Check for
Updates

Fault-tolerant Deep Learning using Regularization
(Invited Paper)

Biresh Kumar Joardar*, Aqeeb Igbal Arka’, Janardhan Rao Doppa', Partha Pratim Pande’

*University of Houston, Houston, TX, email: bjoardar@central.uh.edu

"Washington State University, Pullman, WA, email: {aqeebigbal.arka, jana.doppa, pande} @wsu.edu

ABSTRACT

Resistive random-access memory has become one of the most
popular choices of hardware implementation for machine learning
application workloads. However, these devices exhibit non-ideal
behavior, which presents a challenge towards widespread adoption.
Training/inferencing on these faulty devices can lead to poor
prediction accuracy. However, existing fault tolerant methods are
associated with high implementation overheads. In this paper, we
present some new directions for solving reliability issues using
software solutions. These software-based methods are inherent in
deep learning training/inferencing, and they can also be used to
address hardware reliability issues as well. These methods prevent
accuracy drop during training/inferencing due to unreliable
ReRAMs and are associated with lower area and power overheads.

CCS CONCEPTS

* Hardware e Robustness e Fault tolerance e System-level fault
tolerance

KEYWORDS
Deep learning, ReRAM, Reliability, Regularization

1 Introduction

Deep learning algorithms are employed in a wide variety of real-
world applications, e.g., self-driving cars, medical diagnosis, and
face recognition. Both training and inferencing of these deep
models are computationally demanding tasks and are typically
deployed on the cloud. However, there is a growing necessity to
implement deep learning on edge platforms due to privacy and
security concerns [1], the need for user-specific customization [2],
low latency and real-time requirements (such as in
augmented/virtual reality applications). However, implementing
these applications on edge devices is challenging due to area and
energy constraints. Addressing this necessitates suitable high-
performance and energy efficient hardware support.

Emerging resistive random-access memory (ReRAM) technology
can accelerate both CNN training and inferencing and are suitable
for edge devices [3][4]. Existing ReRAM-based architectures, e.g.,
Pipelayer [3], ISAAC [4] and AccuReD [5], outperform GPUs for
training/inferencing of CNNs while consuming significantly less
energy. ReRAM-based architectures have also been used to
accelerate other deep learning applications such as RNNs, GNNss,
transformers, etc. [16][22][23]. ReRAM-based systems are
more area-efficient compared to their GPU counterparts and
do not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/
or a fee. Request permissions from Permissions@acm.org.

ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-9217-4/22/10.
https://doi.org/10.1145/3508352.3561120

require expensive off-chip memory access due to the “in-memory”
nature of the ReRAM-based computation [3][4][5]. Despite these
advantages, existing ReRAM-based architectures are not reliable.
ReRAMs are susceptible to different types of defects and noise.
These non-idealities hamper the widespread adoption of large-scale
deep learning algorithms on ReRAM crossbar-based accelerators
[6]. Prior work has demonstrated that CNN training and inferencing
in the presence of these non-idealities leads to unacceptably low
accuracy of the models [5][7][8]. These challenges must be
addressed to unlock the tremendous potential of ReRAM-based
architectures for both training and inferencing using various types
of deep models.

Several techniques have been proposed in the literature to counter
the effect of faults in ReRAM-based architectures
[71[9][10][11][12][13]. Some of the most common methods for
fault tolerance include the use of error-correction codes (ECC),
fault-aware remapping, and retraining. However, these solutions
tend to have implementational challenges as we outline later in this
paper. A practical fault-tolerant scheme for on-chip
training/inferencing must be fast, and with low performance and
hardware overhead. To address these challenges, we present an
alternative direction of software-based solutions to address the
reliability issues in ReRAM-based architectures. These software
methods are native to deep learning algorithms, i.e., they are
inherently used by ML practitioners during training/inferencing to
improve predictive accuracy. Hence, these methods are often
associated with lower hardware overheads and are also easy to
implement. Experimental results demonstrate that using these
software-based solutions training/inferencing of deep learning
workloads can achieve near-ideal accuracy even when several of
the available ReRAM cells are faulty/noisy.

