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Abstract—Chiplet-based 2.5D systems that integrate multiple
smaller chips on a single die are gaining popularity for executing
both compute- and data-intensive applications. While smaller
chips (chiplets) reduce fabrication costs, they also provide less
functionality. Hence, manufacturing several smaller chiplets and
combining them into a single system enables the functionality of a
larger monolithic chip without prohibitive fabrication costs. The
chiplets are connected through the network-on-interposer (NoP).
Designing a high-performance and energy-efficient NoP
architecture is essential as it enables large-scale chiplet
integration. This paper highlights the challenges and existing
solutions for designing suitable NoP architectures targeted for
2.5D systems catered to datacenter-scale applications. We also
highlight the future research challenges stemming from the
current state-of-the-art to make the NoP-based 2.5D systems
widely applicable.
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I. INTRODUCTION

hiplet-based architectures that integrate multiple small
dies on an interposer are drawing the attention of
leading silicon manufacturers due to their higher
energy efficiency and lower fabrication cost [1]. ITRS
2.0 and IRDS roadmap highlight the unprecedented need for
memory and processing over the next decade [2] [3] [4]. This
need dictates large-scale chips with high memory and compute
capabilities, offering a high degree of parallelism. Such large-
scale chips include tens to hundreds of processing cores,
significantly increasing the area of monolithic chips [2]. One of
the major challenges in the silicon industry is the exploding
fabrication cost as the monolithic chips approach the reticle
limit. The chiplet-based design concept offers a promising
solution for reducing the manufacturing cost of large
monolithic chips [1]. Chiplet-based systems integrate multiple
smaller chips (chiplets) on a single die. The chiplets are
connected through the network-on-interposer (NoP). Since each
chiplet consumes a smaller area than a monolithic chip, the
overall fabrication cost of the overall 2.5D system is
significantly lower than that of the monolithic counterpart [1].
Emerging 2.5D architectures are expected to enable datacenter-
scale computing via handheld devices or embedded systems.
However, the computing capabilities of current edge devices
need to be enhanced at least by a factor of 30-50X to achieve a
datacenter-scale performance [5]. To achieve this goal, leading
foundries incorporate chiplet-based systems due to the yield
and fabrication cost benefits over monolithic counterparts [6].
Manufacturing several smaller chiplets and combining them
into a single system leads to the functionality of a larger chip
while maintaining the cost advantages of the smaller chips.
Moreover, integrating several chiplets in a single 2.5D system
necessitates design and optimization of the NoP, which is the

communication backbone of the chiplet-based system [7]. A
given heterogeneous chiplet library can include manycore
CPUs, GPUs, in-memory computing elements with resistive
RAM (RRAM) and other types of accelerators, and memory
(such as HBM-based 3D DRAM). Hence, the physical layout
and NoP design play a crucial role in determining throughput,
latency, and energy-efficiency, analogous to core placement
and interconnection in intra-chip environments. This paper
highlights the challenges and advantages of using NoP-based
systems for achieving data-center scale performance.

The rest of the paper is organized as follows. Section II
describes the overview of NoP architectures specifically
considering a high number of chiplets. Section III presents the
tool for reliable NoP performance evaluation and summarizes
the underlying principles. Section IV presents a sample of
performance evaluation results considering NoP architectures
proposed so far. Finally, Section V highlights future research
directions focused on designing more robust and innovative
chiplet-based manycore systems.

