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Abstract

We study oblivious sketching for k-sparse linear regression under various loss functions. In
particular, we are interested in a distribution over sketching matrices S ∈ Rm×n that does not
depend on the inputs A ∈ Rn×d and b ∈ Rn, such that, given access to SA and Sb, we can recover
a k-sparse x̃ ∈ Rd with ‖Ax̃ − b‖f ≤ (1 + ε) mink-sparse x∈Rd ‖Ax − b‖f . Here ‖ · ‖f : Rn → R
is some loss function – such as an `p norm, or from a broad class of hinge-like loss functions,
which includes the logistic and ReLU losses.

We show that for sparse `2 norm regression, there is a distribution over oblivious sketches
with m = Θ(k log(d/k)/ε2) rows, which is tight up to a constant factor. This extends to `p
loss with an additional additive O(k log(k/ε)/ε2) term in the upper bound. This establishes a
surprising separation from the related sparse recovery problem, which is an important special
case of sparse regression, where A is the identity matrix. For this problem, under the `2 norm,
we observe an upper bound of m = O(k log(d)/ε+ k log(k/ε)/ε2), showing that sparse recovery
is strictly easier to sketch than sparse regression.

For sparse regression under hinge-like loss functions including sparse logistic and sparse
ReLU regression, we give the first known sketching bounds that achieve m = o(d) showing that
m = O(µ2k log(µnd/ε)/ε2) rows suffice, where µ is a natural complexity parameter needed to
obtain relative error bounds for these loss functions. We again show that this dimension is tight,
up to lower order terms and the dependence on µ.

Finally, we show that similar sketching bounds can be achieved for LASSO regression, a
popular convex relaxation of sparse regression, where one aims to minimize ‖Ax− b‖22 + λ‖x‖1
over x ∈ Rd. We show that sketching dimension m = O(log(d)/(λε)2) suffices and that the
dependence on d and λ is tight.
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1 Introduction

We study oblivious sketching for k-sparse regression. Given a data matrix A ∈ Rn×d, and a target
vector b ∈ Rn, linear regression problems aim at finding a vector x ∈ Rd such that Ax ≈ b. The
deviation from Ax to b is quantified via a loss function f(Ax, b), where popular examples include
the loss in terms of an `p norm, logistic loss, and ReLU. Sketching techniques for these problems
have been widely and successfully applied. Here, one samples a sketching matrix S ∈ Rm×n from
some distribution and attempts to solve the problem on SA and Sb. If S can be sampled from
a distribution that does not depend on either A or b, we call the sketch oblivious. Our aim is to
minimize the target dimension m, called the sketching complexity or sketching dimension, while
retaining the ability to extract a (1 + ε)-approximate solution x̃ by only using the smaller sketch
rather than the original data. A particularly desirable property for the model parameter x is
sparsity, i.e., where x is restricted to have at most k non-zero elements. Sparse linear regression
is an important technique for handling very high dimensional data sets, such as those arising
in biostatistics [Mba+21]. It produces a linear model that depends on just a small number of
parameters, and thus is more interpretable and can be learned accurately from a relatively small
data sample. From a computational point of view, imposing sparsity constraints makes the problem
significantly harder. Most unconstrained regression problems are convex and thus we can draw on
a wide array of gradient-based methods, but sparse linear regression is NP -hard [Nat95]. Many
heuristics and relaxations have been developed to solve the problem in practice, [see Tib96; Mil02;
DK08; DK18]. Their running time typically depends at least polynomially on the number n of
observations. It is thus natural to study methods for reducing the number of rows in the data so
that computations become more efficient and an approximately optimal solution is retained.

While computational savings are immediate from our results for most of the mentioned heuristics
and approximation algorithms covered in the related work (see Section 1.1), potential speed-ups
need to be verified on a case-wise basis and contrasted with the cost of applying the sketch to the
data. Additionally, sketching has other motivations such as saving memory, processing (turnstile)
data streams [CW09], and aggregating distributed data [KVW14]. We refer to [Mun23] for a brief
introduction. We stress that our bounds refer only to the reduced sketching dimension m, not to
other complexity measures.

While the performance of sketching techniques is well understood for unconstrained regression
problems, we know little about the complexity for sparse regression problems. It is clear that a
guarantee for unconstrained regression also applies to sparse regression, but it is not at all clear
that these bounds are tight. In particular, the special case of sparse recovery has many celebrated
results exploiting sparsity to reconstruct a target signal from a few measurements. Thus we ask
the following question:

Can oblivious sketching techniques benefit from
model-sparsity for various regression problems?

To our knowledge, the above question has not been investigated previously. In this paper we
answer this question in the affirmative for a large class of loss functions, including the `p loss
‖Ax − b‖p = p

√∑n
i=1 |Aix− bi|p for p ∈ [1, 2], logistic loss

∑n
i=1 ln(1 + exp(−bi · Aix)), ReLU∑n

i=1 max(0,−bi · Aix) and further hinge-like loss functions f , where we define ‖Ax − b‖f =∑n
i=1 f(Aix− bi). We also investigate the sketching complexity for popular heuristics used to im-

pose sparsity, such as LASSO regression [Tib96], where instead of strictly forcing x to be k-sparse,
we use the `1 penalized objective function minx∈Rd ‖Ax− b‖22 +λ‖x‖1 to find a sparse solution. For
all of these problems, we obtain optimal or nearly optimal sketching bounds. Crucially, the depen-
dence on d is at least linear for unconstrained regression, but it appears only logarithmically for
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sparse regression. Thus our paper makes significant steps towards exploiting the power of sparsity
for sketching regression problems.

Let Ψk = {x ∈ Rd | ‖x‖0 ≤ k} denote the set of k-sparse vectors in Rd. We also study the related
problem of k-sparse affine embeddings, where given the sketch and an estimator E(SA, Sb, x) we
require that

∀x ∈ Ψk : (1− ε)‖Ax− b‖f ≤ E(SA, Sb, x) ≤ (1 + ε)‖Ax− b‖f .

A k-sparse affine embedding is stronger than a sketch for sparse linear regression since it implies
the latter. It is a generalization of the restricted isometry property (RIP) studied in the context of
compressed sensing. The RIP is a special case where A = I is the identity matrix, b = 0, and we
seek to preserve the norm of any k-sparse x ∈ Ψk up to 1± ε distortion.

The problem of `2 sparse recovery can also be seen as a special case of sparse `2 regression,
where A = I, and we are given access only to a sketch Sb of the vector b. The goal is to recover
a k-sparse vector x̃ that is within (1 + ε) error to the minimizing x, i.e., it satisfies ‖x̃ − b‖2 ≤
(1 + ε) minx∈Ψk

‖x − b‖2. Sketching sparse regression seems very similar to sparse recovery, since
similar methods are available that yield similar upper bounds for both problems. However, our
studies imply a surprising separation result. Namely, the sparse regression problem is strictly harder
to sketch than sparse recovery.

One might wonder why we do not consider data dependent sampling algorithms in addition to
oblivious linear sketches, since sampling techniques are important tools for approximating regression
problems in the non-sparse setting. This is because it can be observed (see Theorems 5 and 6)
that sampling does not help in the case of sparse regression; sampling roughly the entire input is
necessary to achieve any non-trivial bound.

The crucial advantage of sketching over sampling seems to be the property of obliviousness to
the subspaces that need to be embedded, which allows us to take a union bound over all k-subsets
of coordinates. Sampling algorithms, however, would need a different measure for each possibility.
While data dependent importance sampling techniques are widely successful for the unconstrained
non-sparse regression problems, they do not give any non-trivial bounds in the sparse setting. This
underlines the importance of oblivious sketching techniques in the sparse context.

1.1 Related work

An important special case of the k-sparse regression problem is compressed sensing [CRT06; Don06;
Bar+08] where the matrix A is the n×n identity matrix and one seeks to find a sparse vector x that
represents the non-sparse signal b well using a linear sketching (or sensing) matrix. It is well known
that a matrix for that problem requires m = Ω(k log(d/k)) rows [Ba+10], which was improved to
m = Ω(k log(d/k)/ε + k/ε2) by Price and Woodruff [PW11]. As for upper bounds, it is known
that a (Gaussian) RIP matrix can be constructed with m = O(k log(d/k)) rows, which suffices to
solve the problem for constant ε. Recently, new and tighter proofs for the Gaussian construction
appeared [LXG20] which implicitly yield m = Θ(k log(d/k)/ε2). However, to solve sparse recovery,
neither the Gaussian matrix nor the RIP are necessary. For instance, when sparsity 2k is allowed,
the problem can be solved, with constant probability for any particular input, using CountSketch
[CCF04] with m = O(k log(d/k)/ε) rows [PW11].

To our knowledge the generalization of oblivious linear sketching for sparse linear regression has
not been investigated before. However, there is a body of work on the column selection problem for
sparse linear `2 regression. The sparse regression problem, i.e., minimizing the regression cost over
all k-sparse vectors, is NP -hard [Nat95], and under reasonable complexity-theoretic assumptions it
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is even hard to approximate within a significantly stronger bound than the trivial ‖b‖2 in quasipoly-
nomial time [FKT15]. In light of this, some authors have identified and characterized instances
for which widely applied heuristics have performance guarantees [DK08; DK18; GMS03; Tro06a;
Tro06b; TGS06]. Another direction that is closer to the used heuristics, is the online version of
the column selection problem. It was shown by [FKT15] that an online algorithm whose iterations
run in polynomial time would imply NP ⊆ BPP , even if it is allowed to increase the number
of columns by an O(log d) factor. In light of these impossibility results, research has focused on
inefficient algorithms. The online algorithm of [FKT15] runs in roughly O(k

(
d
k

)
) time per iteration.

This was improved by Har-Peled, Indyk, and Mahabadi [HIM18] to roughly Õ(dk−1) by giving a
data structure that approximates, to within a (1 + ε) factor, the geometric distance query to the
closest (k−1)-dimensional flat spanned by the input points, leveraging the geometric interpretation
of sparse linear regression. The same reference gives an impossibility result of roughly Ω̃(dk/2/ek)
for any multiplicative error approximation by reducing from the k-SUM problem. Assuming the
RIP property, [Kal+17] give an efficient online algorithm with guarantees.

The heuristic that is arguably most used in practice for solving sparse regression is the least
absolute shrinkage and selection operator (LASSO) by Tibshirani [Tib96]. It introduces a convex
relaxation of the `0 constraint, replacing it by an `1 constraint. It was shown for well-behaved
matrices A, that the LASSO algorithm recovers a (nearly optimal) sparse solution [CRT06; Don06].
The resulting Lagrangian form is minx∈Rd ‖Ax− b‖22 + λ‖x‖1. Since the λ‖x‖1 regularization term
is non-negative, it is immediate that an `2-subspace embedding is sufficient for preserving the cost
of any x ∈ Rd within (1 ± ε) multiplicative error with m = Θ(d/ε2) rows [Sar06; NN14]. To our
knowledge there are no results on sketching this objective with fewer rows by exploiting the sparsity
induced by the regularizer.

For dense linear `p regression there are numerous sketching results. Starting with `2, [Sar06]
showed that m = O(d/ε) rows suffice to preserve the minimizer up to 1+ ε error. This was comple-
mented by a matching lower bound by [CW09]. Extensions to `p regression via oblivious `p subspace
embeddings and sampling were given in [Cla05; Das+09; SW11; WZ13; CW15; WW19; LWY21].
Recent works [MOW21; MOW23] gave the first oblivious linear sketches for logistic regression and
(implicitly) for the ReLU function. Importance sampling algorithms for those generalized linear
regression problems were developed by [Mun+18] and further improved and generalized [MMR21;
MOP22; WY23].

2 Our techniques and results

Our results are summarized in Table 1 and cover bounds on the reduced sketching dimension m,
not on other complexity measures such as computational cost. Our upper bounds are for affine
embeddings, so an algorithm using our sketch enjoys approximation bounds over the entire search
space. This straightforwardly implies matching minimization upper bounds. Our lower bounds are
for the more challenging minimization variants, except for the hinge-like losses. Our bounds are
tight for sparse `2 regression. The generalization to `p is tight up to an additive O(k log(k/ε)/ε2)
term; specifically, this means our result is tight for reasonably small k = O(

√
εd). The ReLU

upper bound has another Õ(µ2) factor, in addition to the gap reported for `1. Here µ is a natural
parameter that is needed to parameterize the complexity of compressing data below Ω(n) for those
losses [Mun+18]. This also holds for hinge-like loss functions (including logistic loss) which adds
another additive log n, and the complementing lower bound is slightly weaker in the sense that it
holds for k-sparse affine embeddings instead of the minimization problem.

Any subsampling approach has a matching Θ(n) bound for any loss function. The lower bound is
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Table 1: Summary of results. Here µ is a data dependent complexity parameter [Mun+18], and λ
is the regularization parameter for LASSO, see the main text for details.

Loss function / type Bound Reference

`2 Θ(k log(d/k)/ε2) Theorems 1 and 7

`p, p ∈ [1, 2)

Lower bound Ω(k log(d/k)/ε2) Theorem 2

Upper bound O(k log(d/k)/ε2 + k log(k/ε)/ε2) Theorem 8

ReLU & hinge-like

Lower bound Ω(k log(d/k)/ε2) Corollaries 3 and 4

Upper bound for ReLU O(µ2k log(µd/ε)/ε2) Theorem 9

Upper bound for hinge-like O(µ2k log(µnd/ε)/ε2) Theorem 10

Any loss via sampling Θ(n) Theorems 5 and 6

LASSO with λ‖x‖1
Lower bound Ω(log(λd)/λ2) Theorem 13

Upper bound O(log(d)/(λε)2) Theorem 12

`2 sparse recovery

Lower bound Ω(k log(d/k)/ε+ k/ε2) [PW11]

Upper bound O(k log(d)/ε+ k log(k/ε)/ε2) Theorem 14

given in the minimization setting and for subspace embeddings with different levels of obliviousness
to the data. For LASSO with regularization parameter λ, our upper bound is m = O(log(d)/(λε)2),
which we complement by a lower bound of m = Ω(log(λd)/λ2). Finally, our upper bound for `2
sparse recovery leaves only a small additive gap of O(k log(k/ε)) to the best known lower bound.
More interestingly, the bound is sufficient to yield a separation from the strictly harder sparse
regression problem. In summary, our bounds are tight up to lower order (additive) terms with
general parameterizations, and they are tight for reasonably small values of k/ε.

