3626

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Accelerating Large-Scale Graph Neural Network
Training on Crossbar Diet

Chukwufumnanya Ogbogu™, Student Member, IEEE, Aqeeb Igbal Arka™, Graduate Student Member, IEEE,
Biresh Kumar Joardar™, Member, IEEE, Janardhan Rao Doppa, Senior Member, IEEE, Hai Li*, Fellow, IEEE,
Krishnendu Chakrabarty ™, Fellow, IEEE, and Partha Pratim Pande™, Fellow, IEEE

Abstract—Resistive random-access memory (ReRAM)-based
manycore architectures enable acceleration of graph neural
network (GNN) inference and training. GNNs exhibit char-
acteristics of both DNNs and graph analytics. Hence, GNN
training/inferencing on ReRAM-based manycore architectures
give rise to both computation and on-chip communication chal-
lenges. In this work, we leverage model pruning and efficient
graph storage to reduce the computation and communication
bottlenecks associated with GNN training on ReRAM-based
manycore accelerators. However, traditional pruning techniques
are either targeted for inferencing only, or they are not crossbar-
aware. In this work, we propose a GNN pruning technique called
DietGNN. DietGNN is a crossbar-aware pruning technique that
achieves high accuracy training and enables energy, area, and
storage efficient computing on ReRAM-based manycore plat-
forms. The DietGNN pruned model can be trained from scratch
without any noticeable accuracy loss. Our experimental results
show that when mapped on to a ReRAM-based manycore archi-
tecture, DietGNN can reduce the number of crossbars by over
90% and accelerate GNN training by ~2.7x compared to its
unpruned counterpart. In addition, DietGNN reduces energy
consumption by more than ~3.5x compared to the unpruned
counterpart.

Index Terms—Graph
processing-in-memory (PIM),
access memory (ReRAM).

network
resistive

neural
pruning,

(GNN),
random

I. INTRODUCTION

RAPH neural networks (GNNs) have recently become
G the mainstream approach for performing cognitive tasks,
such as node classification, link-prediction, and visualiza-
tion on graph-structured data [1]. Each GNN layer transforms
graph nodes to a low-dimensional embedding space and

Manuscript received 17 July 2022; accepted 26 July 2022. Date of pub-
lication 9 August 2022; date of current version 24 October 2022. This
work was supported in part by the U.S. National Science Foundation (NSF)
under Grant CNS-1955353 and Grant CNS-1955196. The work of Biresh
Kumar Joardar was supported in part by NSF to the Computing Research
Association for the CIFellows Project under Grant 2030859. This article was
presented in the International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems (CASES) 2022 and appears as part of the
ESWEEK-TCAD special issue. This article was recommended by Associate
Editor A. K. Coskun. (Corresponding author: Partha Pratim Pande.)

Chukwufumnanya Ogbogu, Aqgeeb Igbal Arka, Janardhan Rao Doppa,
and Partha Pratim Pande are with the Department of Electrical
Engineering and Computer Science, Washington State University, Pullman,
WA 99164 USA (e-mail: c.ogbogu@wsu.edu; aqeebigbal.arka@wsu.edu;
jana.doppa@wsu.edu; pande@wsu.edu).

Biresh Kumar Joardar, Hai Li, and Krishnendu Chakrabarty are with
the Department of Electrical and Computer Engineering, Duke University,
Durham, NC 27708 USA (e-mail: bireshkumar.joardar; hai.li@duke.edu;
krish@duke.edu).

Digital Object Identifier 10.1109/TCAD.2022.3197342

aggregates the node features of its k-hop neighbors from
previous layers [2]. The corresponding computational kernel
is compute-intensive, as each GNN layer simultaneously per-
forms matrix-vector multiplication (MVM) operations on its
input vectors, neural layer weights, and graph adjacency matri-
ces to produce output activations. These activations are then
forwarded to other layers, which results in the high volume of
on-chip traffic [3]. Overall, GNN training requires appropriate
hardware support to address both the computation and com-
munication challenges, which is often not possible on smaller
edge/mobile platforms.

Training machine learning (ML) models at the edge (training
on-chip or on embedded systems) can address many pressing
challenges, including data privacy/security, increase the acces-
sibility of ML applications to different parts of the world by
reducing the dependence on the communication fabric and the
cloud infrastructure, and meet the real-time requirements of
AR/VR applications. Specifically, AR/VR applications require
GNN training on embedded systems [4]. However, existing
edge platforms do not have sufficient capabilities to support
on-device training of GNNs. Moreover, it is estimated that
training a single unpruned neural network on conventional
compute platforms, such as GPUs, can cost over $10000 and
emit as much carbon as five cars over their lifetimes [5].

Resistive random-access memory (ReRAM)-based
processing-in-memory (PIM) architectures can be used to
address this problem. ReRAM-based PIM systems have
been proposed to accelerate GNN computation [3]. The
crossbar structure of ReRAM-based architectures enables
efficient MVM operations, which are ubiquitous in modern
ML tasks including GNN training [6], [7], [8]. In addition,
the design of suitable Network-on-Chip (NoC) along with
Dropout and DropEdge-based regularization can improve the
communication throughput [9]. As a result, ReRAM-based
architectures outperform GPUs significantly in terms of energy
efficiency and execution time speedup for GNN training.

Despite these promising developments, ReRAM-based
architectures are not scalable with the size of GNNs and the
size of input graphs. GNNs can have multiple layers and each
layer can have thousands of weights. Similarly, real-world
graphs can have several thousand/millions of nodes/edges. In a
ReRAM-based architecture, the execution of all neural layers
happens in parallel [7]. This necessitates a very high amount
of GNN weights, and the huge graph adjacency matrices, to be
stored on-chip at the same time. Storing all these data requires
many ReRAM crossbars along with the associated peripheral

1937-4151 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8170-1161
https://orcid.org/0000-0003-2072-7015
https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0003-3228-6544
https://orcid.org/0000-0003-4475-6435
https://orcid.org/0000-0002-5930-8531

OGBOGU et al.: ACCELERATING LARGE-SCALE GNN TRAINING ON CROSSBAR DIET

circuits, which incurs considerable energy and area overhead.
For example, training an unpruned GNN with over 9 million
parameters on the Amazon2M graph dataset (which con-
sists of over 2 million nodes and 11 million edges) requires
over 36 GB of memory. Such a large amount of memory is
not available in smaller hand-held devices. Hence, existing
ReRAM-based PIM architectures for GNN training are not
scalable with the size of GNNs and addressing this critical
challenge is the primary focus of this work.

Pruning is a popular technique for reducing the num-
ber of parameters of any deep neural network (including
GNNs) by making some of the weights zero. These pruned
weights need not be stored on the chip as multiplying with
zero always results in a zero; hence, there is no need to
multiply [10], [11]. This reduces the storage and computa-
tional requirements, which makes pruning an attractive choice
for enabling energy- and storage- efficient GNN computa-
tion, that is, training on a crossbar diet without compromising
accuracy. State-of-the-art pruning methods can trim more
than 90% of the model parameters with negligible accuracy
loss [12]. Recent work has proposed pruning ideas specific to
GNNgs, e.g., joint weight and graph sparsification, to reduce
multiply-and-accumulate (MAC) operations [13]. However,
these pruning approaches are oblivious of hardware and not
optimized for crossbar-based architectures. We show in this
work that these approaches do not result in significant cross-
bar savings and incur significant accuracy loss after training.
Crossbar-aware pruning techniques are necessary to address
this challenge [14], [15], [16], [17], [18]. However, existing
crossbar-aware methods target only inferencing and often do
not result in significant amount of pruning for the purpose of
training. Moreover, existing crossbar-aware pruning methods
do not take into account the overall crossbar structure and
only focus on row- or column-wise pruning. We show later
that such pruning does not result in overall hardware savings.
In this article, our goal is to enable the training of pruned
GNNs from scratch without significant accuracy loss while
reducing the overall hardware requirements considerably.

We propose a crossbar-aware pruning technique called
DietGNN (GNN pruning on a crossbar diet) to address
the storage, computation, and communication challenges
of ReRAM-based GNN accelerators. DietGNN is moti-
vated by the recently proposed lottery ticket pruning (LTP)
hypothesis [12], which states that “dense, randomly initialized,
networks contain subnetworks (winning tickets) that-when
trained from scratch can reach the test accuracy of the
unpruned network.” In DietGNN, we integrate key insights
from LTP with the ReRAM crossbar structure and map-
ping strategy to produce hardware-friendly sparse GNNs (also
know as, hardware-friendly lottery tickets) that can be trained
with negligible accuracy loss. To complement weight prun-
ing, DietGNN adopts an efficient zero-storage mechanism to
reduce the crossbar requirement for storing graph adjacency
matrices on-chip. We train the pruned GNN model generated
by DietGNN on a ReRAM-based 3-D manycore PIM archi-
tecture. Our DietGNN-enabled manycore architecture achieves
low energy- and storage-efficient GNN computation. The key
contributions of this work are summarized as follows.