II. OVERVIEW OF NOP ARCHITECTURES

Increasing fabrication costs can mask the performance
improvement of large monolithic manycore architectures. Most
chip vendors and foundries, including TSMC, NVIDIA, Intel,
and AMD, are exploring non-monolithic alternatives such as
2.5D interposer-based systems to partition the on-chip
resources into smaller discrete computing cores called chiplets.
2.5D-based manycore systems offer a promising alternative to
monolithic chips [1] [8]. Novel 2.5D chiplet platforms provide
anew avenue for compact scale-out implementations of various
emerging compute- and data-intensive workloads. Integrating
multiple small chiplets on a large interposer offers significant
performance and manufacturing yield improvements compared
to 2D ICs, reducing the fabrication cost [2]. Furthermore, it
achieves higher thermal efficiency than 3D ICs and facilitates
heterogeneous integration [9]. Hence, it has become possible to
envision large-scale manycore systems on 2.5D platforms.
However, scalable communication between chiplets is
particularly challenging due to relatively large physical
distances between chiplets, poor technology scaling of
electrical wires, and shrinking power budgets. The
aforementioned challenges make it difficult to design a viable
NoP that can support ultra-high bandwidth, energy-efficient,
and low-latency inter-chiplet data transfer without increasing
fabrication costs. The demands on the NoP infrastructure will
only be exacerbated as application complexity continues to
scale. For example, the NoP area overhead alone can be up to
85% of the total system area [10].

Design of various general-purpose and application-specific
NoP architectures has been explored so far. The first family of
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Fig. 1: NoP architectures designs based on multi-hop networks a) SIMBA, b) SIAM and c) Kite

NoP architectures are based on regular multi-hop networks.
IntAct, for example, is a 2.5D prototype system with six
chiplets stacked on an active interposer with a Mesh NoP [9].
In IntAct, the authors demonstrated the scalability of the 2.5D
system with low-latency distributed interconnects. Simba is
another 2.5D system with 36 chiplets specifically designed for
deep neural network (DNN) inferencing [11]. It also uses a
Mesh NoP. Simba employs tiling optimizations to limit the
inter-chiplet traffic as shown in Figure 1(a). Recently, the Kite
family of NoP topologies has been proposed for a 2.5D-based
system considering synthetic traffic/workload as shown in
Figure 1(c) [8]. NN-Baton is another recently proposed 2.5 D
architecture that undertakes a design exploration considering
several DNN applications [12]. The NoP topology adopted in
NN-Baton is a ring architecture. Figure 1 shows the NoP
architectures designed based on regular multi-hop networks.
We note that all the above-mentioned NoP architectures
principally utilize multi-hop networks, which do not scale with
higher number of chiplets. Moreover, these multi-hop NoP
architectures create performance bottlenecks for datacenter
scale applications. A high-performance and energy-efficient
NoP architecture called SWAP has been recently proposed for
designing chiplet-based systems for server-scale scenarios,
running multiple deep learning (DL) workloads in parallel [13].
Figure 2 is an illustrative example of the SWAP architecture.
SWAP is the first 2.5D accelerator with inter-chiplet
communication-aware NoP to achieve high performance and
energy efficiency with reduced fabrication cost with respect to
state-of-the-art alternatives. SWAP leverages an efficient multi-
objective optimization (MOO) mechanism to generate a NoP
architecture with a smaller number of links and smaller routers
than all the existing NoP counterparts mentioned above. The
irregularity in the SWAP NoP improves the overall link
utilization in the system. Moreover, it is scalable for a wide
variety of DL workloads and number of chiplets in the system.

III. SOFTWARE TOOL FOR NOP PERFORMANCE EVALUATION

Chiplet-based architectures are proven to be more energy-
efficient than their monolithic counterparts for various
compute- and data- intensive applications (e.g., autonomous
driving, machine vision, robotic medical diagnosis) necessitate
high performance with small form-factor [14] [15]. These
applications traditionally require datacenter scale computing

infrastructures. However, various new data- and compute-
intensive applications are emerging regularly. As an example,
different neural network architectures including linear (e.g.,
VGG), residual (e.g., ResNet), and dense (e.g., DenseNet)
connections are prevalent in widely used deep learning
workloads. Even within the DL family, workloads vary widely.
Chiplet-based systems can reduce the dependance on power-
hungry datacenters if they are evaluated and fine-tuned for these
emerging workloads. Therefore, there is a need for a full system
performance evaluation framework for chiplet-based systems to
enable fast design space exploration. There are two families of
performance evaluation platforms targeting chiplet-based
architectures. The first one is based on open-source traditional
manycore simulators such as gem5, sniper, gpgpu-sim, etc.
[16]. On the other hand, the recently proposed SIAM
framework is a full system performance evaluation tool targeted
specifically for 2.5D architectures consisting of processing-in-
memory (PIM)-based chiplets [10].

