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Abstract—Training machine learning (ML) models at the edge (on-chip training on end user devices) can address many 
pressing challenges including data privacy/security, increase the accessibility of ML applications to different parts of the world by 
reducing the dependence on the communication fabric and the cloud infrastructure, and meet the real-time requirements of 
AR/VR applications. However, existing edge platforms do not have sufficient computing capabilities to support complex ML 
tasks such as training large CNNs. ReRAM-based architectures offer high-performance yet energy efficient computing platforms 
for on-chip CNN training/inferencing. However, ReRAM-based architectures are not scalable with the size of the CNN. Larger 
CNNs have more weights, which requires more ReRAM cells that cannot be integrated in a single chip. Moreover, training larger 
CNNs on-chip will require higher power, which cannot be afforded by these smaller devices. Pruning is an effective way to solve 
this problem. However, existing pruning techniques are either targeted for inferencing only, or they are not crossbar-aware. This 
leads to sub-optimal hardware savings and performance benefits for CNN training on ReRAM-based architectures. In this 
paper, we address this problem by proposing a novel crossbar-aware pruning strategy, referred as ReaLPrune, which can prune 
more than 90% of CNN weights. The pruned model can be trained from scratch without any accuracy loss. Experimental results 
indicate that ReaLPrune reduces hardware requirements by 77.2% and accelerates CNN training by ~20× compared to 
unpruned CNNs. ReaLPrune also outperforms other crossbar-aware pruning techniques in terms of both performance and 
hardware savings. In addition, ReaLPrune is equally effective for diverse datasets and more complex CNNs. 

Index Terms—ReRAM, Machine Learning, Pruning, CNN  
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1 INTRODUCTION
EEP learning (DL) has enabled significant growth in 
diverse real-world applications ranging from face 

recognition and AR/VR to natural language processing 
and computer vision [1]. However, existing DL applica-
tions are computation intensive and are typically deployed 
on the cloud. For example, most voice assistants, e.g., Ap-
ple Siri and Microsoft’s Cortana, are based on cloud com-
puting and do not function if the network is unavailable. 
Smaller edge devices are insufficient to support the com-
putations associated with many DL algorithms including 
the training of Convolutional Neural Networks (CNNs). 
However, there is a growing necessity to address the prob-
lem of training on the edge platforms due to a multitude of 
factors [1][2][3]. First, for many important applications 
(e.g., mobile health and recommendation systems), privacy 
and security are important concerns [4][5]. Second, ven-
dors often want to personalize their ML-driven prod-
ucts/applications for each user; this will require incremen-
tal learning on the edge. For instance, Google G-board uses 
federated learning to collaboratively train the typing pre-
diction model on smartphones [3]. Each user uses their 
own typing records to train G-board. Hence, the trained G-
board can be used immediately, powering experiences that 

is personalized to each user. Third, there is a need to in-
crease the accessibility of AI applications to different parts 
of the world by reducing the dependence on the commu-
nication fabric and the cloud infrastructure. Fourth, many 
of these applications such as robotics and AR/VR require 
low latency, which may not be achievable without per-
forming the computation directly on the edge platform. 
However, existing edge platforms are still not capable of 
training large ML models such as CNNs and addressing 
this problem is one of the primary foci of this work.  

Emerging resistive random-access memory (ReRAM) 
has been shown to be an effective platform for efficient 
training and inferencing of deep learning algorithms, in-
cluding CNNs [6][7]. ReRAM-based systems can be used 
to enable low-power training on the edge. Recently Re-
RAM-based prototypes for CNN inferencing and training 
have been demonstrated [8][9]. ReRAM crossbars can effi-
ciently perform matrix-vector multiplication, which forms 
the backbone of most CNN computations [7]. Prior work, 
such as Pipelayer [6] and AccuReD [10], have shown that 
ReRAM- based architectures can outperform GPUs for 
training CNNs while consuming less energy. In addition, 
ReRAM-based systems are more area-efficient compared 
to their GPU counterparts and do not require expensive 
off-chip memory access due to their “in-memory” nature 
of computation [7].  