2 Summary of Existing Fault-tolerant Methods

In this section, we discuss the different sources of non-idealities in
ReRAM crossbars and how they impact training and inferencing of
deep learning models. Next, we highlight the challenges associated
with existing fault-tolerant methods to motivate the need for new
types of solutions.

2.1 Reliability in ReRAM-based architectures

ReRAMs can suffer from both “hard” faults and “soft” faults [6].
Hard faults prevent the resistance of a ReRAM cell from being
updated, resulting in write failures. Hard faults can be further
classified into pre-deployment and post-deployment faults based on
when the fault appears for the first time. Pre-deployment faults

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3561120&domain=pdf&date_stamp=2022-12-22

WOODSTOCK’18, June, 2018, El Paso, Texas USA

appear before use, i.e., at t = 0~ and are caused by manufacturing
defects such as short defects, over-forming defects or reset failure.
These faults cause the affected ReRAM cell’s resistance to be stuck
at the low/high resistance state, resulting in stuck-at-faults (SAFs),
which are permanent in nature. Even if a crossbar passes
manufacturing test, new faults can appear over time as the crossbar
is utilized (i.e., at t > 0) [14]. These faults, referred as post-
deployment faults, can be attributed to the limited write endurance
of ReRAMs or due to the application of multiple consecutive write-
0 (or write-1) pulses [6]. Faults due to multiple write operations to
the same cell can result in SAFs that are permanent in nature,
whereas faults due to multiple write-0 (or write-1) pulses appear
only for a limited duration (i.e., the underlying faulty cells in this
case are recoverable).

In addition to hard faults, ReRAMs also suffer from soft faults.
These faults lead to erroneous outputs due to small changes in the
ReRAM cell’s behavior (it does not result in SAFs). These faults
can be attributed to noise, process variations, IR drop, etc. [5][6].
The resistivity of ReRAM cells depends on the operating
temperature. Hence, if the temperature changes, the resistance of
the ReRAM cell will change. Since data on ReRAM cells is
represented as resistance, any change in resistance will cause loss
of stored data and lead to erroneous outputs. Similarly, process
variations can cause cells to behave differently under similar
operating conditions. This can lead to variations during read and
write operations. All these factors interfere with normal operations
of ReRAM-based architectures, which can lead to poor accuracy
during training/inferencing of deep learning workloads.

2.2 Effect of non-idealities on deep learning

In this sub-section, we show the effect of ReRAM non-idealities on
various deep learning algorithms.

Soft faults: As mentioned earlier, there are several sources of soft
faults in ReRAMs. Here, we focus on one of them as an example:
thermal noise. It is well known that ReRAM behavior is
temperature dependent [5]. The relationship between temperature
and the conductance of ReRAM cells has been studied in prior work
(e.g., [15]). The ON- and OFF-state conductance for an ReRAM
cell (Gon and Gorr respectively) is a function of temperature, which
in turn affects the output current. As temperature increases, the
conductance range (i.c., gap between Gon and Gorr), reduces
significantly [15]. This causes the output current to change
(resulting in erroneous outputs). The noise margin between the

W ldeal mF10 F100 mF250 mF500 F1000
100%
& 80%
o
2
£ 60% I
40% I
Lenet VGG-11 VGG-19 ResNet-18

Fig. 1: Prediction accuracy of four CNNs trained on a non-ideal noisy
ReRAM-based manycore system at different operating frequencies.

F. Surname et al.

states also decreases gradually with increasing temperature as the
conductance range (i.c., gap between Gon and Gorr), reduces
significantly. As a result, ReRAM-based architectures are very
susceptible to noise at higher temperature.

Fig. 1 shows how thermal-induced non-ideal effects, affect the
accuracy of the trained model for four CNNs at different operating
frequencies. The thermal noise is modeled following [7]. Here, the
ReRAMs store 4-bits per cell following [4]. The operating
frequency is gradually increased from 10 MHz (F10 in Fig. 1) to 1
GHz (F1000), where Fx refers to an ReRAM operating frequency
of x MHz to study the effect of noise at different frequencies. As
shown in Fig. 1, most CNNs fail to train in the presence of thermal
noise (especially when higher frequencies are used). Clearly, this
problem must be solved to enable on-chip training on ReRAM-
based architectures.

