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Abstract

Treatment effect estimation is a fundamental problem in causal inference. We focus on
designing efficient randomized controlled trials, to accurately estimate the effect of some treatment
on a population of n individuals. In particular, we study sample-constrained treatment effect
estimation, where we must select a subset of s� n individuals from the population to experiment
on. This subset must be further partitioned into treatment and control groups. Algorithms for
partitioning the entire population into treatment and control groups, or for choosing a single
representative subset, have been well-studied. The key challenge in our setting is jointly choosing
a representative subset and a partition for that set.

We focus on both individual and average treatment effect estimation, under a linear effects
model. We give provably efficient experimental designs and corresponding estimators, by
identifying connections to discrepancy minimization and leverage-score-based sampling used in
randomized numerical linear algebra. Our theoretical results obtain a smooth transition to known
guarantees when s equals the population size. We also empirically demonstrate the performance
of our algorithms.

1 Introduction

Experimentation has long been held as a gold standard for inferring causal effects since one can
explicitly enforce independence between treatment assignment and other variables which influence
the outcome of interest. We consider the potential outcomes framework [Ney23, Rub80], where each
individual is associated with a control and treatment value (also called the potential outcomes) and
based on the treatment assignment, we can observe only one of these values. Efficient designs of
experimentation for estimating individual treatment effects which measure the difference between
treatment and control values for each individual, and the average treatment effect which measures
the average individual treatment effect has been well-studied [MR12]. In the absence of assumptions
on the functional form of the potential outcomes, the minimax optimal approach for conducting
an experiment is to assign individuals to treatment or control completely at random, without

Author ordering is alphabetical. A preliminary version of this work appeared in the proceedings of 36th Conference
on Neural Information Processing Systems (NeurIPS 2022).
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consideration of baseline covariates (features) [Kal17]. However, by considering covariates for each
individual, and using additional assumptions of smoothness, substantial gains can be made in terms
of the variance of the treatment effect estimate via alternative assignment procedures. The most
common approach attempts to minimize imbalance, i.e., the difference between the baseline covariates
in the treatment and control groups [ADR21, Kal17, MR12].

While experimental designs that minimize imbalance increase the power of an experiment for
a given pool of subjects, there are many practical applications where the experimenter wishes to
minimize the total number of subjects who are placed into the experiment. For example, in medicine,
clinical trials may carry nontrivial risk to patients. Within industrial applications, experiments may
carry substantial costs in terms of testing changes, which decrease the quality of the user experience,
or have direct monetary costs.

In this paper, we examine the problem of selecting a subset of s individuals from a larger
population and assigning treatments such that the estimated treatment effect has a small error. We
consider two different estimands: individual treatment effect (ITE) and average treatment effect
(ATE).

A bit more formally, we represent the d-covariates of a population of n individuals using X ∈ Rn×d.
We assume that the treatment and control values, denoted by y1,y0 ∈ Rn, are functions of the
covariates, i.e., y1 = f(X, ζζζ1) and y0 = g(X, ζζζ0) where ζζζ0, ζζζ1 ∈ Rn are noise vectors. The ITE for
the ith individual is y1

i − y0
i and ATE is the average of all the ITE values. We further assume a

linear model, i.e., the functions f, g are linear in X and ζζζ1, ζζζ0. The goal is to pick a subset of s
individuals and partition this subset into control and treatment groups. For an individual i in the
treatment group, we measure y1

i , and for an individual j in the control, we measure y0
j . From this

small set of measurements, we seek to estimate the ITE or ATE over the full population.
Without parametric assumptions, ITE estimation is not feasible [SJS17]. We focus on linear

models in particular, since they are important in developing theory. E.g., in the literature on
optimal designs in active learning, much of the foundational theory is built around linear models.
Identifying estimators based on linearity assumptions is an active area of study in the causal inference
literature [HSSZ19, WDTT16].

Our setup is similar to active learning [Set09], where the goal is to minimize the number of
individual labels that we access for solving linear regression or other downstream tasks. The key
difference is that we must select both a subset of individuals, and for each i, can measure only one
of two labels: y1

i or y0
i . In particular, ITE estimation can be thought of as solving two simultaneous

active linear regression problems – one for the treatment outcomes and one for the control outcomes.
Thus, standard active learning-based approaches, such as [CP19, CDL13, M+11], fall short. Even
when s equals the population size n, i.e., when active learning becomes trivial, our problem does
not. We must still pick a partition of the full population into treatment and control groups. Overall,
sample constrained treatment effect estimation by designing efficient randomized controlled trials
has received little attention, compared to various approaches that use observational data, such
as [JTvA+21, QWZ21, SSS+19].

1.1 Our Contributions

For ITE estimation, we propose an algorithm using leverage score sampling [Woo14], which is a
popular approach to subset selection for fast linear algebraic computation. For ATE estimation, we
employ a recursive application of a covariate balancing design [HSSZ19]. We provide a theoretical
analysis in terms of root mean squared error (ITE) and deviation error (ATE).
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Recall that we assume the treatment and control values are linear functions of the covariates
plus Gaussian noise, i.e., y1 = Xβββ1 + ζζζ1 and y0 = Xβββ0 + ζζζ0 where ζζζ1, ζζζ0 ∈ Rn have i.i.d. mean zero,
variance σ2 Gaussian entries, and βββ1,βββ0 ∈ Rd are coefficient vectors.

ITE estimation. For ITE estimation, we give a randomized algorithm that selects Θ(d log d)
individuals in expectation, using leverage scores, which measure the importance of an individual
based on their covariates. Our algorithm obtains, with high probability, root mean squared error
O
(√

log d/n · (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
(see Corollary 3.7). We argue that this is optimal up to constants

and a
√

log d factor, even for approaches that experiment on the full population.
The key challenge in achieving this bound is to extend leverage scores to our simultaneous linear

regression setting, ensuring that we do not share samples across the treatment and control effect
estimation problems. To do this, we introduce a smoothed covariate matrix, whose leverage scores
are bounded. This ensures that, when applying independent leverage score sampling, with high
probability few individuals are randomly assigned to both control and treatment, and thus removing
such individuals from one of the groups does not introduce too much error.

ATE estimation. For ATE estimation we give a randomized algorithm that selects at most s
individuals for treatment/control assignment and obtains an error of Õ

(
σ/
√
s+ (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥)/s

)
,

where Õ(·) hides logarithmic factors (see Theorem 4.3). The error decreases with increasing values
of s and when s = n, it matches state-of-the-art guarantees due to Harshaw et al. [HSSZ19].

Our algorithm for ATE estimation is based on covariate balancing. This is a popular approach
where one attempts to assign similar individuals to the treatment and control groups, to ensure
that the observed effect is attributed to the administered treatment alone. Harshaw et al. [HSSZ19]
designed an algorithm by minimizing the discrepancy of an augmented covariate matrix, which
achieves low ATE estimation error. To extend their approach to our setting, first, we need to select
a subset of s individuals that are representative of the entire population, and then balance the
covariates. Uniform sampling or importance sampling techniques give high error here. Instead, we
employ a recursive strategy, which repeatedly partitions the individuals into two subsets by balancing
covariates, and selects the smaller subset to recurse on, until we have selected at most s individuals.