3627

1) We demonstrate that it is possible to prune more than
90% of GNN weights for diverse GNNs and real-world
graph datasets.

2) The pruned GNNs enable significant hardware savings
(that is, crossbar diet) and performance improvements
without sacrificing accuracy.

3) The experimental results demonstrate that training the
DietGNN-enabled pruned GNN model on the ReRAM-
based manycore architecture achieves ~2.7x speedup
compared to the unpruned version.

To the best of our knowledge, this is first attempt to develop
and apply a crossbar-aware pruning technique for GNN train-
ing on massive real-world graphs. The remainder of this
article is organized as follows. Section II discusses relevant
prior work related to pruning, GNNs, and existing ReRAM-
based accelerators. Section III presents an overview of GNNss,
demonstrates the importance of pruning in relation to crossbar
architectures and describes the DietGNN pruning technique.
Section IV discusses the training of the DietGNN-enabled
model on the manycore architecture. We present comprehen-
sive results on a variety of real-world datasets in Section V,
and finally, conclude our findings in Section VI.

II. RELATED PRIOR WORK

In this section, we discuss prior work on GNN training and
inferencing on ReRAM-based architectures and relevant GNN
pruning methods.

A. ReRAM-Based Accelerators

ReRAM crossbar arrays can be used to perform MVM oper-
ations, which are predominant in deep neural network train-
ing and inferencing [6], [7], [19]. Recent work has proposed
state-of-the-art ReRAM-based architectures that can acceler-
ate training [7], [20] and inferencing [6], [19] of convolu-
tional neural networks (CNNs). However, both training and
inferencing are affected by the nonideal nature of ReRAM
cells [21], [22]. ReRAM-based systems have low precision
and limited write endurance that can affect the accuracy of
the ML model. These challenges can, however, be addressed
easily, as shown in recent work. For example, in [23], a low-
rank training (LRT) algorithm was used to address the write
endurance problem of ReRAM-based architectures. Adopting
this methodology results in an overall lifetime of ~10 years
for the proposed ReRAM-based architecture for CNN training.
Similarly, accuracy loss due to low precision can be avoided
by using stochastic rounding [24]. However, all these existing
architectures have been focused only on CNNss.

Unlike CNNs, the GNN training involves graph and
weight-matrix computations, both of which require high
storage and heavy data movement [3]. The significant
amount of data movement resulting from GNN train-
ing/inferencing workloads pose a unique communication
challenge for ReRAM-based manycore architectures [3].
ReRAM-based accelerators for GNN computation have been
proposed [3], [9], [25], [26]. To address the communication
bottleneck and hardware requirements during GNN training,
reduced-precision representation can be used [3]. However,

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

3628

training under low precision can lead to high accuracy loss
in GNNs. Arka er al. [9] used a regularization method called
“DropLayer” to reduce activations, thereby reducing the vol-
ume of data movement without any loss in accuracy. However,
all existing ReRAM-based GNN accelerators suffer from
a major shortcoming: they do not address the challenge of high
crossbar requirement as all weights and graphs still need to be
stored on-chip during training. Therefore, to address the stor-
age requirement, we need to explore novel pruning techniques
suitable for ReRAM crossbar-based manycore platforms.

B. Graph Neural Network Pruning

Several pruning methods for deep neural networks have
been proposed in [27], [28], [29]. However, these methods
are targeted for inferencing purposes. These pruned mod-
els fail to match the accuracy of their unpruned counter-
parts when training is carried out from scratch. LTP is
a recently proposed pruning technique for the purpose of
training. LTP uses iterative magnitude pruning of the neu-
ral layer weights to obtain highly sparse models [12]. These
pruned models can be trained from scratch with negligi-
ble accuracy loss. However, the LTP hypothesis is focused
only on CNNs. Recently, a unified GNN sparsification (UGS)
methodology has been proposed, which jointly prunes GNN
weights and graph adjacency matrices using trainable masks to
reduce the number of MAC operations associated with GNN
training [13]. However, pruning the graph causes information
loss and leads to significant accuracy degradation [10].
Moreover, since UGS does not consider the crossbar struc-
ture, it is not suitable for ReRAM crossbar-based platforms.
Hence, crossbar-aware pruning methods for GNN models are
necessary.

Existing crossbar-aware pruning methods leverage the
idea of structured pruning to reduce the storage and energy
of ReRAM-based architectures [14], [15], [16], [17], [18].
However, existing structured pruning methods principally
adopt either row- or column- wise pruning. As we show later
in our experiments, this does not lead to significant crossbar
savings. Instead, implementing some of these existing prun-
ing methods gives rise to very high hardware overhead [16].
The sparsity of graph structured data poses another signif-
icant challenge in efficient computation and storage due to
the presence of redundant zeros. As mentioned earlier, these
zeros are redundant as multiplication/addition with zero has
a deterministic outcome; hence, such computations are not
necessary.

In this work, we propose an LTP-inspired GNN weight
pruning method to lower the overall hardware requirements
during GNN training. In addition, we design an efficient mech-
anism to avoid/reduce the storage of zeros for the graph
adjacency matrices to further reduce the required number of
crossbars. By leveraging crossbar-aware pruning for the GNN
model and reducing zero-storage for graph adjacency matrices,
DietGNN can achieve high training accuracy with significantly
lower storage, energy, and performance overheads compared
to state-of-the-art crossbar-aware methods.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Result of Vertex Computation (Y?)

’TVertex computation r;? Edge computation \
S ABCD
vi [af0110 @- A
> S Elroo1|e t o)
Y5 Xlcl1 00 1]
~lplo11o0 "x,,')
Weights (W®) S Adjacency Matrix (A)

Updated Feature Vector (X!)

Fig. 1. Two phases of GNN computation kernel.

III. CROSSBAR-AWARE PRUNING OF GNNS

In this section, we discuss the computation and commu-
nication patterns during GNN training. Next, we explain the
DietGNN pruning technique and how it improves GNN train-
ing performance on a ReRAM-based manycore architecture.

A. Preliminaries of Graph Neural Network

Graph Data: A graph consists of nodes and edges repre-
sented by an adjacency matrix. The graph adjacency matrix is
an N x N sparse binary matrix, where N is the total number
of nodes in the graph. An edge between two nodes is repre-
sented by “1” in the adjacency matrix. Each kth node of the
graph incorporates a D-dimensional feature vector Xé‘, (e.g.,
attributes of products in recommendation system application).
The matrix X (X € RV*P) consists of the features of all the
graph nodes.

GNNs: A GNN has multiple neural layers and a final out-
put layer for classification. For example, an L-layer GNN has
a weight matrix W associated with each layer /, and an adja-
cency matrix (A). The computations in the /th GNN layer are
depicted in Fig. 1. As shown in Fig. 1, the computation in
each neural layer with weights W occurs in two phases.

1) Vertex Computation: An MVM operation between the
weights and node features (¥; = Xl_l.W(l)), where Y;
is the result of the vertex computation of neural layer
[. This computation is represented by the green box in
Fig. 1.

2) Edge Computation: A node-feature propagation and
aggregation process that occurs in graph analytics to
capture the relational structures (X; = A.Y;), where X; is
the updated node features and Y; is the output of the /th
neural layer. This feature propagation operation can be
denoted as the MVM of the adjacency matrix (A) and the
result of the vertex computation phase (Y;) as depicted
in the gray portion of Fig. 1. Note that the same adja-
cency matrix is used for edge computations associated
with all the L GNN layers.

During GNN training, the output of one neural layer acts
as the input to the next layer. The amount of communica-
tion is proportional to the number of nodes and edges in the
graphs. Since real-world graphs can have millions of nodes and
edges, this process results in a significant amount of on-chip
data exchange in a ReRAM-based manycore architecture [10].
This heavy traffic can overwhelm the on-chip communication
infrastructure and needs to be addressed as well [3].

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

OGBOGU et al.: ACCELERATING LARGE-SCALE GNN TRAINING ON CROSSBAR DIET

B. Overview of Lottery Ticket Pruning

In this section, we first present some of the key features of
LTP and highlight its shortcomings when the pruned model is
trained on a ReRAM-based system. We use these insights to
develop the DietGNN framework discussed in the next section.