In the remainder we present our main results and the main ideas and technical challenges behind
their proofs. The formal proofs and details are moved to their respective appendices for a concise
presentation.

2.1 Lower bounds

We obtain our lower bounds by giving a sequence of reductions. Our main lower bound for sparse
`2 regression (from which the further bounds will be derived) is obtained by a reduction from
approximate (constant fraction) support recovery for sparse PCA (sPCA).

We note that a related reduction was given in [BPP18], whereas the hardness of the approximate
sPCA was covered in [CMW13]. However, the combination of these prior works does not give the
desired hardness result for our problem for the following reasons. Their reduction requires d exact
sparse regression solves, where each column is regressed on all remaining columns. The decision
if the column in iteration i is included in the sparse support is done by comparing the projected
norm onto the optimal sparse subspace to a certain fixed threshold. The main issue with this is
that they get only a k2 dependence in the reduction from sPCA to sparse regression rather than k,
which is necessary in their analysis to separate between columns being in the support or not. It is
unclear how to replace those steps with randomized decisions without inflating the dependence on
k or other parameters even more. Further, introducing randomization in each iteration would yield
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only a lower bound against 1/d error probability as opposed to our lower bound against constant
probability.

To prove our optimal lower bound against constant error, we give a reduction by solving only one
single regression problem. The arguments and support set constructions from prior work [AW09;
CMW13] are not directly applicable for the following reasons: we plant the information on the
unknown support onto an additional column which we regress onto the standard columns. This
additional information is weighted sufficiently high such that it allows us to recover (a constant
fraction of) the support.

Crucially, the weight is also sufficiently low, such that the support recovery problem remains
hard to solve. But this needs to be reproven using our techniques, which then implies the hardness
of the sparse regression problem. We note that full recovery has an Ω(k log(d − k)) lower bound
[AW09], which is larger than our upper bound on the sparse regression problem. We thus rely on
a relaxation to approximate constant fraction support recovery using error correcting codes, which
requires us to prove a novel lower bound for the simplified problem, where the additional planted
information is given to the algorithm.

We build on [AW09] as our starting point. The authors studied sPCA for a spiked covariance
model, where we take measurements from a Gaussian with a covariance matrix (Id + vvT ) and v
is a k-sparse vector. Here, to find the largest eigenvector means that based on vectors drawn from
the Gaussian distribution, we need to find the vector v. Since all non-zero entries have the same
value, this reduces to finding the k-sparse support of v. The authors show that based on a small
number of measurements, this problem is impossible to solve with good probability by information-
theoretic arguments. Here we adapt their high level intuition and prove novel hardness bounds for
our adapted variant of sPCA.

Sparse `2 regression We sketch the proof of our main theorem. Several technical details are
omitted for brevity of presentation. The detailed technical derivations are in the appendix.

Theorem 1. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse `2
regression with an arbitrary estimator E(SA, Sb, x), such that x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies
‖Ax̃− b‖2 ≤ (1 + ε) minx∈Ψk

‖Ax− b‖2 with constant probability. Then m = Ω(k log(d/k)/ε2).

Our proof is structured as follows: First, we construct a suitable (hard) distribution over k-
sparse supports, which is used to define our input distribution. Second, we prove the impossibility
of recovering a constant fraction of the support with a small number of measurements (rows) from
the input distribution below an information-theoretic lower bound. Third, we construct an `2-
regression instance for which any 1 + Θ(ε) approximation derived from an oblivious sketch, paired
with an arbitrary estimator, reveals a constant fraction of the support. The hardness result thus
turns over to the regression problem.

For constructing the hard distribution (first proof step), we construct an error correcting code
C of roughly size |C| = ( dk )k consisting of k-sparse binary vectors that overlap in at most ck indexes.
The code is also exactly balanced in the following sense. Every single index i appears in exactly the
same number of codewords as any other index i′, i.e., roughly ( dk )k−1 = k

d |C| times, and each pair
(i, j), for i 6= j, appears exactly the same number of times as any other pair (i′, j′), for i′ 6= j′, i.e.,

roughly ( dk )k−2 = k2

d2
|C| times. We augment each codeword by another (w.l.o.g. first) coordinate,

which is fixed to 1.
We pick a codeword c ∈ C uniformly at random and we let our distribution over n×d inputs be

Z = [b, A] = G(Id + vvT )1/2, where G is a random Gaussian matrix, i.e., each Gij
i.i.d.∼ N(0, 1), and
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for all j ∈ [d]\{1} we set vj = ε√
k
cj whereas for the first, augmented coordinate, we set v1 = c1 = 1.

This concludes the description of the hard input distribution and the situation before sketching.
Now, since we prove a lower bound against arbitrary estimators, which could for example change

the basis and rescale in an arbitrary but appropriate way, we can assume w.l.o.g. that the sketching
matrix S ∈ Rm×n has orthonormal rows. The sketch thus takes the form

SZ = SG(Id + vvT )1/2 = H(Id + vvT )1/2,

where H is again a Gaussian matrix. SZ thus has the same Gaussian distribution as the input
matrix Z but the number of rows is reduced from n to m < n.

We move to the second proof step, i.e., the impossibility of recovering a constant fraction of the
support with a small number of measurements (rows) from the above input distribution. To this
end, we let X be a random variable that has the distribution of one row of our sketch. We use
Fano’s inequality to bound the failure probability in terms of the size of the code C and the mutual
information that quantifies how much information the rows of the sketch, denoted by Xm, reveal
about the unknown support U of c ∈ C:

P[error] ≥ 1− I(U ;Xm) + log 2

log(|C| − 1)
.

In order to bound the mutual information, we observe by the chain rule for entropy and the
maximum entropy property of the Gaussian distribution [CT06] that the mutual information can
be bounded in terms of log determinants:

I(U,Xm) = H(Xm)−H(Xm|U)

≤ m

2
log detE[xxT ]− m

2
log detE[xxT |U ]

Leveraging the balanced structure of our code construction, the matrices involved have a nice block
structure which we exploit to bound the mutual information by O(ε2m). Further note that the
logarithmic code size satisfies log(|C|) = O(k log(d/k)). Plugging this back into Fano’s inequality
we obtain a lower bound m = Ω(k log(d/k)/ε2) against any constant error probability support
recovery algorithm, which concludes the second step of our proof. We refer to the appendix for
formal details.

Finally, we describe the reduction to the sparse `2 regression problem, i.e., the third and last
step of our proof. Given Z = [b, A] as described above, we consider the following instance:

min
x∈Ψk

∥∥∥∥[ MM . . . M
A

]
x−

[ √
kM
b

]∥∥∥∥
2

,

where M is sufficiently large such as to enforce
∑

i xi to be close to
√
k. In particular this is needed

to prevent the trivial solution x = 0, and more precisely to impose ‖x‖2 ≥ 1√
k
‖x‖1 ≥ 1√

k

∑
i xi ≈ 1.

Since we prove a lower bound against an arbitrary estimator, we can assume that it is given
the first column of any sketching matrix S′ = [s1, S] and the structure of the additional row
r1 = [M,M, . . . ,

√
kM ] including the value of M . This enables the estimator to remove the influence

of the tensor product s1 · r1, such that it can proceed with the estimation on SZ = S[b, A] only.
Finally, we show that if we solve the above problem (on the sketch) up to a factor of 1 + Θ(ε),
then the resulting solution x̃ shares a constant fraction of its support with the actual support U of
the random codeword c ∈ C. Due to the error correcting code construction, this uniquely identifies
the full unknown support U , which concludes the third step of our proof. We hereby obtain our
m = Ω(k log(d/k)/ε2) lower bound against constant error probability oblivious sketching for sparse
`2 regression.
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Sparse `p regression Our next aim is to extend the m = Ω(k log(d/k)/ε2) result to the mini-
mization version of `p norm regression for arbitrary p ≥ 1.

Theorem 2. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-
sparse `p regression for any p ≥ 1 with an estimator Ep(SA, Sb, x), such that the minimizer
x̃ ∈ argminx∈Ψk

Ep(SA, Sb, x) satisfies ‖Ax̃ − b‖p ≤ (1 + ε) minx∈Ψk
‖Ax − b‖p. Then m =

Ω(k log(d/k)/ε2).

We start with `1 and discuss the general case p ∈ [1,∞) below. By Dvoretzky’s theorem, we
can embed `2 into `1 with distortion 1 ± ε using a random Gaussian mapping G. More precisely,
‖Ax−b‖2 = (1±ε)‖GAx−Gb‖1 for all k-sparse x, where G has O(n log(1/ε)/ε2) rows and consists
of i.i.d. Gaussians. In particular it is an oblivious embedding. Now suppose we had a sketch S for
the k-sparse `1 regression problem. Then we can show that the minimizer x̃ for ‖SGAx − SGb‖1
is also a 1 +O(ε) approximation for ‖Ax− b‖2. This implies that SG is an oblivious sketch for the
`2-norm problem (with an `1-norm estimator), and thus S requires m = Ω(k log(d/k)/ε2) rows.

Similarly, `2 embeds obliviously and up to 1 ± ε into `p for all p ≥ 1 using a random Gaussian
matrix G with a number of rows depending on O(n) for 1 ≤ p ≤ 2 and on nO(p) for p > 2, [see
Mat13, p. 30], but the number of rows of G does not matter in our context since it is reduced by
the sketch S. It follows that the m = Ω(k log(d/k)/ε2) lower bound holds for `p, for every p ≥ 1.

Sparse ReLU and hinge-like loss regression We further extend the lower bound to the ReLU
loss function. This time we reduce from the sparse `1 regression problem by designing an exact
embedding of `1 into ‖ · ‖ReLU.

Corollary 3. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse
ReLU regression with an estimator EReLU(SA, Sb, x), such that x̃ ∈ argminx∈Ψk

EReLU(SA, Sb, x)
satisfies ‖Ax̃− b‖ReLU ≤ (1 + ε) minx∈Ψk

‖Ax− b‖ReLU. Then m = Ω(k log(d/k)/ε2).

More precisely, it holds for all x ∈ Rd that ‖x‖1 = ‖x‖ReLU + ‖ − x‖ReLU. A similar argument
as in the case of the Gaussian `2 → `p embedding yields the lower bound for sketching ‖ · ‖ReLU,
when we replace G by the embedding matrix P = [I,−I]T , which duplicates and negates the input
vector. It follows that SP is an oblivious sketch for `1 and thus has the same lower bound of
m = Ω(k log(d/k)/ε2).

Finally, in this line of reductions, we deduce a lower bound for a k-sparse affine embedding
for the class of hinge-like loss functions [MMR21], which are close to the ReLU function up to an
additive deviation a (e.g., logistic loss with a ≤ ln(2)), see Definition 1.

Definition 1. We say f(·) is an (L, a1, a2) hinge-like loss function if f is L Lipschitz, ∀x ≥
0: f(x) ≥ a2 > 0, and ∀x : |f(x)− ReLU(x)| ≤ a1.

Corollary 4. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious subspace embedding for
some hinge-like loss function f with an estimator Ef (SA, Sb, x), such that we have ∀x ∈ Ψk : (1−
ε)‖Ax− b‖f ≤ Ef (SA, Sb, x) ≤ (1 + ε)‖Ax− b‖f . Then m = Ω(k log(d/k)/ε2).

Since our minimization lower bound for ReLU implies an affine embedding lower bound as a
direct consequence, it is sufficient to show that any k-sparse affine embedding for f yields a k-sparse
affine embedding for ReLU. The difficulty is that we have an approximate multiplicative embedding
of ReLU into f only for the positive part. Hence, the remaining part where ReLU evaluates to zero
needs to be taken care of separately, and the minimization lower bound does not follow directly as
in our previous arguments.
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Sampling fails for sparse regression Sampling based algorithms are important tools in sketch-
ing for non-sparse regression [DMM06; Das+09; Mun+18; MMR21]. However, they do not give
any non-trivial results in the sparse setting.

To corroborate why our upper bounds all build on oblivious linear sketches, rather than sam-
pling, we prove lower bounds for matrices S that subsample (and reweight) rows of the input. Here
we show that if A is the identity and b is a random standard basis vector, then any algorithm that
has access only to SA and Sb, must fail with probability > 1/2 already in the case k = 1.

Theorem 5. Consider any bounded approximation factor α ≥ 1 and any ‖ · ‖ : Rn → R≥0 which
evaluates to 0 on the all zeros vector and to some positive number on any other vector. For any
n > 9, there is some input matrix A ∈ Rn×n and distribution over vectors b ∈ Rn such that for any
sampling matrix S ∈ Rm×n with m < n/3, no algorithm that accesses just SA and Sb can output a
k-sparse x̃ ∈ Ψk with ‖Ax̃− b‖ ≤ α ·minx∈Ψk

‖Ax− b‖ with probability at least 1/2 (over the choice
of b and any possible randomness in the algorithm).

The reason is that by the random choice of b, if m < n/3 then the sketch contains only rows
where b = 0, but to obtain a bounded approximation error, it is crucial to retain the non-zero row.
By construction, A cannot help to find this coordinate and thus all possibilities that are not in the
sample have equal probability of roughly 1/n to succeed. A bound of m = Ω(n) thus follows.

It is crucial for this bound that the algorithm has no access to b when S is being constructed,
supporting the fact that it is the property of obliviousness that separates sketching from sampling
for sparse regression. However, if our aim is to obtain a k-sparse affine embedding via sampling
then an m = Ω(n) bound follows even if the algorithm has full access to the data and even if
k = 1, A = I and b = 0, which also means that the RIP property cannot be obtained via sampling.