We observe that our techniques for ITE and ATE estimation should extend to the setting when
the outcomes are non-linear functions of the covariates, which are linear in some higher-dimensional
kernel space. This is immediate for our discrepancy minimization design for ATE, which only requires
knowing the pairwise inner products of the covariate vectors. For ITE estimation, leverage score
sampling for kernel ridge regression [AM15] is most likely applicable. Extensions to broader classes
of non-linear models are beyond the scope of this work, but they are an interesting future direction.

Finally, in Section 5, we provide an empirical evaluation of the performance of our ITE and
ATE estimation methods, comparing against uniform sampling and other baselines on several
datasets. Our results suggest that our techniques can help reduce the costs associated with running
a randomized controlled trials substantially using only a small fraction of the population.

1.2 Other Related Work

For ATE estimation, the most well-studied approaches to experiment design are covariate balancing
and randomization. A variety of design techniques have been studied based on these approaches,
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such as blocking [GLSR04], matching [Ima08, Stu10], rerandomization [LDR18, MR12], and opti-
mization [Kal17]. Using observational data, treatment effect estimation using covariate regression
adjustment [Lin13] and various active learning-based sampling techniques have gained recent atten-
tion [JTvA+21, NJC+13, SSS+19]. Compared to ATE, estimating ITE is significantly harder and
has received attention only recently using machine learning methods [AI16, SJS17, WA18]. There
has been a lot of recent work on efficient experimental designs to minimize experimental costs, in
various domains, such as causal discovery [AKMM20, AMM21, Ebe07, GSKB18, KDV17, SKDV15],
multi-arm bandits [ACD21, KW21, NPS21], and group testing [BCS+20, CCJS11, DHH00].

2 Preliminaries

Notation. We use bold capital letters, e.g., X to denote matrices and bold lowercase letters, e.g., y
to denote vectors. We use X[i, :] and X[:, j] to denote the ith row and jth column of X respectively,
which we always view as column vectors. The ith largest singular value of X is denoted by σi(X).
For any vector x, the Euclidean norm or the `2-norm is denoted by ‖x‖.

For a population of n individuals, we represent each with an integer in [n] where we denote
[n]

def
= {1, 2, · · · , n}. Each individual j ∈ [n] is associated with a treatment and a control value,

denoted y1
j ,y

0
j ∈ R+, respectively. The vectors associated with all n treatment and control values

are denoted y1 and y0. Additionally, each individual is associated with a d-dimensional covariate
vector. Combined, they comprise the rows of the covariate matrix X ∈ Rn×d.

In this paper, we consider the finite population framework, where the potential outcomes of
individuals are fixed and the randomness is only due to treatment assignment [DLM17]. We make the
SUTVA assumption, i.e., the treatment outcome value of any individual is independent of treatment
assignments of others in the population [Wag20].

Assumption 2.1 (Linearity Assumption). Under the linearity assumption, the treatment and control
values are a linear function of the covariates. Formally, for some βββ0,βββ1 ∈ Rd,

y1 = Xβββ1 + ζζζ1 and y0 = Xβββ0 + ζζζ0,

where ζζζ1, ζζζ0 ∈ Rn are noise vectors, with each coordinate drawn independently from the Gaussian
distribution with zero mean and variance σ2, i.e., N(0, σ2). We further assume that X is row-
normalized, i.e., ‖X[i, :]‖ ≤ 1 ∀i ∈ [n].

Definition 2.2 (Individual Treatment Effect). Given a population of n individuals, the individual
treatment effect (ITE) of j ∈ [n] is the difference between the treatment and control values:

ITE(j)
def
= y1

j − y0
j .

Definition 2.3 (Average Treatment Effect). Given a population of n individuals, the average
treatment effect (ATE), denoted by τ , is the average individual treatment effect:

τ
def
=

1

n

∑
j∈[n]

ITE(j) =
1

n

∑
j∈[n]

y1
j − y0

j .

Definition 2.4 (Root Mean Squared Error). For a set of estimated individual treatment effects,
ÎTE(j) for j ∈ [n], the root mean squared error (RMSE) is defined as:

RMSE def
=

1√
n
·
∥∥∥ÎTE(j)− ITE(j)

∥∥∥ .
4



Definition 2.5 (Leverage Score). Given a matrix X ∈ Rn×d, the leverage score of jth row X[j, :],
denoted by `j(X), is defined as:

`j(X)
def
= X[j, :]T (XTX)

+
X[j, :],

where + denotes the Moore–Penrose pseudo-inverse.

3 Individual Treatment Effect Estimation

In this section, we describe our algorithm for ITE estimation. The algorithm identifies a subset of
the population to experiment on, using importance based sampling techniques, that are well-studied
in randomized numerical linear algebra [Woo14]. Missing proof details in this section are presented
in Appendix A.1.

Overview of our approach. Under the linearity assumption (Assumption 2.1), we can reformulate
the problem of estimating the ITE for every individual as simultaneously solving two linear regression
instances: one for control and one for treatment, i.e., we regress y0,y1 on X. However, there are two
challenges: 1) we would like to solve these regression problems using measurements from just a small
subset of s individuals and 2) we only have access to either the control or treatment measurement
y0
j or y1

j for any individual in this set.
To tackle the first challenge, we use a sampling technique based on the importance of each row

in X, captured via its leverage score (Defn. 2.5). Intuitively, we want to select s individuals (or
equivalently rows) that capture the entire row space of X and use them to estimate the ITE of all
other individuals. Leverage scores capture the importance of a row in making up the row space.
E.g., if a row is orthogonal to all the other rows, it’s leverage score will be the maximum value of 1.

Unfortunately, if we apply leverage score sampling independently to the regression problems for
y0 and y1, rows with high leverage leverage scores may be sampled for both instances. This presents
a problem, since we can only read at most one of y0

j or y1
j . To mitigate this issue, we construct

a smoothed matrix X∗, which consists of X projected onto its singular vectors with high singular
values. Intuitively, this dampens the effects of high leverage score ‘outlier’ rows that don’t contribute
significantly to the spectrum of X. Formally, we prove that the maximum leverage score of X∗ is
bounded, which let’s us solve our two regression problems via independent sampling. There will be
few repeated samples across our subsets, which introduce minimal error.

3.1 Leverage Score Sampling

For some γ ≥ 0, to be fixed later, we define a smoothed matrix for X, the projection onto singular
vectors with high singular values, as follows:

Definition 3.1 (Smoothed matrix). Given X ∈ Rn×d with singular value decomposition X = UΣVT ,
let Γ∗ be the set of indices corresponding to singular values greater than √γ, i.e., Γ∗

def
= {i | σi(X) ≥

√
γ}; we denote d′ def

= |Γ∗|. Let Σ∗ = Σ(Γ∗,Γ∗) denote the principal sub-matrix of Σ associated
with these large singular values. Similarly, let U∗ ∈ Rn×d′ ,V∗ ∈ Rd×d′ be the associated column
sub-matrices of U and V. Then, we define:

X∗
def
= U∗Σ∗V∗T .
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Sampling Matrix. Our algorithm will sample individuals, corresponding to rows of the smoothed
matrix of X, i.e., X∗, independently – the ith row is included in the sample with some probability
πππi. Let the set of rows sampled be denoted by S.