Gemb5-based HeteroGarnet is a recently proposed NoP
performance evaluation tool [8]. HeteroGarnet is developed to
characterize the performance of traditional von-Neuman based
architectures consisting of CPU, GPU, and memory chiplets.
Two types of interconnect architectures need to be considered
in chiplet-based systems. The intra-chiplet network is
principally a network-on-chip (NoC) and the inter-chiplet
network is the NoP. Due to the size and locations, the physical
interconnect materials (e.g., on-chip wires, TSVs, pbumps) and
their individual widths vary across the whole system. Individual
chiplets can operate at different voltages and frequencies, and
they can be connected to form a larger system on the package.

Chiplet
NoP Links
Package

Fig. 2: Illustration of the SWAP architecture for a chiplet-based system with
application-specific NoP links
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Exploring the design space of such a chiplet-based architecture
requires tools to model the heterogeneity. For example, in a
hybrid GPU-CPU 2.5D architecture, both chiplet types need not
be designed with similar technological and physical parameters,

often requiring clock-domain crossings and serializer-
deserializer to communicate, which is supported in
HeteroGarnet.

PIM-based architectures for chiplet-based systems achieve
higher performance and energy efficiency than traditional von-
Neumann architectures, specifically for DL workloads. DL
workloads, such as deep neural networks (DNNs),
convolutional neural networks (CNNs), Graph Neural
Networks (GNNs) and their variants, are employed in a large
range of applications [14] [15]. To evaluate PIM-based
systems, SIAM considers the properties of DL workload as
inputs. The DL workload properties include the number of
layers, input and output feature maps of each layer, kernel size
of each layer, and activation function of each layer. The
architecture specification includes the number of chiplets in the
system, number of processing elements in each chiplet, device
technological properties of the PIM device (ReRAM, SRAM,
FeFET as few examples), and the properties of NoC as well as
the NoP. The important properties of NoC and NoP to be
considered include bus width, router port configuration, buffer
sizes, NoP/NoC frequency, and link length. The performance
metrics of interest for such a full system evaluation are latency,
power, energy, and total area consumed.

SIAM’s performance evaluation can be segregated into two
components: circuit and network. There exists analytical
model-based evaluation for the circuit component. Specifically,
SIAM adopts the models of various basic circuit components
(such as buffers, ADCs, decoders, switch matrix, etc.) from the
well-known NeuroSim tool [17]. These models estimate the
power consumption, latency, and area of those components.
Then, the number of components in the design is computed
through the architectural specifications and the activity of the
components are estimated from the workload specifications.
With this information, the overall performance of the circuit
component of the system is evaluated.

The network component of SIAM evaluates the performance
of the NoC and the NoP. SIAM incorporates BookSim to
perform cycle-accurate simulations of the network [18]. The
input to the cycle-accurate network simulation is a trace file. A
trace file depicts the communication between multiple chiplets
(inter-chiplet traffic) as well as between PIM elements within
each chiplet (intra-chiplet traffic). BookSim injects packets into
the network according to the trace file and evaluates the
network performance along with energy and area numbers.
SIAM supports architecture-level benchmarking with a focus
on PIM architectures and helps determine area, energy,
performance, and fabrication cost trade-off between design
choices for an overall better architecture.

IV. NOP PERFORMANCE EVALUATION

In this section, we present a comparative performance
evaluation of various NoP architectures proposed so far in the
literature. We evaluate the NoP architecture by considering a
wide range of DNNs for inferencing. Table I shows different
DNN:s, corresponding datasets, and the number of parameters.