Hard faults: Next, to demonstrate the effect of hard faults on CNN
training/inferencing, we train six well-known CNNs: LeNet,
AlexNet, VGG-11/16/19, and ResNet-18. LeNet is trained on the
FashionMNIST dataset. AlexNet, VGG-11/16/19 and ResNet-18
are trained on the CIFAR-10 dataset. Fig. 2 shows the inferencing
accuracy when these six CNNs are trained using both ideal
ReRAMs and with fault densities of 0.1% and 2%, respectively.
Here, we define “fault density” as the percentage of ReRAM cells
that are faulty in the ReRAM-based architecture. ‘Fault-x’ in Fig.
2 refers to x% fault density. For instance, a fault density of 2%
indicates that 2% of all available ReRAM cells are faulty. No fault-
tolerant design strategy is adopted here to first assess the severity
of the problem. As we can see from Fig. 2, most CNN:ss fail to train
successfully (i.e., reach near-ideal accuracy) in the presence of
faults. The problem is more acute for CNNs with more layers (such
as VGG-19 and ResNet-18) and for higher fault density. For
instance, ResNet-18 fails to train at even 0.1% fault density.

This problem is not specific to CNNs only. Other deep learning
application workloads also encounter accuracy drop in the presence
of these non-ideal effects. As an example, we show how hard faults
affect GNN training. GNNss also consist of matrix multiplications,
which can be accelerated using ReRAMs [16]. Fig. 3 shows the
accuracy when three GNNs are trained with different fault
densities. ‘Fault-x’ in Fig. 3 refers to x% fault density. Here, we
train three GNN models for node classification on the Cora, PPI,
and Amazon2M datasets. Unlike some of the CNNs, GNNs can
train in the presence of faults but reach noticeably lower accuracy

mIdeal mFault-0.1 Fault-2

100%

80%
60%
40% |
20%
0 |

Lenet Alex VGG11VGG16 VGG19 Resl8

Fig. 2: Accuracy of trained model when different CNNs are trained using
ReRAM crossbars with Ideal, 0.1%, and 2% fault densities (referred to as
Ideal, Fault-0.1 and Fault-2 respectively).

Accuracy

X

Insert Your Title Here

100 Mldeal mFault-1 mFault-2 mFault-5

80
>
o 60
5
S 40
<
20
0

Cora Amazon2M PPI

Fig. 3. Accuracy comparison of trained GNN model, with different fault
densities (1%, 2%, and 5% faults)

than their ideal counterparts. This happens as GNN models tend to
be shallower than CNNs. The GNNs used here are up to five layers
deep only, while CNNs such as ResNet-18 has 18 layers. However,
even at 1% fault density all three GNN models suffer from accuracy
loss of 0.6%, 3.7%, and 5.4% for Cora, Amazon2M and PPI,
respectively. As expected, the drop in accuracy increases at higher
fault density for all GNN models. For 2% and 5% fault density,
there is an average accuracy drop of 6.7% and 9.5% respectively.
Summary of key observations: To analyze the accuracy drop, Fig.
4 explains the effects of faults on CNN weights. Here, we study the
accuracy drop due to hard faults as it is more severe; the accuracy
drop due to soft faults can also be attributed to the same findings.
The training becomes unstable when the weights become extremely
large; this leads to poor training accuracy. This explosion in some
weights happens due to the distributed nature of the mapping of
weights to ReRAM cells [4]. Fig. 4 shows an example of how
weights are mapped to ReRAM cells. Note that ReRAM-based
architectures most commonly utilize a 16-bit fixed-point
representation. However, storing all 16-bits in one cell is practically
impossible due to noise and area concerns. Groups of bits are
mapped to different ReRAM cells as shown in Fig. 4. In Fig. 4, we
assume that 4-bits are stored per cell for the sake of illustration
following [3]. Note that, 2-bits and 1-bit per cell are also common.
The partial outputs (y;) need to be accumulated using a shift-and-