It is well known that neural networks are often over-
parameterized. Pruning is an effective way to reduce the
number of parameters. The Lottery Ticket hypothesis states
that there are many sparse subnetworks which can achieve the
same accuracy as a given over-parameterized network. LTP
proposes an iterative magnitude-based pruning method, which
prunes these over-parameterized networks to find such a sparse
subnetwork for the purpose of training. The pruned subnet-
works (or pruned models) can then be trained in isolation
and can reach an ?accuracy level comparable to its unpruned
counterpart in a similar number of training epochs. LTP finds
the pruned neural network model using the following steps
sequentially.

1) Step 1: Randomly initialize the network with weights

W atr=o.

2) Step 2: Train W(()l) for E epochs to obtain trained weights

wl.

3) Step 3: Prune p% of the smallest magnitude weights in

w.
4) Step 4: Reset the remaining weights to their original
values in W(()l) and repeat steps 2—4.

The pruning ratio (p) and the number of iterations (n) can be
varied by the user to achieve the desired level of sparsity in the
winning ticket. Overall, by repeating these steps in an iterative
manner, LTP can obtain models (referred as “winning tickets”)
that are more than 90% sparse. These sparse models [with their
remaining weights reset to Wél)], can be trained from scratch
to achieve similar accuracy as the unpruned counterparts.

Recent work has shown that LTP pruned models can gener-
alize across a variety of datasets within an application domain
as well as with different optimizers [12], [30]. Prior work
has tried to explain these observations intuitively as follows:
1) model behavior is often transferable between datasets. This
idea is similar to transfer learning, where a model trained
on one dataset can be reused with slight changes for another
dataset. The LTP pruned networks also exhibit this transferabil-
ity property [30]; 2) The transferred tickets act as a regularizer
and prevents overfitting while training [30]; and 3) winning
tickets learn generic inductive biases which improve training.
Hence, DietGNN-based models (which are based on LTP) can
also be used with other datasets. However, note that there
will be some nonzero accuracy loss when a pruned model is
transferred between datasets [30]. Studying the transferability
of pruned model between datasets is beyond the scope of our
current work. We plan to investigate this in future work.

UGS is a pruning method that generalizes LTP to
GNNs [13]. This technique jointly prunes the GNN model
weights and graph adjacency matrices over multiple iterations
to find the winning ticket. Following this approach, UGS can
achieve a reduction in the number of MAC operations, which
is the predominant computational step in GNN. However, both
LTP and UGS are oblivious to the ReRAM crossbar structure

3629
W11 Wiz Wiz Wig V] [
wO = W21 W2 Wa3 Wiy
- [ar W W) Wy (] v
Wa1 Wiz Wiz Wiy =
W14

Fig. 2. Mapping the weights of a GNN layer to ReRAM crossbars.

and the mapping of neural layer weights to crossbars. This
makes them unsuitable for pruning networks that are to be
trained on ReRAM-based architectures.

Fig. 2 shows an example of the mapping of 16 weights of
a GNN layer (W(l)) to four 2 x 2 crossbars. Both LTP and UGS
prune weights based on magnitude after each round of train-
ing without the mapping information. Moreover, UGS uses
a trainable mask in pruning. In a ReRAM crossbar, each input
activates the entire row while each column activates the entire
column. Even if only one cell in a row/column is nonzero, that
entire row/column will need to be activated. Hence, conven-
tional magnitude pruning methods that are unaware of this
fact (such as UGS and LTP) will not result in significant
amount of area/power savings. Fig. 3(a) shows the outcome
after the mapping of an example pruned GNN model to
ReRAM crossbars; here, we prune weights randomly to illus-
trate the problem associated with crossbar-unaware methods
such as LTP and UGS. As seen from Fig. 3(a), even though
50% of the weights are pruned, each crossbar contains at least
one nonzero weight in all the rows and columns. As a result,
none of the rows/columns can be power-gated to reduce energy
consumption. Fig 3(a) shows that due to the crossbar-unaware
nature of UGS and LTP, the winning ticket requires four cross-
bars, just like in the unpruned case in Fig. 2. Hence, there is
no hardware or energy savings despite having a 50% pruned
network for both UGS and LTP.

Additionally, UGS also prunes the input graph for achiev-
ing higher sparsity. However, pruning the graph adjacency
matrix can result in loss of information as some critical edges
are deleted. This affects the edge computation part of the
GNN computation kernel, leading to lower predictive accu-
racy. Hence, it is important to address this problem to ensure
high accuracy and high sparsity of the winning ticket.

C. DietGNN Framework

In this section, we introduce a crossbar-aware pruning
technique, referred to as DietGNN. Crossbar-aware pruning
methods for ReRAM-based architectures have been proposed
in prior work [14], [15], [16], [31]. These methods focus on
pruning entire rows or columns of ReRAM crossbars. If an
entire row/column of a ReRAM crossbar is pruned, we can
power-gate the row/column. In Fig. 3(b), we illustrate how
a GNN layer’s weights (W) pruned using existing crossbar-
aware methods map to four 2 x 2 crossbars. In this example,
we can see that at least one row or column in each of the
four crossbars have been pruned; hence, we can power gate
these rows/columns. However, selectively pruning some of

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

3630

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

3 < X- B = B i c
i f
w.
Wi W41 II | - — l : } /><
[|

29 I))] T : 1= B .

| -1 TV I I / o ‘I\)estinatiog

. ~¥

r__\i r_‘l'——Ll (vis) vz I(I o A[0]2T0]1

g ofof1]o

W33 @ | ||wZ3| L____i_; : : 5 510 9 110
I | \ /I e pkilofo]o]
s e 0 W T o

Fig. 3. Mapping weights to ReRAM crossbars after using (a) Crossbar-unaware pruning (LTP and UGS). (b) Traditional crossbar-aware pruning. (c) DietGNN

pruning. (d) optimized graph adjacency matrix storage technique.

the rows/columns of a ReRAM crossbar is insufficient as it
yields only marginal reduction in energy consumption. This
is because peripheral circuits associated with partially pruned
or unpruned rows and columns such as DACs (digital-to-
analog converters) and S+H (sample-and-hold circuits), ADCs
(analog-to-digital converters), in the crossbar must remain
“on.” For instance, if one row of weights in a crossbar is
pruned out, the ADC associated with the crossbar must still
be active to process the output of the other columns. Note that
ADC:s are shared among multiple crossbar columns [6]. From
prior work, it is known that the ADCs account for ~60% of the
overall energy consumption of a processing element (PE) [6].
To tackle this, more efficient crossbar-aware techniques need
to be explored.

DietGNN solves this problem by proposing a crossbar-
aware pruning technique for ReRAM-based architectures.
DietGNN has two phases: 1) pruning of the GNN model based
on the crossbar knowledge to produce a winning ticket and
2) training of the winning ticket on a ReRAM-based platform.
DietGNN incorporates key hardware characteristics such as
the crossbar size (c x ¢) and resolution (bits-per-cell) of the
crossbar array to produce a hardware-friendly winning ticket.

Unlike existing LTP approaches (such as UGS), which iter-
atively prune individual weight values based on magnitudes,
DietGNN prunes blocks of weights that are mapped to the
same crossbar based on their average magnitudes. Typically,
weights are mapped in a distributed manner on ReRAM
systems [6], [7] . As a result, a ¢ x ¢ crossbar will have
a group of ¢ x (c x b/B) weights mapped onto it, where
b represents the number of bits stored on each cell and B
denotes the weight precision. Typical values of B and b are
16 and 2 in a ReRAM-based architecture [6], [32]. Unlike
existing crossbar-aware pruning methods that prune individual
rows/columns only, DietGNN prunes the entire ¢ x (¢ * b/B)
block of weights. As a result, the entire crossbar becomes
inactive, including its peripheral circuits such as ADC, DAC,
and S+H. Hence, we can not only power gate the crossbar,
but also the peripherals (or avoid using that crossbar entirely).
This would result in significantly higher area/power savings
as we show later.

Similar to LTP, DietGNN is an iterative magnitude-based
pruning method. To achieve crossbar-awareness, DietGNN
divides the GNN model weights in each layer into ¢ X
(c x b/B) sized blocks. At the end of each pruning iteration,
DietGNN considers the average magnitude of each block and

prunes the lowest p% of the remaining blocks of weights.
The crossbar-awareness of DietGNN directly translates to
area/power savings and better performance.

