d/ǫ

(T ) +

d∑

i=k+2

λ2
i (T )

= ǫO(k log4 d/ǫ)λ2
Ck log5 d/ǫ

(T ) +
d∑

i=k+2

λ2
i (T )

≤ ǫ

O(k log4 d/ǫ)∑

i=k+1

λ2
i (T ) +

d∑

i=k+2

λ2
i (T )

≤ ǫ

d∑

i=k+1

λ2
i (T ) +

d∑

i=k+1

λ2
i (T )

= (1 + ǫ)‖T − Tk‖2F .

Therefore, we have that ‖T − Theavy‖F ≤ (1 + ǫ)‖T − Tk‖F , where Theavy contains all buckets
with weight more than λCk log5 d/ǫ log d/c

′d. There are at most r1 = O(k log8 d/ǫ) such buckets by
Lemma 1.7. Let FS1

, . . . , FSr1
and D1,D2, . . . ,Dr1 to be the Fourier and diagonal weight matrices

corresponding to these r1 heavy buckets defining Theavy. We can then write Theavy as follows

Theavy =

r1∑

m=1

FSmDmF ∗
Sm

.
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Since each FSmDmF ∗
Sm

is (f, 1/d)-clustered for some f ∈ N , we use Theorem 1.5 to approximate

each FSmDmF ∗
Sm

with a rank O(log d + log(1/δ)) symmetric Toeplitz matrix FS̃m
D̃mF ∗

S̃m
that

satisfies ∥∥∥FSmDmF ∗
Sm

− FS̃m
D̃mF ∗

S̃m

∥∥∥
F
≤ δ(

∑

i

(Dm)i) + εd.

This implies that

∥∥∥∥∥∥
T −

r1∑

m=1

FS̃m
D̃mF ∗

S̃m

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
T −

r1∑

m=1

FSmDmF ∗
Sm

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥

r1∑

m=1

(FSmDmF ∗
Sm

− FS̃m
D̃mF ∗

S̃m
)

∥∥∥∥∥∥
F

= ‖T − Theavy‖F +

∥∥∥∥∥∥

r1∑

m=1

(FSmDmF ∗
Sm

− F
S̃m

D̃mF ∗
S̃m

)

∥∥∥∥∥∥
F

≤ ‖T − Theavy‖F +

r1∑

m=1

‖FSmDmF ∗
Sm

− FS̃m
D̃mF ∗

S̃m
‖F

≤ (1 + ǫ)‖T − Tk‖F + δ(
∑

m,i

(Dm)i) + εrd

≤ (1 + ǫ)‖T − Tk‖F + δ(
∑

i

(D)i) + εrd.

Now using Lemma 2.2, we get the following:

∑

i

(D)i =

d∑

i=1

λi(T )/d ≤




√√√√d

d∑

i=1

λi(T )2


 /d = ‖T‖F /

√
d.

Setting ε = δ‖T‖F /rd, we finally have

∥∥∥∥∥∥
T −

r1∑

m=1

F
S̃m

D̃mF ∗
S̃m

∥∥∥∥∥∥
F

≤ (1 + ǫ)
∥∥T − Tk‖2 + δ‖T

∥∥
F
.

Defining T̃ as T̃ =
∑r1

m=1 FS̃m
D̃mF ∗

S̃m
, which has rank at most r1(C(log d+log(1/δ)) = Õ((k/ǫ) log(1/δ)),

we get that T̃ satisfies the claim and point 1 of Theorem 2. Observe that the Toeplitz matrix cor-
responding to any bucket FSmDmF ∗

Sm
is (f, 1/d)-clustered for some f ∈ N . Thus, it follows by

guarantee 1 of Lemma 1.5 that each S̃m is of the form described in point 2 of Theorem 2. Since
T1,1 ≤ ‖T‖F , with this value of ε we can choose any γ ≤ δT1,1/(tr(T )rd

22C1 log
7 d) = δ/(2C2 log7 d)

for a large enough constant C2. (Here, we used the fact that tr(T ) = dT1,1.) This completes the
proof of Theorem 2.

4 Low-rank approximation with sublinear query complexity.

In this section, we present our main algorithm, Algorithm 1 and prove the corresponding Theorem 1,
which shows that the algorithm outputs a near optimal low-rank approximation to T , while reading
only sublinearly many entries. We treat T̃ , the low-rank Toeplitz approximation to T (guaranteed
to exist from Theorem 2), as the true matrix, which we noisily access by reading entries of T .
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4.1 Reduction to weighted linear regression.

The near optimal Toeplitz low-rank approximation T̃ ∈ R
d×d guaranteed to exist by Theorem 2

is of the form T̃ = FS̃D̃F ∗
S̃
, where FS̃ ∈ C

d×r and D̃ ∈ R
r×r are Fourier and diagonal matrices,

respectively, and r = Õ((k/ǫ) log(1/δ)). Algorithm 1 uses brute force search to find the frequencies
in S̃. In particular, it uses an approximate regression oracle to test the quality of any guess for the
frequencies in S̃, without reading many entries of T .