W = 2.25 - 0000 0010 0100 0000

/4 1\

= 0000 0010 0100 0000
Input

ouput $¥1 V1 ¥
(Y) €= Shift & Add

Fig. 4: Distributed mapping of weight (w) bits to multiple ReRAM cells.
The shift-and-add block accumulates partial outputs (yi) to compute the
output (Y) following Equation (1)

ICCAD’22, USA

add operation to obtain the final output (Y), which can be
mathematically expressed as:

4
y = Z 164 xy,)
i=1

This shift-and-add operation due to the distributed mapping of
weights to ReRAM cells, presents an interesting problem. From
Equation (1), we note that faults at different locations will have
varying amounts of impact on the final output (Y). For instance, an
error due to a fault in y, (LSB bits) will be multiplied by a factor
of 16° whereas the error due to a fault in y; (MSB bits) will be
multiplied (magnified) by a factor of 163. Hence, faults near the
MSB can artificially introduce an exploding/vanishing gradients
problem, which results in faulty feedback during backpropagation.
The explosive gradients add a positive reinforcement in the training
loop, i.e., some of the weights explode after repeatedly
accumulating these large gradients over multiple iterations of the
weight update step. This leads to the rapid increase in the weight
values, which in turn results in poor model accuracy after training
for both CNNs and GNNs.

2.3 Existing fault-tolerant methods

Several fault-tolerant ReRAM-based architectures have been
proposed in prior work to address both soft and hard faults.
Remapping of CNN weights to non-faulty ReRAM cells has been
proposed in [10]. The remapping-based scheme uses the inherent
sparsity of a neural network to make the ReRAM-based design
robust against stuck-at-0 (SA0) faults specifically for inferencing
[10]. By re-ordering the columns/rows, the zeros in the weight
matrices are mapped to ReRAM cells with SAO faults. However,
this method requires solving a Knapsack-based formulation, which
is an NP-hard problem. To implement the genetic algorithm-based
Knapsack formulation (as described in [10]), we will need
additional hardware, which leads to performance and area
overheads. In addition, this method is not suitable for the purpose
of training where the weights keep changing after each update.
Error-correcting codes (ECC) can be used to detect and correct
errors in ReRAM-based architectures. Data aware AN code and
LDPC are two such schemes that are equally effective for CNN
inferencing [9][17]. However, the encoding and decoding involved
in any ECC-based scheme introduce additional power and
performance overheads. Moreover, the area overhead of ECC-
based methods is relatively high. For instance, the AN code method
introduces 6.3% area overhead to ReRAM tiles [9].

Error compensation has been proposed as another effective fault-
tolerant mechanism for ReRAM-based architectures [7]. The
compensation scheme relies on a one-time profiling using fault-
detection techniques. Next, the difference between the non-ideal
output caused by faults and the ideal output (referred as
compensation) is calculated using a digital co-processor such as a
CPU/GPU. Finally, the compensation is added to the faulty
crossbar output. However, this methodology requires an additional
digital co-processor besides the ReRAM-based system (hence, high
area and power overhead). In addition, it requires prior profiling,
which is not possible for training of deep models. Moreover, this

WOODSTOCK’18, June, 2018, El Paso, Texas USA

methodology may not be able to compensate for post-deployment
faults as it relies on a priori fault detection.

Redundancy is another popular fault-tolerant scheme for
ReRAMs. Prior work has proposed using both redundant ReRAM
cells [12] and redundant CNN neurons [13] as fault tolerant
methods. The methodology proposed in [11] uses triple modular
redundancy (TMR) to achieve reliable operation. However,
redundancy schemes such as TMR are prohibitively expensive in
terms of the hardware overhead.

Retraining on faulty ReRAMs has been proposed for inferencing
[11]. Here, the aim is to make the pre-trained weights aware of the
hardware faults by re-training the weights. However, this method
is not applicable for the purpose of training from scratch.