Theorem 6. Consider any bounded approximation factor α ≥ 1 and any ‖ · ‖ : Rn → R≥0 which
evaluates to 0 on the all zeros vector and to some positive number on any other vector. For any
n > 9, there is some input matrix A ∈ Rn×n such that there is no sampling matrix S ∈ Rm×n with
m < n, which satisfies for all k-sparse x ∈ Ψk, α−1‖Ax‖ ≤ ‖SAx‖ ≤ α‖Ax‖.

We note that in contrast to the impossibility results on sampling, sketching succeeds by relatively
simple union bound arguments, e.g., [Bar+08] for the `2 case, as we will see in the next section.

2.2 Upper Bounds

Sparse `2 regression Again we start with `2. The upper bound is similar to the known construc-
tions [CRT06; Don06; Bar+08] of RIP matrices via Johnson-Lindenstrauss embeddings [JL84], i.e.,
Gaussian matrices. The main difference to these works is that the subspaces formed by any fixed
k-sparse solution space need not be orthogonal or aligned with the standard basis vectors.

Theorem 7. Let A ∈ Rn×d, b ∈ Rn. There exists a distribution over random matrices S ∈ Rm×n
with m = O(k log(d/k)/ε2) such that it holds with constant probability that ∀x ∈ Ψk : (1− ε)‖Ax−
b‖2 ≤ ‖S(Ax− b)‖2 ≤ (1 + ε)‖Ax− b‖2.

The idea is that there are at most
(
d
k

)
≤ (ed/k)k different k-sparse supports and each of them

corresponds to one choice of k columns of A. Every such choice spans a k-dimensional linear
subspace of Rn. By the subspace embedding construction of [Sar06], each subspace formed by one
choice of k columns can be handled by embedding the points in a net of size (3/ε)k covering the unit
ball within the subspace. The remaining vectors can be related to the net points by the triangle
inequality and the embedding extends to vectors of arbitrary norm outside the unit sphere by
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linearity. Indeed, by a more sophisticated argument (see, e.g., [Woo14]) the net can be constructed
with an absolute constant ε0 := 1/2 instead of ε. So the total number of points to embed up to
(1 ± ε) distortion is bounded by |N | ≤ (d/k)k · ck for an absolute constant c. The embedding
can be accomplished via the Johnson-Lindenstrauss lemma followed by a union bound, by using a
Gaussian matrix with m = O(log(|N |)/ε2) = O(k log(d/k)/ε2) rows, matching the lower bound.

Sparse `p regression Towards an extension to `p we focus on p = 1 first. Unlike the `2 case, it
is known that a direct embedding of `n1 into `m1 is, even for a fixed constant ε, either exponential,

i.e., m ∈ Ω(2
√
d) or must incur a distortion of Ω(d/polylog(d)) [WW19; LWY21], and so (1 ± ε)-

approximation seems out of reach. Another alternative is the non-linear median estimator of [Ind06]
which is usually avoided since it leads to a non-convex and usually hard optimization problem in the
sketch space. However, we note that k-sparse regression is already non-convex and NP -hard. So
this is a suitable choice in our setting. The sketching matrix of [Ind06] is a linear sketch C ∈ Rm×n
whose entries are i.i.d. Cauchy random variables. Those are known to be 1-stable, meaning that
their dot product with a vector x is again a Cauchy random variable with scale ‖x‖1 so that
each row yields a reasonable estimator. However, to achieve concentration, the overall estimator
is the median of all row estimators instead of their `1-norm. This sketch has been combined with
a net argument for `1 in [Bac+16] to obtain a sketching dimension of O(k log(k/εδ)/ε2) for a k-
dimensional subspace. However, simply taking a union bound over the

(
d
k

)
choices of k columns

would result in m = O((k2 log(d/k) + k log(k/ε))/ε2), which is far from the lower bound. We open
up the proof to improve this to m = O((k log(d/k) + k log(k/ε))/ε2), which matches our lower
bound unless k is relatively large (in the order of k = ω(

√
εd)).

Theorem 8. Let A ∈ Rn×d, b ∈ Rn, p ∈ [1, 2). There exists a distribution over random matrices
S ∈ Rm×n with m = O(k(log(d/k) + log(k/(εδ)))/ε2) such that it holds with probability at least
1 − δ that ∀x ∈ Ψk : (1 − ε)‖Ax − b‖p ≤ ‖S(Ax − b)‖med ≤ (1 + ε)‖Ax − b‖p, where for arbitrary
y ∈ Rd, ‖y‖med := median{|yi| | i ∈ [d]}.

We obtain similar upper bounds by generalizing this result to `p, p ∈ [1, 2). The sketching matrix
is again a linear sketch C ∈ Rm×n whose entries are i.i.d. random variables drawn from a p-stable
distribution, generalizing the 1-stable Cauchy distribution. Such an extension has been proposed by
[Ind06] for sketching single vectors but to our knowledge has never been worked out due to the lack
of closed form expressions for the cumulative density function (cdf) and probability density function
(pdf), except for p ∈ {1, 2}. Here we show how to obtain directly a subspace embedding for all
k-sparse vectors. To this end we leverage bounds on the tails of p-stable distributions [B LM18]. We
note that p-stable distributions are leptokurtic. More specifically, they are heavy-tailed with decay
Pr[|X| > τ ] ≤ 1/τp except for p = 2. Therefore we need to rely on a non-linear quantile estimator
to achieve concentration for any p ∈ [1, 2) to construct and apply the net argument, as in the case
p = 1 described above. A more intriguing question is how to analyze the cdf of p-stables without
closed form expressions. Our solution to this problem comes from the fact that the characteristic
function of any p-stable distribution is known in closed form and equals the pdf of a p-generalized
normal distribution up to a normalizing constant [Dyt+18]. I.e., it is given by φ(t) = exp(−|γpt|p),
where γp is a constant scale parameter that depends on p. Using an inversion theorem of Lévy, we
can analyze the cdf and its derivative via an integral involving the characteristic function. As a
side result we affirm a conjecture by [Ind06] that a (1 ± ε) approximation can be obtained via the
median estimator for all p ∈ [1, 2]1.

1The reference [Ind06] gives a non-constructive proof showing that there exists some (unknown) quantile, possibly
depending on p and ε, that yields a good estimator.
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ReLU and hinge-like loss functions It is well-known [Mun+18] that without any assumptions,
these types of functions do not admit relative error sketches with o(n) rows. To address this issue,
[Mun+18] introduce a natural notion for the complexity of sketching the matrix A, which we also
use to parameterize our results. Intuitively, the parameter µ := supx∈Rd\{0}‖(Ax)+‖1/‖(Ax)−‖1 is
large when there is some x that produces a significant imbalance between the `1-norm of all positive
and the `1-norm of all negative entries. This can occur, e.g., when the data admits perfect linear
separability. However, as [Mun+18] argued, we typically expect µ to be small. These assumptions
were recently leveraged to develop the first oblivious linear sketches for logistic regression [MOW21;
MOW23], which led to an efficient algorithm for the minimization problem in the non-sparse regime.
Another recent contribution of [MMR21] led to small dependencies on d, µ and ε in the regime of
sampling and coreset algorithms. However, we already argued that sampling would not work in
our setting of sparse regression.

We therefore combine and extend those results to sketching a wider class of loss functions and
with better dependencies on the approximation parameters, based on the median sketch for `1. We
note that this sacrifices the efficiency of optimization in the sketch space, but as we have argued
before, in the context of sparse regression, finding the right support is already a hard problem,
which motivates us to focus on the best possible parameterization.

Theorem 9. Let A ∈ Rn×d, b ∈ Rn. There exists an oblivious sketch S with O(µ
2k
ε2

log(µdεδ )) rows
and an estimator gReLU(SA, Sb, x), such that with probability at least 1 − δ, we have ∀x ∈ Ψk :
(1− ε)‖Ax− b‖ReLU ≤ gReLU(SA, Sb, x) ≤ (1 + ε)‖Ax− b‖ReLU.

Our k-sparse affine embedding sketch leverages the fact that ReLU(x) = (
∑

i xi + ‖x‖1)/2,
since the negative entries are contained negatively in the sum and again positively in the norm, so
they cancel. The positive values are positive in both parts and thus counted twice, so dividing by
2 yields the exact value of ReLU(x). The sum of entries can be sketched exactly using only one
row vector and the `1 norm is sketched via the (1-stable) Cauchy sketch with median estimator,
as detailed above in the previous paragraph. Now, the error of this estimate is ε‖x‖1 but by
the µ-complexity assumption, the `1 norm is within roughly a µ-factor of the positive entries, so
folding µ into ε yields an error of εReLU(x). We extend this result to an even richer class of
hinge-like loss functions, including logistic regression. Those functions are additively close to the
ReLU function, see Definition 1. The logistic regression loss ζ(x) = ln(1 + exp(x)), for instance,
has asymptotes equal to ReLU in the limit of ±∞. However, close to zero, the two functions differ
more significantly, attaining a bounded maximum deviation of ζ(0)− ReLU(0) = ln(2).

Theorem 10. Let A ∈ Rn×d, b ∈ Rn, and let f be an (L, a1, a2) hinge-like loss function. There

exists an oblivious sketch S with m = O( c
10µ2k
ε2

log( cnµdεδ )) rows, where c = max(1, L, a1, 1/a2),
and an estimator gf (SA, Sb, x), such that, with probability at least 1 − δ, we have ∀x ∈ Ψk :
(1− ε)‖Ax− b‖f ≤ gf (SA, Sb, x) ≤ (1 + ε)‖Ax− b‖f .

The idea is now to split the loss function into two components
∑

i(ζ(xi) − ReLU(xi)) +∑
i ReLU(xi). The ReLU function can be dealt with as described in the paragraph above and

the remainder is a sum over bounded terms. This again enables us to achieve concentration and
union bound over the net of k-sparse vectors up to an additive error of roughly εnµ . This error
can be charged by a complementing lower bound which follows from leveraging the µ-complexity
assumption, akin to [MMR21; MOW21], and finally yields a relative error guarantee.

For completeness, we have the following simple result that yields a connection between mini-
mizing in the sketch space of a k-sparse affine embedding, as in all upper bounds above, and the
original minimization problem.
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Corollary 11. Let A ∈ Rn×d, b ∈ Rn. Let ‖ · ‖ : Rn → R≥0 be any loss function. Let S be
an oblivious linear sketch of [A, b], and let E(SA, Sb, x) be an estimator that satisfies ∀x ∈ Ψk :
(1 − ε)‖Ax − b‖ ≤ E(SA, Sb, x) ≤ (1 + ε)‖Ax − b‖. Then x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies
‖Ax̃− b‖ ≤ (1 +O(ε)) minx∈Ψk

‖Ax− b‖.

2.3 LASSO Regression

LASSO regression [Tib96] is a convex relaxation of k-sparse `2 regression and enjoys large popularity
as a heuristic for inducing sparsity and feature selection. LASSO regression is a special subject
of our investigation, since here we do not assume that any solution is k-sparse. In this case, a
subspace embedding for the dense `2 problem is possible for sketching down to m = Θ(d/ε2)
dimensions [Sar06; NN14]. Also in cases where the regularization parameter is very small and thus
the norm of the solution is actually unconstrained, the problem becomes equivalent to least squares
regression, in which case Θ(d/ε) is necessary and sufficient [Sar06; CW09]. Usually, however, the `1
regularization is imposed to yield a sparse minimizer, for which we can again hope to be able to take
advantage of the induced sparsity, parameterized by the value of the regularization parameter λ
such as to reduce to poly(1/λ, log d) rows. Here we give an upper bound for sketching that depends
on an `1 regularization parameter λ.

Theorem 12. Consider A ∈ Rn×d, b ∈ Rn, and λ ∈ (0, 1). Assume that ‖A‖2 ≤ 1 and ‖b‖2 ≤ 1,
If S ∈ Rm×n is a random Gaussian matrix (i.e., each entry is sampled i.i.d. from N(0, 1/m)) then

for any ε, δ ∈ (0, 1) and m = O( log d/δ
λ2·ε2 ), with probability at least 1 − δ, if x̃ = argminx∈Rd ‖SAx −

Sb‖22 + λ‖x‖1 then ‖Ax̃− b‖22 + λ‖x̃‖1 ≤ (1 + ε) ·minx∈Rd ‖Ax− b‖22 + λ‖x‖1.

Observe that our constraints on ‖A‖2, ‖b‖2 are necessary, since LASSO regression is not scale
invariant. The result follows by first showing that the optimizer must have a bounded norm in
terms of the optimal objective value ‖x‖1 ≤ 2·OPT

λ . This allows us to focus on the set T = {y =
Ax− b : ‖x‖1 ≤ 2·OPT

λ }, which by the bounded norm, can be expressed as the convex hull of 2d+ 1
points in the unit ball. For this set, we can use an embedding result of [NN19] to obtain an additive
error of ελ for all vectors in the set T , which allows us to relate the sketching error to O(ε ·OPT ),
and which finally yields our 1 + ε relative error approximation result.

We complement the upper bound by the following lower bound that matches the dependence on
d and λ. The proof builds on our new techniques developed for sparse `2 regression. The condition
of bounded norm inputs A, b, however, does not allow us to plant the additional row gadget. Thus,
we need to choose a smaller λ by a factor of ε, which unfortunately cancels the ε dependence in the
previous `2 lower bound. Still, our result shows that log(λd)/λ2 rows are necessary for any sketch
with an estimator that allows to solve LASSO to within a 1 + ε approximation.

Theorem 13. Let A ∈ Rn×d, b ∈ Rn with bounded ‖A‖2 ≤ 1 and ‖b‖2 ≤ 1, and let λ ∈ (0, 1). Sup-
pose S ∈ Rm×n is an oblivious linear sketch for LASSO regression with an estimator Eλ(SA, Sb, x),
such that with constant probability x̃ ∈ argminx∈Ψk

Eλ(SA, Sb, x) satisfies ‖Ax̃ − b‖22 + λ‖x̃‖1 ≤
(1 + ε) ·minx∈Rd ‖Ax− b‖22 + λ‖x‖1. Then m = Ω( log(λd)

λ2
).