We can associate a sampling matrix W with S. The jth row of W is associated with the jth

element in the set S (under some fixed order). If the jth element in S is the row for individual i for
some i ∈ [n], then, W[j, :] is equal to ei/

√
πππi. Here, ei ∈ Rn denotes the ith standard basis vector.

In this way, WX∗ consists of the subset of rows sampled in S, reweighted by the inverse squareroot
of their sampling probabilities, which is necessary to keep expectations correct in solving the linear
regression.

Algorithm 1 Sampling-ITE

Input: Smoothed covariates X∗ ∈ Rn×d, sampling probabilities πππ ∈ [0, 1]n.
Output: Estimates for ITE(j) for each individual j ∈ [n].

1: Add each j ∈ [n] to set S0 independently, with prob. πππj .
2: Add each j ∈ [n] to set S1 independently, with prob. πππj .
3: Construct sampling matrix W0 from S0 using probabilities πππ.
4: Construct sampling matrix W1 from S1 \ S0 using probabilities πππ(1− πππ).

5: Let β̃ββ
i

= arg minβββ∈Rd

∥∥WiX∗βββ −Wiyi
∥∥2 for i = 0, 1.

6: For each j ∈ [n], let ÎTE(j) be the jth entry of the vector X∗β̃ββ
1
−X∗β̃ββ

0
.

7: return ÎTE(j) ∀j ∈ [n].

Algorithm Sampling-ITE. We perform row sampling twice, with probabilities proportional
to the leverage scores of X∗, to construct two sets S0, S1. See the discussion below for the exact
definition of the sampling probabilities πππi, which are proportional to the leverage scores of X∗. These
two sets are used to estimate the vectors y0 and y1, respectively. It is possible that a row gets
included in both S0 and S1. In that case, we simply remove the row from S1. As a result, jth row
is included in S1 with probability πππj · (1− πππj) for every j ∈ [n]. We construct sampling matrices
W0 and W1 using probabilities πππ and πππ(1− πππ) respectively. Finally, in Algorithm 1, we solve the
following linear regressions, for i = 0, 1 separately:

β̃ββ
i

= arg min
βββ∈Rd

∥∥WiX∗βββ −Wiyi
∥∥2

Our estimate for each ITE(j), denoted by ÎTE(j) is set to jth entry of the vector X∗β̃ββ
1
−X∗β̃ββ

0
.

Observe that by construction, S0 ∩ S1 is empty. This ensures that we have access to only one of y0
j

or y1
j for any individual j in solving the above two subsampled regression problems.
We note that in Algorithm 1, we could remove j from one of S0, S1, or with equal probability

from either of the two sets, and obtain the exact same guarantees.

3.2 Theoretical Guarantees

First, we bound the error due to sampling. Critically, we show that the leverage scores of X∗, and in
turn the probabilities πππ, are bounded by 1/γ. Thus, the sampling probabilities for S1, πππ(1− πππ) are
not too far from πππ itself.

6



As we assume the row norms of X are bounded by 1, the row norms of X∗ are also bounded.
Thus, there can be no rows in X∗ that are nearly orthogonal to all other rows – i.e., there can be no
rows with very high leverage scores. Such rows would lead to small singular values. However, we
know that the smallest singular value of X∗ is at least √γ. In particular, we prove:

Claim 3.2. `j(X∗) ≤ 1/γ, for all j ∈ [n].

Setting πππ. It is well known that if we sample rows of X∗ with probabilities πππ proportional to the
leverage scores, we will obtain a (1± ε) relative error approximation for linear regression [Sar06]. The
result of Sarlos [Sar06] applies to sampling s rows with replacement, each equal to j with probability
πππj/ ‖πππ‖. It is not hard to observe that it extends to the variant where each row is included in the
sample independently with similar probability. Therefore, we have:

Lemma 3.3 (Follows from [Sar06]). For X ∈ Rn×d, y ∈ Rn, let S ⊆ [n] include each j ∈ [n]
independently with probability πππj satisfying πππj ≥ min

{
1, `j(X) · c · [log(rank(X)) + 1

δε ]
}
for some

large enough constant c. Let W ∈ R|S|×n be a sampling matrix that includes row ej/
√
πππj if j ∈ S,

where ej ∈ Rn is the jth standard basis vector. Let β̃ββ = arg minβββ∈Rd ‖WXβββ −Wy‖2 . Then,
E[|S|] =

∑n
j=1πππj and with probability ≥ 1− δ:∥∥∥Xβ̃ββ − y

∥∥∥ ≤ (1 + ε) ·min
βββ
‖Xβββ − y‖ .

If the πππj’s are within constants of the required bound, E[|S|] = O
(
d log d+ d

εδ

)
.

Note that the bound on E[|S|] follows from the well known fact that the sum of leverage scores,
is equal to the rank, i.e.,

∑n
j=1 `j(X) = rank(X) ≤ d [Woo14].

The sampling probabilities are set to πππj = min {1, `j(X∗) · c0 · [log(rank(X∗)) + 30/ε]} for some
constant c0 ≥ 2c, where c is the constant in Lemma 3.3. Thus, by the lemma, we will have, with
probability ≥ 29/30,

∥∥∥X∗β̃ββ0
− y0

∥∥∥ ≤ (1 + ε)
∥∥X∗βββ0 − y0

∥∥ . It remains to show that we will have a
similar guarantee for the control group. The rows in S1 are included independently with probability
πππj · (1− πππj). If we can prove that πππj · (1− πππj) ≥ πππj

2 , then Lemma 3.3 will still apply, since we have
set c0 = 2c. To do so, it suffices to argue that πππj ≤ 1/2 by setting the parameters appropriately.

Claim 3.4. If γ = 4c0 max {log(rank(X∗)), 30/ε} and πππj = min{1, `j(X∗) · c0 · [log(rank(X∗)) +
30/ε]}, we have πππj ≤ 1/2 for every j ∈ [n].

Proof.

πππj ≤ `j(X∗) · c0 · [log(rank(X∗)) + 30/ε] ≤ 1/γ · c0 · [log(rank(X∗)) + 30/ε] (Claim 3.2)

≤ c0[log(rank(X∗)) + 30/ε]

4c0 max {log(rank(X∗)), 30/ε}
≤ 1

2
.

In Appendix A.1, we argue that using the smoothed matrix X∗ introduces an error of √γ.
Combining all of them, we have the following corollary:

Corollary 3.5. Suppose γ and πππj are set as in Claim 3.4, for some sufficiently large constant c0.
Then, Algorithm Sampling-ITE satisfies, for i = 0, 1, with probability at least 14/15:∥∥∥X∗β̃ββi − yi

∥∥∥ ≤ (1 + ε) ·
(√
γ
∥∥βββi∥∥+

∥∥ζζζi∥∥) for i = 0, 1.