To summarize, existing fault tolerant solutions suffer from a
combination of the following drawbacks. They are often slow,
impose high performance, power, and area overheads, and require
a priori fault detection; these shortcomings make prior solutions
unattractive for training CNNs/GNNs on faulty ReRAMs. An
effective fault-tolerant scheme for CNN/GNN training must be fast,
while introducing negligible overhead.

3 Software solutions to mitigate faults

In this section, we will present software solutions that are native
to ML algorithms as an alternative for reliable training/inferencing
for CNNs and GNNs.

3.1 Batch Normalization

It is well known that training deep CNNs is difficult due to the
vanishing/exploding gradients problem [18]. Batch normalization
(BN) is a key CNN layer that addresses this problem. BN
regularizes gradient from distraction to outliers. Prior work has
discovered that by viewing BN as an implicit regularizer, it can be
decomposed into population normalization and gamma decay as an
explicit regularization [24]. Without BN, training deep CNNs on
ReRAM-based architectures can result in: (a) no meaningful
training, or (b) significant loss of prediction accuracy. Specialized
initialization schemes (e.g., Xavier initialization [19]) have been
proposed to train CNNs in the absence of BN. However, these
methods require careful hyper-parameter selection (i.e., expert

V-ideal V-all V-alt e \/-three V-none

100%

80%

o ,\’J\ rwf—\M
VP

20% I

Accuracy

0%
1 5 10 15 20 25 30 35 40 45 50
Epoch

Fig. 5: Accuracy of trained models using noisy ReRAMs with different
number of normalization layers.

F. Surname et al.

domain knowledge) and yet, are not effective all the time. The use
of BN reduces the hyper-parameter dependencies and improves
CNN training. Hence, it is widely used by ML practitioners.
Interestingly, BN layers can also be used to solve some reliability
issues on ReRAM-based architectures. For instance, BN layers can
reduce the impact of thermal noise during CNN training.

To study the impact of normalization layers on noise resilience, we
vary the number of normalization layers used during training. Fig.
5 shows the prediction accuracy with varying number of
Normalization layers. For this experiment, we consider four
different flavors of CNN architectures: VGG-11 with (a) all layers
followed by a Normalization (V-All), (b) Normalization after
alternate layers (V-Alt) and (c) Normalization after every 3 layers
(V-Three), and (d) no Normalization case (V-none). Fig. 5 shows
the accuracy when VGG-11 is trained with these configurations
mentioned above along with the ideal training case (V-Ideal). Here,
we assume all ReRAMs to operate at 1GHz where the effect of
noise is the highest (Fig. 1). From Fig. 5, we note that V-All
performs the best among the four nonideal configurations (accuracy
of 78.6%). The model accuracy gradually falls due to the non-ideal
nature of ReRAMs as the number of Normalization layers are
reduced (69% for V-Alt, 42% for V-Three, 10% for V-None). This
happens as the effect of thermal noise gets amplified, resulting in
an artificial exploding gradient scenario. Normalization layers
counter this problem. Therefore, having Normalization layers can
improve the reliability of CNN training in presence of some
hardware non-idealities. The AccuReD architecture introduces
normalization support in ReRAM-based systems [5]. Since
normalization layers are computationally inexpensive, the increase
in execution time due to their addition is relatively negligible.

3.2 Weight clipping

Besides thermal noise, ReRAMs are prone to hard faults (both pre-
and post-deployment). Unlike noise, these defects result in SAFs,
which can be permanent or temporary in nature. First, we attempt
to solve this problem using BN layers only. However, our analysis
indicates that BN layers fail to solve the accuracy drop due to hard
faults completely. This happens as a subset of the ReRAM hard
faults are permanent in nature. Consequently, some of the
exploding gradients are permanent, which result in repeatedly
accumulating errors in the weights; this results in extremely large
weights that make the training unstable. As a result, the scaling due
to BN is ineffective here as the errors keep getting accumulated
after every epoch unlike in the case of noise.
To prevent these exploding weights, we can use weight clipping
[8]. Clipping these exploding weights to a relatively lower value €,
where € > 0, will enable the CNNs to train successfully. The
clipping operation can be mathematically expressed using the
following equation:
wl,if |w| <€
wl = {le, |0th|er\1vise @)
Here, we can determine € in two ways: (a) Static threshold based
on prior profiling, and (b) Adaptive threshold, where the value of €
is determined during runtime without user intervention. The static
threshold can be determined based on prior profiling. The threshold
is ‘static’ as it remains constant throughout the training process.