2.4 Separation of Sparse Recovery from Sparse Regression

Here we give an upper bound of m = O(k log(d)/ε+k log(k/ε))/ε2) that gets very close to the lower
bound m = Ω(k log(d/k)/ε + k/ε2) of [PW11]. Surprisingly, this provides a separation between
the k-sparse recovery problem and the k-sparse regression problem. Combined with our main
Ω(k log(d/k)/ε2) lower bound, it shows that k-sparse regression is strictly harder to sketch than
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sparse recovery. To obtain the new upper bound, the issue is that we need to figure out which
subset to use, but cannot afford to estimate every subset’s cost, even though for each subset we
can get a good estimate. To cope with this problem we run in parallel a two-stage estimation
procedure: one CountSketch that gives a rough estimate of the entries, which yields a superset I
of the k coordinates of interest, i.e., I ⊆ [d] of size |I| = O(k/ε); and another CountSketch that
has a higher precision, but is required only to recover estimates for the relatively small number
of k-subsets of the set I. Now, if we output the vector that is supported on the top k entries in
I together with their estimates of the entries obtained from the high precision sketch, this gives
the desired 1 + ε approximation for k-sparse recovery with fewer rows than necessary to solve the
k-sparse regression problem.

Theorem 14. On input x ∈ Rd, the above sparse recovery scheme uses O(k log(k/ε)/ε2+k log(d)/ε)
measurements and, with probability at least 1− 1/ poly(d)− 1/ poly(k/ε), returns a k-sparse vector
x̂ ∈ Ψk satisfying ‖x− x̂‖22 ≤ (1 + ε) minxk∈Ψk

‖x− xk‖22.

3 Conclusion

In this paper we study the complexity of oblivious linear sketching for sparse regression problems
under various regression loss functions such as `p regression, logistic regression, ReLU loss, and
hinge-like loss functions. Our results are essentially2 tight bounds of Θ(k log(d/k)/ε2) for all those
problems. We further study the sketching complexity of LASSO, a popular convex relaxation often
used as a heuristic for solving sparse linear regression. We give the first bound of O(log(d)/(λε)2)
going below the linear dependence on d, where λ is the regularization parameter. Furthermore we
provide a separation result from the sparse recovery problem studied in compressed sensing. Surpris-
ingly, we find that the sparse regression problem requires m = Ω(k log(d/k)/ε2) and is thus strictly
harder to sketch than sparse recovery, for which we show a new m = O(k log(d)/ε+ k log(k/ε)/ε2)
upper bound. We also show that while data dependent importance sampling techniques are widely
successful for the unconstrained non-sparse regression problems, they do not give any non-trivial
bounds in the sparse setting. This underlines the importance of oblivious sketching techniques in
the sparse context. For future directions we aim at closing remaining gaps, especially for hinge-like
loss functions. It will also be an interesting avenue to develop more scalable and faster heuristics by
incorporating our sketching techniques and evaluate their performance in practice. Finally, since
our sketches are optimized for a smallest possible target dimension, it will be interesting to study
the trade-off between the speed of applying them to data and an increase in their target dimension.
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A Lower bounds for k-sparse regression

A.1 Lower Bounds for the `p-norm Loss Function for p ≥ 1

In this section we prove our main Theorem 1 on `2 followed by our extension to `p, p ≥ 1, see
Theorem 2 below.

Theorem 1. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse `2
regression with an arbitrary estimator E(SA, Sb, x), such that x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies
‖Ax̃− b‖2 ≤ (1 + ε) minx∈Ψk

‖Ax− b‖2 with constant probability. Then m = Ω(k log(d/k)/ε2).

The outline is as follows:

1. We construct a suitable (hard) distribution over k-sparse supports, which is used to define
our input distribution.

2. We prove the impossibility of recovering a constant fraction of the support with a small
number of measurements (rows) from the input distribution below an information-theoretic
lower bound.

3. We construct an `2-regression instance for which any 1 + Θ(ε) approximation derived from
an oblivious sketch, paired with an arbitrary estimator, reveals a constant fraction of the
support. The hardness result thus turns over to the regression problem.

For the first proof step, we begin with the construction of an error correcting code, which will
be used in the main argument to construct a hard input distribution.

Definition 2 (Balanced and Correctable Support Set). Consider a set U ⊂ [d]k+1 of sets of k + 1
indices, such that for all U ∈ U , 1 ∈ U . U is said to be balanced if, letting ci = |{U ∈ U : i ∈ U}|,
we have ci = cj for all i, j ∈ [d] \ {1}, and further, letting cij = |{U ∈ U : i, j ∈ U}|, cij = ckl for
all i 6= j and k 6= l with i, j, k, l ∈ [d] \ {1}. The set is said to be correctable if for all U1, U2 ∈ U ,
|U1 ∩ U2| ≤ 9/10 · k.

We prove the existence of a suitably large balanced and correctable support set as follows.
Suppose we choose t sets S1, . . . , St, each of size k, uniformly at random, and each from [n] =
{1, 2, . . . , n}. Let H be a pairwise independent family of n · (n − 1) hash functions h : [n] → [n];
it is well-known that such a family exists when n is prime [CW79], which we can assume without
loss of generality. For each Si and h ∈ H, let h(Si) denote the image of Si under h.

Lemma 1. For any constant 0 < c < 1, there exists a constant C > 0 and t = exp(Ck log(n/k))
subsets S1, . . . , St, each of size k, such that |h(Si) ∩ h′(Sj)| < ck for all 1 ≤ i < j ≤ t and all
h 6= h′ ∈ H.

Proof. Note that for i < j, h(Si) and h′(Sj) are each random and independent subsets of size k.
To calculate their intersection size, we can fix h(Si). Then the probability that |h(Si) ∩ h′(Sj)| is
at least ck is at most the probability that some subset of h(Si) of size ck is also a subset of h′(Sj).
This probability is in turn bounded by(

k

ck

)
·
(
n−ck
k−ck

)(
n
k

) ≤
(
k

ck

)
· (n− ck)! · k!

(k − ck)! · n!

≤ 2k ·
(
k

n

)ck
≤ exp(−Ck log(n/k)),
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where C > 0 is a suitable constant. Consequently, by a union bound over all pairs 1 ≤ i < j ≤ t
and all choices of h 6= h′ ∈ H, we conclude there exists a choice of t = exp(Ck log(n/k)) such sets,
for a different choice of constant C > 0.

The lemma above implies that if we have a set T of size k which intersects some h(Si) in at
least ck positions, then Si is uniquely determined.

Moreover, by pairwise independence of H, for any a 6= b ∈ [n], the number of sets in the
union ∪h∈H,1≤i≤th(Si) for which a and b occur together is the same. Also, the number of sets in
∪h∈H,1≤i≤th(Si) containing any particular value a ∈ [n] is the same as for any other particular
value b ∈ [n]. Using this argument we construct the desired set by simply applying Lemma 1 with
k and n = d for indexing a family of sets over {2, . . . , d + 1} and append the element 1 to each
of the sets. The hard instance will later be constructed from a uniform element of this set. This
concludes the first part of our proof.

As a second step, we prove the impossibility of recovering a constant fraction of the support
with a small number of measurements (rows) from the input distribution below an information-
theoretic lower bound. To this end, we need to bound the mutual information first and then plug
it into Fano’s inequality.

Lemma 2 (Mutual Information Bound). Let U be selected uniformly at random from a balanced
and correctable support set U (Def. 2) and for some ε > 0, let z ∈ Rd have z(1) = 1, z(i) = ε/

√
k

for all i ∈ U \ {1} and z(i) = 0 for all i /∈ U . Let X ∈ Rn×d have rows drawn independently from
a mean zero multivariate Gaussian distribution with covariance I + zzT . Then:

I(U ;X) ≤ 7n · ε2. (1)

Proof. Starting from the high level outline of [AW09], since the rows of X are independent, we can
write:

I(U ;X) = H(X)−H(X|U)

≤ n · [H(x)−H(x|U)] =
n

2
·
[
log det(E[xxT ])− log det(E[xxT |U ])

]
. (2)

We now compute the needed log determinants. First observe that E[xxT |U ] = E[I + zzT |U ] =
I + E[zzT |U ]. We can observe that E[zzT |U ] = DMD where Mij = ε2/k for i, j ∈ U and Mij = 0
otherwise, and where D is diagonal all with D11 =

√
k/ε and Dii = 1 for all i 6= 1. Observe that M

is rank-1 and positive semidefinite. Thus, so is DMD. Thus DMD has one non-zero eigenvalue,
equal to its trace, which is 1 + ε2/k · k = 1 + ε2. Thus, E[xxT |U ] = I +DMD has one eigenvalue
equal to 2 + ε2 and n− 1 eigenvalues equal to 1, so

log det(E[xxT |U ]) = log(2 + ε2) ≥ log(2). (3)

Next consider E[xxT ]. Again we have E[xxT ] = E[I + zzT ] = I + E[zzT ]. Since U is balanced,
for all i ∈ [d] \ {1}, z(i) = ε/

√
k with probability k/(d − 1) and for i, j ∈ [d] \ {1} with i 6= j,

z(i) = z(j) = ε/
√
k with probability k(k−1)

(d−1)(d−2) . We can write E[zzT ] = D + E. Here, E11 = 0,

Eij = ε2

k ·
k(k−1)

(d−1)(d−2) = ε2(k−1)
(d−1)(d−2) for i, j 6= 1, and Ei1 = E1i = ε√

k
· k
d−1 = ε

√
k

d−1 for i 6= 1. D11 = 1,

Dii = ε2

d−1 −
ε2

k ·
k(k−1)

(d−1)(d−2) ≤
ε2

d−1 .

Observe that ‖E‖F ≤
√

2(d− 1) · ε2k
(d−1)2

+ (d− 1)2 · ε4(k−1)2

(d−1)2(d−2)2
≤
√

3 ·ε2. Further, E is rank-3

and thus has just 3 non-zero eigenvalues. By Weyl’s inequality,

λ1(E[zzT ]) = λ1(D + E) ≤ λ1(D) + λ1(E) ≤ 1 +
√

3ε2.
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For i = 2, 3, 4, 5,

λi(E[zzT ]) = λi(D + E) ≤ λ2(D) + λ1(E) ≤ ε2

d− 1
+
√

3ε2 ≤ (
√

3 + 1)ε2.

Finally, for i ≥ 5,

λi(E[zzT ]) = λi(D + E) ≤ λ2(D) + λ4(E) =
ε2

d− 1
+ 0 =

ε2

d− 1
.

Thus,

log det(E[xxT ]) = log det(I + E[zzT ])

≤ log(2 +
√

3ε2) + 4 log(1 + (
√

3 + 1)ε2) + (d− 5) log

(
1 +

ε2

d− 1

)
≤ log(2) + (5

√
3 + 4 + 1)ε2

≤ log(2) + 14ε2. (4)

Combined with (3) we have log det(E[xxT ]) − log det(E[xxT |U ]) ≤ 14ε2, and plugging back into
(2), we have I(U ;X) ≤ 7n · ε2 as desired.

Our mutual information bound can be plugged into Fano’s inequality to obtain a lower bound
on the sample complexity needed for an approximate, i.e., partial, recovery of the support set. This
will later translate into the number of rows of our sketch.

Corollary 15 (Sample Complexity Lower Bound). Let U,X be distributed as in Lemma 2 with

n ≤ ck log(d/k)
ε2

for sufficiently small constant c. Then no algorithm that takes just X as input can

output a set Ũ with |Ũ | = k and |Ũ ∩ U | > 19k/20 with probability ≥ 2/3.

Proof. Suppose such an algorithm existed. Since all U,U ′ ∈ U have |U ∩U ′| ≤ k ·9/10, if |Ũ ∩U | >
19k/20, then Ũ must contain > k/20 elements not in U ′ for any U ′ ∈ U with U ′ 6= U . Thus, we
must have |Ũ ∩ U ′| < 19k/20. So Ũ can be used to uniquely identify U . That is, the algorithm
identifies U with probability ≥ 2/3. However, by Fano’s inequality (Lemma 6), the algorithm fails
with probability at least

1− I(U ;X) + log 2

log |U|
≥ 1− 7ε2n+ log 2

log |U|
,

where the bound on I(U ;X) follows from Lemma 2. Since log |U| = Θ(k log(d/k)) this failure

probability is > 1/3 if n = ck log(d/k)
ε2

for small enough c and d, k are bigger than large enough
constants. This gives a contradiction to the assumption that the algorithm succeeds with probability
≥ 2/3, and hence the corollary.

This concludes the second part of our proof regarding the hardness of support recovery. For
the third part, i.e., the reduction of this hard problem to sparse linear regression, we first need a
few technical lemmas, before we can finally prove Theorem 1.

The first technical result establishes a connection between approximating a loss function L to
within (1 + O(ε)) error and revealing a constant fraction of the support. We note that L will
represent the regression cost in our subsequent reduction.
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Lemma 3. Let v ∈ Rd be a k-sparse vector with k non-zero entries equal to 1/
√
k. Let x be another

k-sparse vector. Let M >
√
n/(εk), α = | supp(v) ∩ supp(x)|, and

L = 1 + ‖x‖22 + (1− εxT v)2 +
M2

n

(∑
i

x(i)−
√
k

)2

.

There exists a constant c such that any x with α < 19k/20 is not a 1 + cε approximation solution
of L.

Proof. Let S = supp(x) ∩ supp(v) and M ′ = M/
√
n. Let β =

∑
i x(i) and γ be such that∑

i∈S x(i) = γβ. We will optimize L over all possible values of β and γ in R. Note that any x
minimizing L must have the form

x(i) =

{
γβ
α for i ∈ S,
(1−γ)β
k−α for i ∈ supp(x) \ S.