Recall from Theorem 2 that these frequencies lie in r1 = Õ(k/ǫ) clusters of r2 equispaced
frequencies centered around points in N = {1/2d, 3/2d, . . . , 1− 1/2d}. Thus, our search space will
be all subsets of r1 elements of N , of which there at at most N r1 . Formally, the frequencies of our
Toeplitz low-rank approximation will lie in the following set:

Definition 4.1 (Frequency Search Space). Consider any positive integers d, r1, r2 with r1, r2 < d
and γ ∈ (0, 1), Let N = {1/2d, 3/2d, . . . , 1 − 1/2d}. For any set of frequencies B, let S(B) =⋃

b∈B

⋃
1≤j≤r2

{b+ γj, b− γj}. Let Nd,r1,r2,γ = {S(B) : B ∈ N r1}.

Since the first column of T̃ defines the full matrix, the approximate regression oracle will simply
attempt to fit the first column of T̃ to be close to that of T . However, since different entries in
the first column appear with different frequencies in the matrix, we require the following weighting
function to translate error bounds in the first column into error bounds for approximating the entire
matrix T in the Frobenius norm.

Definition 4.2. Let w ∈ R
d be defined as follows:

wi =

{√
d i = 1√
2(d− i+ 1) i > 1

Let W = diag(w) ∈ R
d×d.

We have the following immediate claim, which expresses the Frobenius norm difference between
two symmetric Toeplitz matrices as the weighted ℓ2 norm difference of their first columns.

Claim 4.3. Let T, T̃ ∈ R
d×d be symmetric Toeplitz matrices with first columns T1, T̃1 ∈ R

d respec-
tively. Then letting W ∈ R

d×d be as in Definition 4.2, ‖T − T̃‖F = ‖WT1 −WT̃1‖2.

Now, for a Toeplitz matrix T = FSDF ∗
S , the first column can be expressed as T1 = FSa where

a ∈ R
r contains the diagonal entries of D. Further, if T is real, a must place equal weight on

the conjugate frequencies in FS . Thus, we can in fact write T1 = FSRSa where a ∈ R
r/2 and

RS ∈ R
r×r/2 collapses the 2|S| = r conjugate pair columns of FS into |S| = r

2 real-valued columns,
each corresponding to a degree of freedom of a. More formally:

Definition 4.4. Let S ⊂ [0, 12) with |S| = r
2 . Then, define the matrix RS ∈ R

r× r
2 by setting the

jth column (RS):,j equal to 0 everywhere except at j and |S| + j, corresponding to the jth pair of
conjugate frequencies, where it is equal to 1.

From Claim 4.3 and the existence proof of Theorem 2 we have the following lemma, which shows
that fitting T̃ can be reduced to a real-valued linear regression problem:

Lemma 4.5 (Toeplitz Approximation via Weighted Regression). For any PSD Toeplitz matrix
T ∈ R

d×d with first column T1, ǫ, δ ∈ (0, 1), and integer k ≤ d, let Nd,r1,r2,γ be as in Def. 4.1, where
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r1, r2, γ are as in Theorem 2. Let W ∈ R
d×d be as in Def. 4.2. Then if S̃ and ã ∈ R

|S̃| satisfy for
some α ≥ 1:

‖WF
S̃
R

S̃
ã−WT1‖2 ≤ α · min

S∈Nd,r1,r2,γ
,a∈R|S|

‖WFSRSa−WT1‖2,

letting T̃ ∈ R
d×d be the symmetric Toeplitz matrix T̃ = FS̃ diag(ã)F ∗

S̃
,

‖T − T̃‖F ≤ (1 + ǫ)α · ‖T − Tk‖F + αδ‖T‖F .

Proof. Letting T̃1 be the first column of T̃ , we have T̃1 = F
S̃
R

S̃
ã where R

S̃
is defined as in Def. 4.4.

Thus, by Claim 4.3,

‖T − T̃‖F = ‖WT1 −WFS̃RS̃ ã‖2 ≤ α · min
S∈Nd,r1,r2,γ

,a∈R|S|
‖WT1 −WFSRSa‖2

≤ (1 + ǫ)α · ‖T − Tk‖F + αδ‖T‖F ,

where the last inequality follows from Theorem 2, which shows that there is some Toeplitz matrix
T̃ with frequency set in Nd,r1,r2,γ satisfying ‖T − T̃‖F ≤ (1 + ǫ)‖T − Tk‖F + δ‖T‖F .

4.2 Leverage score preliminaries.

Our goal is now to find S̃ ∈ Nd,r1,r2,γ and ã ∈ R
|S̃| satisfying the approximate regression guarantee

of Lemma 4.5 for α ≤ 1 + ǫ. We do this using leverage score sampling. It is well known that
leverage score sampling can be used to approximately solve linear regression problems in a sample-
efficient manner [32,38]. In our setting, an additional challenge arises in that to find S̃, ã satisfying
the bound of Lemma 4.5 we must solve many regression problems – corresponding to all possible
subsets S̃ ∈ Nd,r1,r2,γ – and output one with near minimal error. This is challenging, since standard
results on leverage score sampling for sample-efficient regression 1) typically do not succeed with
very high probability, making it difficult to union bound over all possible S̃, and 2) typically do not
output an estimate of the actual regression error, making it impossible to chose a near optimal S̃, ã
as needed in Lemma 4.5. We show how to overcome these issues in Sections 4.3 and 4.4.