Insert Your Title Here

mIdeal mFaulty Weight clipping

100%

80%

60%

40%

= 00l B

0 [|

Lenet Alex VGG11l VGG16 VGG19 Res18

Accuracy

X

Fig. 6. Accuracy comparison of trained CNN models with/without weight
clipping at different fault densities.

Adaptive threshold, on the other hand, enables us to determine €
during run-time without any prior knowledge. The threshold can be
calculated adaptively using the mean and variance of weights like
the computations in the BN layers. For instance, a threshold of u +
30 is used in [8]. The u and o calculations are already done in BN
layers; hence the threshold calculation can be done in similar
manner as the BN layers. We have introduced a ReRAM/GPU
based heterogeneous manycore architecture called AccuReD,
which has been shown to outperform sole GPU-based counterparts
for training CNNs [5]. AccuReD consists of multiple planar layers
of ReRAMs and GPUs, connected using a 3D structure. In
AccuReD, BN layers are implemented using GPUs as they require
full precision support and more complex mathematical operations
(such as division and square-root) [5]. The adaptive threshold
calculation is also implemented on the GPUs of AccuReD as it
requires similar set of operations like BN. The GPUs are used for
the BN computations during training (forward and backward
phase). However, clipping occurs only during the weight update
stage after a batch of data is processed. During the weight-update
stage, new weights are written to ReRAM cells while GPUs remain
idle. Hence, the clipping operation can be implemented using GPUs
(which would remain idle otherwise during weight updates)
without affecting performance.
Weight clipping can address the accuracy loss due to faults as
clipping the large weights stops the CNN training from becoming
unstable [8]. As a result, the backpropagation algorithm has a much
better chance to train the remaining weights and compensate for the
ones mapped to the faulty cells. In addition, weight clipping acts as
an implicit regularizer and reduces the sensitivity of the loss
function to various types of distortions [20] (ReRAM faults in our
case). Regularization encourages the optimization algorithm to find
simple models using the training data, which leads to better
generalization accuracy. We can view weight clipping as a form of
regularization for deep learning. For more intuition, we explain this
phenomenon through the lens of proximal optimization. In its most
general form, the overall optimization objective for CNN training
with a regularizer is as follows:

w* = argmin,, {L(w)+RWw)} 3
Here w stands for the weights of the deep neural network, w*
represents the optimal set of weights, L(w) is the loss function
defined over the training data, and R(w) is a regularizer (e.g., L2-
norm of the weight vector). The above optimization (Equation (3))
is commonly solved using the standard stochastic gradient descent
(SGD) algorithm. The weight update equation for SGD algorithm

. _ oL . . .
1S Wnew = Wota = ¥ 5 where ¥ is the learning rate. In proximal

ICCAD’22, USA

m Faulty Weight clipping

100% ™ Ideal

- I I I
Fault-1 Fault-2 Fault-5

Fig. 7. Accuracy comparison of trained GNN models with/without weight
clipping at different fault densities.

Accuracy

[0}
(=}
X

optimization, we apply a proximal operator as follows: Wy, =
proxp (Wold - y%). For the weight clipping approach, the

proximal operator is defined as follows: proxz(w) =
max {min{w, €}, —e, where max and min functions are applied over
each element of the weight vector individually and € represents the
clipping threshold. Therefore, the corresponding regularizer for
weight clipping in the optimization objective for CNN training (the
parameter R(w) in Equation (3)) is given as:

0,if [wllee < €

R(w) = { 0, lcl)thltlerwise *)

Intuitively, due to this regularizer (Equation (4)), the optimization
algorithm will avoid selecting weight vectors that lie outside the e-
ball of [, norm because of the large penalty. Empirically, in the
case of non-convex optimization problems arising in training deep
neural networks, this regularization reduces the sensitivity of the
loss function objective L(w) to distortions. This property has been
used to apply different non-linear distortions to CNN weights with
minimal accuracy loss [20]. The CNN variants with weight clipping
were found to be more robust to non-linear distortions than those
without clipping. To map this idea for our hardware architecture,
the distortions arise due to faults in ReRAM crossbars. Fig. 6 shows
the accuracy after training in the presence of faults using weight
clipping. As shown in Fig. 6, weight clipping can recover almost
all the lost accuracy due to faults. This shows how we can ensure
reliable training in an otherwise faulty device using a simple
regularization method.