This is because for fixed S, β, γ, making x have the above form minimizes ‖x‖ without affecting
xT v. Therefore,

L = 1 +
γ2β2

α
+

(1− γ)2β2

k − α
+

(
1− εα 1√

k

γβ

α

)2

+M ′2
(
β −
√
k
)2

= γ2

(
β2

α
+

β2

k − α
+ ε2β

2

k

)
− 2γ

(
β2

k − α
+ ε

β√
k

)
+ 2 +

β2

k − α
+M ′2(β −

√
k)2.

Minimizing over all γ ∈ R gives

min
γ
L = 2 +

β2

k − α
+M ′2(β −

√
k)2 −

(
β2

k−α + ε β√
k

)2

β2

α + β2

k−α + ε2 β
2

k

= 2 +
β2

k − α
+M ′2(β −

√
k)2 −

β2

(k−α)2
+ 2βε

(k−α)
√
k

+ ε2

k

k
α(k−α) + ε2

k

= 2 +M ′2(β −
√
k)2 −

β2

(k−α)2

(
1− k

α

)
+ β2ε2

k(k−α) + 2βε

(k−α)
√
k

+ ε2

k

k
α(k−α) + ε2

k

= 2 +M ′2(β −
√
k)2 +

β2k − β2ε2α− 2β
√
kαε− ε2(k − α)α

k2 + ε2(k − α)α

≈ε 2 +M ′2(β −
√
k)2 +

β2k − 2β
√
kαε

k2

= β2

(
M ′2 +

1

k

)
− β

(
2M ′2

√
k +

2αε

k
√
k

)
+ 2 +M ′2k.

Minimizing over β gives

min
β

min
γ
L ≈ε 2 +M ′2k −

(
M ′2
√
k + αε

k
√
k

)2

M ′2 + 1
k
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= 2 +
M ′2 − 2M ′2αε

k − α2ε2

k3

M ′2 + 1
k

≈ε 2 +
M ′2 − 2M ′2αε

k

M ′2 + 1
k

.

Since M ′ = M/
√
n > 1/

√
εk, we have

min
β

min
γ
L ≈ε 3− 2

α

k
ε.

We can observe that the RHS is minimized when α = k at 3− 2ε. Moreover, if α < c1k for c1 < 1,
it is at least

3− 2c1ε ≥ (3− 2ε)

(
1 +

2(1− c1)

3
ε

)
.

Therefore, there exists a small enough constant c such that if α < 19k/20, it is not possible to
minimize L within 1 + cε factor.

The next ingredient will help us analyze the regression cost up to 1 ± ε error deterministically
by removing the influence of a random Gaussian matrix in our input distribution. By a standard
tail bound for Gaussian matrices (for example, Exercise 4.7.3 in [Ver18]) we have the following
lemma.

Lemma 4. Suppose X is a n× d Gaussian matrix with covariance Σ. Then there exists a constant
C such that we have with probability ≥ 1− δ

(1− ε)Σ � 1

n
XTX � (1 + ε)Σ,

when n ≥ C d+log(1/δ)
ε2

.

By invoking the above lemma to a fixed k-dimensional subspace and applying a union bound
over

(
d
k

)
k-dimensional subspaces, we have with probability at least 1 − δ

∀k-sparse vectors v ∈ Ψk : (1− ε)vTΣv � 1

n
vTXTXv � (1 + ε)vTΣv,

when n ≥ C ′ k log(d/(kδ))
ε2

for some C ′ > C.
Using the previous results, we are now we are ready to give the main proof of Theorem 1, and

hereby conclude the third and final part of our proof outline.
We construct an `2-regression instance for which any 1 + Θ(ε) approximation derived from an

oblivious sketch, paired with an arbitrary estimator, reveals a constant fraction of the support. The
hardness result thus turns over to the regression problem.

Proof. (of Theorem 1) Let X = [b A] be distributed as G(I + zzT )1/2, where z is distributed as
described in Lemma 2. We will construct a k-sparse `2 regression problem based on X such that
an 1 + ε approximation of the constructed problem allows us to recover a large enough fraction,
i.e., greater than 19/20, of the support of z. We can assume without loss of generality that the
sketching matrix has orthonormal rows, and since X is a Gaussian matrix, the sketch has rows
sampled from the same distribution as the rows of X. This is so because we are proving lower
bounds against any estimator on the sketch.

21



By Corollary 15, if the number of samples is smaller than ck log(k/d)/ε2, no algorithm can
recover more than a 19/20 fraction of the support of z with probability larger than 2/3. Therefore,
we have a lower bound of Ω(k log(d/k)/ε2) against a 1 + ε approximation of k-sparse `2 regression.

Consider the following `2 sparse regression problem

min
x∈Ψk

∥∥∥∥[ MM . . . M
A

]
x−

[ √
kM
b

]∥∥∥∥
2

.

We will let M be a very large number, which enforces
∑

i x(i) to be close to
√
k. The squared loss

of the above regression problem is

L = ‖Ax− b‖22 +M2

(∑
i

x(i)−
√
k

)2

= ‖Xx̃‖22 +M2

(∑
i

x(i)−
√
k

)2

,

where x̃ = (−1, x). By matrix concentration in Lemma 4, for n = Ω(k log(d/(kδ))/ε2), with
probability at least 1− δ,

XTX ≈ε n(I + zzT ).

Recall that z has z(1) = 1, z(i) = ε/
√
k for all i ∈ U \ {1} and z(i) = 0 for all i /∈ U . We have

1

n
‖Xx̃‖22 ≈ε ‖x̃‖22 + (x̃T z)2 = (1 + ‖x‖22) + (1− εxT v)2,

where v is such that z = (1, v).
Therefore,

L

n
≈ε 1 + ‖x‖22 + (1− εxT v)2 +

M2

n

(∑
i

x(i)−
√
k

)2

.

Note that x is a 1 + ε approximation of the `2 loss iff x is an 1 + Θ(ε) approximation of the `22 loss.
Let α = | supp(x) ∩ supp(v)|. By Lemma 3, there exists a constant c such that if we can

approximate L within a factor of 1 + cε, we must have α > 19k/20. Rescaling ε and combining
with Corollary 15 and a union bound (with δ set to a small constant) proves the theorem.

Next, we extend our `2 lower bound to `p for all p ≥ 1.

Theorem 2. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-
sparse `p regression for any p ≥ 1 with an estimator Ep(SA, Sb, x), such that the minimizer
x̃ ∈ argminx∈Ψk

Ep(SA, Sb, x) satisfies ‖Ax̃ − b‖p ≤ (1 + ε) minx∈Ψk
‖Ax − b‖p. Then m =

Ω(k log(d/k)/ε2).

Proof. (of Theorem 2) We reduce from the `2 case by leveraging the fact that `2 embeds obliviously
up to (1±ε) distortion into `p for all p ≥ 1 by Dvoretzky’s theorem. Indeed, such an embedding can
be constructed using a random mapping G ∈ Rr×n whose entries are appropriately rescaled i.i.d.
Gaussians. In particular G is an oblivious linear map. The number of rows is r = O(n log(1/ε)/ε2)
for 1 ≤ p ≤ 2 and r = nO(p) for p > 2; [see Mat13, p. 30]. We note, however, that the number of
rows of G does not matter in our context since it is reduced by an application of S in what follows.

More precisely, we have for all x ∈ Rd that (1−ε)‖Ax−b‖2 ≤ ‖GAx−Gb‖p ≤ (1+ε)‖Ax−b‖2.
Now suppose that S is an oblivious sketching matrix for the k-sparse regression problem in `p.
Then we can find x̃ ∈ argminx∈Ψk

Ep(SGA,SGb, x). By definition it holds that ‖G(Ax̃ − b)‖p ≤
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(1 + ε)‖G(Ax∗G − b)‖p where x∗G ∈ argminx∈Ψk
‖G(Ax− b)‖p. Also let x∗ ∈ argminx∈Ψk

‖Ax− b‖2
be the minimizer for the `2 problem. Now it follows that

‖Ax̃− b‖2 ≤ ‖G(Ax̃− b)‖p/(1− ε) ≤ ‖G(Ax∗G − b)‖p(1 + ε)/(1− ε)
≤ ‖G(Ax∗ − b)‖p(1 + ε)/(1− ε) ≤ ‖Ax∗ − b‖2(1 + ε)2/(1− ε)
≤ (1 + 7ε)‖Ax∗ − b‖2,

which by rescaling ε means that SG is an oblivious linear sketch for the `2-norm problem with
an `p-norm minimization estimator and at most 1 + ε error. Using the `2 lower bound given in
Theorem 1, it follows that SG and thus also S has m = Ω(k log(d/k)/ε2) rows.

A.2 Lower bounds for ReLU and hinge-like loss functions

Here we give further reductions similar to Theorem 2 in order to extend our main result to ReLU
and hinge-like loss functions.

Corollary 3. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse
ReLU regression with an estimator EReLU(SA, Sb, x), such that x̃ ∈ argminx∈Ψk

EReLU(SA, Sb, x)
satisfies ‖Ax̃− b‖ReLU ≤ (1 + ε) minx∈Ψk

‖Ax− b‖ReLU. Then m = Ω(k log(d/k)/ε2).

Proof. Note that ‖Ax− b‖1 = ‖Ax− b‖ReLU +‖− (Ax− b)‖ReLU, ∀x. Therefore, given A, b we have
‖Ax− b‖1 = ‖PAx− Pb‖ReLU, where

P =

[
In
−In

]
is a 2n × n matrix. Suppose S ∈ Rm×2n is an oblivious linear sketch for k-sparse ReLU regres-
sion with an estimator EReLU(SA, Sb, x). This implies that x̃ ∈ argminx∈Ψk

EReLU(SPA, SPb, x)
satisfies

‖Ax̃− b‖1 = ‖P (Ax̃− b)‖ReLU ≤ (1 + ε) min
x∈Ψk

‖P (Ax− b)‖ReLU = (1 + ε) min
x∈Ψk

‖Ax− b‖1.

Therefore, S · P is an oblivious linear sketch for `1 regression. By Theorem 2, we have that
m = Ω(k log(d/k)/ε2).

Definition 1. We say f(·) is an (L, a1, a2) hinge-like loss function if f is L Lipschitz, ∀x ≥
0: f(x) ≥ a2 > 0, and ∀x : |f(x)− ReLU(x)| ≤ a1.

The logistic loss function log(1+e−x) and the hinge loss function max(0, 1−x) are (1, ln(2), ln(2))
and (1, 1, 1) hinge-like loss functions, respectively.

We will use the notation a = (1± ε)b to denote (1− ε)b ≤ a ≤ (1 + ε)b. We note that for ε > 0
if ‖x‖ReLU > 0, then there is a constant c > 0 such that

c‖x‖ReLU = ‖cx‖ReLU = (1± ε)‖cx‖f .

Corollary 4. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious subspace embedding for
some hinge-like loss function f with an estimator Ef (SA, Sb, x), such that we have ∀x ∈ Ψk : (1−
ε)‖Ax− b‖f ≤ Ef (SA, Sb, x) ≤ (1 + ε)‖Ax− b‖f . Then m = Ω(k log(d/k)/ε2).

Proof. Suppose S ∈ Rm×n is an oblivious subspace embedding for f with an estimator Ef (SA, Sb, x).
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Let x ∈ Ψk be some k-sparse vector. We will show that S ∈ Rm×n is an oblivious subspace
embedding for ReLU with the estimator

EReLU(SA, Sb, x) = lim
c→∞

Ef (ScA, Scb, x)

c
.

First, consider the case where ‖Ax− b‖ReLU > 0. For c large enough, we have

‖Ax− b‖ReLU =
‖c(Ax− b)‖ReLU

c

= (1± ε)
‖c(Ax− b)‖f

c

= (1± 3ε)
Ef (ScA, Scb, x)

c
.

Here, we assumed that ε is small enough so that (1 + ε)2 ≤ 1 + 3ε.
Next we consider the case where ‖Ax− b‖ReLU = 0.
We have

Ef (ScA, Scb, x) ≤ (1 + ε)‖c(Ax− b)‖f
≤ (1 + ε)na1.

Therefore,

lim
c→∞

Ef (ScA, Scb, x)

c
≤ lim

c→∞

2na1

c
= 0

as desired.

A.3 Sampling fails for sparse regression

In this section we argue that sampling based algorithms, which are important tools in sketching for
non-sparse regression [DMM06; Das+09; Mun+18; MMR21], do not give any non-trivial results in
the sparse setting. Specifically, these algorithms cannot compress beyond what is possible in the
non-sparse case – roughly beyond the rank of the input matrix. This is the reason that our upper
bounds all build on general linear sketches, rather than sampling.

Theorem 5. Consider any bounded approximation factor α ≥ 1 and any ‖ · ‖ : Rn → R≥0 which
evaluates to 0 on the all zeros vector and to some positive number on any other vector. For any
n > 9, there is some input matrix A ∈ Rn×n and distribution over vectors b ∈ Rn such that for any
sampling matrix S ∈ Rm×n with m < n/3, no algorithm that accesses just SA and Sb can output a
k-sparse x̃ ∈ Ψk with ‖Ax̃− b‖ ≤ α ·minx∈Ψk

‖Ax− b‖ with probability at least 1/2 (over the choice
of b and any possible randomness in the algorithm).

Proof. Let k = 1 and A be the n × n identity matrix. Let b be set to the ith standard basis
vector with probability 1/n. Note that min1-sparse x∈Rn ‖Ax − b‖ = 0, so to achieve any bounded
approximation factor, the algorithm must output x with 0 cost – i.e., x = b. Any algorithm that
accesses any m < n/3 rows of A and b will see only zero entries in Sb with probability at least 2/3.
Let X0 be the distribution over outputs of the algorithm given that Sb = 0. The algorithm achieves
a bounded approximation factor only if x ∼ X0 satisfies x = b. This occurs with probability at
most 3

2n since after seeing Sb = 0, any of the remaining 2/3 · n possibilities for b are equally likely.
Thus, the algorithm succeeds with probability at most 1/3 + 3/(2n) < 1/2 for n > 9.