7



RMSE Guarantees. The root mean squared error (Defn. 2.4) for the ITE estimates is given by:

RMSE =
1√
n

∥∥∥(X∗β̃ββ
1
−X∗β̃ββ

0
)− (y1 − y0)

∥∥∥ .
By setting ε = 120c0d log d/s in Corollary 3.5, we get the following theorem for our Algorithm 1:

Theorem 3.6. Suppose s ≥ 120c0d log d. There is a randomized algorithm that selects a subset
S ⊆ [n] of the population with E[|S|] ≤ s, and, with probability at least 9/10, returns ITE estimates
ÎTE(j) for all j ∈ [n] with error:

RMSE = O
(√ 1

n
max

{s
d
, log d

}
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

For the sake of simplicity of analysis, we used a constant success probability in Theorem 3.6. All
our claims can easily be updated with a general failure probability of δ, with a dependence of

√
1/δ,

using Lemma 3.3. The corollary below follows immediately from Theorem 3.6.

Corollary 3.7 (Main ITE Error Bound). The root mean squared error obtained by Algorithm 1 is
minimized when s = Θ(d log d) and is given by:

RMSE = O
(√ log d

n
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

Our upper bound on RMSE for Algorithm 1 increases with s, if s grows strictly faster than
d log d asymptotically, i.e., s = ω(d log d). Therefore, to obtain low error, we set s = c · d log d for
some constant c, even if the sample constraint allows for larger values. We believe this is an artifact
of our analysis. In Section 5, we observe empirically that the error decreases with increasing s.

Remark. We observe that the RMSE bound in Corollary 3.7 is nearly optimal, even for algorithms
that experiment on the full population. The O(σ) term cannot be improved by more than constants,
as a consequence of our noise model (see Assumption 2.1). Even if we knew the true βββ1 and βββ0, our
RMSE would be O(σ).

The term (
∥∥βββ0

∥∥+
∥∥βββ1

∥∥)/
√
n is also necessary. Suppose the matrix X is such that all rows, except

row j, are zero vectors. Row j is a standard basis vector, i.e., its ith entry is 1 for some i. Suppose
also that βββ1 and βββ0 are both independently set to the same standard basis vector with probability
1/2, and set to zero otherwise. Then, with probability 1/2, ITE(j) = 0 and with probability 1/2,
ITE(j) = ±1. No algorithm which observes just one of y1

j or y0
j can obtain expected error o(1) in

estimating ITE(j). That is, no algorithm can obtain RMSE o(1/
√
n) = o

(
(
∥∥βββ0

∥∥+
∥∥βββ1

∥∥)/
√
n
)
.

4 Average Treatment Effect Estimation

In this section, we describe our approach for estimating the average treatment effect, under the
sample constraint, by building upon a recent work on efficient experimental design by Harshaw et
al. [HSSZ19]. Missing details from this section are collected in Appendix A.2.
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Horvitz-Thompson Estimator. Suppose S+ ⊆ [n] is the population assigned to the treatment
group and S− = [n]\S+ is the remaining population, i.e., the control group. A well-studied estimator
for estimating the average treatment effect is the Horvitz-Thompson estimator [HT52], denoted by
τ̂ . If every individual is assigned to S+ (or S−) with probability 0.5, then, τ̂ is defined as follows:

τ̂ =
2

n

∑
i∈S+

y1
i −

∑
i∈S−

y0
i

 .

Algorithm 2 Recursive-Covariate-Balancing

Input: Covariate matrix X ∈ Rn×d, number of experiments to be run s.
Output: Estimate for ATE.

1: Set t = 1,Zt := X, nt = n.
2: while True do
3: Z+

t ,Z
−
t ← Gram-Schmidt-Walk(Zt, δ

′) where δ′ = log(16 log(n/s)).
4: if nt ≤ s then
5: break
6: else if size(Z+

t ) ≥ size(Z−t ) then
7: Set Zt+1 ← Z−t and nt+1 ← size(Z−t ).
8: else
9: Set Zt+1 ← Z+

t and nt+1 ← size(Z+
t ).

10: end if
11: t← t+ 1
12: end while
13: Use Z+

t ,Z
−
t to construct the ATE estimator as: τ̂s = 2t/n ·

(∑
j∈Z+

t
y1
j −

∑
j∈Z−

t
y0
j

)
.

14: return τ̂s.

Harshaw et al. [HSSZ19] present an experimental design based on the Gram-Schmidt-Walk
algorithm for discrepancy minimization [BDGL18]. Their Gram-Schmidt-Walk design produces
a random partition of the population with a good balance in every dimension, i.e., control and
treatment groups have similar covariates. For the Horvitz-Thompson estimator, they give a tradeoff
between covariate balancing and robustness (estimation error). Formally, they obtain:

Lemma 4.1 (Proposition 3 in [HSSZ19]). For all ∆ > 0, with probability at least 1− 2 exp
(
−∆2n

8L

)
,

the Gram-Schmidt-Walk design satisfies: |τ̂−τ | ≤ ∆, where L = 2
n minβββ∈Rd

(∥∥∥y1+y0

2 −Xβββ
∥∥∥2

+ ‖βββ‖2
)
.

Overview of Recursive-Covariate-Balancing. Our main idea in Algorithm 2 is to
partition the population using the Gram-Schmidt-Walk design (GSW) recursively until the total size
of population that we can experiment on reduces to s. In each recursive call, we start by partitioning
the available individuals Zt into treatment and control groups, denoted by Z+

t ,Z
−
t using GSW. Next,

we identify the smaller of these two subsets, say Z+
t and recurse on Z+

t . We stop after k recursive
calls when there are only s individuals to experiment on, i.e., |Z+

k ∪ Z−k | ≤ s. Finally, we construct
our estimator τ̂s, similar to the Horvitz-Thompson estimator, by scaling the treatment and control
contributions due to Z+

k and Z−k using a factor 2k.
We note that our experimental design ensures that every individual is assigned to treatment

or control with equal probability. This implies that on expectation, the sizes of the treatment and
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control groups are equal (for every partitioning). However, when we consider a particular assignment,
it is possible that the size of the smaller partition is not exactly half of the population. As a result,
the total number of samples used might be smaller by a factor of at most 2.

4.1 Theoretical Guarantees

Our analysis approach, inspired by the coreset construction for discrepancy minimization [KL19],
is based on the observation that if we can obtain good estimates for the contributions

∑
i∈[n] y

1
i

and
∑

i∈[n] y
0
i , we obtain a good estimate for ATE (τ). Using the next lemma, we argue that

after a call to GSW algorithm that partitions [n] into the sets S+ and S−, we can obtain additive
approximations of

∑
i∈[n] y

1
i and

∑
i∈[n] y

0
i . Our approximations are the contributions of treatment

and control values in S+ and S− scaled appropriately, i.e.,
∑

i∈S+ 2 · y1
i and

∑
i∈S− 2 · y0

i .

