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    Abstract—Chiplet-based 2.5D systems that integrate multiple 
smaller chips on a single die are gaining popularity for executing 
both compute- and data-intensive applications. While smaller 
chips (chiplets) reduce fabrication costs, they also provide less 
functionality. Hence, manufacturing several smaller chiplets and 
combining them into a single system enables the functionality of a 
larger monolithic chip without prohibitive fabrication costs. The 
chiplets are connected through the network-on-interposer (NoP). 
Designing a high-performance and energy-efficient NoP 
architecture is essential as it enables large-scale chiplet 
integration. This paper highlights the challenges and existing 
solutions for designing suitable NoP architectures targeted for 
2.5D systems catered to datacenter-scale applications. We also 
highlight the future research challenges stemming from the 
current state-of-the-art to make the NoP-based 2.5D systems 
widely applicable. 
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I. INTRODUCTION 
hiplet-based architectures that integrate multiple small 
dies on an interposer are drawing the attention of 
leading silicon manufacturers due to their higher 
energy efficiency and lower fabrication cost [1]. ITRS 

2.0 and IRDS roadmap highlight the unprecedented need for 
memory and processing over the next decade [2] [3] [4]. This 
need dictates large-scale chips with high memory and compute 
capabilities, offering a high degree of parallelism. Such large-
scale chips include tens to hundreds of processing cores, 
significantly increasing the area of monolithic chips [2]. One of 
the major challenges in the silicon industry is the exploding 
fabrication cost as the monolithic chips approach the reticle 
limit. The chiplet-based design concept offers a promising 
solution for reducing the manufacturing cost of large 
monolithic chips [1]. Chiplet-based systems integrate multiple 
smaller chips (chiplets) on a single die. The chiplets are 
connected through the network-on-interposer (NoP). Since each 
chiplet consumes a smaller area than a monolithic chip, the 
overall fabrication cost of the overall 2.5D system is 
significantly lower than that of the monolithic counterpart [1]. 
Emerging 2.5D architectures are expected to enable datacenter-
scale computing via handheld devices or embedded systems. 
However, the computing capabilities of current edge devices 
need to be enhanced at least by a factor of 30-50X to achieve a 
datacenter-scale performance [5]. To achieve this goal, leading 
foundries incorporate chiplet-based systems due to the yield 
and fabrication cost benefits over monolithic counterparts [6].  
    Manufacturing several smaller chiplets and combining them 
into a single system leads to the functionality of a larger chip 
while maintaining the cost advantages of the smaller chips. 
Moreover, integrating several chiplets in a single 2.5D system 
necessitates design and optimization of the NoP, which is the 

communication backbone of the chiplet-based system [7]. A 
given heterogeneous chiplet library can include manycore 
CPUs, GPUs, in-memory computing elements with resistive 
RAM (RRAM) and other types of accelerators, and memory 
(such as HBM-based 3D DRAM). Hence, the physical layout 
and NoP design play a crucial role in determining throughput, 
latency, and energy-efficiency, analogous to core placement 
and interconnection in intra-chip environments. This paper 
highlights the challenges and advantages of using NoP-based 
systems for achieving data-center scale performance.  

The rest of the paper is organized as follows. Section II 
describes the overview of NoP architectures specifically 
considering a high number of chiplets. Section III presents the 
tool for reliable NoP performance evaluation and summarizes 
the underlying principles. Section IV presents a sample of 
performance evaluation results considering NoP architectures 
proposed so far. Finally, Section V highlights future research 
directions focused on designing more robust and innovative 
chiplet-based manycore systems. 