In addition to weight pruning, DietGNN also utilizes an
efficient graph adjacency matrix storage technique [10]. Note
that adjacency matrices are binary in nature (unlike weight
matrices). Hence, DietGNN uses a nonoverlapping sliding-
window-based method to reduce zero storage. The size of the
sliding window is determined by the crossbar size (¢ x c¢) to
decompose the N x N graph adjacency matrix into “valid”
and “invalid” segments [as shown in Fig. 3(d)] for storing on
ReRAM crossbar arrays. Any ¢xc segment where all ¢> entries
are zero, are referred to as “invalid segment” [Fig. 3(d) in
red]. The remaining segments that include at least one edge
are defined as “valid segment” [Fig. 3(d) in green] and must
be stored on ReRAM crossbars. The invalid segments (and the
corresponding crossbars) can be safely discarded, as compu-
tations with zeros are redundant. This method helps retain the
graph connectivity information while reducing the number of
crossbars required to store large graphs.

Algorithm 1 summarizes the overall training process using
DietGNN. The inputs to the DietGNN algorithm are an
unpruned GNN model, the crossbar structure (size and cell res-
olution), the target pruning percentage per iteration (p%), and
the number of iterations (n). The value of n and the number
of epochs (E) are user defined hyper-parameters. The output
of the algorithm is a hardware-friendly pruned GNN model,
which is referred to as the winning ticket. The DietGNN-
enabled winning ticket can then be trained on a ReRAM-based
manycore architecture any number of times with other datasets
and hyper-parameters, which is typical in graph analytics-
based applications. We start by initializing the GNN model
weights using common initialization schemes, e.g., Xavier,
Kaiming, etc. Next, we partition the weights into blocks based
on the crossbar structure (line 2). In each pruning iteration, we
execute the following steps in order: 1) train the GNN for E
epochs (line 4). Note that, this training for pruning the model is
separate from the in-field training of the pruned GNN model;
2) prune p% of blocks with the lowest average magnitude (line
5); and 3) reinitialize the remaining blocks of weights to their
original values (line 6). Finally, the pruned GNN model known
as the winning ticket is returned.

The DietGNN method (pruning phase) can be imple-
mented on CPU/GPU-based platforms. This process is not
executed on ReRAM-based architectures as the GNN model

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

OGBOGU et al.: ACCELERATING LARGE-SCALE GNN TRAINING ON CROSSBAR DIET

Algorithm 1: Pruning With DietGNN

Input: GNN model, crossbar structure, prune
percentage p
Output: Pruned GNN model or winning ticket
Algorithm: Algorithm
1: Initialize: W' < Wiisiar:

2: Partition W/ into blocks (B') of size ¢ x (c * %)

3: while itr < n:

4 Train for E epochs

5: Prune p% of B! based on average magnitude

6: Reinitialize remaining weights with W,

7: Return Pruned Model (Hardware-friendly winning
ticket)

PE
(eDRAM | RetU % [Tile |Tite

"% ':@_/@e]@

2% |0 | ADC | in|

=& S+H | -

T — Planar
c

83 g LApc Link

83|°] (Output |

Fig. 4. Tllustration of a ReRAM-based manycore architecture.

is dynamically pruned at runtime, which will require remap-
ping of the weights on the fly after every iteration; this is
difficult to achieve on ReRAMs. Once the model is pruned,
the DietGNN-enabled winning ticket is then deployed for
in-field training using ReRAM-based manycore architectures.
The pruned model can be trained on the ReRAM architecture
multiple times from scratch using different hyper-parameters
and graph dataset. Note that, the pruning phase is a one-
time preprocessing step. The cost of pruning is amortized over
multiple training runs.

IV. TRAINING DIETGNN MODEL ON RERAM PLATFORM

In this section, we present the details of the ReRAM-based
manycore architecture (illustrated in Fig. 4) used to train the
DietGNN-based GNN model. Next, we discuss how DietGNN
improves computation and reduces on-chip communication
latency in a ReRAM-based manycore system.

A. Overall ReRAM-Based Architecture

Fig. 4 illustrates the ReRAM-based manycore architecture
for accelerating the in-field training of the DietGNN winning
ticket. The architecture consists of multiple PEs, where each
PE has many ReRAM crossbars of size ¢ x c. The cross-
bars adopt a b bits/cell resolution; b is typically 2—4 bits [32].
Each tile contains various peripheral circuits, such as ADCs,
DAC:s, Shift, and Add (S+A) circuits, etc. Each tile also has an
eDRAM buffer that is used to input activations and outputs of
the MVM computation. Fig. 4 shows the top-level hierarchical
organization of the manycore architecture.

In order to effectively utilize the high-throughput com-
putation provided by ReRAM-based PEs, the manycore

3631

architecture needs to be supported with a high-performance
and efficient communication backbone. GNN training gen-
erates an enormous volume of traffic, which can bot-
tleneck performance [3]. In this architecture, we utilize
a multicast-enabled 3-D mesh network on chip (NoC) as
the interconnection backbone for communicating between PEs
during GNN training. The 3-D ReRAM-based manycore archi-
tecture stacks planar tiers that are connected to each other
using through-silicon-via (TSV)-based vertical links. The ver-
tical links act as logical shortcuts and result in more efficient
communication, which is crucial for GNN training [3]. In
addition, we adopt both Dropout and DropEdge regularization
methods to further reduce the amount of communication [9].
These regularization methods randomly drop output activa-
tions and graph edges, which results in both improved GNN
accuracy and lower communication traffic [9].

Here, we emphasize that both 3-D and manycore archi-
tectures have been demonstrated to be commercially viable.
For instance, Intel’s Xeon is a manycore architecture with
16-56 cores. Micron’s high bandwidth memories (HBMs)
incorporate 3-D integration [33]. Intel’s Lakefield architec-
ture is a 3-D penta-core system. In addition to this, recent
prototypes from CEA-Leti have established the feasibility of
3-D ReRAMs [34]. Hence, we expect that ReRAM-based 3-D
manycore systems will be adopted for neural network training
in the near future.

However, it is well known that 3-D architectures have
relatively higher temperature than equivalent 2-D systems.
To ensure that the 3-D manycore architecture (shown in
Fig. 4) is viable, we have performed thermal simulations using
the 3-D-ICE simulator for the training of the pruned GNN
model [35]. Our experimental results show that the maximum
temperature of the 3-D ReRAM-based manycore architecture
is 90°C. For comparison, Nvidia’s Tesla GPU can tolerate up
to 105°C. Hence, the proposed 3-D manycore architecture is
feasible from a thermal perspective.

Finally, it is also important to note that ReRAM cross-
bar arrays often exhibit nonideal behavior that may negatively
impact training of GNNs. Some of these challenges include
the use of low-precision weights (16-bit fixed point in our
case), thermal noise, low write endurance, etc. [36]. To address
the low-precision problem, we use stochastic rounding [24].
Stochastic rounding is an unbiased rounding scheme that
achieves ~0% rounding error and introduces negligible area
and energy overhead [24], [37]. The problem of thermal noise
can be resolved using a reference cell [38]. To solve the low
write endurance problem, an LRT method or a threshold-based
weight update can be used [23]. LRT can reduce the num-
ber of weight updates by ~283x [23]. Prior work has shown
that ReRAM write endurance is typically between 10°-10'2
writes [23], [39]. As an example, to train on the Reddit dataset
for 200 epochs, we need 30k weight updates. Hence, even if
we assume a worst-case scenario of 10° writes, the use of
the LRT technique will enable us to train the winning ticket
for up to 10000 times. The use of ECC and weight clip-
ping can further reduce the impact of ReRAM nonidealities in
training [22]. Hence, even if ReRAMSs are nonideal, we can
train the DietGNN-pruned GNNs. However, since targeting

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

3632

ReRAM reliability issues is not the focus of this work, we
assume ideal ReRAM behavior.

B. DietGNN on ReRAM-Based Manycore Architecture

As mentioned earlier, the GNN weights and the graph
adjacency matrices are mapped to the ReRAM-based PEs
(see Fig. 2). The execution of the GNN training process on
ReRAM-based manycore systems is divided into two stages:
1) computation on the crossbars and 2) inter-PE communica-
tion via the NoC. Both these stages need to be accelerated for
overall performance gain.

DietGNN-enabled pruning results in multiple blocks of size
¢ X (c* b/B) being pruned, that is, these blocks of weights
are all zeros. Similarly, the sliding window method of storing
graph adjacency matrices results in multiple “invalid segments”
that include all zero entries [Fig. 3(d)]. As multiplication with
zero is redundant, DietGNN-enabled pruning reduces the num-
ber of MAC operations significantly. The ReRAM crossbars
responsible for storing these weights are unnecessary and can be
power gated or reused for other purposes, as shown in Fig. 3(c);
this will lead to area and power savings. Alternatively, we can
use these unused crossbars to improve execution time. The
remaining nonzero GNN weights and adjacency matrices can
be duplicated on these crossbars; this will increase the amount
of parallelism associated with the GNN computation [7]. For
instance, by duplicating a set of weights on two crossbars, we can
process inputs twice as fast compared to using only one crossbar,
reducing the execution time by approximately half. This addi-
tional duplication capability is not available with the unpruned
GNNGs as duplicating the weights requires double the number of
ReRAM crossbars, which may not be available in a resource-
constrained edge platform. Overall, DietGNN enables GNN
computation in a more area/power efficient manner, while also
improving computation time.