Lemma 4.2. Suppose the Gram-Schmidt-Walk design [HSSZ19] partitions the population [n] into
two disjoint groups S+ and S−. Under the linearity assumption, with probability 1− 1/3 log(n/s),
for both the control and treatment groups, the following holds:∣∣∣∣∣∣

∑
j∈S+

2yij −
∑
j∈[n]

yij

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·
(
2σ
√
n+

∥∥βββi∥∥) for i = 0, 1.

Building upon the previous lemma, we argue in Theorem 4.3 that the additive approximation
errors obtained from repeated use of GSW in our algorithm Recursive-Covariate-Balancing
result in a low estimation error.

Theorem 4.3 (Main ATE Error Bound). The estimator τ̂s in Algorithm Recursive-Covariate-
Balancing obtains the following guarantee, with probability at least 2/3:

|τ̂s − τ | = O

(√
log log(n/s) ·

(
σ√
s

+

∥∥βββ1
∥∥+

∥∥βββ0
∥∥

s

))
.

Remark. When s = n, the above theorem matches the guarantees obtained by GSW design
described in Lemma 4.1. Moreover, we obtain a better dependence compared to sampling s rows
uniformly at random and using the y1,y0 values of the sampled rows to estimate the population
mean of treatment and control groups in ATE. An application of standard concentration inequalities
or the central limit theorem, will yield a multiplicative factor increase in one of the error terms, with
a dependence of Õ

(
1/s · ‖X‖2 (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥)
)
, instead of the Õ

(
1/s · (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥)
)
obtained by

our algorithm, where ‖X‖2 denotes the spectral norm of X and Õ(·) hides the logarithmic factors.

5 Experimental Evaluation

In this section, we provide an evaluation of our algorithms on various semi-synthetic datasets. Missing
details about data generation and additional results are collected in Appendix A.3. Our code is
publicly accessible using the following github repository.
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Data Generation. We evaluate our approaches on five datasets: (i) IHDP. This contains data
regarding the cognitive development of children, and consists of 747 samples with 25 covariates
describing properties of the children and their mothers, and whose outcome values are simulated [Hil11,
Dor16]. (ii) Twins. This contains data regarding the mortality rate in twin births in the USA
between 1989-1991 [ACL05]. Following the work of [LSM+17], we select twins belonging to same-sex,
with weight less than 2kg, resulting in about 11984 twin pairs, each with 48 covariates. We use the
post-treatment mortality outcomes of the twins as potential outcomes. (iii) LaLonde. This contains
data regarding the effectiveness of a job training program on the real earnings of an individual after
completion of the program [LaL86], which is also the outcome value. The corresponding covariate
matrix contains 445 rows and 10 covariates per row. (iv) Boston. This is constructed based on
the housing prices in the Boston area [HJR78]. The outcome value for each sample represents the
median house price. The corresponding covariate matrix contains 506 rows and 12 covariates per row.
(v) Synthetic. We construct a covariate matrix X ∈ R2000×25, using an approach due to [MMY14].
There is a high disparity in leverage score values in X, similar to what we observe in other datasets.
Using a random linear function on X and adding Gaussian noise, we generate the potential outcomes.

For IHDP and Twins datasets, we use the simulated values for potential outcomes, similar to
Shalit et al. [SJS17] and Louizos et al. [LSM+17]. For the Synthetic dataset, we simulate values
for the outcomes using linear functions of the covariate matrix. For Boston, Lalonde datasets, as
we have access to only one of the outcome values, we chose to compare our algorithms for a fixed
shift in treatment effect (i.e., the true treatment effect is equal to a constant), similar to Arbour et
al. [ADR21].

Baselines.

1. ATE. We compare the performance of our Algorithm Recursive-Covariate-Balancing
(referred to as ‘Recursive-GSW’ ) to three baselines: (i) Uniform. We sample s rows uniformly
at random and assign them to treatment and control groups with equal probability. By
scaling the total sum of treatment values from the sampled set by the inverse sampling
probability, we estimate the contribution of treatment values in ATE and follow a similar
procedure for the control group. (ii) GSW-pop. We use the GSW algorithm to partition the full
population and return the estimate obtained using the Horvitz-Thompson estimator for ATE.
(iii) Complete Randomization. We partition the population into treatment and control using
complete randomization, i.e., with equal probability, and return the estimate obtained using
the Horvitz-Thompson estimator for ATE. The last two baselines are overall n individuals
rather than a subset of size s.

2. ITE. We compare the performance of our Algorithm Sampling-ITE (referred to as ‘Leverage’ )
with respect to three baselines: (i) Uniform. We run Algorithm 1 on X and uniform sampling
distribution given by πππj = s/n ∀j. (ii) Leverage-nothresh. We run Algorithm 1 on X, instead
of X∗ with the probability distribution πππj ∝ `j(X)∀j. (iii) Lin-regression. This captures the
best linear fit regression error, i.e., assuming we have access to both y1,y0, we regress these
vectors on X to obtain βββ1,βββ0, and use the resultant ITE estimates Xβββ1 −Xβββ0.
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(a) IHDP

(b) Twins

Figure 1: We compare the performance of various
methods for estimating ATE, measured using devi-
ation error on y-axis, against different sample sizes
(as proportion of dataset size) on x-axis.

(a) IHDP

(b) Synthetic

Figure 2: We compare the performance of various
methods for estimating ITE, measured using RMSE
on y-axis, against different sample sizes (as propor-
tion of dataset size) on x-axis.

Evaluation. To evaluate the performance of average treatment effect estimation (τ) on the datasets,
we compare the deviation error of the estimator τ̂s, given by |τ̂s − τ | for different sample sizes. To
evaluate the performance of individual treatment effect estimates, we compare the root mean squared
error RMSE (see Defn. 2.4) for different sample sizes.

Results. For every dataset, we run each experiment for 1000 trials and plot the mean using a
colored line. Also, we shade the region between 30 and 70 percentile around the mean to signify the
confidence interval as shown in Figures 1, 2 representing ATE and ITE results respectively.

1. ATE. For all datasets, we observe that the deviation error obtained by our algorithm labeled as
Recursive-GSW in Figure 1, is significantly smaller than that of Uniform baseline. Surprisingly,
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for the IHDP dataset, our approach is significantly better than Complete-randomization, for
all sample sizes, including using just 10% of data. For all the remaining datasets using a
sample of size 30%, we achieve the same error (up to the confidence interval) as that of
Complete-randomization. Complete randomization is one of the most commonly used methods
for experimental design and our results indicate a substantial reduction in experimental costs.
For IHDP dataset, a sample size of about 10% of the population is sufficient to achieve a
similar error as that of GSW-pop. For the remaining datasets, we observe that for sample sizes
of about 30% of the population, the deviation error obtained by our algorithm is within the
shaded confidence interval of the error obtained by GSW-pop. Therefore, for a specified error
tolerance level for ATE, we can reduce the associated experimental costs using just a small
subset of the dataset using our algorithm.