II. OVERVIEW OF NOP ARCHITECTURES 
    Increasing fabrication costs can mask the performance 
improvement of large monolithic manycore architectures. Most 
chip vendors and foundries, including TSMC, NVIDIA, Intel, 
and AMD, are exploring non-monolithic alternatives such as 
2.5D interposer-based systems to partition the on-chip 
resources into smaller discrete computing cores called chiplets. 
2.5D-based manycore systems offer a promising alternative to 
monolithic chips [1] [8]. Novel 2.5D chiplet platforms provide 
a new avenue for compact scale-out implementations of various 
emerging compute- and data-intensive workloads. Integrating 
multiple small chiplets on a large interposer offers significant 
performance and manufacturing yield improvements compared 
to 2D ICs, reducing the fabrication cost [2]. Furthermore, it 
achieves higher thermal efficiency than 3D ICs and facilitates 
heterogeneous integration [9]. Hence, it has become possible to 
envision large-scale manycore systems on 2.5D platforms. 
However, scalable communication between chiplets is 
particularly challenging due to relatively large physical 
distances between chiplets, poor technology scaling of 
electrical wires, and shrinking power budgets. The 
aforementioned challenges make it difficult to design a viable 
NoP that can support ultra-high bandwidth, energy-efficient, 
and low-latency inter-chiplet data transfer without increasing 
fabrication costs. The demands on the NoP infrastructure will 
only be exacerbated as application complexity continues to 
scale. For example, the NoP area overhead alone can be up to 
85% of the total system area [10].  

Design of various general-purpose and application-specific 
NoP architectures has been explored so far. The first family of 

C 



>1090< 

NoP architectures are based on regular multi-hop networks. 
IntAct, for example, is a 2.5D prototype system with six 
chiplets stacked on an active interposer with a Mesh NoP [9]. 
In IntAct, the authors demonstrated the scalability of the 2.5D 
system with low-latency distributed interconnects. Simba is 
another 2.5D system with 36 chiplets specifically designed for 
deep neural network (DNN) inferencing [11]. It also uses a 
Mesh NoP. Simba employs tiling optimizations to limit the 
inter-chiplet traffic as shown in Figure 1(a). Recently, the Kite 
family of NoP topologies has been proposed for a 2.5D-based 
system considering synthetic traffic/workload as shown in 
Figure 1(c) [8]. NN-Baton is another recently proposed 2.5 D 
architecture that undertakes a design exploration considering 
several DNN applications [12]. The NoP topology adopted in 
NN-Baton is a ring architecture. Figure 1 shows the NoP 
architectures designed based on regular multi-hop networks.  

We note that all the above-mentioned NoP architectures 
principally utilize multi-hop networks, which do not scale with 
higher number of chiplets. Moreover, these multi-hop NoP 
architectures create performance bottlenecks for datacenter 
scale applications. A high-performance and energy-efficient 
NoP architecture called SWAP has been recently proposed for 
designing chiplet-based systems for server-scale scenarios, 
running multiple deep learning (DL) workloads in parallel [13]. 
Figure 2 is an illustrative example of the SWAP architecture. 
SWAP is the first 2.5D accelerator with inter-chiplet 
communication-aware NoP to achieve high performance and 
energy efficiency with reduced fabrication cost with respect to 
state-of-the-art alternatives. SWAP leverages an efficient multi-
objective optimization (MOO) mechanism to generate a NoP 
architecture with a smaller number of links and smaller routers 
than all the existing NoP counterparts mentioned above. The 
irregularity in the SWAP NoP improves the overall link 
utilization in the system. Moreover, it is scalable for a wide 
variety of DL workloads and number of chiplets in the system.  

III. SOFTWARE TOOL FOR NOP PERFORMANCE EVALUATION 
Chiplet-based architectures are proven to be more energy-

efficient than their monolithic counterparts for various 
compute- and data- intensive applications (e.g., autonomous 
driving, machine vision, robotic medical diagnosis) necessitate 
high performance with small form-factor [14] [15]. These 
applications traditionally require datacenter scale computing 

infrastructures. However, various new data- and compute-
intensive applications are emerging regularly. As an example, 
different neural network architectures including linear (e.g., 
VGG), residual (e.g., ResNet), and dense (e.g., DenseNet) 
connections are prevalent in widely used deep learning 
workloads. Even within the DL family, workloads vary widely. 
Chiplet-based systems can reduce the dependance on power-
hungry datacenters if they are evaluated and fine-tuned for these 
emerging workloads. Therefore, there is a need for a full system 
performance evaluation framework for chiplet-based systems to 
enable fast design space exploration. There are two families of 
performance evaluation platforms targeting chiplet-based 
architectures. The first one is based on open-source traditional 
manycore simulators such as gem5, sniper, gpgpu-sim, etc. 
[16]. On the other hand, the recently proposed SIAM 
framework is a full system performance evaluation tool targeted 
specifically for 2.5D architectures consisting of processing-in-
memory (PIM)-based chiplets [10].  