24



Note that the sampling matrix S in Theorem 5 may depend on A but not on b. This is
necessary. If the sampling matrix can depend on b, then, without bounded computation, a sampling
algorithm can in theory compress the problem to O(k/ε) rows. In particular, it can simply solve
for the optimal x∗ = argmink-sparse x∈Ψk

‖Ax− b‖ and only consider the k columns of A within the
support of x∗. In e.g., the `2 case, by simply applying variants of standard leverage score sampling,
[Woo14; CP19] to these columns, it can output a sampling matrix S ∈ Rm×n for m = O(k/ε) with
x̃ = argmink-sparse x∈Ψk

‖SAx− Sb‖ satisfying ‖Ax̃− b‖ ≤ (1 + ε) mink-sparse x∈Ψk
‖Ax− b‖.

If the sampling matrix is required to preserve ‖Ax− b‖ for every k-sparse x ∈ Ψk, then even if
a sampling algorithm can read b, it is easy to see that it must sample at least n rows. This is true
even in the case that b = 0.

Theorem 6. Consider any bounded approximation factor α ≥ 1 and any ‖ · ‖ : Rn → R≥0 which
evaluates to 0 on the all zeros vector and to some positive number on any other vector. For any
n > 9, there is some input matrix A ∈ Rn×n such that there is no sampling matrix S ∈ Rm×n with
m < n, which satisfies for all k-sparse x ∈ Ψk, α−1‖Ax‖ ≤ ‖SAx‖ ≤ α‖Ax‖.

Proof. Let A be the n×n identity matrix. Then if we sample m < n rows, we will have ‖SAx‖ = 0
when x is at least one of the standard basis vectors. This violates the approximation bound.

B Upper bounds for k-sparse regression

B.1 Upper bounds for the `p-norm loss function for p ∈ [1, 2]

We prove k-sparse affine embedding upper bounds and note that as a corollary we obtain the same
bounds for minimization. We begin with `2.

Theorem 7. Let A ∈ Rn×d, b ∈ Rn. There exists a distribution over random matrices S ∈ Rm×n
with m = O(k log(d/k)/ε2) such that it holds with constant probability that ∀x ∈ Ψk : (1− ε)‖Ax−
b‖2 ≤ ‖S(Ax− b)‖2 ≤ (1 + ε)‖Ax− b‖2.

Proof. (of Theorem 7) The upper bound is similar to the known constructions [Bar+08] of RIP
matrices via Johnson-Lindenstrauss embeddings [JL84], i.e., appropriately rescaled Gaussian ma-
trices. The main difference is that the subspaces formed by any fixed k-sparse support of x need
not be orthogonal or aligned with the standard basis vectors. The first idea is that there are at
most

(
d
k

)
≤ (ed/k)k different k-sparse supports and each of them corresponds to one choice of k

columns of A. Every such choice spans a k-dimensional linear subspace of dimension ≤ k. By the
subspace embedding construction in [Sar06], every subspace formed by one choice of k columns can
be handled by embedding the points in a net of size (3/ε)k covering the unit ball in the subspace.
The remaining vectors can be related to the net points by triangle inequality and the embedding
extends to vectors of arbitrary norm outside the unit sphere by linearity. A slightly more sophis-
ticated argument in [Woo14, pp. 13] states that the net can be constructed with ε replaced by
an absolute constant ε0 := 1/2. So the total number of points to embed up to (1 ± ε) distor-
tion is bounded by |N | ≤ (d/k)k · ck for an absolute constant c = 3e/ε0. The embedding can
be accomplished via the Johnson-Lindenstrauss lemma followed by a union bound over N , which
yields a matrix S = 1√

m
G whose entries are scaled i.i.d. standard Gaussians Gij ∼ N(0, 1) with

m = O(log(|N |)/ε2) = O(k log(d/k)/ε2) rows.3

3We note that the same result can be achieved by random sign (Rademacher) matrices [CW09] which is more
convenient in streaming and other space constrained settings.
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We continue with `p, p ∈ [1, 2). We note that the outline is similar to [Bac+16, appendix F.1]
but our result is non-trivially adapted to the sparse setting and generalized to `p.

Theorem 8. Let A ∈ Rn×d, b ∈ Rn, p ∈ [1, 2). There exists a distribution over random matrices
S ∈ Rm×n with m = O(k(log(d/k) + log(k/(εδ)))/ε2) such that it holds with probability at least
1 − δ that ∀x ∈ Ψk : (1 − ε)‖Ax − b‖p ≤ ‖S(Ax − b)‖med ≤ (1 + ε)‖Ax − b‖p, where for arbitrary
y ∈ Rd, ‖y‖med := median{|yi| | i ∈ [d]}.

Proof. (of Theorem 8) We choose S ∈ Rm×n to be a matrix whose entries are i.i.d. p-stable random
variables with scale parameter γp = c1−1/p, where c ≈ 1.099055; see below. We show that this
matrix has the desired property. First note that Ax− b = [A, b][xT ,−1]T , so we can simply assume
that the input consist only of A′ = [A, b] and it suffices to show that ‖SA′x‖med = (1 ± ε)‖A′x‖p
for all x ∈ Ψk′ ⊆ Rd+1 for k′ = k+ 1. In what follows we re-substitute A for A′ and k for k′ for the
sake of presentation.

Fix any k-sparse support indexed by I ⊆ [d] with |I| = k. Let AI be the matrix whose k
columns are the columns A∗i of A such that i ∈ I. From a classic result of Auerbach [cf. Aue30;
Das+09] it follows that there exists a basis L ∈ Rn×k for the p-normed subspace spanned by those
columns [WW22, Lemma 2.22] that satisfies the following properties: the `p norm of each column
i ∈ [k] is exactly ‖L∗i‖p = k1/q, and for all x ∈ Rk it holds that ‖Lx‖p ≥ ‖x‖q, where q = ∞ for
p = 1 and q = p

p−1 for p ∈ (1, 2) denotes the dual norm of p.
Further, by a property of the p-stable random variables we have that any entry

(SL)ij =
n∑
h=1

SihLhj ∼ C · ‖L∗j‖p = C · k1/q

is again a scaled p-stable random variable; [cf. Ind06; Dyt+18]. It follows that for any threshold τ
the probability that any entry of SL has absolute value larger than τ is bounded by O((k1/q/τ)p) =
O(k/τp), [cf. B LM18].

Setting τ = O((mk2/δ)1/p) = Õ((k3 log(d)/δ)1/p), we have that all entries of SL are simulta-
neously bounded by τ with probability 1 − δ/2. Suppose this event is true. Then for all x ∈ Ψk

with the fixed support indexed by I, we have by Hoelder’s inequality (applied only to the k-sparse
support, since other terms are zero) and by the properties discussed above, that

‖SLx‖∞ = max
i∈[m]

|Si∗Lx| ≤ max
i∈[m]
‖(SL)i∗‖∞‖x‖1 ≤ τk1− 1

q ‖x‖q ≤ τk
1
p ‖Lx‖p

≤ Õ((k4 log(d)/δ)1/p)‖Lx‖p.

Let τ ′ = Õ((k4 log(d)/δ)1/p) = Õ(k4 log(d)/δ). We construct an ε
τ ′ -net N k

I in the `p norm for
the unit `p ball intersect the subspace spanned by L. By linearity, the restriction to the unit
ball is w.l.o.g. We repeat this construction for each k-sparse support and define our net to be
the union over all supports, i.e., N =

⋃
I⊆[d],|I|=kN k

I . There are at most
(
d
k

)
≤ (ed/k)k different

subspaces, each of which is covered by a net of size at most |N k
I | ≤ (3τ ′/ε)k by the standard volume

argument. Consequently for an absolute constant c1 we have |N | ≤ (ed/k)k · (c1k
4 log(d)/(εδ))k =

exp(O(k log(d/k) + k log(k/(εδ)))).
Next, we investigate the cdf Fp(x) of the random variable |X|, where X follows a p-stable distri-

bution. Except for the cases p ∈ {1, 2}, which correspond to the Cauchy and Normal distribution,
no analytic/closed form expression is known for the cdfs and pdfs. We thus take a detour and
leverage the inversion theorem of Lévy [Lév25; Mas77] based on the characteristic function, for

26



which a closed form expression is known [BHW05; Dyt+18]: φp(t) = exp−|γpt|p, where γp is the
constant scale parameter defined above. More precisely, it holds that

Fp(x) = P (|X| ≤ x) = P (X ≤ x)− P (X ≤ −x)

=
1

2π
lim
T→∞

∫ T

−T

eitx − e−itx

it
φp(t) dt

=
1

2π
lim
T→∞

∫ T

−T

eitx − e−itx

it
e−|γpt|

p
dt

=
1

2π
lim
T→∞

∫ T

−T

2i sin(tx)

it
e−|γpt|

p
dt

=
1

π
lim
T→∞

∫ T

−T

sin(tx)

t
e−|γpt|

p
dt.

It follows that

Fp(1) =
1

π
lim
T→∞

∫ T

−T

sin t

t
e−|γpt|

p
dt =

1

2
(5)

It remains to show that the derivative of F is bounded at F (1) = 1
2 . To this end we observe that

F ′p(x) =
1

π
lim
T→∞

∫ T

−T

cos(tx) · t
t

e−|γpt|
p
dt

=
1

π
lim
T→∞

∫ T

−T
cos(tx) e−|γpt|

p
dt.

Consequently,

F ′p(1) =
1

π
lim
T→∞

∫ T

−T
cos(t) e−|γpt|

p
dt.

Now by the symmetry of the integrand and monotonicity of the characteristic function w.r.t. the
exponent p we have

1

π
=

1

π
lim
T→∞

∫ T

−T
cos(t) e−|γ1t| dt ≤ F ′p(1) ≤ 1

π
lim
T→∞

∫ T

−T
cos(t) e−|γ2t|

2
dt

≤ 1

π
lim
T→∞

∫ T

−T
cos(t) e−|t|

2
dt =

1

π1/2e1/4
(6)

where in particular we note that γ1 = 1, which is used in the lower bound, and γ2 ≥ 1 is used for
the upper bound.

Generalizing [Ind06, Lemma 2], it follows from Equations (5) and (6) that if Fp(z) ∈ [1/2 −
cε, 1/2 + cε] for some absolute constant c then z ∈ [1− ε, 1 + ε], which we will use in what follows.
For any x ∈ Ψk, we say SAx is good if only a 1

2 − c2ε fraction of coordinates in the sketch space
are too large or too small, i.e.

|{i : |(SAx)i| < (1− ε)‖Ax‖p}| ≤
(

1

2
− c2ε

)
m

|{i : |(SAx)i| > (1 + ε)‖Ax‖p}| ≤
(

1

2
− c2ε

)
m

27



for some small constant c2. If SAx is good, then for any y with at most c2εm coordinates larger
than ε‖Ax‖p, we have

(1− 2ε)‖Ax‖p ≤ ‖SAx+ y‖med ≤ (1 + 2ε)‖Ax‖p. (7)

By the p-stability property, (SAx)i is a p-stable random variable with scale ‖Ax‖p, we have
that

Pr[|(SAx)i| < (1− ε)‖Ax‖p] < 1/2− Ω(ε)

Pr[|(SAx)i| > (1 + ε)‖Ax‖p] < 1/2− Ω(ε).

By a Chernoff bound, for sufficiently small c2 we have that SAx is good with probability at least
1−exp(−Ω(ε2m)). For our choice of m, we can union bound to get that SAx is good simultaneously
for all x ∈ N with probability at least 1 − exp(−Ω(ε2m)) · |N | ≥ 1 − δΩ(k). Suppose this event is
true.

Then every y = Ax for x ∈ Ψk with ‖y‖p = 1 can be expressed as y = z + η where z ∈ N and
‖η‖p ≤ ε/τ ′. We have that Sz is good and that ‖Sη‖∞ ≤ τ ′‖η‖p ≤ ε. Hence by (7),

(1− 2ε)‖z‖p ≤ ‖S(z + η)‖med ≤ (1 + 2ε)‖z‖p.

which implies
(1− 3ε)‖y‖p ≤ ‖Sy‖med ≤ (1 + 3ε)‖y‖p.

Since S is linear, the restriction to ‖y‖p = 1 is not necessary. Rescaling ε concludes the proof.

B.2 Upper bounds for the ReLU loss function

Notation For a function f : R → R and a vector y ∈ Rn, we let f(y) ∈ Rn denote the entry-
wise application of f to y. Let yi denote the ith entry of y. So f(y)i = f(yi). Moreover, let
‖y‖f =

∑n
i=1 f(yi). Let y+ and y− denote y restricted to the set of positive and negative entries

respectively. Finally, for A ∈ Rn×d and x ∈ Rd, let µ(A) = supx6=0
(Ax)+

(Ax)− . When A is clear from the

context, we drop A from the notation of µ.

Theorem 9. Let A ∈ Rn×d, b ∈ Rn. There exists an oblivious sketch S with O(µ
2k
ε2

log(µdεδ )) rows
and an estimator gReLU(SA, Sb, x), such that with probability at least 1 − δ, we have ∀x ∈ Ψk :
(1− ε)‖Ax− b‖ReLU ≤ gReLU(SA, Sb, x) ≤ (1 + ε)‖Ax− b‖ReLU.