2. ITE. For all sample sizes, we observe that the RMSE obtained by our algorithm labeled as
Leverage in Figure 2, is significantly smaller than that of all the other baselines, including
Uniform and Leverage-nothresh. E.g., we observe that when the sample size is 20% of the
population in IHDP dataset, the error obtained by Leverage is at least 50% times smaller
than that of Uniform and Leverage-nothresh. For the Synthetic dataset, the error obtained by
Leverage is extremely close to that of the error due to the best linear fit, Lin-regression (see
the zoomed in part of the figure). Similar to ATE results, our algorithms result in a reduction
of experimental costs for ITE estimation using only a fraction of the dataset.

6 Conclusion

We study the sample constrained treatment effect estimation problem and give efficient algorithms
for both ITE and ATE estimation. Our empirical evaluation shows that our algorithms, using
only a fraction of the data, perform well compared to popular baselines that are widely used and
require running experiments on the entire population. There are several interesting directions for
future work. It would be interesting to study sample constrained treatment effect estimation under
interference [UKBK13]. For ITE estimation, we leave it as an open question to extend our approach
to give an algorithm with an error growing smaller with s for all values of s ≤ n. Moreover, the√

log d factor in Corollary 3.7 likely can be improved, using recent work which improves standard
leverage score sampling bounds by a log d factor [CP19], yielding a bound that is optimal up to
constants. For ATE estimation, the Horvitz-Thompson estimator can include sampling probabilities
different from 0.5. It is an interesting open question to extend our recursive balancing approach
when the estimator contains arbitrary probabilities.
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A Appendix

In section A.1, we present the missing proof details from section 3; in section A.2, we present the
missing proof details from section 4; in section A.3, we present the missing details from section 5.

We will employ the following well-known result on the `2-norm of a Gaussian vector.

Fact A.1. Suppose ζζζ ∈ Rn be a vector such that each co-ordinate ζζζi is drawn independently from
the normal distribution N(0, σ2). Then, with probability ≥ 1− 1/n:

‖ζζζ‖ ≤ 2σ ·
√
n.

A.1 Individual Treatment Effect Estimation

First, we argue that the error introduced by ignoring small singular values and using X∗ in place of
X is small. Using X∗ instead of X introduces error that depends on the threshold γ used in the
construction of X∗ (Def 3.1).

Claim A.2. For every βββ ∈ Rd, ‖X∗βββ −Xβββ‖ ≤ √γ · ‖βββ‖.

Proof. Using the singular value decomposition of X,X∗:

‖X∗βββ −Xβββ‖ = ‖U∗Σ∗V∗βββ −UΣVβββ‖
≤ ‖U∗Σ∗V∗ −UΣV‖2 · ‖βββ‖ ,

where ‖·‖2 denotes the spectral norm (the largest singular value) of the matrix. By construction,
‖U∗Σ∗V∗ −UΣV‖2 ≤

√
γ, giving the claim.

We next argue that the leverage scores of the smoothed matrix X∗ are bounded by 1/γ.

Claim A.3 (Claim 3.2 restated). `j(X∗) ≤ 1/γ, for all j ∈ [n].

Proof. It is well known that `j(X∗) = X∗[j, :]T (X∗TX∗)
+

X[j, :] = ‖U∗[j, :]‖2. This can be checked
by writing X∗ in its SVD. Further, ‖X∗[j, :]‖2 ≤ ‖X[j, :]‖2 and so, by assumption, ‖X∗[j, :]‖2 =
‖Σ∗U∗[j, :]‖2 ≤ 1. Since all diagonal entries of Σ∗ are at least √γ, this gives, `j(X∗) = ‖U∗[j, :]‖2 ≤
1/γ, completing the claim.

The following claim about leverage scores is well known.

Claim A.4 ([Woo14]).
∑

j∈[n] `j(X
∗) = rank(X∗).

Combining Lemma 3.3 and Claim 3.4, we get:

Lemma A.5. Suppose γ = 4c0 max {log(rank(X∗)), 30/ε} and πππj = min
{

1, `j(X
∗)·c0·[log(rank(X∗))+

30/ε]
}
, for some sufficiently large constant c0. Then, Algorithm Sampling-ITE satisfies, for i = 0, 1,

with probability at least 14/15:∥∥∥X∗β̃ββi − yi
∥∥∥ ≤ (1 + ε) ·

∥∥X∗βββi − yi
∥∥ .

Further, E[|S0 ∪ S1|] ≤ 2
∑n

j=1πππj = O(d log d+ d/ε).
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Proof. From Lemma 3.3 and Claim 3.4, we have:∥∥∥X∗β̃ββi − yi
∥∥∥ ≤ (1 + ε) ·

∥∥X∗βββi − yi
∥∥ for every i = 0, 1.

Using union bound, the total failure probability is ≤ 1
30 + 1

30 ≤
1
15 .

From Algorithm 1, let S0, S1 denote the set of people assigned to treatment and control respec-
tively. From Lemma 3.3, we have:

E[|S0 ∪ S1|] ≤ 2
n∑
j=1

πππj ≤ 2
∑
j∈[n]

`j(X
∗) · c0 · [log(rank(X∗)) + 30/ε]

≤ 2c0d · [log d+ 30/ε] = O(d log d+ d/ε) (using Claim A.4 and rank(X∗) ≤ d).

Corollary A.6 (Corollary 3.5 restated). Suppose γ = 4c0 max {log(rank(X∗)), 30/ε} and πππj =
min

{
1, `j(X

∗) · c0 · [log(rank(X∗)) + 30/ε]
}
, for some sufficiently large constant c0. Then, Algo-

rithm Sampling-ITE satisfies, for i = 0, 1, with probability at least 14/15:∥∥∥X∗β̃ββi − yi
∥∥∥ ≤ (1 + ε) ·

(√
γ
∥∥βββi∥∥+

∥∥ζζζi∥∥) for i = 0, 1.