Moreover, by reducing the number of crossbars required for
training, we automatically reduce the amount of communica-
tion. The output of one crossbar is used as input to another
crossbar [7]. If all the entries in a crossbar are zero, then the
outputs of the MVM operations are also going to be zero.
Hence, there is no need to send these data over the NoC (unlike
in the unpruned training scenario). This reduces the amount
of on-chip. communication associated with GNN training.

To summarize, training the DietGNN-enabled winning
ticket on the proposed ReRAM-based manycore architecture
(shown in Fig. 4) results in both reduced computation and
communication latencies. In summary, the key features of the
DietGNN framework are as follows.

1) The DietGNN-enabled ticket helps reduce the number of
crossbars required, while also enabling faster computa-
tion by parallelizing computation via the duplication of
nonzero weights and adjacency matrices on crossbars.

2) The hardware-friendly winning ticket also lowers on-
chip communication traffic volume during training.

3) The winning ticket achieves high energy-efficiency and
lower execution time when trained on the ReRAM-
based manycore architecture, compared to the unpruned
version, as demonstrated in our experiments.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE I
ARCHITECTURAL SPECIFICATIONS

4 planar tiers, 9 cores per tier, 4 tiles per core

96-ADCs (8-bits), 12x128x8 DACs (1-bit), 96
crossbars, 128x128 crossbar size, 10MHz, 2-bit
resolution

ReRAM Tile

V. EXPERIMENTAL RESULTS

In this section, we present comprehensive experimental
results for DietGNN when it is implemented on the ReRAM-
based manycore architecture. First, we describe the experimen-
tal setup used to evaluate the performance of DietGNN. Next,
we compare DietGNN in terms of model sparsity, accu-
racy, hardware area, and energy savings with respect to other
existing pruning techniques.

A. Experimental Setup

The DietGNN pruning (as shown in Algorithm 1) is exe-
cuted on an NVIDIA Quadro GPU with 24 GB of memory
to generate the winning ticket. The DietGNN-enabled win-
ning ticket (with weights reset to their untrained values) is
then mapped to a ReRAM-based 3-D manycore architecture
shown in Fig. 4 for in-field training. Recall that this pruned
GNN model can be used to train on different graph datasets
and/or with different hyper-parameters, a common scenario
in the real-world. In this work, the ReRAM-based manycore
architecture used for training the DietGNN-enabled winning
ticket consists of 36 ReRAM-based PEs (cores) spread across
four vertically stacked planar tiers to be commensurate with
existing work [3].

We follow the ReRAM configuration presented in [6]. The
ReRAM-based PEs consist of multiple morphable subarrays
that can be configured for both storage and computation.
Each PE includes eDRAM buffers, in-situ multiply accumu-
late (IMA) units, output registers, along with shift-and-add,
ReLU, and max-pool units. Each IMA consists of multiple
crossbars and associated peripheral circuits such as ADCs,
DACs, S+H, and S+A, as well as memory buffers connected
with a shared bus [6], [19]. Following prior work, 16-bit fixed-
point precision is used for the computations on the ReRAM
crossbars [6], [7]. We use a crossbar size of 128 x 128 with
a 2 bit/cell resolution. Hence, 8 consecutive ReRAM cells (that
is, 16/2) are required to store each GNN weight for computa-
tion on the crossbar array. The choice of the crossbar size has
an impact on the overall throughput, power, and area. Overall,
each ReRAM tile occupies an area of 0.37 mm? and consumes
0.40 W of power [6], [19]. The hardware specifications of the
ReRAM tile used in this work is provided in Table 1. We evalu-
ate the training performance of the DietGNN-enabled winning
ticket on this ReRAM-based architecture using NeuroSim
v2.1 [40]. NeuroSim v2.1 incorporates cycle-accurate analyt-
ical tools (NVSim & CACTI) for the performance evaluation
of Neural Network training on ReRAM-based manycore archi-
tectures. In this work, we modify NeuroSim v2.1 to support
the on-chip training of GNNs. To evaluate the performance of
the NoC, we use the cycle-accurate Garnet simulator [41].

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

OGBOGU et al.: ACCELERATING LARGE-SCALE GNN TRAINING ON CROSSBAR DIET

TABLE II
GNN DATASET STATISTICS

of
of # of # of
Dataset Nodes Edges GNN Features
layers
PPI 56,944 818,716 5 50
Reddit 232,965 11,606,919 4 602
Amazon2M 2,449,029 61,859,140 4 100
Flickr 89,250 899,756 3 500
Yelp 716,847 13,945819 3 300

For evaluating DietGNN, we choose five benchmark real-
world graph datasets: 1) PPI; 2) Reddit; 3) Amazon2M;
4) Flickr; and 5) Yelp for the performance evaluation. We
use the popular cluster-GCN (graph convolutional network)
algorithm for training GNNs [2]. Cluster-GCN leverages graph
partitioning, which reduces memory overhead and enables the
training of GNNs on resource-constrained platforms. We train
the GNNs for 200 epochs with a learning rate of 0.01 noting
that we observed convergence within the maximum training
iterations. At the beginning of pruning, the model weights are
initialized with the Xavier initialization scheme. Table II pro-
vides details about the graph datasets and the GNNs used for
training.

For a thorough evaluation, we compare DietGNN with
three baseline pruning techniques. We choose LTP and UGS
as the representative crossbar-unaware pruning techniques.
As discussed in Section III, LTP is a recently proposed
pruning technique that can remove more than 90% weights
for the purpose of training [12]. UGS implements the LTP
strategy using trainable masks specifically for GNNs [13].
We also employ a recently proposed crossbar-aware pruning
(referred as “CAP”) technique [16]. CAP utilizes a multi-
group LASSO algorithm to prune groups of weights that
would otherwise be mapped along a column in a ReRAM
crossbar. Similar to DietGNN, we incorporate the optimized
zero-storage mechanism [10] in CAP. Here, it should be noted
that CAP achieves similar levels of pruning as other methods
(such as [14], [15], [31]); hence, we choose CAP as a rep-
resentative crossbar-aware pruning technique to evaluate the
effectiveness of DietGNN. We implement iterative pruning
in all the methods to ensure maximum sparsity that can be
achieved without significant accuracy loss.

B. Training Performance of DietGNN

In this section, we present the performance of DietGNN
compared to the baseline pruning methods.

Crossbar Configuration: First, we must choose the
right crossbar size to establish sparsity-area-energy tradeoff.
A smaller crossbar size can ensure higher sparsity due to more
fine-grain pruning; recall that we prune a block of weights of
shape (¢ x (c*xb/B)), where c is the crossbar size). However,
smaller crossbars are inefficient in terms of overall area/energy,
and vice versa [10]. Hence, the choice of the crossbar size is
a crucial element in our design. We vary the crossbar size from
8 x 8 to 256 x 256. Fig. 5 shows the area (measured as the

3633

S Area = Energy @=Qe== Sparsity
1 100
§ > oy - 90 ~
: & 0.1 1 \ s
S 2 \ =
i h | 80 2
E S 0.01 1 \ \ g
é = " :: L 70 @
0.001 +— " \ L 60
8x8 16x16 64x64 128x128 256x256

Crossbar Size

Fig. 5. Sparsity level, area, and energy versus crossbar size for the DietGNN
winning ticket trained on the Amazon2M (all values are normalized with
respect to 8 x 8).

number of crossbars required), energy consumption, and spar-
sity of the winning ticket at different crossbar configurations,
when trained using the Amazon2M dataset. Here, we show
the results for Amazon2M only for brevity, noting that other
datasets exhibit similar trends. As shown in Fig. 5, the number
of crossbars and energy consumption reduces as the crossbar
size increases. This happens as less number of larger crossbars
would require fewer peripheral circuits (such as ADCs and
DAC:S) in total. The peripheral area/energy in smaller crossbars
dominate the overall area and energy consumption. However,
the 256 x 256 crossbar configuration has higher overall energy
consumption than its 128 x 128 counterpart. This is because
256 %256 crossbars require high resolution ADCs (9-bits in our
case) which consume significantly more power and area than
the ADCs for 128 x 128 crossbars.