Gem5-based HeteroGarnet is a recently proposed NoP 
performance evaluation tool [8]. HeteroGarnet is developed to 
characterize the performance of traditional von-Neuman based 
architectures consisting of CPU, GPU, and memory chiplets. 
Two types of interconnect architectures need to be considered 
in chiplet-based systems. The intra-chiplet network is 
principally a network-on-chip (NoC) and the inter-chiplet 
network is the NoP. Due to the size and locations, the physical 
interconnect materials (e.g., on-chip wires, TSVs, μbumps) and 
their individual widths vary across the whole system. Individual 
chiplets can operate at different voltages and frequencies, and 
they can be connected to form a larger system on the package. 

 
Fig. 2: Illustration of the SWAP architecture for a chiplet-based system with 
application-specific NoP links 

 
Fig. 1: NoP architectures designs based on multi-hop networks a) SIMBA, b) SIAM and c) Kite 
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Exploring the design space of such a chiplet-based architecture 
requires tools to model the heterogeneity. For example, in a 
hybrid GPU-CPU 2.5D architecture, both chiplet types need not 
be designed with similar technological and physical parameters, 
often requiring clock-domain crossings and serializer-
deserializer to communicate, which is supported in 
HeteroGarnet.   

PIM-based architectures for chiplet-based systems achieve 
higher performance and energy efficiency than traditional von-
Neumann architectures, specifically for DL workloads. DL 
workloads, such as deep neural networks (DNNs), 
convolutional neural networks (CNNs), Graph Neural 
Networks (GNNs) and their variants, are employed in a large 
range of applications [14] [15].  To evaluate PIM-based 
systems, SIAM considers the properties of DL workload as 
inputs. The DL workload properties include the number of 
layers, input and output feature maps of each layer, kernel size 
of each layer, and activation function of each layer. The 
architecture specification includes the number of chiplets in the 
system, number of processing elements in each chiplet, device 
technological properties of the PIM device (ReRAM, SRAM, 
FeFET as few examples), and the properties of NoC as well as 
the NoP. The important properties of NoC and NoP to be 
considered include bus width, router port configuration, buffer 
sizes, NoP/NoC frequency, and link length. The performance 
metrics of interest for such a full system evaluation are latency, 
power, energy, and total area consumed. 
    SIAM’s performance evaluation can be segregated into two 
components: circuit and network. There exists analytical 
model-based evaluation for the circuit component. Specifically, 
SIAM adopts the models of various basic circuit components 
(such as buffers, ADCs, decoders, switch matrix, etc.) from the 
well-known NeuroSim tool [17]. These models estimate the 
power consumption, latency, and area of those components. 
Then, the number of components in the design is computed 
through the architectural specifications and the activity of the 
components are estimated from the workload specifications. 
With this information, the overall performance of the circuit 
component of the system is evaluated. 
    The network component of SIAM evaluates the performance 
of the NoC and the NoP. SIAM incorporates BookSim to 
perform cycle-accurate simulations of the network [18]. The 
input to the cycle-accurate network simulation is a trace file. A 
trace file depicts the communication between multiple chiplets 
(inter-chiplet traffic) as well as between PIM elements within 
each chiplet (intra-chiplet traffic). BookSim injects packets into 
the network according to the trace file and evaluates the 
network performance along with energy and area numbers. 
SIAM supports architecture-level benchmarking with a focus 
on PIM architectures and helps determine area, energy, 
performance, and fabrication cost trade-off between design 
choices for an overall better architecture.  

IV. NOP PERFORMANCE EVALUATION 
In this section, we present a comparative performance 
evaluation of various NoP architectures proposed so far in the 
literature. We evaluate the NoP architecture by considering a 
wide range of DNNs for inferencing. Table I shows different 
DNNs, corresponding datasets, and the number of parameters. 