Proof. By appending b to A and increasing k by 1, if suffices to prove the statement of the theorem
for the case b = 0. Note that

‖Ax‖ReLU = ‖(Ax)+‖1 =
‖Ax‖1 + 1TAx

2

since ‖Ax‖1 = ‖(Ax)+‖1 + ‖(Ax)−‖1 and 1TAx = ‖(Ax)+‖1 − ‖(Ax)−‖1. From Theorem 8, there
exists a sketch S`1 with O

(
(k/ε2) log(d/εδ)

)
rows and an estimator g`1(S`1A, x) = ‖S`1Ax‖med such

that, with probability at least 1 − δ,

∀x ∈ Ψk : (1− ε)‖Ax‖1 ≤ g`1(S`1A, x) ≤ (1 + ε)‖Ax‖1. (8)

Moreover, 1TA can be computed exactly using a single row. Let S be the sketch obtained by
combining S`1 and the single row 1T , and let

gReLU(SA, x)
def
=
g`1(S`1A, x) + 1TAx

2
=
‖S`1Ax‖med + 1TAx

2
.
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Now, (8) implies

∣∣gReLU(SA, x)− ‖Ax‖ReLU

∣∣ =

∣∣∣∣g`1(S`1A, x) + 1TAx

2
− ‖Ax‖1 + 1TAx

2

∣∣∣∣
=

∣∣∣∣g`1(S`1A, x)− ‖Ax‖1
2

∣∣∣∣
≤ ε

2
‖Ax‖1. (9)

By the definition of µ,

µ+ 1 ≥ ‖(Ax)−‖1
‖(Ax)+‖1

+ 1 =
‖Ax‖1
‖Ax‖ReLU

. (10)

From (9) and (10), we have

∣∣gReLU(SA, x)− ‖Ax‖ReLU

∣∣ ≤ ε(µ+ 1)

2
‖Ax‖ReLU ≤ εµ‖Ax‖ReLU,

where the last inequality holds because µ ≥ 1. The theorem follows by scaling ε by a factor of
1/µ.

B.3 Upper bounds for hinge-like loss functions

First we give a lemma on hinge-like functions, which has a similar role to (10) for the ReLU function,
and was proven in Corollary 9 of [MMR21].

Lemma 5. Let f be an (L, a1, a2) hinge-like loss function, and let C = 16 max(1, L, a1, 1/a2)4. Let
A ∈ Rn×d. Then for any x ∈ Rd,

‖Ax‖f ≥
n+ ‖Ax‖1

Cµ
.

Proof. We have

‖Ax‖f ≥
∑

i:[Ax]i∈[0,2a1]

f(Ax)i +
∑

i:[Ax]i≥2a1

f(Ax)i

≥
∑

i:[Ax]i∈[0,2a1]

a2 +
∑

i:[Ax]i≥2a1

ReLU(Ax)i − a1

≥ min

(
a2

2a1
,

1

2

)
· ‖(Ax)+‖1

≥ min

(
a2

2a1
,

1

2

)
· ‖Ax‖1
µ+ 1

, (11)

where the second inequality holds because f is (L, a1, a2) hinge-like and last inequality follows from
(10) in Theorem 9.

Let γ
def
= min

(
a2
2a1
, 1

2

)
. Now we claim that

‖Ax‖f =

n∑
i=1

f(Ax)i ≥
na2γ

4µ ·max(1, L)
.
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If
∑n

i=1 f(Ax)i ≥ na2
4 then this holds immediately since µ(X) ≥ 1, max(1, L) ≥ 1 and γ ≤ 1.

Otherwise, assume that
∑n

i=1 f(Ax)i ≤ na2
4 . Since f(z) ≥ a2 for all z ≥ 0 and since f is L-

Lipschitz, f (z) ≥ a2
2 for all z ≥ − a2

2L . This implies that Ax has at most na2/4
a2/2

= n
2 entries ≥ − a2

2L .

Thus, Ax has at least n
2 entries ≤ − a2

2L and so ‖(Ax)−‖1 ≥ na2
4L . Thus, by the definition of µ along

with (11),

‖Ax‖f ≥ γ · ‖(Ax)+‖1 ≥
na2γ

4µL
≥ na2γ

4µ ·max(1, L)
. (12)

Combining (11) with (12) gives that

‖Ax‖f ≥
γ · ‖Ax‖1

2µ+ 2
+

na2γ

8µ ·max(1, L)

≥ (‖Ax‖1 + n) · γ ·min(1, a2)

8µ ·max(1, L)

≥ (‖Ax‖1 + n)
1

8µ ·max(1, L) ·max(1, 1/a2) ·max(2, 2a1/a2)

≥ (‖Ax‖1 + n)
1

16µ ·max(1, L, a1, 1/a2)4
.

Substituting C = 16 max(1, L, a1, 1/a2)4 completes the proof.

From Lemma 5, it suffices to approximate ‖Ax‖f within O((ε/µ)(n+‖Ax‖1)) to obtain a relative
error guarantee. Theorem 9 provides a method to approximate ‖Ax‖ReLU within O((ε/µ)‖Ax‖1).
In Theorem 10, we will show that uniform sampling can approximate the difference between ‖Ax‖f
and ‖Ax‖ReLU within O((ε/µ)n).

Theorem 10. Let A ∈ Rn×d, b ∈ Rn, and let f be an (L, a1, a2) hinge-like loss function. There

exists an oblivious sketch S with m = O( c
10µ2k
ε2

log( cnµdεδ )) rows, where c = max(1, L, a1, 1/a2),
and an estimator gf (SA, Sb, x), such that, with probability at least 1 − δ, we have ∀x ∈ Ψk :
(1− ε)‖Ax− b‖f ≤ gf (SA, Sb, x) ≤ (1 + ε)‖Ax− b‖f .

Proof. Again, we may assume that b = 0. We have

‖Ax‖f =

n∑
i=1

f(Ax)i =

n∑
i=1

(f(Ax)i − ReLU(Ax)i) + ‖Ax‖ReLU.

By (9) in the proof of Theorem 9, there exists a sketch SReLU with m1 = O
(
k log(d/εδ)/ε2

)
rows

and a function gReLU such that with probability at least 1 − δ,∣∣gReLU(SReLUA, x)− ‖Ax‖ReLU

∣∣ ≤ ε‖Ax‖1. (13)

We give a sketch with m2 rows to approximate R(Ax) =
∑n

i=1 (f(Ax)i − ReLU(Ax)i). Consider
uniformly sampling the rows of A with replacement. Let Su ∈ Rm2×n be the sketching matrix
corresponding to uniformly sampling m2 rows. We will show that

R(SuAx) =
n

m2

m2∑
i=1

(f(SuAx)i − ReLU(SuAx)i)

can approximate R(Ax) within error O(ε(n+ ‖Ax‖1)) for a suitable value of m2, i.e.,

|R(SuAx)−R(Ax)| ≤ O(ε(n+ ‖Ax‖1)). (14)
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Fix any k-sparse support indexed by I ⊆ [d] with |I| = k. We will show (14) for all x in this
fixed support and then union bound over all

(
d
k

)
supports. Let AI be the matrix whose k columns

are the columns A∗i of A such that i ∈ I. We may assume w.l.o.g. that the columns of AI are
orthonormal, since the set of vectors {AIx | x has support I} remains unchanged by making them
orthonormal. With the assumption, ‖Ax‖2 = ‖AIx‖2 = ‖x‖2 for all x having support I. We
consider two cases.

Large Norm In this case, we consider x such that ‖Ax‖1 ≥ na1/ε. Since f is an (L, a1, a2)
hinge-like loss function, |f(Ax)i − ReLU(Ax)i| ≤ a1 for all 1 ≤ i ≤ n. Therefore, it holds that
|f(SuAx)i − ReLU(SuAx)i| ≤ a1 for all 1 ≤ i ≤ m2 as well. We have

∣∣R(SuAx)−R(Ax)
∣∣ =

∣∣∣∣∣ nm2

m2∑
i=1

(f(SuAx)i − ReLU(SuAx)i)−
n∑
i=1

(f(Ax)i − ReLU(Ax)i)

∣∣∣∣∣
≤ n

m2
m2a1 + na1 = 2na1 ≤ 2ε‖Ax‖1. (15)

Small Norm Now we consider x such that ‖Ax‖1 < na1/ε. This implies ‖x‖2 = ‖Ax‖2 ≤
‖Ax‖1 < na1/ε. We construct an ε

L+1 -net N k
I in the `2 norm for all x in the `2 ball BI =

{x has support I | ‖x‖2 ≤ na1/ε}. By a standard volume argument,
∣∣N k

I

∣∣ < (3(L+ 1)na1/ε
2)k.

We next consider a fixed vector x with support I and then union bound over all vectors in the net
N k
I .

Let X1, X2, . . . , Xm2 be random variables such that Xi = f(SuAx)i−ReLU(SuAx)i. Since f is
an (L, a1, a2) hinge-like loss function, |Xi| ≤ a1 for all i. By Hoeffding’s inequality,

P
(∣∣∣∣n∑m2

i=1Xi

m2
−R(Ax)

∣∣∣∣ ≥ εn) = P
(∣∣∣∣∑m2

i=1Xi

m2
− R(Ax)

n

∣∣∣∣ ≥ ε) ≤ 2 exp

(
−m2ε

2

4a2
1

)
. (16)

Note that (16) holds for a fixed vector x. Letting

m2 = O

(
a2

1

ε2

(
k log

d(L+ 1)na1

εk
+ log

1

δ

))
and union bounding over at most (3(L+ 1)na1/ε

2)k points in N k
I , we have the probability that

(16) holds for all points in N k
I is 1− δ′, where

δ′ =

(
3(L+ 1)na1

ε2

)k
exp

(
−m2ε

2

4a2
1

)
≤ δ

(
k

ed

)k
.

Next we will show that,
∣∣R(SuAx

′)−R(Ax′)
∣∣ ≤ εn for all x′ in N k

I implies∣∣R(SuAx)−R(Ax)
∣∣ ≤ 3εn (17)

for all x ∈ BI . Let x′ ∈ N k
I such that ‖x− x′‖2 ≤ ε

L+1 . By the triangle inequality,∣∣R(SuAx)−R(Ax)
∣∣ ≤ ∣∣R(Ax)−R(Ax′)

∣∣+
∣∣R(SuAx)−R(SuAx

′)
∣∣+
∣∣R(SuAx

′)−R(Ax′)
∣∣.

Since x′ is in N , the last term is at most εn. We will bound the other two terms using the fact
that f is L-Lipschitz and ‖x− x′‖2 ≤ ε

L+1 . Applying the triangle inequality again, we have

∣∣R(Ax)−R(Ax′)
∣∣ ≤ ∣∣∣∣∣

n∑
i=1

(
ReLU(Ax)i − ReLU(Ax′)i

)∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(
f(Ax)i − f(Ax′)i

)∣∣∣∣∣
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≤ ‖A(x− x′)‖1 + L‖A(x− x′)‖1
≤ (1 + L)

√
n‖x− x′‖2

≤ ε
√
n.

Similarly,∣∣R(SuAx)−R(SuAx
′)
∣∣

≤

∣∣∣∣∣ nm2

m2∑
i=1

(
ReLU(SuAx)i − ReLU(SuAx

′)i

)∣∣∣∣∣+

∣∣∣∣∣ nm2

m2∑
i=1

(
f(SuAx)i − f(SuAx

′)i

)∣∣∣∣∣
≤ n

m2
‖SuA(x− x′)‖1 +

n

m2
L‖SuA(x− x′)‖1

≤ (L+ 1)
n
√
m2
‖SuA(x− x′)‖2

≤ (L+ 1)
n
√
m2
‖A(x− x′)‖2

≤ (L+ 1)
n
√
m2
‖x− x′‖2

≤ ε n
√
m2

.

This completes the proof of (17) and our argument for the small norm case. Combining (15) and

(17), we have that for a fixed support I, with probability at least 1 − δ
(
k
ed

)k
,∣∣R(SuAx)−R(Ax)

∣∣ ≤ 3εn+ 2ε‖Ax‖1.

Union bounding over
(
d
k

)
< (ed/k)k k-sparse supports gives a success probability of at least 1 − δ.

Let S =

[
SReLU

Su

]
. Define

gf (SA, x)
def
= R(SuAx) + gReLU(SReLUA, x).

From (13), with probability at least 1 − 2δ,∣∣gf (SA, x)− ‖Ax‖f
∣∣ ≤ ∣∣R(SuAx)−R(Ax)

∣∣+
∣∣gReLU(SReLUA, x)− ‖Ax‖ReLU

∣∣
≤ 3ε (n+ ‖Ax‖1) (18)

By Lemma 5, ‖Ax‖f ≥ (n+ ‖Ax‖1)/(Cµ), where C = 16 max(1, L, a1, 1/a2)4. Combining this with
(18) gives ∣∣gf (SA, x)− ‖Ax‖f

∣∣ ≤ 3Cµε‖Ax‖f .

Finally, scaling ε by O(1/(Cµ)), the number of rows in S is

m1 +m2 = O

(
C2µ2k(1 + a2

1)

ε2
· log

(
Cna1(L+ 1)µd

εδ

))
= O

(
c10µ2k

ε2
· log

(
cnµd

εδ

))
with c = max(1, L, a1, 1/a2).
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For completeness we have the following simple result that yields a connection between minimiz-
ing in the sketch space using a k-sparse affine embedding – as in all upper bounds above – and the
original problem.

Corollary 11. Let A ∈ Rn×d, b ∈ Rn. Let ‖ · ‖ : Rn → R≥0 be any loss function. Let S be
an oblivious linear sketch of [A, b], and let E(SA, Sb, x) be an estimator that satisfies ∀x ∈ Ψk :
(1 − ε)‖Ax − b‖ ≤ E(SA, Sb, x) ≤ (1 + ε)‖Ax − b‖. Then x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies
‖Ax̃− b‖ ≤ (1 +O(ε)) minx∈Ψk

‖Ax− b‖.

Proof. (of Corollary 11) Let x∗ ∈ argminx∈Ψk
‖Ax− b‖. Then

‖Ax̃− b‖ ≤ E(SA, Sb, x̃)/(1− ε) ≤ E(SA, Sb, x∗)/(1− ε)
≤ ‖Ax∗ − b‖(1− ε)/(1− ε) ≤ (1 + 4ε)‖Ax∗ − b‖.