Weight clipping is not specific to CNNs only. We have also
tested its efficacy on other deep learning algorithms such as GNNs.
GNNss consist of sparse matrix multiplication operation which can
also be implemented using ReRAM-based architectures [16][21].
Hardware faults also affect the final accuracy of the trained GNN
model as shown in Fig. 3 earlier. Fig. 7 illustrates the accuracy for
the PPI dataset with varying fault densities (1%, 2%, and 5%) and
using weight clipping. Here, we consider the PPI dataset as it
experienced the highest accuracy drop in Fig. 3. As shown in Figure
7, weight clipping restores the accuracy loss in the presence of hard
faults. When the fault density is below 2%, weight clipping
achieves near-ideal accuracy. As an example, with 2% fault density,
weight clipping improves accuracy by 11.9%. Weight clipping also
helps restore accuracy within 1.5% of the fault free case even when
5% of the available cells are faulty. We make similar observations
for other GNN datasets such as Cora and Amazon2M as well. These
results and analysis demonstrate that weight clipping (a

WOODSTOCK’18, June, 2018, El Paso, Texas USA

regularization method) can be used to enable training even when
the underlying hardware is faulty.

4 Conclusion

In this paper, we have discussed the different sources of non-
idealities in ReRAM-based computing architectures. We have
shown that these non-idealities can lead to unreliable
training/inferencing of various deep neural networks. Existing
fault-tolerant schemes tend to have implementation overheads. We
present software solutions, namely normalization and weight
clipping, to address this important problem. Normalization is a key
CNN layer that is often used for training deep CNNs. We have
demonstrated that Normalization adds significant amount of
robustness in presence of ReRAM non-idealities. In addition, we
have presented weight clipping, (another regularization scheme).
We have shown that weight clipping can also improve the fault-
tolerance of deep learning algorithms at negligible hardware cost.
Overall, these methods present an alternate direction of fault-
tolerant solutions that are yet to be investigated thoroughly.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) under grants CNS-1955353, CNS-1955196,
Semiconductor Research Corporation under task ID 3012.001 and
task ID 3014.001, and by the USA Army Research Office grant
WO11NF-17-1-0485. Biresh Kumar Joardar was also supported in
part by NSF Grant # 2030859 to the Computing Research
Association for the CIFellows Project.

REFERENCES

[1] California consumer privacy act home
https://www.caprivacy.org/. Online; accessed 14/02/2021

[2] B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google Research
Blog, vol. 3, 2017

[31 L. Song, X. Qian, H. Li and Y. Chen, "PipeLayer: A Pipelined
ReRAM-Based Accelerator for Deep Learning," 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 541-552

[4] A. Shafiee et al, "ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars," 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 14-26

[51 B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li and K. Chakrabarty,
"AccuReD: High Accuracy Training of CNNs on ReRAM/GPU
Heterogeneous 3-D Architecture," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 5, pp. 971-984, May 2021

[6] A. Chaudhuri and K. Chakrabarty, "Analysis of Process Variations,
Defects, and Design-Induced Coupling in Memristors," IEEE
International Test Conference (ITC), Phoenix, USA, 2018, pp. 1-10

[71 Z. He, J. Lin, R. Ewetz, J. Yuan and D. Fan, "Noise Injection
Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adaption
for Neural Network Mapping," 2019 56th ACM/IEEE Design
Automation Conference (DAC), Las Vegas, NV, USA, 2019, pp. 1-6