TABLE I: LIST OF DL INFERENCE WORKLOADS ALONG WITH THEIR
CORRESPONDING NUMBER OF DNN PARAMETERS FOR 81 CHIPLET

SYSTEM WITH IMAGENET
Network Workload (in millions) #
(ImageNet) of parameters
VGG19,ResNet50 WL1 88M
ResNet101,

ResNet50 WL2 136M
ResNet152 WL3 130M
ResNet101,

ResNet34 wL4 114M

DenseNet169,
ResNet50, WL5 944M
ResNet18

Each system can execute one large or more than one DL
workloads simultaneously, representing a datacenter scenario.
To represent a server-scale system, we consider a 2.5D
architecture with 81 chiplets for this performance evaluation.
We employ ReRAM-based chiplets as the enabling technology
to accelerate DNN inference in this performance evaluation. It
should be noted that all the architectures and associated design
optimization methodologies are also applicable to other
crossbar array (CBA)-based PIM chiplets. Beyond ReRAM,
any other memory technologies such as SRAM, STT-MRAM,
FeFETs, and any other types of chiplets can be adopted too.
CBAs are by far the most popular representation for PIM. They
are highly efficient for matrix-vector multiplication. Note that
the DNNs considered in our evaluations consist of linear
(VGG), residual (ResNet), as well as dense (DenseNet)
connections. Moreover, all the DNNs consist of fully connected
and convolution layers. Each layer of the DNN contains higher
order of multi-bit weights (e.g., ResNet-101 on ImageNet with
about 38M parameters, VGG16 on ImageNet with 93.4M
parameters). In each considered scenario, multiple neural
networks are running simultaneously (VGG19-ResNet50 on
ImageNet dataset inferenced together as an example). SIMBA,
IntAct, and SIAM principally are based on 2D Mesh NoP. We
consider SIAM as the representative of this group. Kite is
principally a Torus-based NoP that employs skip connections.

One of the main differences between SIAM, Kite, and
SWAP is the router port configuration. Figure 3 shows the
router port distribution of each NoP. Both Kite and STAM have
an average port count of around four, as shown in Figure 3. In
the case of SWAP, the peak moves towards left with mean
router port frequency being between two and three. SWAP
mainly consists of routers with a lower number of ports due to
the MOO mechanism to generate a NoP architecture with a
smaller number of links and smaller routers than both Kite and
SIAM. The irregularity in the SWAP NoP improves the overall
link utilization in the system. It is scalable for a wide variety of
DL workloads and the number of chiplets in the system. Smaller
routers in SWAP helps in reducing NoP energy, area, and the
fabrication cost. Next, we discuss the performance-energy-
area-fabrication cost trade-offs associated with different NoP
architectures.
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Fig. 3 Router port configuration for Kite, SIAM, and SWAP for a 2.5D
system 81 chiplets. Peak of the plot is observed to move towards left.

Performance: Figure 4 presents the NoP latency for SWAP
and the baseline designs (Kite and SIAM). Latency is
normalized with respect to that of SIAM. We observe that
SWAP outperforms both the baseline designs with up to 11%
improvements in latency. Both Kite and SIAM incorporate
regular NoP topologies and consist of several links which are
not necessary for DL workloads. In contrast, SWAP consists of
an optimized NoP that removes redundant links and places them
appropriately based on inter-chiplet communication traffic. In
summary, smaller routers and fewer appropriately placed links
enable SWAP to achieve lower latency than SIAM and Kite.

Energy: By having smaller routers and hence reducing the
unnecessary links, SWAP not only reduces the inference
latency of DL workloads but also achieves significantly lower
energy consumption. The energy consumption improvements
compared to Kite and SIAM are shown in Figure 5. Energy
consumption is normalized SIAM results. SWAP, for instance,
achieves up to 47% lower energy than Kite for 81-chiplet-based
system. On average we observe a 25% lower energy than SIAM
for a system with 81 chiplets. The simultaneous energy and
latency benefits result in significant EDP improvements over
entire spectrum of considered datacenter scale scenarios. In
summary, smaller routers and fewer appropriately placed links
enable SWAP to achieve lower latency and energy
consumption than both Kite and SIAM NoP architectures.
Cost: NoP consists of about 85% of the total 2.5D system area.
Hence, the overall fabrication cost depends on the NoP. The
normalized fabrication cost of an NoP is expressed as [10]:

L
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Fig. 4 Comparison of NoP latency for 2.5D system with 81 chiplets.

where L, is the number of chiplets per wafer in the reference
system and L is the number of chiplets per wafer for the system
under consideration. The parameter D, represents the wafer
defect density, and A, is the NoP area of the reference system.
We consider a 2.5D system designed by AMD with 864 mm?
interposer area and 64 chiplets as the reference in this work [1].
Using (1), we can compare the fabrication cost of two different
NoP architectures. For an example, NoP fabrication cost for
SWAP (Csyyap) is:

Cowap = rLef x @ Do(Aref~Aswapr) (2)

Similarly, the fabrication cost of the mesh-based SIAM NoP
is:

L
Coram = ¢S w e~DPo(Aref=Asiam) 3)

where Agyy 4p and Ag; 4y correspond to total NoP area of SWAP
and SIAM respectively. Therefore, the fabrication cost of
SWAP with respect to SIAM can be expressed as:

CSW_AP = ¢~ Do(Asiam—Aswar) 4

Cs1am
The relative fabrication cost of SWAP and other architectures
like SIAM principally boils down to the difference between the
two NoP areas (4). Since the NoP area increases with the
number of router ports and NoP links, the corresponding
fabrication cost also increases. SWAP effectively reduces the
number of NoP links and has smaller router ports. Hence SWAP
reduces the area and the fabrication cost of the 2.5D system. As
the scale of data-center applications is expected to reach an
order of 100s of TOPS and equivalent to thousands of cores, the
fabrication costs become an essential component for the
affordability of such a system [5]. It is crucial to complement
the low fabrication cost with performance and energy benefits.
Figure 6 compares the trend in fabrication cost and EDP for
SWAP vs Kite and SWAP vs SIAM for the 81-chiplet system.
We observe that, for all the considered DL workloads, SWAP
reduces both EDP and fabrication costs compared to Kite and
SIAM. For instance, SWAP shows 57% improvement in EDP
combined with a 13X reduction in fabrication cost with respect
to Kite while executing ResNetlOl and ResNet50
simultaneously, as shown in Figure 6(a). As shown in Figure
6(b), SWAP decreases the fabrication cost compared to SIAM
by 17X with up to 63% EDP improvement. SWAP, having
smaller router ports and fewer NoP links leads to high energy
efficiency along with a significant reduction in fabrication cost
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Fig. 5 Comparison of NoP energy for 2.5D system with 81 chiplets.
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Fig. 6 Trend in fabrication cost and EDP for (a) Kite and SWAP; (b) SIAM and SWAP for a 2.5D system with 81 chiplets.

compared to state-of-the-art NoP architectures. This
demonstrates scalability and affordability for achieving
sustainable data-center scale of compute requirements.

V. FUTURE RESEARCH DIRECTIONS

This paper discusses how chiplet based systems should be
designed to achieve datacenter scale performance. However,
there are various future research directions stem from the
current state-of-the-art.

Existing NoP architectures assume a single and typically
fixed application workload executed one at a time. Therefore,
the NoPs are optimized for a specific application, or a group of
applications mapped onto the chiplet-based system. Offline
NoP optimization is not practical for two main reasons. First,
multiple workloads may need to be executed simultaneously in
a real-world scenario. Second, various types of workloads may
appear in a streamlined fashion. Specifically, the mapping of
the neural layers onto the chiplets needs special attention for a
stream of convolutional neural networks (CNNs) inference
tasks appearing sequentially. Since each neural layer of a
convolution neural network typically sends data to the
subsequent layer, the consecutive neural layers must be mapped
to neighboring chiplets to reduce latency. Most existing NoP
architectures are primarily based on standard multi-hop regular
topologies such as mesh, torus, etc. In these NoP architectures,
it is not always possible to find contiguously placed chiplets
available to map successive neural layers and hence they are
suboptimal. Hence, design of a NoP architecture where the
communicating neural layers can be executed on neighboring
chiplets is of prime importance. This will also reduce the
amount of long-range and multi-hop data exchanges
significantly. Another application scenario that needs to be
considered is natural language processing (NLP), which
employs big transformer models with high memory footprint.
For NLP workloads, the expected scale of parameters is in the
order of hundreds of billions [19]. For instance, GPT-3 from
OpenAl has over 175B parameters. Recent PALM design by
Google contains 540B parameters [20]. This leads to much
higher on-chip weight storage and access requirements than the
existing chiplet-based systems. This in turn leads to thermal
constraints. To address the thermal challenges, we may not be
able to use the whole computing power of a chiplet-based
architecture. Adopting the concept of dark silicon, where part
of the chiplets is power gated to reduce the temperature, is a
possible solution in this scenario [21] [22].