C Oblivious sketching for LASSO regression

LASSO regression is a convex relaxation of k-sparse `2 regression and enjoys large popularity as
a heuristic for inducing sparsity and feature selection [Tib96]. Here we give an upper bound for
sketching that depends on an `1 regularization parameter λ, and log(d).

C.1 Upper bound

Theorem 12. Consider A ∈ Rn×d, b ∈ Rn, and λ ∈ (0, 1). Assume that ‖A‖2 ≤ 1 and ‖b‖2 ≤ 1,
If S ∈ Rm×n is a random Gaussian matrix (i.e., each entry is sampled i.i.d. from N(0, 1/m)) then

for any ε, δ ∈ (0, 1) and m = O( log d/δ
λ2·ε2 ), with probability at least 1 − δ, if x̃ = argminx∈Rd ‖SAx −

Sb‖22 + λ‖x‖1 then ‖Ax̃− b‖22 + λ‖x̃‖1 ≤ (1 + ε) ·minx∈Rd ‖Ax− b‖22 + λ‖x‖1.

Observe that our constraints on ‖A‖2, ‖b‖2 are necessary, since classic LASSO regression is not
scale invariant. If, for an arbitrarily large factor α, we scale A up by a factor of α then we can keep
the same error ‖Ax− b‖22 while scaling x down by a factor of 1/α. Thus, the λ · ‖x‖1 term becomes
negligible, and the problem reduces to ordinary least squares regression. Similarly, if we scale b up
by a factor α, then the minimal achievable ‖Ax−b‖22 scales by a factor α2, while the x achieving this
minimum has λ‖x‖1 scaled by just a factor α. So again, as α grows arbitrarily large, the problem
becomes ordinary least squares regression. It is known that sketching dimension Θ(d/ε) is necessary
and sufficient for ordinary least squares regression [Sar06; CW09]. Thus, going beyond this requires
bounding ‖A‖2, ‖b‖2 to ensure that the regularization λ‖x‖1 has a non-negligible effect.

Also note that we cannot hope to achieve an o(d/ε2) bound for preserving the LASSO cost for
all x ∈ Rd, since for x with large enough ‖x‖22, and for b = 0, the problem becomes equivalent to
preserving ‖Ax‖22, which requires Θ(d/ε2) sketch size [NN14].

Proof of Theorem 12. Let OPT = minx∈Rd ‖Ax − b‖22 + λ‖x‖1. Observe that since ‖b‖2 ≤ 1,
OPT ≤ ‖b‖22 +λ‖0‖1 ≤ 1. Via the standard Johnson-Lindenstrauss lemma, we have that with high
probability, for x∗ = argminx∈Rd ‖Ax− b‖22 + λ‖x‖1, ‖SAx∗ − Sb‖22 + λ‖x∗‖1 ≤ (1 + ε) ·OPT .

Thus, we must have ‖x̃‖1 ≤ (1+ε)·OPT
λ ≤ 2·OPT

λ , as otherwise we would have ‖SAx̃ − Sb‖22 +
λ‖x̃‖1 ≥ ‖SAx∗ − Sb‖22 + λ‖x∗‖1, contradicting the fact that x̃ is a minimizer for the sketched
problem. For the same reason, we must have ‖SAx̃− Sb‖2 ≤ ‖Sb‖2 ≤ 2.

Let T = {y = Ax − b : ‖x‖1 ≤ 2·OPT
λ }. Let T ′ = {y = Ax − b : ‖x‖1 = 1}. Observe that by

our assumption that ‖A‖2 ≤ 1, each column ai of A has ‖ai‖2 ≤ 1. Thus, T ′ is the convex hull

33



of 2d + 1 points in the unit ball: a1,−a1, a2,−a2, . . . ad,−ad, b. By Corollary 3.2 of [NN19], for

m = O
(

log(d/δ)
λ2·ε2

)
, with probability at least 1 − δ, for all y′ ∈ T ′,

|‖Sy‖2 − ‖y‖2| ≤ ελ.

Note that any y ∈ T can be written as α · y′ for y′ ∈ T ′, for some α ≤ 2·OPT
λ . Thus, we have that

with probability at least 1 − δ, for all y ∈ T ,

|‖Sy‖2 − ‖y‖2| ≤ 2ε ·OPT.

In particular, for x̃ = argminx∈Rd ‖SAx− Sb‖22 + λ‖x‖1, we have Ax̃− b ∈ T so this gives∣∣‖SAx− Sb‖22 − ‖Ax− b‖22∣∣ ≤ |‖SAx− Sb‖2 − ‖Ax− b‖2| · |‖SAx− Sb‖2 + ‖Ax− b‖2|
≤ 12ε ·OPT, (19)

where the second inequality uses that ‖SAx̃− Sb‖2 ≤ 2 ·OPT ≤ 2 and thus ‖Ax̃− b‖2 ≤ (2 + 2ε) ·
OPT ≤ 4. Finally, using (19) we have:

‖Ax̃− b‖22 + λ‖x̃‖1 ≤ ‖SAx̃− Sb‖22 + λ‖x̃‖1 + 5ε ·OPT
≤ ‖SAx̃∗ − Sb‖22 + λ‖x∗‖1 + 12ε ·OPT
≤ (1 + 13ε) · [‖SAx̃∗ − Sb‖22 + λ‖x∗‖1].

This completes the theorem after adjusting ε by a constant factor.

C.2 Lower bound

Theorem 13. Let A ∈ Rn×d, b ∈ Rn with bounded ‖A‖2 ≤ 1 and ‖b‖2 ≤ 1, and let λ ∈ (0, 1). Sup-
pose S ∈ Rm×n is an oblivious linear sketch for LASSO regression with an estimator Eλ(SA, Sb, x),
such that with constant probability x̃ ∈ argminx∈Ψk

Eλ(SA, Sb, x) satisfies ‖Ax̃ − b‖22 + λ‖x̃‖1 ≤
(1 + ε) ·minx∈Rd ‖Ax− b‖22 + λ‖x‖1. Then m = Ω( log(λd)

λ2
).

Proof of Theorem 13. We will prove this similar to the lower bound in Theorem 1. We will take
[b A] = X ∼ 1√

n
G(I+zzT )1/2, where z is as in Corollary 15 with ε = 1/2. Without loss of generality,

we can assume that S has orthonormal rows and so SG(I + zzT )1/2 has the same distribution as
G(I+zzT )1/2 with fewer rows. We also let λ = 1/(2

√
k). The normalization factor 1√

n
ensures that

norm condition ‖A‖2, ‖b‖2 ≤ 1 holds with high probability. We then have with high probability

‖Ax− b‖22 + λ‖x‖1 ≈ 1 + ‖x‖22 + (1− εvTx)2 + λ‖x‖1 =: L(x).

The approximation error (and the probability) above can be made arbitrarily small by taking n to
be sufficiently large.

We note that L(x) is a 1-strongly convex function, and so

L(x̂) ≥ L(x∗) + ‖x̂− x∗‖22.

for any x̂, where x∗ is the minimizer of L(x). By a straightforward computation, we also get that
x∗ = v/5 and L(x∗) = 1.95. Suppose that L(x̂) ≤ (1 + c1)L(x∗) for a sufficiently small c1. Then we
have

(1 + c1)L(x∗) ≥ L(x∗) + ‖x̂− x∗‖22.
This implies that ‖x̂−x∗‖22 ≤ c1L(x∗) ≤ 1.95·c1. Therefore, by choosing c1 to be a small enough con-
stant, we can recover a 19/20 fraction of supp(x∗) = supp(v). Corollary 15 then gives the required
lower bound of Ω(k log(d/k)) on the size of the sketch, where k is set to 1/(4λ2) corresponding to
our choice of λ.
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D Separating sparse recovery and sparse regression

We now give a separation between the k-sparse recovery problem and k-sparse regression problems.
Combined with our lower bounds for k-sparse regression, this shows that the k-sparse recovery
problem is a strictly easier problem. Our upper bound below matches the lower bound for k-sparse
outputs of [PW11] up to a log(k/ε) factor, improving the näıve bound of O(k(log d)/ε2).

In the k-sparse recovery problem, one seeks to sketch a vector x ∈ Rd so as to output a k-sparse
x̂ ∈ Rd so that

‖x− x̂‖22 ≤ (1 + ε)‖x− xk‖22, (20)

where xk consists of the top k entries in magnitude of x, breaking ties arbitrarily. We need the
following theorem about CountSketch.

Theorem 16. ([CCF04]) There is a distribution on sketching matrices S ∈ Rbt×d, called Count-
Sketch matrices, which is parameterized by the number b of buckets and the number t of tables. For
a vector x, there is a procedure which, given S · x and a coordinate i ∈ [d], returns an estimate x̂i
for which

|x̂i − xi| ≤ C · ‖x− xk‖2/
√
b,

with failure probability at most 2−C
′t, where C,C ′ > 0 are absolute constants.

Consider the following procedure:

1. Run CountSketch with b = O(k/ε) buckets and t = O(log d) tables, and let A be the set
of indices i ∈ {1, 2, . . . , d} for which the corresponding estimates x̂′i are among the largest
O(k/ε) in magnitude. Here we use x̂′i to denote the estimates returned by Theorem 16 to
distinguish them from the estimates returned in the next step.

2. In parallel, run CountSketch with b = O(k/ε2) buckets and t = O(log(k/ε)) tables, and
compute estimates x̂i for each i ∈ A. Let B be the set of the top k magnitude estimates x̂i,
restricted to i ∈ A.

3. Return the vector x̂ supported on B with corresponding estimates x̂i for each i ∈ B.

Theorem 14. On input x ∈ Rd, the above sparse recovery scheme uses O(k log(k/ε)/ε2+k log(d)/ε)
measurements and, with probability at least 1− 1/ poly(d)− 1/ poly(k/ε), returns a k-sparse vector
x̂ ∈ Ψk satisfying ‖x− x̂‖22 ≤ (1 + ε) minxk∈Ψk

‖x− xk‖22.

Proof. Since the sketch S is linear, we can assume, w.l.o.g., that ‖x− xk‖22 = k. Then by Theorem
16, with probability 1− 1/ poly(d), the CountSketch in Step 1 returns estimates x̂′i satisfying

|x̂′i − xi| ≤
√
ε

simultaneously for all i = 1, 2, . . . , d. It follows that for every i for which |xi| ≥ 3
√
ε, we have that

i ∈ A. To see this, note that if |xi| ≥ 3
√
ε, then |x̂′i| ≥ 2

√
ε. On the other hand, if |x̂′j | ≥ 2

√
ε for

some j ∈ [d], then |xj | ≥
√
ε. The number of j for which |xj | ≥

√
ε is at most k + k/ε, given that

‖x−xk‖22 = k. Also, the number of i for which |x̂i| ≥ 2
√
ε is at most k+k/(4ε). So if |A| = O(k/ε)

for a sufficiently large constant in the big-Oh, we have that if |xi| ≥ 3
√
ε, then i ∈ A.

In Step 2, and by a union bound over all i ∈ A, we have that with probability 1− 1/ poly(k/ε),
simultaneously for every i ∈ A, |x̂i − xi| ≤ ε. Letting H be the set of the top k magnitude
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coordinates of x, we have ‖xH\A − x̂H\A‖22 ≤ k · 9 · ε, since any i ∈ H \ A necessarily satisfies
|xi| < 3

√
ε and x̂i = 0.

We also have ‖xH∩B − x̂H∩B‖22 ≤ k · ε2, since for each i ∈ H ∩B, we have |x̂i − xi| ≤ ε.
Finally, consider those i ∈ H∩(A\B). For each such i, there necessarily exists a j = j(i) ∈ A\H

for which |x̂j(i)| ≥ |x̂i| and since |x̂j(i) − xj(i)| ≤ ε and |x̂i − xi| ≤ ε, this implies |xj(i)| ≥ |xi| − 2ε.
Note also by definition of H that |xj(i)| ≤ |xi|. Consequently, the sketch solution x̂ pays at most

(xj(i) − x̂j(i))2 + x2
i ≤ ε2 + (xj(i) + 2ε)2 = O(ε2 + x2

j(i) + |xj(i)|ε),

on this coordinate, whereas the optimal non-sketched solution xk pays x2
j(i). As |A \ B| ≤ k, the

total additional cost the sketched solution pays over the optimal solution is at most

O(kε2 + ε
∑

i∈H∩(A\B)

|xj(i)|). (21)

Finally, note that
∑

i∈H∩(A\B) |xj(i)| is at most the `1-norm of the largest k coordinates in magnitude

not in H. Since the `2-norm of such coordinates is at most
√
k, the `1-norm of such coordinates is

at most k. Combining with (21), the total additional error the sketched solution pays is O(εk).
It follows that

‖x− x̂‖22 ≤ ‖xH\A − x̂H\A‖22 + ‖xH∩B − x̂H∩B‖22 + ‖x− xk‖22 +O(εk) ≤ (1 +O(ε))‖x− xk‖22,

and (20) follows by rescaling ε by a constant factor. The total number of measurements and overall
failure probability follow by Theorem 16.

E Information theoretic basics

We require the following notions from information theory.

Definition 3 (Entropy and Mutual Information). The entropy of a random variable X over some
support S is

H(X) =
∑
i∈S

pi log2

1

pi
.

Given two random variables X and Y , the conditional entropy is

H(X|Y ) =
∑
y

H(X|Y = y) · P[Y = y]

and their joint entropy is

H(X,Y ) =
∑
x,y

P[X = x
∧
Y = y] log2

1

P[X = x ∧ Y = y]
.

The mutual information of two random variables is

I(X;Y ) = H(X)−H(X|Y )

Finally, we require Fano’s inequality.

Lemma 6 (Fano’s Inequality). Let X be a random variable chosen from domain X according to
distribution µX and let Y be a random variable chosen from domain Y according to distribution
µY . T hen for any reconstruction function g : Y → X with error εg, it holds that

H(X|Y ) ≤ H(εg) + εg log(|X | − 1).
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