[8] B. K. Joardar, J. R. Doppa, H. Li, K. Chakrabarty, and P. P. Pande,
“Learning to Train CNNs on Faulty ReRAM-based Manycore
Accelerators,” in ACM Transactions on Embedded Computing
Systems (TECS), 20, 5s, Article 55, 2021.

page.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

F. Surname et al.

B. Feinberg, S. Wang and E. Ipek, "Making Memristive Neural
Network Accelerators Reliable," 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Vienna,
Austria, 2018, pp. 52-65

L. Xia, M. Liu, X. Ning, K. Chakrabarty and Y. Wang, "Fault-
Tolerant Training Enabled by On-Line Fault Detection for RRAM-
Based Neural Computing Systems," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 9, pp. 1611-1624, Sept. 2019

C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing Memristor-based
Neuromorphic Design with High Defects,” In Proceedings of the 54th
Annual Design Automation Conference 2017 (DAC '17). Association
for Computing Machinery, New York, NY, USA, Article 87, 1-6

C. Lee, H. Lin, C. Lien, Y. Chih and J. Chang, "A 1.4Mb 40-nm
embedded ReRAM macro with 0.07um2 bit cell, 2.7mA/100MHz
low-power read and hybrid write verify for high endurance
application," 2017 IEEE Asian Solid-State Circuits Conference (A-
SSCC), Seoul, Korea (South), 2017, pp. 9-12

B. Zhang, N. Uysal, D. Fan, and R. Ewetz. 2020. Redundant Neurons
and Shared Redundant Synapses for Robust Memristor-based DNNs
with Reduced Overhead. In Proceedings of the 2020 on Great Lakes
Symposium on VLSI (GLSVLSI '20). Association for Computing
Machinery, New York, NY, USA, 339-344

E. Esmanhotto et al., "High-Density 3D Monolithically Integrated
Multiple 1TIR Multi-Level-Cell for Neural Networks," 2020 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA,
USA, 2020, pp. 36.5.1-36.5.4

C. Walczyk et al., “Impact of Temperature on the Resistive Switching
Behavior of Embedded HfO2-Based RRAM Devices,” IEEE Trans.
Electron Devices, vol. 58, no. 9, 2011

A. 1. Arka, et. al., "Performance and Accuracy Tradeoffs for Training
Graph Neural Networks on ReRAM-Based Architectures," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
29, no. 10, pp. 1743-1756, Oct. 2021.

Q. Lou, et. al., “Embedding error correction into crossbars for reliable
matrix vector multiplication using emerging devices,” In Proceedings
of the ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED '20). Association for Computing
Machinery, New York, NY, USA, 139-144

B. K. Joardar, et. al., "High-Throughput Training of Deep CNNs on
ReRAM-Based Heterogeneous Architectures via Optimized
Normalization Layers," in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 5, pp. 1537-
1549, May 2022.

X. Glorot and Y. Bengio, "Understanding the difficulty of training
deep feedforward neural networks", in AISTATS, pp. 249-256, 2010

Paul Merolla, Rathinakumar Appuswamy, John Arthur, Steve K.
Esser, Dharmendra Modha, 2016, Deep neural networks are robust to
weight binarization and other non-linear distortions, in
arXiv:1606.01981, 2016

A. 1. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K.
Chakrabarty, "ReGraphX: NoC-enabled 3D Heterogeneous ReRAM
Architecture for Training Graph Neural Networks," 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2021, pp. 1667-1672, doi: 10.23919/DATES51398.2021.9473949.

Y. Long, T. Na and S. Mukhopadhyay, "ReRAM-Based Processing-
in-Memory Architecture for Recurrent Neural Network
Acceleration," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 12, pp. 2781-2794, Dec. 2018, doi:
10.1109/TVLSI.2018.2819190.

X.Yang, B. Yan, H. Li and Y. Chen, "ReTransformer: ReRAM-based
Processing-in-Memory Architecture for Transformer Acceleration,"
2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), 2020, pp. 1-9.

P. Luo, X. Wang, W. Shao, Z. Peng, “Towards Understanding
Regularization in Batch Normalization,” in ICLR 2019