Recall the notion of matrix leverage scores as defined in Definition 2.3. Our algorithm will
sample rows of WFSRS and WT1 via approximations to the leverage scores of WFSRS to solve
the regression problem of Lemma 4.5. For technical reasons, we will sample with a mixture of a
leverage score distribution and the uniform distribution, defined below:

Definition 4.6 (Leverage score sampling; Def. 2.7 of [27]). For any number of samples m and a
set of leverage score bounds {τ̃j}j∈[n] with T =

∑d
j=1 τ̃j, let S ∈ R

m×d be a sampling matrix with

each row set independently to the ith standard basis vector multiplied by (m ·pi)−1/2, with probability

pi =
1

2

(
τ̃i
T

+
1

d

)
.

We also have the following unbiasedness property of the sampling matrix S.

Claim 4.7. Let S be defined as in 4.6. Then

E[‖Sx‖22] = ‖x‖22.
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Critically, we would like to take a single set of samples and use them to approximately minimize
‖WT1 − WFSRSa‖2 for all S ∈ Nd,r1,r2,γ in order to solve the optimization problem of Lemma
4.5. We are able to do this due to the existence of universal leverage score bounds on Fourier
matrices [3, 15], which are independent of the frequency subset S. We adapt these bounds to our
weighted setting.

Lemma 4.8 (Fourier Matrix Leverage Score Bound). Let W be the weight matrix defined in 4.2.
Then there exist non-negative numbers {τ̃j}dj=1 such that the following hold for all frequency sets

S ⊂ [0, 12 ), |S| = r
2 ≤ d:

1. τj(WFSMS) ≤ τj(WFS) ≤ τ̃j for all j ∈ [d].

2.
∑d

j=1 τ̃j ≤ O(r log r · log d).

Here, FS ∈ C
d×r is the symmetric Fourier matrix with frequency set S as defined in 1.2, and MS

is any real-valued matrix with r rows, which may depend on S. (For example, this includes the case
MS = RS as defined in Definition 4.4.) Finally, τj(·) is as defined in Def. 2.3.

4.8 is similar to Corollary C.2 of [15], but applies to weighted Fourier matrices. In 4.6 we restate
Corollary C.2 of [15] as 8, and use it to prove 4.8.

In our analysis, we will use the well known fact that sampling Õ(r) rows of A ∈ C
d×r according

to their leverage scores yields a subspace embedding of A, which preserves the norms of all vectors
in A’s column span to small relative error. In particular:

Lemma 4.9 (Subspace Embedding [38]). Given A ∈ R
d×r, failure probability η ∈ (0, 1), and a set

of leverage score upper bounds {τ̃j}j∈[n] satisfying τ̃j ≥ τj(A) for all j ∈ [d], let S ∈ R
m×d be a

random sampling matrix drawn according to 4.6, using the distribution τ̃j and m = O
(T log(1/η)

β2

)

samples. Then, with probability ≥ 1− η, for all x ∈ R
r,

(1− β)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + β)‖Ax‖2.

4.3 Constant factor approximation.

We now use the leverage score bounds of Lemma 4.8 and the subspace embedding guarantee of
Lemma 4.9 to show how to solve the optimization problem of Lemma 4.5 for constant α. We later
show how to refine this to an α = 1 + ǫ approximation, achieving our final bound.

Theorem 6 (Constant Factor Toeplitz Fitting). Consider the setting of Lemma 4.5. Let S ∈ R
m×d

be a random sampling matrix drawn according to 4.6, using the distribution τ̃j defined in Def. 4.8

with m = Õ
(
k2 log(1/δ)

ǫ2

)
. Let

S̃, ã = argmin
S∈Nd,r1,r2,γ

,a∈R|S|

‖SWFSRSa− SWT1‖2.

Then with probability at least 98/100, S̃ and ã satisfy Lemma 4.5 with α = 41. In other words,

‖WF
S̃
R

S̃
ã−WT1‖2 ≤ 41 · min

S∈Nd,r1,r2,γ
,a∈R|S|

‖WFSRSa−WT1‖2.

Proof. Define the optimal frequency set and coefficients by

S′, a′ = argminS∈Nd,r1,r2,γ
,a∈R|S|‖WFSRSa−WT1‖2.
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For any S ∈ Nd,r1,r2,γ , a ∈ R
|S| we can write

‖WFSRSa−WFS′RS′a′‖2
as

‖W [FSRS , FS′RS′ ][a;−a′]‖2 = ‖W [FS , FS′ ][RS ;RS′ ][a;−a′]‖2.
Here, [FS , FS′ ] is a Fourier matrix, and [RS ;RS′ ] fits the criteria of the matrix MS,S′ in 4.8.
Therefore, by 4.8 the leverage scores of W [FS , FS′ ][RS ;RS′ ] are upper bounded by τ̃j and sum
to O(r log(d) log(r)). Applying 4.9 with A = W [FS , FS′ ][RS ;RS′ ], β = 1

2 , η = 1/(100|N |r1), and

the upper bounds τ̃j, we obtain a sampling matrix S ∈ R
m×d that takes m = Õ(k

2 log(1/δ)
ǫ2 ) samples.