Despite these advantages, ReRAM-based architectures 
are not scalable with the size of CNNs. Deep CNNs (i.e., 
CNNs with many layers) involve many weights, which ne-
cessitates many ReRAM crossbars for storage and 
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computation [10]. Unlike GPUs where each CNN layer is 
processed one after another, ReRAM processes the CNN 
layers in a pipelined fashion [6]. In a pipelined implemen-
tation, all layers of the CNN are active at the same time, 
i.e., the computations of all the layers are performed sim-
ultaneously; each layer processes a different input image. 
Hence, ReRAM-based architectures must store all the 
weights on-chip, which necessitates many crossbars. More-
over, training requires storing intermediate data (such as 
activations) to be used during the backward phase of train-
ing [6]. Overall, this necessitates many ReRAM crossbars 
for storage and computation. This is especially problematic 
for deep CNNs such as VGG-19. VGG19 involves 143 mil-
lion weights and storing all the weights will necessitate at 
least 143 million ReRAM cells, which is expensive in terms 
of both area and power, especially for edge devices. 
Clearly, this problem must be addressed to enable training 
on end user devices. 

Pruning is an effective way to reduce the amount of stor-
age and computation needed for CNN training/inferenc-
ing [11]. Pruning reduces the number of weights in a CNN 
by forcing some of the weights to be zero. Multiplications 
and additions with zero are functionally redundant; multi-
plication with zero yields a zero and the sum of any num-
ber with zero is the number itself. Hence, we can safely 
omit storing and computing with zero weights. This can 
lead to potential savings in terms the total number of Re-
RAM crossbars necessary for CNN training. However, con-
ventional pruning techniques are oblivious to the crossbar 
structure. Simply pruning weights does not translate to Re-
RAM crossbar savings without the knowledge of the un-
derlying mapping mechanism. Crossbar-aware pruning 
strategies can solve this problem. Crossbar-aware pruning 
approach results in relatively more hardware savings de-
spite potentially lower levels of sparsity than their conven-
tional ReRAM-unaware counterparts. However, existing 
crossbar- aware pruning strategies are targeted for CNN 
inferencing only [12][13]. The pruned networks obtained 
using these methods cannot be trained from scratch with-
out accuracy loss [11]. Moreover, CNN training requires 
the storage of both weights and activations. As a result, 
simply pruning the weights may not lead to significant re-
ductions in the number of activations that must also be 
stored during training. 

Therefore, there is a clear need to develop new crossbar- 
aware pruning strategies for CNN training on smaller de-
vices. Towards this goal, we propose the first ReRAM 
crossbar-aware pruning technique for CNN training, 
which aims to reduce both the number of weights and ac-
tivations that must be stored on ReRAM crossbars. We re-
fer to the proposed technique as ReaLPrune. ReaLPrune is 
inspired by the recently proposed Lottery Ticket Pruning 
(LTP) hypothesis [11]. It combines the insights from LTP 
with the key attributes of the crossbar structure and the 
mapping strategy, guided by practical considerations 
adopted in ReRAMs for training CNNs. ReaLPrune can 
prune more than 90% of the CNN weights on average. The 

model pruned using ReaLPrune, can be trained from 
scratch with no accuracy loss using inexpensive hardware, 
compared to its unpruned counterpart. Moreover, due to 
its crossbar-aware nature, the resulting sparsity directly 
translates to a high amount of hardware (ReRAM crossbar) 
savings. ReaLPrune also outperforms existing pruning 
techniques (including crossbar- aware methods) in terms 
of achievable sparsity. This enables us to accelerate the 
training of deeper and larger CNNs on hardware con-
strained platforms (such as edge devices, i.e., edge AI). The 
key contributions of this work are as follows: 

• We show that despite pruning more than 90% of 
the weights, LTP is unable to achieve similar levels 
of hardware savings or performance improve-
ment in practice, for a ReRAM-based architecture. 

• We propose a novel crossbar-aware pruning strat-
egy, referred to as ReaLPrune. This strategy 
achieves more than 90% sparsity while reducing 
hardware requirements and enhancing perfor-
mance significantly. 

• Experimental analysis indicates that ReaLPrune-
enabled training is ~20× faster than training with 
unpruned models on an ReRAM-based architec-
ture. 

The rest of the paper is organized as follows. Section 2 
presents relevant prior work related to pruning and Re-
RAM- based architectures. Section 3 motivates the neces-
sity of a crossbar-aware mapping strategy. Section 4 intro-
duces the proposed ReaLPrune technique. We evaluate Re-
aLPrune’s effectiveness in Section 5. Finally, we conclude 
this paper by summarizing the findings in Section 6. 