Proof. ∥∥∥X∗β̃ββi − yi
∥∥∥ ≤ (1 + ε) ·

∥∥X∗βββi − yi
∥∥ (from Lemma A.5)

≤ (1 + ε) ·
(∥∥X∗βββi −Xβββi

∥∥+
∥∥Xβββi − yi

∥∥) (using triangle inequality)

≤ (1 + ε) ·
(√
γ
∥∥βββi∥∥+

∥∥ζζζi∥∥) (from Claim A.2)

Theorem A.7 (Theorem 3.6 restated). Suppose s ≥ 120c0d log d. There is a randomized algorithm
that selects a subset S ⊆ [n] of the population with E[|S|] ≤ s, and, with probability at least 9/10,
returns ITE estimates ÎTE(j) for all j ∈ [n] with error:

RMSE = O
(√ 1

n
max

{s
d
, log d

}
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

Proof. Let ε = 120c0d log d
s and γ = 4c0 max {log d, 30/ε}. Using triangle inequality, we have:∥∥∥(X∗β̃ββ

1
−X∗β̃ββ

0
)− (y1 − y0)

∥∥∥
2
≤
∥∥∥X∗β̃ββ1

− y1
∥∥∥

2
+
∥∥∥X∗β̃ββ0

− y0
∥∥∥

2

≤ (1 + ε) ·
(√
γ
∥∥βββ1

∥∥+
√
γ
∥∥βββ0

∥∥+
∥∥ζζζ0
∥∥+

∥∥ζζζ1
∥∥) (from Corollary 3.5)
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From the definition of RMSE, we get:

RMSE =

(
1

n

∥∥∥(X∗β̃ββ
1
−X∗β̃ββ

0
)− (y1 − y0)

∥∥∥2
)1/2

≤ 1√
n

[
2
√
γ · (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥) + 2 · (

∥∥ζζζ0
∥∥+

∥∥ζζζ1
∥∥)
]

≤ 1√
n

[
2
√
γ · (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥) + 8σ

√
n
]

(from Lemma A.1)

≤ 2

√
4c0

n
max

{
log d,

s

c0d

}
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + 8σ

Using union bound, the probability of failure is upper bounded by 1
15 + 2

n ≤
1
10 , for large n.

From Algorithm 1, let S0, S1 denote the set of people assigned to treatment and control respec-
tively. From Lemma A.5, we have:

E[|S0 ∪ S1|] ≤ 2
n∑
j=1

πππj ≤ 2
∑
j∈[n]

`j(X
∗) · c0 · [log(rank(X∗)) + 30/ε]

≤ 2c0d · [log d+ 30/ε] (using Claim A.4 and rank(X∗) ≤ d)

≤ 4c0dmax

{
log d,

s

4c0d log d

}
= max {4c0d log d, s} ≤ s.

Hence, the theorem.

A.2 Average Treatment Effect Estimation

Lemma A.8 (Lemma 4.2 restated). Suppose the Gram-Schmidt-Walk design [HSSZ19] partitions the
population [n] into two disjoint groups S+ and S−. Under the linearity assumption, with probability
1− 1/3 log(n/s), the following holds:∣∣∣∣∣∣

∑
i∈S+

2y1
i −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·
(
2σ
√
n+

∥∥βββ1
∥∥)

∣∣∣∣∣∣
∑
i∈S−

2y0
i −

∑
i∈[n]

y0
i

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·
(
2σ
√
n+

∥∥βββ0
∥∥) .

Proof. The Gram-Schmidt-Walk design uses the covariate matrix X but not the treatment and
control values y1,y0, for constructing the partition of the population S+,S−. For the sake of analysis,
consider the setting where y1

i = y0
i for all i ∈ [n]. Therefore, the average treatment effect, τ = 0,

and the estimator τ̂ satisfies:

τ̂ − τ =
2

n

(∑
i∈S+

y1
i −

∑
i∈S−

y0
i

)
=

2

n

(∑
i∈S+

y1
i −

∑
i∈S−

y1
i

)
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From Lemma 4.1, we have:

L =
2

n
min
βββ∈Rd

(∥∥∥∥y1 + y0

2
−Xβββ

∥∥∥∥2

+ ‖βββ‖2
)

=
2

n
min
βββ∈Rd

(∥∥y1 −Xβββ
∥∥2

+ ‖βββ‖2
)

≤ 2

n

(∥∥y1 −Xβββ1
∥∥2

+
∥∥βββ1

∥∥2
)

=
2

n

(∥∥ζζζ1
∥∥2

+
∥∥βββ1

∥∥2
)
.

From Lemma 4.1, with probability at least 1− 2/ log(16 log(n/s)), we have:

|τ̂ − τ | =

∣∣∣∣∣∣ 2n
∑
i∈S+

y1
i −

∑
i∈S−

y1
i

∣∣∣∣∣∣
≤
√

16log(16 log(n/s))

n2

(
‖ζζζ1‖2 + ‖βββ1‖2

)
≤

4
√

log(16 log(n/s))

n
·
(∥∥ζζζ1

∥∥+
∥∥βββ1

∥∥)
For simplicity, let :

∆1 = 4
√

log(16 log(n/s)) ·
(∥∥ζζζ1

∥∥+
∥∥βββ1

∥∥)
≤ 4
√

log(16 log(n/s)) ·
(
2σ
√
n+

∥∥βββ1
∥∥) ,

where the last inequality follows from Fact A.1, with probability at least 1− 1/n.

∑
i∈S−

y1
i ≥

∑
i∈S+

y1
i −∆1

∑
i∈S−

y1
i +

∑
i∈S+

y1
i ≥

∑
i∈S+

y1
i +

∑
i∈S+

y1
i −∆1

∑
i∈[n]

y1
i ≥

∑
i∈S+

2y1
i −∆1

⇒ 2
∑
i∈S+

y1
i −

∑
i∈[n]

y1
i ≤ ∆1.

Similarly, we can argue that
∑

i∈[n] y
1
i − 2

∑
i∈S+ y1

i ≤ ∆1. Using union bound, the inequality holds
with probability at least 1− 2

16 log(n/s) −
1
n ≥ 1− 1

6 log(n/s) . Following the exact proof, we can obtain
a similar bound for y0 using the set S−. Hence, the lemma.

Theorem A.9 (Theorem 4.3 restated). The estimator τ̂s in Algorithm Recursive-Covariate-
Balancing obtains the following guarantee, with probability at least 2/3:

|τ̂s − τ | = O

(√
log log(n/s) ·

(
σ√
s

+

∥∥βββ1
∥∥+

∥∥βββ0
∥∥

s

))
.
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Proof. Suppose the Algorithm Recursive-Covariate-Balancing gets terminated after k ≤
dlog(n/s)e recursive calls to Gram-Schmidt-Walk. Therefore, in the estimator τ̂s, we scale it
using 2k. For simplicity of notation, we use S+,S− to denote the sets Z+

k and Z−k respectively. Using
Lemma 4.2 , we show that the scaled contribution of treatment values, i.e.,

∑
j∈S+ 2k · y1

j is close to
the contribution on the entire population, i.e.,

∑
j∈[n] y

1
j . As this holds for both the control and

treatment groups, our final estimate τ̂s has low error. We have:

τ̂s − τ =
2k

n

∑
j∈S+

y1
j −

∑
j∈S−

y0
j

− 1

n

∑
i∈[n]

y1
i −

∑
i∈[n]

y0
i


n |τ̂s − τ | ≤

∣∣∣∣∣∣
∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈S−

2k · y0
j −

∑
i∈[n]

y0
i

∣∣∣∣∣∣
Consider the first term to which we add and subtract

∑
j∈S+∪S− y1

j . This gives us:∣∣∣∣∣∣
∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣2k−1

∑
j∈S+

2 · y1
j −

∑
j∈Zk

y1
j

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Zk

2k−1 · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣
≤
∣∣∣2k−1 · 4

√
log(16 log(n/s))

(
2σ
√
|Zk|+

∥∥βββ1
∥∥)∣∣∣+

∣∣∣∣∣∣
∑
j∈Zk

2k−1 · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ,
where the last step follows from Lemma 4.2. Repeating this k times gives us:∣∣∣∣∣∣

∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) · 2k·

[(√
|Zk|
1

√
|Zk−1|

2
+ · · ·+

√
|Z1|
2k

)
σ +

(
1

2
+ · · ·+ 1

2k

)∥∥βββ1
∥∥]

≤ 4
√

log(16 log(n/s)) · n
s
·

[(√
s

1
+

√
2s

2
+ · · ·+ s

√
n

n

)
σ +

∥∥βββ1
∥∥]∣∣∣∣∣∣ 1n

∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·

[(
1√
s

+
1√
2s

+
1√
4s
· · ·+ 1√

n

)
σ +

∥∥βββ1
∥∥

s

]

≤ 4
√

log(16 log(n/s)) ·

(
4σ√
s

+

∥∥βββ1
∥∥

s

)
.