By combining the probabilistic guarantee of 4.9 with a union bound over all S ∈ Nd,r1,r2,γ , we get
that the following holds with probability at least 1− |N |r1η = 99

100 over the choice of S:

‖SW [FSRS , FS′RS′ ]x‖2 ≥ 1

2
‖W [FSRS , FS′RS′ ]x‖2 ∀S ∈ Nd,r1,r2,γ , x ∈ R

r.

This implies for the particular case of S = S̃ and a = ã that the following holds with probability at
least 99

100 :

≤ 2‖SW [FS̃RS̃ , FS′RS′ ][ã;−a′]‖2
= 2‖SWFS̃RS̃ã− SWFS′RS′a′‖2
≤ 2(‖SWFS̃RS̃ ã− SWT1‖2 + ‖SWT1 − SWFS′RS′a′‖2)
≤ 2(‖SWFS′RS′a′ − SWT1‖2 + ‖SWFS′RS′a′ − SWT1‖2)
= 4‖SWFS′RS′a′ − SWT1‖2.

The last inequality above followed by the definition of S̃ and ã as minimizing ‖WFSRSa−WT1‖2
over all S ∈ Nd,r1,r2,γ , a ∈ R

r.
Moreover, by 4.7, E[‖SWFS′RS′a′ − SWT1‖22] = ‖WFS′RS′a′ − WT1‖22. Then by applying

Markov’s inequality, ‖SWFS′RS′a′−SWT1‖22 ≤ 100‖WFS′RS′a′−WT1‖22 with probability at least
99
100 . Finally, we return to the quantity of interest, ‖WFS̃RS̃ ã−WT1‖2. By applying a union bound
once more, the following then holds with probability at least 98

100 over the choice of S:

‖WFS̃RS̃ã−WT1‖2 ≤ ‖WFS′RS′a′ −WT1‖2 + ‖WFS̃RS̃ ã−WFS′RS′a′‖2
≤ ‖WFS′RS′a′ −WT1‖2 + 4‖SWFS′RS′a′ − SWT1‖2
≤ ‖WFS′RS′a′ −WT1‖2 + 40‖WFS′RS′a′ −WT1‖2
≤ 41‖WFS′RS′a′ −WT1‖2
= 41 min

S∈Nd,r1,r2,γ
,a∈R|S|

‖WFSRSa−WT1‖2.

This concludes the proof of the lemma.

4.4 (1 + ǫ)-approximation.

Theorem 6 combined with Lemma 4.5 yields a Õ
(
k2 log(1/δ)

ǫ2

)
query algorithm for outputting T̃

with rank Õ(k log(1/δ)/ǫ) and ‖T − T̃‖F = O(1)‖T − Tk‖F + δ‖T‖F . To prove Theorem 1 we
need to improve this constant factor approximation to (1+ ǫ). We do this using recently developed
guarantees for high probability relative error active regression via leverage score sampling [27].
Importantly, we first compute a constant error solution via Theorem 6. We then show that we can
fit the residual of this approximation to high accuracy via leverage score sampling. Formally,
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Theorem 7. Consider the setting of Lemma 4.5 and let S̃ ∈ Nd,r1,r2,γ and ã ∈ R
|S̃| satisfy the

lemma with α = O(1). Let TR = T1 − FS̃RS̃ ã be their residual in fitting the first column of T .
Let S ∈ R

m×d be a random sampling matrix drawn according to 4.6, using the distribution τ̃j

defined in Def. 4.8 with m = Õ
(
k2 log( 1

δ
)

ǫ6

)
. Let

S′, a′ = argmin
S∈Nd,2r1,r2,γ

,a∈R|S|

‖SWFSRSa− SWTR‖2.

Then with probability at least 99/100, letting S̄ = S̃ ∪ S′ and ā = [ã, a′], we have that S̄, ā satisfy
Lemma 4.5 with α = (1 + ǫ). I.e.,

‖WFS̄RS̄ ā−WT1‖2 ≤ (1 + ǫ) · min
S∈Nd,r1,r2,γ

,a∈R|S|
‖WFSRSa−WT1‖2,

and thus, letting T̄ = FS̄ diag(ā)F ∗
S̄
,

‖T − T̄‖F ≤ (1 + 3ǫ)‖T − Tk‖F + 2δ‖T‖F .

Note that S̄ output by Theorem 7 does not lie in Nd,r1,r2,γ . Since S′ ∈ Nd,2r1,r2,γ and S̃ ∈
Nd,r1,r2,γ , we have S̄ ∈ Nd,3r1,r2,γ . Lemma 4.5 allows this – it simply means that the rank of the
corresponding Toeplitz matrix T̄ may be three times as large as if S̄ were in Nd,r1,r2,γ .

Proof. Let OPT = minS∈Nd,r1,r2,γ
,a∈R|S| ‖WFSRSa−WT1‖2. Observe that

‖WFS̄RS̄ā−WT1‖2 = ‖WFS′RS′a′ +WFS̃RS̃ ã−WT1‖2 = ‖WFS′RS′a′ −WTR‖2.

Thus, to prove the theorem, it suffices to show that

‖WFS′RS′a′ −WTR‖2 ≤ (1 + ǫ) ·OPT. (4)

Further note that by the assumption that S̃, ã satisfy Lemma 4.5 with α = O(1) we have:

‖WTR‖2 ≤ α ·OPT = O(OPT ).