Each system can execute one large or more than one DL 
workloads simultaneously, representing a datacenter scenario. 
To represent a server-scale system, we consider a 2.5D 
architecture with 81 chiplets for this performance evaluation. 
We employ ReRAM-based chiplets as the enabling technology 
to accelerate DNN inference in this performance evaluation. It 
should be noted that all the architectures and associated design 
optimization methodologies are also applicable to other 
crossbar array (CBA)-based PIM chiplets. Beyond ReRAM, 
any other memory technologies such as SRAM, STT-MRAM, 
FeFETs, and any other types of chiplets can be adopted too. 
CBAs are by far the most popular representation for PIM. They 
are highly efficient for matrix-vector multiplication. Note that 
the DNNs considered in our evaluations consist of linear 
(VGG), residual (ResNet), as well as dense (DenseNet) 
connections. Moreover, all the DNNs consist of fully connected 
and convolution layers. Each layer of the DNN contains higher 
order of multi-bit weights (e.g., ResNet-101 on ImageNet with 
about 38M parameters, VGG16 on ImageNet with 93.4M 
parameters). In each considered scenario, multiple neural 
networks are running simultaneously (VGG19-ResNet50 on 
ImageNet dataset inferenced together as an example). SIMBA, 
IntAct, and SIAM principally are based on 2D Mesh NoP. We 
consider SIAM as the representative of this group. Kite is 
principally a Torus-based NoP that employs skip connections.  

One of the main differences between SIAM, Kite, and 
SWAP is the router port configuration. Figure 3 shows the 
router port distribution of each NoP. Both Kite and SIAM have 
an average port count of around four, as shown in Figure 3. In 
the case of SWAP, the peak moves towards left with mean 
router port frequency being between two and three. SWAP 
mainly consists of routers with a lower number of ports due to 
the MOO mechanism to generate a NoP architecture with a 
smaller number of links and smaller routers than both Kite and 
SIAM. The irregularity in the SWAP NoP improves the overall 
link utilization in the system. It is scalable for a wide variety of 
DL workloads and the number of chiplets in the system. Smaller 
routers in SWAP helps in reducing NoP energy, area, and the 
fabrication cost. Next, we discuss the performance-energy-
area-fabrication cost trade-offs associated with different NoP 
architectures. 

TABLE I: LIST OF DL INFERENCE WORKLOADS ALONG WITH THEIR 
CORRESPONDING NUMBER OF DNN PARAMETERS FOR 81 CHIPLET 

SYSTEM WITH IMAGENET 
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    Performance: Figure 4 presents the NoP latency for SWAP 
and the baseline designs (Kite and SIAM). Latency is 
normalized with respect to that of SIAM. We observe that 
SWAP outperforms both the baseline designs with up to 11% 
improvements in latency. Both Kite and SIAM incorporate 
regular NoP topologies and consist of several links which are 
not necessary for DL workloads. In contrast, SWAP consists of 
an optimized NoP that removes redundant links and places them 
appropriately based on inter-chiplet communication traffic. In 
summary, smaller routers and fewer appropriately placed links 
enable SWAP to achieve lower latency than SIAM and Kite. 
    Energy: By having smaller routers and hence reducing the 
unnecessary links, SWAP not only reduces the inference 
latency of DL workloads but also achieves significantly lower 
energy consumption. The energy consumption improvements 
compared to Kite and SIAM are shown in Figure 5. Energy 
consumption is normalized SIAM results. SWAP, for instance, 
achieves up to 47% lower energy than Kite for 81-chiplet-based 
system. On average we observe a 25% lower energy than SIAM 
for a system with 81 chiplets. The simultaneous energy and 
latency benefits result in significant EDP improvements over 
entire spectrum of considered datacenter scale scenarios. In 
summary, smaller routers and fewer appropriately placed links 
enable SWAP to achieve lower latency and energy 
consumption than both Kite and SIAM NoP architectures.  
Cost: NoP consists of about 85% of the total 2.5D system area. 
Hence, the overall fabrication cost depends on the NoP.  The 
normalized fabrication cost of an NoP is expressed as [10]: 

																							"!"# =
$$%&
$ 	× &'(!)*"#$'*%&'+																											(1) 

where $$%& is the number of chiplets per wafer in the reference 
system and $ is the number of chiplets per wafer for the system 
under consideration. The parameter *-	represents the wafer 
defect density, and ,$%& is the NoP area of the reference system. 
We consider a 2.5D system designed by AMD with 864	00. 
interposer area and 64 chiplets as the reference in this work [1]. 
Using (1), we can compare the fabrication cost of two different 
NoP architectures. For an example, NoP fabrication cost for 
SWAP ("/0*#) is: 