In addition, Fig. 5 shows the maximum sparsity that can be
achieved with minimum accuracy loss (we set it to an accuracy
drop of no more than 1% with respect to the unpruned case).
As shown in Fig. 5, the achievable sparsity decreases as the
crossbar size increases. This happens as larger blocks of weights
must be pruned in case of bigger crossbars. Pruning too many
weights at a time leads to greater accuracy loss [16]. From
Fig. 5, we can see that the 128 x 128 crossbar configuration
achieves the sweet spot in the sparsity-area-energy tradeoff.
The 128 x 128 configuration achieves an overall sparsity of
90% in the winning ticket and consumes the least amount of
energy. Hence, we use 128 x 128 sized crossbars for all further
analysis. As a result, considering 16-bit weight representation
and 2 bits/cell resolution, the block size for pruning is computed
to be 128 x 16 (following (¢ % (c*b/B)), where c = 128,b = 2,
and B = 16). Finally, it should be noted that the crossbar size
is not part of the pruning process. We do not vary the crossbar
size dynamically during pruning. The crossbar size is chosen
by the hardware designer and will remain fixed once the device
has been manufactured. The results from Fig. 5 are only meant
as a guideline for the hardware designer to select the most
suitable crossbar size based on their requirements. However,
it should be noted that the proposed method is applicable to
any crossbar size. Next, we compare DietGNN with the three
different baseline methods, namely LTP, UGS, CAP.

DietGNN Pruning Phase: Fig. 6 shows the accuracy
achieved by all four pruning techniques on the Amazon2M
dataset compared to the unpruned scenario in terms of model
prediction accuracy and sparsity. We use a pruning percentage

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

3634

= = Unpruned LTP UGS
CAP DietGNN

88 - e e
Q N 8
< 86 -
z
£ 84 -
=
3
< 82 -

80

0 10 20 30 40 S0 60 70 8 90
Sparsity (%)

Fig. 6. Accuracy versus Sparsity for different GNN pruning methods trained
on the Amazon2M graph dataset.

(p) of 10%, that is, in each pruning iteration, we prune 10%
of the remaining blocks of weights. The value of p is a hyper-
parameter, which can be chosen based on the desired level of
sparsity. In Fig. 6, we can see that as the GNN model becomes
sparse, the model prediction accuracy reduces for all pruning
methods. However, UGS suffers from significant accuracy loss
when compared to the unpruned GNN as shown in Fig. 6. This
happens because unlike the other three methods, UGS prunes
the input graph as well. This has the following drawbacks:
1) loss of information when the graph is pruned and 2) this
method is input-specific (graph-specific in this case). Overall,
by pruning graphs in addition to weights, UGS results in worse
accuracy than the other three methods. As shown in Fig. 6,
when 90% of the GNN weights are pruned, the model accu-
racy drop is less than 1% for the DietGNN, CAP, and LTP
methods. However, at the same sparsity level, the accuracy
drop of UGS is more than 5%. For all further analysis, we
choose the maximally pruned model that can be trained from
scratch to achieve similar accuracy as the unpruned model
(that is, less than 1% accuracy loss). Under this constraint,
LTP, UGS, CAP, and DietGNN achieve a maximum sparsity
level of 97.9%, 61.3%, 92.0%, and 92.8%, respectively, for
the Amazon2M dataset as shown in Fig. 7(a) as an example.

Figs. 7(a) and (b) show the accuracy and sparsity of the win-
ning tickets, respectively, for all the datasets considered here.
In Fig. 7(a), we can observe that LTP prunes up to 96.30%
of GNN weights on average. DietGNN can prune 93.23% of
weights on average for all five GNNs and datasets consid-
ered here. UGS and CAP prune 64.3% and 91.7% of weights
on average, respectively. As mentioned earlier, UGS is unable
to prune a lot of weights without experiencing accuracy loss
due to additional graph pruning. Clearly, LTP achieves the
highest sparsity for all four pruning methods in each dataset.
However, we show later that LTP fails to result in area savings
commensurate with the levels of pruning.

Once we obtain the winning tickets (pruned models with
untrained weights), we load them on the ReRAMs for in-field
training from scratch. In Fig. 7(b) we shows the accuracy that
the winning tickets achieve when trained on the ReRAM-based
manycore architecture in comparison with their unpruned
counterpart. As shown in Fig. 7(b), all the pruned models,
including the DietGNN-enabled winning ticket, achieve com-
parable accuracy with the unpruned model in all five datasets.
For example, the DietGNN enabled winning ticket trained on
the PPI, Reddit, Amazon2M, Flickr, and Yelp graph dataset

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

achieves a model accuracy of 90.244%, 90.346%, 86.903%,
50.80%, and 61.72%, respectively, which is comparable to
the accuracy of the unpruned models. Here, we observe that
the accuracy of the GNN models trained on the Flickr and
Yelp dataset is relatively low. This happens because there is
a severe class imbalance in these two datasets. For instance,
just one class in Flickr constitutes 43% of the entire dataset,
while the remaining six classes make up the rest. As a result,
the GNN model encounters difficulties in learning to predict
these minority classes. This is a well-known problem in ML
theory [42]. However, we emphasize that improving the accu-
racy of unpruned GNN models in the presence of class
imbalance is not the focus of this work. Our aim here is
to show the effectiveness of different pruning techniques.
Hence, we focus on the relative accuracy trends between
unpruned and pruned models only. Moreover, similar obser-
vations were made in state-of-the-art GNN implementations
as well [43]. For instance, the unpruned GNNs trained using
Flickr and Yelp datasets achieve 51.40% and 61.08% accu-
racy in [43]. Overall, Fig. 7 shows that except for UGS, all
the pruned models are extremely sparse, and they can be
trained from scratch with very minimal accuracy loss com-
pared to their unpruned counterparts. However, as we show
next, only DietGNN enables significant amount of area and
energy savings during training.

Hardware Savings From Pruning: As shown in
Fig. 3(a)—(c), rows/columns/crossbars that have been pruned
can be either power-gated (“turned-off”’) or reused for other
purposes. It is important to note that the number of ReRAM
crossbars used can be varied depending on the desired level
of computation parallelism adopted for accelerating GNN
training. During GNN training, the weights of layers with
higher computation latency are replicated using unused
ReRAM crossbars to accelerate the overall training process.
For example, if the weights in a layer have been duplicated,
the computation latency of that layer reduces by half [7].
To fairly compare the different pruning methods in terms
of crossbar requirements (hardware savings) and energy
consumption, we chose an “iso-performance” setting, that
is, equal parallelism (hence, equal training time) for all four
pruning techniques.

Figs. 8(a) and (b) shows the area and energy required
for training, respectively, using different pruning methods
for all five datasets. From Fig. 8(a), we observe that the
DietGNN-enabled winning ticket achieves the highest reduc-
tion in area. As shown in Figs. 8(a) and (b), respectively,
DietGNN requires on average only 5.674% of area and
consumes 5.812% of energy compared to its unpruned coun-
terpart for the five datasets. The area savings come from
both crossbar-aware pruning of GNN model parameters and
reduction in redundant zero storage for the graph adjacency
matrices. This is because DietGNN is a crossbar-aware prun-
ing technique that removes all weights that would otherwise
be mapped to a specific ReRAM crossbar array. Hence, we can
power gate these ReRAMs as shown in Fig. 3(c). The CAP
method achieves lower area and energy savings compared to
DietGNN as it prunes column-wise, which only allows us to
power-gate the crossbar columns. It is well known that the

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

OGBOGU et al.: ACCELERATING LARGE-SCALE GNN TRAINING ON CROSSBAR DIET

BLTP BUGS ECAP @mDietGNN
100 —

H =
£ " Bl £
£ 60 - Eﬁi =
g = ¢ H
s 40 { H H

:ﬁ 5 =

20 1 Bk . . -
PPI Reddit Amazon2M
(a)
Fig. 7.
DUnpruned BLTP 8UGS ®&CAP @DietGNN
100 s -
9 = NEEE N ME VEE
< 80 \:E nH = :=E JEls
B = N W= g N E ME
s o R NEE O NEE BE N
g g MEEE NEEE NBEE NS
T w0 |NF NECE NERE NEE NE
s g \E NEEE NEE N
2 20 | N5 N NERE DEE NED
g H = =y = =®
g \E AL NERE REEEL N
Q 0 - . - hi= ﬂ e h . HF
PPI Reddit Amazon2M Flickr Yelp
(a)

3635
i O Unpruned oLTP BUGS G CAP @EDietGNN
A W=/ e
~ 80 . H >]
s " INEE NN N
. 60 4 NHE "":I:' 4 :
g FoE NEE 4 i
= 40 { NHL "'H*' P |
: INEE MR R
< 20 { NG M] [
SR NEE .
o LB N[z " s
Yelp

=~
=~
—

Reddit Amazon2M Flickr

(b)

(a) Sparsity and (b) Accuracy of pruned GNN models (winning tickets) obtained using different methods. All models are trained on ReRAM crossbars.