By Markov’s inequality, since by construction E[‖SWTR‖22] = ‖WTR‖22, with probability at least
999/1000, this also gives that ‖SWTR‖2 ≤

√
1000 · α ·OPT = O(OPT ).

For a given S ∈ Nd,2r1,r2,γ define:

aS = argmin
a∈R|S|

‖WFSRSa−WTR‖2

and

a′S = argmin
a∈R|S|

‖SWFSRSa− SWTR‖2.

Using that ‖WTR‖2 = O(OPT ) and applying triangle inequality, we have

‖WFSRSaS −WTR‖2 ≤ ‖WTR‖2
‖WFSRSaS‖2 − ‖WTR‖2 ≤ ‖WTR‖2

‖WFSRSaS‖2 = O(OPT ). (5)

Similarly, using that ‖SWTR‖2 = O(OPT ) with good probability, for all S we have ‖SWFSRSa
′
S‖2 =

O(OPT ). Further, as in Theorem 6, with probability at least 1 − |N |2r1η = 99/100 for η =
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1/(100|N |2r1 ), the subspace embedding guarantee of Lemma 4.9 holds for all WFSRS simultane-
ously for β = O(1), giving that for all S ∈ Nd,2r1,r2,γ

‖WFSRSa
′
S‖2 = O(OPT ). (6)

Given (5) and (6), to prove the theorem it suffices to show the following claim:

Claim 4.10. With probability at least 99/100, for any S ∈ Nd,2r1,r2,γ and any a ∈ R
|S| with

‖WFSRSa‖2 = O(OPT ),

∣∣∣‖WFSRSa−WTR‖22 − ‖SWFSRSa− SWTR‖22 − C
∣∣∣ ≤ ǫ · OPT 2,

where C is a fixed constant that may depend on S and WTR, but does not depend on S or a.

I.e., for any frequency set S and coefficient vector a ∈ R
|S| where ‖WFSRSa‖2 = O(OPT ), the

sampled regression cost, after shifting by a fixed constant, approximates the true regression cost up
to additive error ǫ · OPT 2. This ensures that:

‖WFS′RS′a′ −WTR‖22 = ‖WFS′RS′a′S′ −WTR‖22
≤ ‖SWFS′RS′a′S′ − SWTR‖22 + C + ǫ · OPT 2

≤ ‖SWFS∗RS∗a∗ − SWTR‖22 + C + ǫ ·OPT 2,

where S∗, a∗ = argminS∈Nd,2r1,r2,γ
,a∈R|S| ‖WFSRSa − WTR‖2. The first inequality follows from

Claim 4.10, which can be applied since ‖WFS′RS′a′S′‖2 = O(OPT ) by (6). The second inequality
follows since S′, a′S′ = argminS∈Nd,2r1,r2,γ

,a∈R|S| ‖SWFSRSa−SWTR‖2. Applying Claim 4.10 again

to S∗, a∗, which is valid by (5), we continue to bound:

‖WFS′RS′a′ −WTR‖22 ≤ ‖SWFS∗RS∗a∗ − SWTR‖22 + C + ǫ · OPT 2

≤ ‖WFS∗RS∗a∗ −WTR‖22 + 2ǫ · OPT 2. (7)

Finally, note that since we allow S∗ ∈ Nd,2r1,r2,γ , we have:

‖WFS∗RS∗a∗ −WTR‖22 ≤ min
S∈Nd,r1,r2,γ

,a∈R|S|
‖WFSRSa+WFS̃RS̃ ã−WTR‖22

= min
S∈Nd,r1,r2,γ

,a∈R|S|
‖WFSRSa−WT1‖22 = OPT 2.

Combined with (7), this gives that ‖WFS′RS′a′ −WTR‖22 ≤ (1 + 2ǫ) ·OPT 2, which, after taking a
square root and adjusting ǫ by a constant yields (4) and in turn the theorem.

We finally present the proof of Claim 4.10 below.

Proof. Claim 4.10 can be proven following the same approach as Theorem 3.4 of [27]. For simplicity
of notation, let z := WTR. We define a set of ‘bad indices’ where the relative size of zj is signifi-
cantly larger than the leverage score τ̃j . The regression error on these bad indices will not be well
approximated via leverage score sampling. However, this is ok, since no WFSRSa can do a good
job fitting these indices, given the leverage score bounds on WFSRS . Formally, let

B =

{
j ∈ [d] :

z2j
OPT 2

≥ τ̃j
ǫ2

}
.
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Further, we let z̄ ∈ R
d be equal to z, except with z̄j = 0 for all j ∈ B. Importantly B and z̄ are

defined independently of any specific S. For any S, a ∈ R
|S| with ‖WFSRSa‖2 = O(OPT ) and any

j ∈ B, we have by the definition of the leverage score (Def. 2.3),

∣∣(WFSRSa)j
∣∣2 ≤ ‖WFSRSA‖22 · τ̃j

≤ O(OPT 2) · ǫ
2 · |zj |2
OPT 2

= O(ǫ2 · |zj |2).

This gives that

∣∣(WFSRSa)j − zj
∣∣2 −

∣∣(WFSRSa)j − z̄j
∣∣2 =

∣∣(WFSRSa)j − zj
∣∣2 −

∣∣(WFSRSa)j
∣∣2 = (1±O(ǫ)) · z2j .