																								"/0*# =
$$%&
$ × &'(!(*"#$'*()*')																					(2) 

Similarly, the fabrication cost of the mesh-based SIAM NoP 
is: 

																									"/3*4 = $$%&
$ × &'(!(*"#$'*(+*,)																						(3) 

where ,/0*# and ,/3*4	correspond to total NoP area of SWAP 
and SIAM respectively. Therefore, the fabrication cost of 
SWAP with respect to SIAM can be expressed as: 

																											"/0*#"/3*4
= &'(!(*(+*,'*()*')																													(4) 

The relative fabrication cost of SWAP and other architectures 
like SIAM principally boils down to the difference between the 
two NoP areas (4). Since the NoP area increases with the 
number of router ports and NoP links, the corresponding 
fabrication cost also increases. SWAP effectively reduces the 
number of NoP links and has smaller router ports. Hence SWAP 
reduces the area and the fabrication cost of the 2.5D system. As 
the scale of data-center applications is expected to reach an 
order of 100s of TOPS and equivalent to thousands of cores, the 
fabrication costs become an essential component for the 
affordability of such a system [5]. It is crucial to complement 
the low fabrication cost with performance and energy benefits. 
Figure 6 compares the trend in fabrication cost and EDP for 
SWAP vs Kite and SWAP vs SIAM for the 81-chiplet system. 
We observe that, for all the considered DL workloads, SWAP 
reduces both EDP and fabrication costs compared to Kite and 
SIAM. For instance, SWAP shows 57% improvement in EDP 
combined with a 13X reduction in fabrication cost with respect 
to Kite while executing ResNet101 and ResNet50 
simultaneously, as shown in Figure 6(a). As shown in Figure 
6(b), SWAP decreases the fabrication cost compared to SIAM 
by 173 with up to 63% EDP improvement. SWAP, having 
smaller router ports and fewer NoP links leads to high energy 
efficiency along with a significant reduction in fabrication cost 

Fig. 3 Router port configuration for Kite, SIAM, and SWAP for a 2.5D 
system 81 chiplets. Peak of the plot is observed to move towards left. 

 
Fig. 4 Comparison of NoP latency for 2.5D system with 81 chiplets.   

Fig. 5 Comparison of NoP energy for 2.5D system with 81 chiplets.  
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compared to state-of-the-art NoP architectures. This 
demonstrates scalability and affordability for achieving 
sustainable data-center scale of compute requirements. 

V. FUTURE RESEARCH DIRECTIONS 
This paper discusses how chiplet based systems should be 
designed to achieve datacenter scale performance. However, 
there are various future research directions stem from the 
current state-of-the-art.  

Existing NoP architectures assume a single and typically 
fixed application workload executed one at a time. Therefore, 
the NoPs are optimized for a specific application, or a group of 
applications mapped onto the chiplet-based system. Offline 
NoP optimization is not practical for two main reasons. First, 
multiple workloads may need to be executed simultaneously in 
a real-world scenario. Second, various types of workloads may 
appear in a streamlined fashion. Specifically, the mapping of 
the neural layers onto the chiplets needs special attention for a 
stream of convolutional neural networks (CNNs) inference 
tasks appearing sequentially. Since each neural layer of a 
convolution neural network typically sends data to the 
subsequent layer, the consecutive neural layers must be mapped 
to neighboring chiplets to reduce latency. Most existing NoP 
architectures are primarily based on standard multi-hop regular 
topologies such as mesh, torus, etc. In these NoP architectures, 
it is not always possible to find contiguously placed chiplets 
available to map successive neural layers and hence they are 
suboptimal. Hence, design of a NoP architecture where the 
communicating neural layers can be executed on neighboring 
chiplets is of prime importance. This will also reduce the 
amount of long-range and multi-hop data exchanges 
significantly. Another application scenario that needs to be 
considered is natural language processing (NLP), which 
employs big transformer models with high memory footprint. 
For NLP workloads, the expected scale of parameters is in the 
order of hundreds of billions [19]. For instance, GPT-3 from 
OpenAI has over 175B parameters. Recent PALM design by 
Google contains 540B parameters [20]. This leads to much 
higher on-chip weight storage and access requirements than the 
existing chiplet-based systems. This in turn leads to thermal 
constraints. To address the thermal challenges, we may not be 
able to use the whole computing power of a chiplet-based 
architecture. Adopting the concept of dark silicon, where part 
of the chiplets is power gated to reduce the temperature, is a 
possible solution in this scenario [21] [22].  