OUnpruned OLTP BUGS OCAP @EDietGNN

g 100 | 4 m : : - A
2 i. \ -q ‘_ﬂ ‘;H
DN M Me M N
= () - - -
2 ~60 :=F N ='.{| N \=5
£ NEE b] NE =%
© 40 | NH N Hie NE =%
L (NH NE N N N
oo N N N N
o |k n Al W= NEL

PPI

Reddit

Amazon2M Flickr
(b)

Yelp

Fig. 8. Crossbar requirements and (b) energy consumption of pruned GNN models (winning tickets) obtained using different methods. All models are trained

on ReRAM crossbars.

crossbar area and energy are relatively insignificant compared
to the peripheral circuit area and energy. As peripheral cir-
cuits (such as ADC, buffers, etc.) are often shared by multiple
row/columns of a crossbar [6], we cannot power-gate these cir-
cuits unless all these row/columns have been pruned together.
The LTP winning ticket does not save ReRAM crossbar arrays
as shown in Fig. 8(a) due to its crossbar-unaware nature. The
UGS winning ticket has the lowest sparsity compared to other
methods as shown in Fig. 7(a). Hence, it does not lead to any
significant crossbar and energy savings as seen in Fig. 8(a)
and (b), respectively. Overall, the winning ticket obtained
via DietGNN pruning requires the least area when compared
with the other methods and 92% less area than the unpruned
case. Hence, DietGNN offers the best solution among these
methods for enabling GNN training on resource-constrained
hardware platforms. As shown in Figs. 8(a) and (b), neither
LTP nor UGS results in significant area and energy savings.
As a result, we exclude these two pruning methods from all
further analyses.

C. Computation and Communication Analysis

Each GNN layer involves both computation (MVM oper-
ations) and inter-PE communication. The overall execution
time for GNN training is determined by both the computation
and communication stage delay. In this section, we evaluate
the impact of DietGNN on the computation and communi-
cation latencies of GNN training when it is implemented on
the ReRAM-based manycore architecture. We assume an iso-
area setting for this analysis that is, the number of ReRAM
crossbars available is the same for training all the pruned
and unpruned cases. Fig. 9 shows the worst-case computation

OUnpruned ECAP @DietGNN

= 1 i n o a

3 \ . \ . \

3 0.8 : \ : Vi : \

0.6 : : :E \ : : \ :

204))

2 | N N .3 v I \a A R

TN R e I T I

2 Q &) Q &) Q o Q o Q &)
PPI Reddit |Amazon2M| Flickr Yelp

Fig. 9. Computation and communication delay for unpruned model, and

pruned models obtained using CAP and DietGNN; all delays are normalized
with respect to the communication delay of the unpruned model.

and communication latencies when we train the unpruned,
CAP-, and DietGNN-pruned models on ReRAM-based archi-
tectures. Note that all three methods incorporate Dropout and
DropEdge-based regularization techniques.

Computation Delay: Pruning leads to smaller models, which
can be implemented on fewer crossbars (compared to the
unpruned model). Hence, in an iso-area setting, it is possible to
accelerate GNN computation further by utilizing the remain-
ing crossbars. We can replicate the weights of the neural layers
on these additional crossbars and parallelize the computation
further [7]. This is not possible with the unpruned model as it
has more weights that need to be mapped first. Hence, when
the unpruned model is mapped on the crossbars, there is no
crossbar left to replicate the weights and accelerate computa-
tion. Pruning enables further replication of weights as these
models require fewer number of crossbars. However, as shown
in Fig. 8(a), pruning using the CAP method does not result in

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

3636

K Unpruned R CAP BDietGNN

Reddit

Amazon2M Flickr
(a)

Fig. 10.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

OUnpruned BCAP @DietGNN

Energy Savings

Reddit Amazon2M Flickr
(b)

PPI

Yelp

(a) Execution time speed-up, and (b) energy savings of DietGNN-enabled pruned GNN model compared to Unpruned, and model pruned using

CAP (normalized with respect to the execution of the unpruned model on the ReRAM-based manycore architecture).

high crossbar savings (only 14% fewer crossbars on average
compared to the unpruned case). As a result, we cannot speed-
up all the layers (as in the case of DietGNN) due to the lack
of a sufficient number of ReRAM crossbars; recall that we
are comparing in an iso-area setting. Thus, the overall compu-
tation latency improvement for the CAP method compared to
the unpruned case is negligible. DietGNN considers the overall
crossbar structure when pruning the GNN model. As a result,
the pruned model can be implemented using fewer crossbars
than other mechanisms, as shown in Fig. 8(a). The additional
free crossbars can now be used to replicate the pruned weights
in order to reduce the computation delay. Hence, DietGNN
results in an average improvement of 58% in the computation
latency as shown in Fig. 9. This results in faster GNN training
on ReRAM-based architectures.

Communication Delay: Communication has a significant
influence on the execution time of GNN training [3]. The
data traffic in GNN training is generated from the MVM
operations during the vertex and edge computation phases
as discussed earlier in Section III-A. Pruning reduces the
amount of data exchanges, thus alleviating the communication
bottleneck.

If one full row of the weight matrix is pruned, the result
of the MVM operation involving that row results in a zero.
We can avoid sending “zero” data over the NoC. Hence, if
a large number of row/columns are pruned, we can reduce
the amount of communication significantly. However, partially
pruned rows/column may result in nonzero outputs that must
be communicated. Both CAP and DietGNN pruning results in
multiple rows of zeros, which reduces the overall number of
messages generated from the crossbars. Overall, CAP results
in a communication delay improvement of 15%, 45%, 14%,
61%, and 28% for PPI, Reddit, Amazon2M, Flickr, and Yelp,
respectively, when compared to the unpruned model. DietGNN
results in a reduction of the communication delay by 21%,
55%, 25%, 62.5%, and 44% for PPI, Reddit, Amazon2M,
Flickr, and Yelp, respectively. The improvement is higher for
PPI, Reddit, and Flickr as they have relatively larger number
of features amongst all the datasets under consideration here.
A larger number of features results in more information being
exchanged in each layer that is, more communication. Many
of these features are redundant. As a result, we can prune more
rows of weights, which results in larger improvements.

Overall, the end-to-end execution time is bottlenecked
by the slower among the computation and the inter-PE

communication stages. From Fig. 9, we can see that Reddit
and Amazon2M are bottlenecked by communication whereas
computation is the bottleneck in PPI. This happens as we do
not have sufficient number of crossbars to accelerate compu-
tation in the case of PPI. However, DietGNN accelerates both
computation and inter-PE communication significantly when
compared to the unpruned case.

D. Full System Evaluation

In this section, we compare the end-to-end speed-up
enabled by the different pruning techniques compared to
their unpruned counterpart on the same ReRAM-based archi-
tecture. Here, we do not show any performance compari-
son with respect to GPUs because prior work has already
demonstrated that ReRAMs significantly outperform GPUs
in terms of execution time and energy efficiency for GNN
training [3], [25]. Fig. 10(a) and (b) show the execution time
speed-up and energy savings (normalized with respect to
unpruned) for GNN training, respectively, for Unpruned, CAP,
and DietGNN. DietGNN achieves 87% and 52% speed-up in
overall execution time on average compared to Unpruned and
CAP, respectively. The improvement in speed-up is enabled by
the reduction in both computation and communication delay
as shown in Fig. 9. Note that CAP performs significantly
worse compared to DietGNN because the overall execu-
tion time is always bottlenecked by the computation delay.
Fig. 10(b) shows that the DietGNN-enabled model reduces
energy consumption by 2.4x and 1.6x compared to the
Unpruned and CAP models running on the same ReRAM-
based architecture, respectively. Overall, DietGNN can accel-
erate training by up to 2.7x while consuming up to 3.5x less
energy than the unpruned implementation (Unpruned) on an
iso-area ReRAM-based manycore architecture.