Thus, for C1 =
∑

j∈B |zj |2 = ‖z − z̄‖22,
∣∣∣‖WFSRSa− z‖22 − ‖WFSRSa− z̄‖22 − C1

∣∣∣ = O(ǫ) ·OPT 2, (8)

where we use that ‖z‖22 = O(OPT 2). Using the same proof, and the fact that with probability at
least 999/1000 by Markov’s inequality, ‖Sz‖22 = O(OPT 2), we have for C2 = ‖S(z − z̄)‖22,

∣∣∣‖SWFSRSa− Sz‖22 − ‖SWFSRSa− S z̄‖22 − C2

∣∣∣ = O(ǫ) ·OPT 2. (9)

Observe that C1 and C2 only depend on the sampling matrix S and truncated vector z̄, whose
definition is independent of any specific frequency set S or coefficient vector a. Thus, with (8) and
(9) in place, to prove Claim 4.10 it suffices to show that, for all S ∈ Nd,r1,r2,γ and a ∈ R

|S| with
‖WFSRSa‖2 = O(OPT ),

∣∣∣‖WFSRSa− z̄‖22 − ‖SWFSRSa− S z̄‖22
∣∣∣ = O(ǫ) · OPT 2. (10)

Observe that by definition of B, the entries of z̄ are bounded by z̄2j ≤ OPT 2 · τ̃j
ǫ2

. Similarly, since

by assumption ‖WFSRSa‖22 = O(OPT 2) and by the definition of the leverage scores (Def. 2.3)
(WFSRSa)

2
j ≤ OPT 2 · τ̃j. Thus, sampling entries with probabilities proportional to their leverage

scores as in Def. 4.6 ensures that for any fixed S and a ∈ R
|s|, by a standard Bernstein bound, (10)

holds with high probability. This bound can then be extended to hold to all S and a via an ǫ-net
analysis as follows. Fix an S. For simplicity we assume by scaling that ‖z‖2 = 1 and OPT = Θ(1).
By Claim 3.8 in the version 1 of [27], to prove (10) it suffices to show that the following holds with
high probability, for all y ∈ Nǫ,

|‖Sy − S z̄‖22 − ‖y − z̄‖22| ≤ ǫ

where Nǫ is an ǫ-net of the set {WFSRSa : ‖WFSRSa‖2 ≤ 1}. By a standard volume argument, it
is known that one can construct such a net with log |Nǫ| = Õ(r1r2 log(1/ǫ)). We will show equation
(10) for a fixed S and all a ∈ R

|S| using Bernstein’s inequality and a union bound. We have that
E[‖Sy − S z̄‖22] = ‖y − z̄‖22 = O(1). Additionally by definition |z̄i|2 ≤ τ̃i

ǫ2 for all i. Similarly by the
definition of leverage scores |yi|2 ≤ τ̃j . This implies the following,

|yi − z̄i|2 = O

(
τ̃i
ǫ2

)
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for all i. By the construction of S, we have the following,

|[Sy − S z̄]i|2 ≤
∑

i τ̃i
mτ̃i

· τ̃i
ǫ2

≤ Õ

(
r1r2
mǫ2

)

for all i. Thus, by applying a Bernstein bound, we get the following,

Pr[|‖Sy − S z̄‖22 − ‖y − z̄‖22| > ǫ] ≤ 2 exp


−Ω̃

(
ǫ4m

r1r2

)


≤ η/|Nǫ|

for m = Õ(r1r2 log(|Nǫ|/η)/ǫ4). Taking a union bound over all y and by Claim 3.8 of [27], we get
that equation (10) holds for a fixed S and all a ∈ R

|S| with probability at least 1 − η. Setting
η = 1

100·|Nd,2r1,r2,γ
| =

1
100·|N |2r1

in the previous corollary, we have that for

m = Õ

(
r1r2
ǫ4

log(|Nǫ| · 100|N |2r1)
)

= Õ

(
r1r2
ǫ4

(
log(|Nǫ|) + log(|N |2r1)

))

= Õ

(
r1r2
ǫ4

(r1r2 + r1)

)

= Õ

(
k2 log(1/δ)

ǫ6

)
,

equation (10) holds for all S ∈ Nd,2r1,r2,γ simultaneously with probability at least 99/100. This
completes the proof of the claim.

4.5 Full algorithm.

Equipped with these tools, we now describe the recovery algorithm and its guarantees.

Algorithm 1: ToeplitzRecovery

1: Input: Query access to T ∈ R
d×d, k, ǫ, δ.

2: Init: Set r1 = O(k log8 d/ǫ), r2 = O(log d+ log(1/δ)), η = 1
100|N |r1 , τ̃j as defined in 4.8,

Nd,r1,r2,γ and Nd,2r1,r2,γ as defined in 4.1, and γ = δ/(2C2 log7(d)) as in 2.

3: Draw S1 according to 4.6, using τ̃j with m = Õ
(
k2 log( 1

δ
)

ǫ2

)
samples.

4: Set S̃, ã = argminS∈Nd,r1,r2,γ
,a∈R|S| ‖S1WFSRSa− S1WT1‖2.

5: Set TR = T1 − FS̃RS̃ ã .

6: Draw S2 according to 4.6, using τ̃j with m = Õ
(
k2 log( 1

δ
)

ǫ6

)
samples.