As the server-scale chips become mainstream, general CPU
threads such as cache control, networking protocols, scheduling
algorithms would have to run on such 2.5D based systems. A
homogenous chiplet based system may not best serve all
computation and algorithmic tasks requirements. Hence,
heterogenous or hybrid systems (chiplets with different
processing cores including CPU, GPU, or AI/ML accelerators)
are to be considered for a pragmatic system design. 2.5D based
systems, being modular, provides this freedom to connect
multiple different chiplets through the NoP [8].

Chiplet-based systems can provide significant benefits in
terms of fabrication cost. However, realistic design scenarios
must consider the impact of silicon defects on the overall
performance. Certain parts of each individual chiplet may not
be fully functional due to intrinsic silicon defects [2]. However,
none of the prior work takes silicon defects into consideration
while designing a chiplet-based system. It is a common
methodology that if a defect is present in a chiplet, the impacted
segment is disabled and the chiplet is used with reduced
functionality. Hence, we may need additional chiplet(s) to
implement a particular computing kernel (e.g., mapping layer
of a neural network to a chiplet). This would lead to an increase
in the inter-chiplet data exchange and compromise the expected
performance. Thus, any chiplet-based 2.5D system, which is
designed without any provisioning for on-chip defects, cannot
provide the expected performance. Therefore, it is critical to
design the NoP by considering the impact of silicon defects in
the chiplets. This tradeoff between reducing the fabrication cost
against the performance penalty is a very important problem for
more sustainable and cost effect datacenter scale system design.

Energy and policy considerations have been explored in the
field of Green Al [23] [24]. Green Al refers to research that
reveals novel insights without increasing computational cost
(rather reducing the computational cost). Higher computational
requirements lead to a larger carbon footprint for manufacturing
and maintaining such systems. Green Al aims to explore the
environmental effects regarding the capex (non-recurring) and
opex (recurring) costs in semiconductor industry [25]. There is
an overall increase of 300,000x in computing requirements in
the last 10 years of deep learning, with training cost doubling
every few months [24]. This necessitates larger monolithic
chips that are costlier to manufacture (capex) and have higher
energy requirements (opex) with respect to chiplet based 2.5D
system. Reusing the defective chiplets instead of discarding
them reduces the carbon footprint (capex). Hence, we should
explore it to establish improved performance-sustainability



>1090<

trade-offs and to pave the way towards more environmentally-
friendly design paradigm, which is the need of the hour and is
being pursued by many foundry and industries [26] [27].

VI. CONCLUSION

Datacenters require a high amount of compute and storage
resources. Traditional monolithic IC-based manycore systems
incur very high fabrication costs to achieve datacenter scale
performance. Moreover, these monolithic chips have lower
yields due to their large area. Chiplet-based 2.5D architectures
are enablers to achieve datacenter-scale performance with
lower fabrication costs than the monolithic counterpart.
Network-on-interposer  (NoP) is the communication
infrastructure for the chiplet based architectures. Hence, it is a
key component to achieve high performance and energy
efficiency for 2.5D systems. In this paper, we discuss various
design challenges associated with NoP-based 2.5D
architectures. We also present a comparative performance
evaluation considering various state-of-the-art NoP topologies.
We also highlight important future research directions to make
the NoP paradigm mainstream.
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