    As the server-scale chips become mainstream, general CPU 
threads such as cache control, networking protocols, scheduling 
algorithms would have to run on such 2.5D based systems. A 
homogenous chiplet based system may not best serve all 
computation and algorithmic tasks requirements. Hence, 
heterogenous or hybrid systems (chiplets with different 
processing cores including CPU, GPU, or AI/ML accelerators) 
are to be considered for a pragmatic system design. 2.5D based 
systems, being modular, provides this freedom to connect 
multiple different chiplets through the NoP [8].  
    Chiplet-based systems can provide significant benefits in 
terms of fabrication cost. However, realistic design scenarios 
must consider the impact of silicon defects on the overall 
performance. Certain parts of each individual chiplet may not 
be fully functional due to intrinsic silicon defects [2]. However, 
none of the prior work takes silicon defects into consideration 
while designing a chiplet-based system. It is a common 
methodology that if a defect is present in a chiplet, the impacted 
segment is disabled and the chiplet is used with reduced 
functionality. Hence, we may need additional chiplet(s) to 
implement a particular computing kernel (e.g., mapping layer 
of a neural network to a chiplet). This would lead to an increase 
in the inter-chiplet data exchange and compromise the expected 
performance. Thus, any chiplet-based 2.5D system, which is 
designed without any provisioning for on-chip defects, cannot 
provide the expected performance. Therefore, it is critical to 
design the NoP by considering the impact of silicon defects in 
the chiplets. This tradeoff between reducing the fabrication cost 
against the performance penalty is a very important problem for 
more sustainable and cost effect datacenter scale system design.  
    Energy and policy considerations have been explored in the 
field of Green AI [23] [24]. Green AI refers to research that 
reveals novel insights without increasing computational cost 
(rather reducing the computational cost). Higher computational 
requirements lead to a larger carbon footprint for manufacturing 
and maintaining such systems. Green AI aims to explore the 
environmental effects regarding the capex (non-recurring) and 
opex (recurring) costs in semiconductor industry [25]. There is 
an overall increase of 300,000x in computing requirements in 
the last 10 years of deep learning, with training cost doubling 
every few months [24]. This necessitates larger monolithic 
chips that are costlier to manufacture (capex) and have higher 
energy requirements (opex) with respect to chiplet based 2.5D 
system. Reusing the defective chiplets instead of discarding 
them reduces the carbon footprint (capex). Hence, we should 
explore it to establish improved performance-sustainability 

 
Fig. 6 Trend in fabrication cost and EDP for (a) Kite and SWAP; (b) SIAM and SWAP for a 2.5D system with 81 chiplets. 
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trade-offs and to pave the way towards more environmentally-
friendly design paradigm, which is the need of the hour and is 
being pursued by many foundry and industries  [26] [27].    

VI. CONCLUSION 
    Datacenters require a high amount of compute and storage 
resources. Traditional monolithic IC-based manycore systems 
incur very high fabrication costs to achieve datacenter scale 
performance. Moreover, these monolithic chips have lower 
yields due to their large area. Chiplet-based 2.5D architectures 
are enablers to achieve datacenter-scale performance with 
lower fabrication costs than the monolithic counterpart. 
Network-on-interposer (NoP) is the communication 
infrastructure for the chiplet based architectures. Hence, it is a 
key component to achieve high performance and energy 
efficiency for 2.5D systems. In this paper, we discuss various 
design challenges associated with NoP-based 2.5D 
architectures. We also present a comparative performance 
evaluation considering various state-of-the-art NoP topologies.  
We also highlight important future research directions to make 
the NoP paradigm mainstream.  
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