7: Set S′, a′ = argminS∈Nd,2r1,r2,γ
,a∈R|S| ‖S2WFSRSa− S2WTR‖2.

8: Set S̄ := S̃ ∪ S′, d := ā = [ã; a′], and F = FS̄ .
9: Return: F, d.

Theorem 1. Assume we are given query access to a PSD Toeplitz matrix T ∈ R
d×d and parameters

k, ǫ, δ. Let r = Õ(kǫ log(1/δ)). Then Algorithm 1 returns F ∈ C
d×ℓ, d ∈ R

ℓ such that F diag(d)F ∗

is a symmetric Toeplitz matrix of rank at most ℓ = O(r) and the following holds.
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1. Algorithm 1 makes Õ
(
k2 log( 1

δ
)

ǫ6

)
queries to T .

2. ‖T − F diag(d)F ∗‖F ≤ (1 + 3ǫ)‖T − Tk‖F + 2δ‖T‖F with probability at least 97/100.

Proof. By 6, with probability at least 98/100, S̃ and ã satisfy 4.5 with α = 41. The conditions
for 7 are then satisfied, so with conditional probability at least 99/100, the Toeplitz matrix T̄ :=
F diag(d)F ∗ satisfies

‖T − T̄‖F ≤ (1 + 3ǫ)‖T − Tk‖F + 2δ‖T‖F .
By a union bound, the matrix T̄ := F diag(d)F ∗ based on the output of Algorithm 1 then satisfies
‖T − T̄‖F ≤ (1 + 3ǫ)‖T − Tk‖F + 2δ‖T‖F with probability at least 97/100. The overall sample

complexity is Õ
(
k2 log( 1

δ
)

ǫ6

)
, as this is the sample complexity of S2 and dominates that of S1.

4.6 Leverage score bounds for weighted Fourier matrices.

In this subsection, we focus on proving the leverage score upper bounds for weighted Fourier matrices
of Lemma 4.8. Recall the statement of Lemma 4.8 was as follows.

Lemma 4.8. Let FS ∈ C
d×r be any Fourier matrix with symmetric (in the sense of 3) frequency

set S ⊂ [0, 1], |S| = r ≤ d,r ≤ d, and let W be as defined in 4.2 and and MS be any real valued
matrix with r rows. Then there exist non-negative numbers τ̃j for all j ∈ [d] such that the following
hold:

1. τj(WFSMS) ≤ τj(WFS) ≤ τ̃j for all j ∈ [d].

2.
∑d

j=1 τ̃j ≤ O(r log(d) log(r)).

To prove this lemma, we will use the following three helper lemmas.

Lemma 4.11. Let A ∈ C
d×r be a matrix, and let D be a diagonal matrix with positive entries

satisfying
α ≤ D2

ii ≤ β.

Then,

τi(DA) ≤ β

α
τi(A).

Proof. By the definition of leverage scores, we have the following:

τi(DA) = max
y∈Cr

|DAy|2i∑d
j=1 |DAy|2j

.

For any y, the numerator is given by |DAy|2i = D2
ii|Ay|2i . The denominator satisfies

d∑

j=1

|DAy|2j ≥ α

d∑

j=1

|Ay|2j .

As a result,

max
y∈Cr

|DAy|2i∑d
j=1 |DAy|2j

= max
y∈Cr

D2
ii|Ay|2i∑d

j=1 |DAy|2j
≤ max

y∈Cr

β|Ay|2i
α
∑d

j=1 |Ay|2j
.

This proves that τi(DA) ≤ β
ατi(A) as desired.
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Lemma 4.12. Let A ∈ C
d×r be a matrix, and let B ∈ C

d′×r be a matrix formed by taking any
subset R ⊆ [1, . . . , d] of the rows of A. Then the leverage score of any row bi in B is at least the
leverage score of row bi in A.

Proof. Let bi correspond to the ith row of A and the i′th row of B. Then by the definition of leverage
scores we have the following.

τi(A) = max
y

|Ay|2i∑d
j=1 |Ay|2j

≤ max
y

|Ay|2i∑
j∈R |Ay|2j

= max
y

|By|2i′∑d′

j=1 |By|2j
= τi′(B).

This completes the proof of the lemma.

Lemma 4.13. Let A ∈ C
d×r be a matrix, and let B ∈ C

d×r′ be a matrix formed by taking r′ linear
combinations of the columns of A (i.e. there is some matrix M ∈ C

r×r′ such that B = AM). Then
the ith leverage score of B, τi(B), is at most the ith leverage score of A, τi(A).

Proof. We again rely on the maximization characterization of leverage scores:

τi(B) = max
y

|By|2i∑d
j=1 |By|2j

= max
y

|AMy|2i∑d
j=1 |AMy|2j

≤ max
z

|Az|2i∑d
j=1 |Az|2j

= τi(A).

where the second inequality follows from the fact that {My|y ∈ C
r′} ⊆ {z|z ∈ C

r}.

Equipped with these lemmas, the high level strategy for bounding the leverage scores of WFSMS

is as follows. By 4.13, it suffices to bound the leverage scores of WFS . To do so, first we will bucket
the rows of WFS into submatrices, such that within each submatrix, the weights vary by at most a
constant factor. We will then be able to bound the leverage scores of each submatrix using Lemma
4.11, and apply Lemma 4.12 to ensure that these upper bounds remain valid upper bounds for the
entire matrix WFS .