VI. CONCLUSION

GNN training on ReRAM-based manycore accelerators is
both compute- and data-intensive. Moreover, the need to store
DNN model weights and graph adjacency matrices give rise
to very high storage requirements. Training a pruned GNN
model from scratch can mitigate these challenges. However,
existing pruned models that use crossbar-aware techniques
cannot be trained from scratch as they are targeted only
for inferencing. We have presented a crossbar-aware prun-
ing technique called DietGNN, which can be trained from

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

OGBOGU et al.: ACCELERATING LARGE-SCALE GNN TRAINING ON CROSSBAR DIET

scratch, achieves high sparsity, and enables significant reduc-
tion in energy consumption and area overhead. In addition to
reducing GNN model parameters, DietGNN enables efficient
storage of graph adjacency matrices by removing redundant
zeros. DietGNN achieves ~2.7x speedup while being 3.5x
more energy efficient when compared to its unpruned ver-
sion on a ReRAM-based manycore platform. DietGNN also
significantly outperforms other state-of-the-art crossbar-aware
pruning methods in terms of achievable sparsity, execution
time, and hardware savings.

[1]

[2]

[3

=

[4]
[5

=

[6]

[7

—

[8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

T. Kipf and M. Welling, “Semi-supervised classification with graph con-
volutional networks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1-14.

W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-GCN: An efficient algorithm for training deep and large graph
convolutional networks,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min., 2019, pp. 257-266.

A. 1. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty,
“Performance and accuracy tradeoffs for training graph neural networks
on ReRAM-based architectures,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 10, pp. 1743-1756, Oct. 2021.

D. Xu et al., “Edge intelligence: Architectures, challenges, and applica-
tions,” 2020, arXiv:2003.12172.

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for modern deep learning research,” in Proc. 34th AAAI Conf.
Artif. Intell., 2020, pp. 13693-13696.

A. Shafiee et al., “ISAAC: A Convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. Int. Symp. Comput.
Archit. (ISCA), 2016, pp. 14-26.

L. Song, X. Qian, L. Hai, and Y. Chen, “PipeLayer: A pipelined
ReRAM-based accelerator for deep learning,” in Proc. IEEE Int. Symp.
High-Perform. Comput. Archit. (HPCA), 2017, pp. 541-552.

K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal, “In-memory
computing in emerging memory technologies for machine learning: An
overview,” in Proc. IEEE Des. Autom. Conf. (DAC), 2020, pp. 1-6.

A. 1. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty,
“DARe: DropLayer-aware manycore ReRAM architecture for train-
ing graph neural networks,” in Proc. Int. Conf. Comput.-Aided Des.
(ICCAD), 2021, pp. 1-9.

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR:
Accelerating graph processing using ReRAM.,” in Proc. IEEE Int. Symp.
High-Perform. Comput. Archit. (HPCA), 2018, pp. 531-543.

G. Dai, T. Huang, Y. Wang, H. Yang, and J. Wawrzynek, “GraphSAR: A
sparsity-aware processing-in-memory architecture for large-scale graph
processing on ReRAMSs,” in Proc. Asia South Pacific Des. Autom. Conf.
(ASPDAC), 2019, pp. 120-126.

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2019, pp. 1-42.

T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang, “A unified lottery
ticket hypothesis for graph neural networks tianlong,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2021, pp. 1695-1706.

L. Liang et al., “Crossbar-aware neural network pruning,” IEEE Access,
vol. 6, pp. 58324-58337, 2018.

J. Lin, Z. Zhu, Y. Wang, and Y. Xie, “Learning the sparsity for ReRAM:
Mapping and pruning sparse neural network for ReRAM based acceler-
ator,” in Proc. Asia South Pacific Des. Autom. Conf. (ASPDAC), 2019,
pp. 639-644.

J. Meng, L. Yang, X. Peng, S. Yu, D. Fan, and J.-S. Seo, “Structured
pruning of RRAM crossbars for efficient in-memory computing accel-
eration of deep neural networks,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 68, no. 5, pp. 1576-1580, May 2021.

S. Yang, W. Chen, X. Zhang, S. He, Y. Yin, and X.-H. Sun, “Auto-prune:
Automated DNN pruning and mapping for ReRAM-based accelerator,”
in Proc. Int. Conf. Supercomput. (ICS), New York, NY, USA, 2021,
pp. 304-315.

C. Chu et al., “PIM-prune: Fine-grain DCNN pruning for crossbar-based
process-in-memory architecture,” in Proc. IEEE Des. Autom. Conf.,
2020, pp. 1-6.

G. Yuan et al., “FORMS: Fine-grained polarized ReRAM-based in-situ
computation for mixed-signal DNN accelerator,” in Proc. Int. Symp.
Comput. Archit. (ISCA), 2021, pp. 265-278.

P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in Proc.
Int. Symp. Comput. Archit. (ISCA), 2016, pp. 27-39.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(31]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

3637

A. Chaudhuri and K. Chakrabarty, “Analysis of process variations,
defects, and design-induced coupling in memristors,” in Proc. IEEE Int.
Test Conf. (ITC), 2019, pp. 1-10.

B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural network
accelerators reliable,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit. (HPCA), 2018, pp. 52-65.

K. Prabhu et al., “CHIMERA: A 0.92-TOPS, 2.2-TOPS/W edge Al
accelerator with 2-MByte on-chip foundry resistive RAM for efficient
training and inference,” IEEE J. Solid-State Circuits, vol. 57, no. 4,
pp. 1013-1026, Apr. 2022.

T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay, “On-chip training of
recurrent neural networks with limited numerical precision,” in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), 2017, pp. 3716-3723.

Z. Wang et al., “GNN-PIM: A processing-in-memory architecture for
graph neural networks,” in Proc. 13th Conf. Adv. Comput. Archit.,
Kunming, China, 2020, pp. 73-86.

Y. He, Y. Wang, C. Liu, H. Li, and X. Li, “TARe: Task-adaptive in-
situ ReRAM computing for graph learning,” in Proc. IEEE Des. Autom.
Conf. (DAC), 2021, pp. 577-582.

S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural networks,” in Advances in Neural
Information Processing Systems (NeurIPS). Red Hook, NY, USA:
Curran, 2015, pp. 1135-1143.

H. Li, A. Kadav, 1. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient ConvNets,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1-13.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1-14.
A. S. Morcos, Y. Haonan, M. Paganini, and Y. Tian, “One ticket to
win them all: Generalizing lottery ticket initializations across datasets
and optimizers,” in Advances in Neural Information Processing Systems.
Red Hook, NY, USA: Curran, 2019.

X. Ma et al., “Tiny but accurate: A pruned, quantized and optimized
memristor crossbar framework for ultra efficient DNN implementa-
tion,” in Proc. Asia South Pacific Des. Autom. Conf. (ASPDAC), 2020,
pp. 301-306.

B. Q. Le et al., “Resistive RAM with multiple bits per cell: Array-level
demonstration of 3 bits per cell,” IEEE Trans. Electron Devices, vol. 66,
no. 1, pp. 641-646, Jan. 2019.

D. U. Lee et al., “25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test meth-
ods using 29nm process and TSV,” in Proc. IEEE Solid-State Circuits
Conf., 2014, pp. 423-433.

“CEA-Leti Research Team Proposes New Approach for Next-Generation
Memories With RRAM Energy-Storage Breakthrough.” CEA-Leti. 2021.
[Online]. Available: https://www.leti-cea.com/cea-tech/leti

A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: Fast compact transient thermal modeling for 3D ICs with
inter-tier liquid cooling,” in Proc. ICCAD, 2010, pp. 463-470.

S. Narang et al., “Mixed precision training,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 1-12.

S. Gupta, A. Agrawal, P. Narayanan, and K. Gopalakrishnan, “Deep
learning with limited numerical precision,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2015, pp. 1737-1746.

Y. H. Lin et al., “Device instability of ReRAM and a novel reference
cell design for wide temperature range operation,” IEEE Electron Device
Lett., vol. 38, no. 9, pp. 1224-1227, Sep. 2017.

W. Wen, Y. Zhang, and J. Yang, “ReNEW: Enhancing lifetime for
ReRAM crossbar based neural network accelerators,” in Proc. IEEE
Int. Conf. Comput. Des. (ICCD), 2019, pp. 487-496.

X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN-+NeuroSim
V2.0: An end-to-end benchmarking framework for compute-in-memory
accelerators for on-chip training,” 2020, arXiv:2003.06471.

N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proc. Int.
Symp. Perform. Anal. Syst. Softw. (ISPASS), 2009, pp. 33-42.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, no. 1, pp. 321-357, 2002.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“GraphSAINT: Graph sampling based inductive learning method,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1-19.

A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph
neural networks,” in Proc. IEEE Des. Autom. Conf. (DAC), 2020,
pp. 1-6.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems (NeurIPS). Red Hook, NY, USA: Curran, 2016,
pp. 2082-2090.

Authorized licensed use limited to: Washington State University. Downloaded on May 09,2023 at 16:52:30 UTC from IEEE Xplore. Restrictions apply.