Similarly, we can show that:∣∣∣∣∣∣ 1n
∑
j∈S−

2k · y0
j −

∑
i∈[n]

y0
i

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·

(
4σ√
s

+

∥∥βββ0
∥∥

s

)
.

Using union bound, the total failure probability is upper bounded by 1
3 log(n/s) · log(n/s) ≤ 1

3 .
Hence, the theorem.
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A.3 Experimental Evaluation

Data Generation. We evaluate our approaches on five datasets:

(i) IHDP. This contains data regarding the cognitive development of children, and consists of 747
samples with 25 covariates describing properties of the children and their mothers, and whose
outcome values are simulated [Hil11, Dor16].

(ii) Twins. This contains data regarding the mortality rate in twin births in USA between 1989-
1991 [ACL05]. Following the work of [LSM+17], we select twins belonging to same sex, with
weight less than 2kg, resulting in about 11984 twins (pairs), each with 48 covariates. The
purpose of the experiment is to evaluate the effect of weight (treatment) on mortality (outcome).
We use the binary value corresponding to the mortality value as the treatment outcome. As
we have a pair of outcome values for every twin pair, we use them as potential outcomes.

(iii) LaLonde. This contains data regarding the effectiveness of a job training program on the real
earnings of an individual after completion of the program [LaL86], which is also the outcome
value. The corresponding covariate matrix contains 445 rows and 10 covariates per row.

(iv) Boston. This is constructed based on the housing prices in the Boston area [HJR78]. The
treatment variable was air pollution and the outcome value recorded for each sample is the
median house price. The corresponding covariate matrix contains 506 rows and 12 covariates
per row.

(v) Synthetic. In Figure 3, we observe a high disparity in the leverage score values (and the
spectrum) of the covariate matrix in the real datasets. In order to generate fully synthetic
dataset that shows a similar pattern, we used an approach due to [MMY14]. In particular, we
used their third dataset configuration, i.e., X ∈ Rd is generated from multi-variate t-distribution
with 1 degree of freedom and the covariance matrix is Σ ∈ Rd×d where Σij = 2 · (0.5)|i−j|. For
both the potential outcomes, we use a random linear function and add Gaussian noise. E.g., for
the control outcome y0 = Xβββ0+ζζζ0, we generate βββ0 ∈ Rd by drawing each co-ordinate uniformly
from [0, 1] and normalize it to make it a unit vector. The Gaussian noise is generated from
N(0, c · In×n), where we vary c in the range of [1/n0.5, 1/d0.5] to ensure that the contribution
of the noise term to the `2-norm is very small.

Setup. We used a personal Apple Macbook Pro laptop with 16GB RAM and Intel i5 processor
for conducting all our experiments. It took less than an hour to complete each experiment on each
dataset. We used publicly available code for the implementation of GSW algorithm [HSSZ19].

Results. For every dataset, we run each experiment for 1000 trials and plot the mean using a
colored line. Also, we shade the region between 30 and 70 percentile around the mean to signify the
confidence interval as shown in Figures 4, 5 representing ATE and ITE results respectively.

1. ATE. For all datasets, we observe that the deviation error obtained by our algorithm labeled as
Recursive-GSW in Figure 4, is significantly smaller than that of Uniform baseline. Surprisingly,
for the IHDP dataset, our approach is significantly better than Complete-randomization, for all
sample sizes, including using just 10% of data. For almost all the remaining datasets using a
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(a) IHDP

(b) Twins

(c) Lalonde

(d) Boston

(e) Synthetic

Figure 3: We plot the histogram of leverage scores of the covariate matrices for each of the datasets. On
y-axis, we measure the percentage of the dataset corresponding to a particular leverage score (on the x-axis).
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(a) IHDP

(b) Twins

(c) Lalonde

(d) Boston

(e) Synthetic

Figure 4: We compare the performance of various methods for estimating ATE, measured using deviation
error on y-axis, against different sample sizes (as proportion of dataset size) on x-axis.
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(a) IHDP

(b) Twins

(c) Lalonde

(d) Boston

(e) Synthetic

Figure 5: We compare the performance of various methods for estimating ITE, measured using RMSE on
y-axis, against different sample sizes (as proportion of dataset size) on x-axis.
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sample of size 30%, we achieve the same bias (up to the confidence interval) as that of Complete-
randomization. For the Boston dataset, our approach is better than Complete-randomization,
for all sample sizes. Complete randomization is one of the most commonly used methods for
experimental design and our results indicate a substantial reduction in experimental costs. For
IHDP dataset, a sample size of about 10% of the population is sufficient to achieve a similar
bias as that of GSW-pop. For the remaining datasets, we observe that for sample sizes of about
30% of the population, the deviation error obtained by our algorithm is within the shaded
confidence interval of the bias obtained by GSW-pop. Therefore, for a specified error tolerance
level for ATE, we can reduce the associated experimental costs using just a small subset of the
dataset using our algorithm.

2. ITE. For all sample sizes, we observe that the RMSE obtained by our algorithm labeled as
Leverage in Figure 5, is significantly smaller than that of all the other baselines, including
Uniform and Leverage-nothresh. E.g., we observe that when the sample size is 20% of the
population in IHDP dataset, the error obtained by Leverage is at least 50% times smaller
than that of Uniform and Leverage-nothresh. For the Synthetic and Twins datasets, the
error obtained by Leverage is extremely close to that of the error due to the best linear fit,
Lin-regression (see the zoomed in part of the figure). Similar to ATE results, our algorithms
result in a reduction of experimental costs for ITE estimation using only a fraction of the
dataset.

27


	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Work

	2 Preliminaries
	3 Individual Treatment Effect Estimation
	3.1 Leverage Score Sampling
	3.2 Theoretical Guarantees

	4  Average Treatment Effect Estimation
	4.1 Theoretical Guarantees

	5 Experimental Evaluation
	6 Conclusion
	A Appendix
	A.1 Individual Treatment Effect Estimation
	A.2 Average Treatment Effect Estimation
	A.3 Experimental Evaluation