Formally, begin by dividing WFS into submatrices as follows.

Definition 4.14. For all i ∈ [log d], let Wi be the submatrix of W consisting of rows with indices
in [d(1 − 1/2i−1) + 1, d(1 − 1/2i)]. For the edge case i = (log d) + 1, let Wi consist of only the last
row of WFS. For convenience, let Ri denote the index set of rows corresponding to Wi, and let
ri = |Ri| denote the number of rows in Wi. Note also that ri ≤ d

2i
for i ∈ [log d], and rlog d+1 = 1.
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Then we can write WFS as WFS = [(W1FS)
T ; . . . ; (Wlog d+1FS)

T ]T . Now consider any i ∈
[log d+1] and WiFS . Since Wi is diagonal and d/2i−1 ≤ (Wi)

2
j,j ≤ 2d/2i−1 for all j ∈ [ri], applying

Lemma 4.11 with β = 2α = 2d/2i we get the following for all i ∈ [log d+ 1]:

τj(WiFS) ≤ 2τj(FS,i) ∀j ∈ [ri].

Here, FS,i ∈ C
ri×s is the matrix consisting of all rows of FS in the index set Ri. Note that the

column span of FS,i and the first ri rows of FS is identical. This is because the jth column of FS,i is
a constant times the jth column of the matrix formed by considering the first ri rows of FS . Since
the first ri rows of FS forms a ri × r Fourier matrix, their leverage scores are then identical as well.
Finally, we appeal to Corollary C.2 of [15], restated below:

Corollary 8 (Corollary C.2 of [15]). For any positive integers d and s ≤ d, there is an explicit set

of values τ̃
(s)
1 , . . . , τ̃

(s)
d ∈ (0, 1]) such that, for any Fourier matrix FS ∈ C

d×s with leverage scores
τ1, . . . , τd,

∀j, τ̃ (s)j ≥ τj.

d∑

j=1

τ̃
(s)
j = O(s log s).

Thus by Corollary 8 (C.2 of [15]), we easily obtain the following claim.

Claim 4.15. For any i ∈ [log(d/r)] and any j ∈ [ri] define τ̃j,i as follows.

τ̃j,i = min

(
1,

r

min(j, d/2i + 1− j)
,
O(r6 log3(r + 1))

(d/2i)

)
.

For any log(d/r) < i ≤ log(d) and j ∈ [ri] let τ̃j,i = 1. Then we have the following.

1. τj(WiFS) ≤ τ̃j,i for all i ∈ [log d] and j ∈ [ri].

2.
∑d/2i

j=1 τ̃j ≤ O(r log r) for all i ∈ [log d].

Equipped with these tools, we can now easily finish the proof of Lemma 4.8.

Proof. Define τ̃j values for j ∈ [d] as follows.

τ̃j = τ̃i,j′. (11)

where i, j′ are chosen such that d(1− 1/2i−1) + 1 ≤ j ≤ d(1− 1/2i) and j = d(1− 1/2i−1) + 1+ j′,
and τ̃i,j are obtained from Claim 4.15. Finally, using Lemma 4.12 we can easily conclude that these
upper bounds also serve as upper bounds on the leverage scores of WFS , and by 4.13, upper bounds
on the leverage scores of WFSMS as well. This completes the proof of Lemma 4.8.

5 Conclusion.

In this paper, we study the design of sublinear algorithms for obtaining low-rank approximations of
positive semidefinite Toeplitz matrices. Given query access to any such matrix T ∈ R

d×d, one can
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trivially reconstruct it exactly by reading its first column, i.e. by reading d entries. Our main result
is that for any k, ǫ, δ, there exists a symmetric Toeplitz T̃ of rank Õ((k/ǫ) log(1/δ)) satisfying

‖T − T̃‖F ≤ (1 + ǫ)‖T − Tk‖F + δ‖T‖F ,

where Tk = argmin
B:rank(B)≤k

‖T − B‖F is the best rank-k approximation T in the Frobenius norm.

Surprisingly, such an existence result – that there exists a near optimal low-rank approximation to
T which is itself Toeplitz – was not known before. We obtain this result by proving new results about
the low rank structure of off-grid Fourier matrices, which we believe to be of independent interest.
We also present an algorithm that reconstructs such a T̃ by reading only Õ(k2 log(1/δ)poly(1/ǫ))
entries of T , beating the trivial bound of d queries and thus achieving sublinear query complexity.
We now present some of the main open problems raised by this work.

1. Is the additive error term in Theorem 2 necessary? Also, what is the minimum rank of required
to achieve the guarantee of Theorem 2?

2. Is it possible to design a sublinear time low-rank approximation algorithm that recovers a T̃
achieving the guarantee of Theorem 1?

3. Is it possible to design an algorithm with sublinear query complexity, or even sublinear run-
time, that can recover a T̃ satisfying the spectral norm low-rank approximation guarantee of
Theorem 5?

4. Can the existence of a structure preserving low-rank approximation be proven for non-PSD
Toeplitz matrices, similar to Theorem 2? Can a sublinear query and sublinear time algorithm
be designed to recover near optimal low-rank approximations to non-PSD Toeplitz matrices?
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