2 RELATED PRIOR WORK 
In this section, we present relevant prior work on Re-

RAM-based CNN accelerators and model pruning tech-
niques. 
2.1 ReRAM-based architectures 

ReRAMs can be used to perform in situ multiply-and- 
accumulate (IMA) operation, which forms the core of CNN 
computational kernel. Hence, ReRAM-based architectures 
are popular for accelerating inferencing for CNNs [7]. A 
working prototype of ReRAM-based architecture for CNN 
inferencing has been demonstrated by researchers from 
CEA-Leti [8]. Recent work has attempted to design Re-
RAM-based systems for CNN training [6][10][14]. How-
ever, lower precision of computing, the lack of normaliza-
tion layers, and endurance issues have presented a chal-
lenge towards adopting ReRAM based accelerators for 
CNN training [10][30][41]. It is well known that the weight 
gradients in a CNN are very sensitive to precision [10]. 
Hence, training with low precision representation can of-
ten lead to accuracy loss or failure to train altogether. The 
poor accuracy problem can be addressed by using a com-
bination of ReRAMs and GPUs [15]. However, GPUs are 
relatively slower than ReRAMs for performing IMA oper-
ations. This can result in relatively sub-optimal 
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performance. In [31], the authors solve the problem of 
training at low precision using stochastic rounding. In [10], 
the authors propose using GPUs to support normalization 
layers for training deep CNNs. However, all these ReRAM-
based systems assume ideal ReRAM behavior. Due to im-
mature fabrication process, ReRAM cells often have vari-
ous types of faults [28][29]. Moreover, the frequent weight 
updates involved in CNN training can lead to new faults 
as ReRAM cells have relatively poor write endurance. 
CNN training and inferencing on non-ideal ReRAM cross-
bars can lead to accuracy drop [29][41]. Several methods 
including the use of error correction code (ECC), weight 
clipping, and selective weight updates, have been pro-
posed to enable successful CNN training and inferencing 
even in presence of faulty ReRAM cells [29][42]. By incor-
porating these techniques in conventional ReRAM-based 
architectures, we can train CNNs with minimal accuracy 
drop even when many ReRAM cells are damaged/defec-
tive. We can adopt these measures in an ReRAM-based ar-
chitecture for enabling reliable CNN training in the pres-
ence of faults and defects. However, all the above-men-
tioned architectures utilize conventional unpruned CNNs, 
which tend to have high area, relatively low performance, 
and high energy requirements. In this work, we demon-
strate the potential of training already pruned CNNs on 
ReRAM-based architectures. Our experiments indicate 
that training pruned CNNs from scratch requires signifi-
cantly fewer hardware resources and also reduces execu-
tion time, which meets the requirements of training on 
edge.  

2.2 CNN Pruning 
It is estimated that training a single unpruned neural 

network can cost over $10,000 and emit as much carbon as 
five cars over their lifetimes [19]. Pruning can solve this 
challenge by reducing the storage and energy require-
ments. It also accelerates both CNN training and inferenc-
ing. Several pruning techniques have been proposed in the 
literature  [11][16][26][27][39]. However, all these tech-
niques are unaware of ReRAM crossbar structure. The 
mapping of CNN weights to the ReRAM crossbars is very 
different than conventional GPUs. In a ReRAM crossbar, 
each input activates all the cells in a row of the ReRAM 
crossbar. Similarly, each output activates all the cells in a 
column of the ReRAM crossbar. Pruning techniques that 
are unaware of these features of the ReRAM crossbar, may 
not lead to any hardware savings or performance benefits 
as we explain and experimentally demonstrate in more de-
tail later. Crossbar aware pruning techniques have been 
proposed recently [12][13][17][40]. However, all these 
methods are targeted for CNN inferencing and are not as 
effective for training. The networks pruned using these 
types of methods typically fail to reach the same accuracy 
as their unpruned counterparts, when trained from scratch 
[11]. Pruning methods for supporting faster CNN training 
have also been proposed [36][37]. However, these methods 
start with an unpruned CNN and then prune weights after 
each epoch/iteration of training. While this strategy can 

improve performance, it is not amenable to reducing the 
hardware requirements. Hardware design must be done 
considering the worst-case scenario. In this case, we need 
an ReRAM-based system that can support the unpruned 
CNN. Even though the CNN is pruned over the next few 
epochs/iterations, the hardware cannot be pruned/re-
duced at runtime, i.e., the additional cells will still remain 
in the design. Hence, there is no hardware savings follow-
ing this strategy. In addition, the pruning has to be re-
peated every time the same CNN model needs to be 
trained from scratch, which is fundamentally different 
from what we aim to achieve. In this work, we want to 
prune before training. The pruned model can then be 
trained from scratch and/or incrementally. 

Lottery Ticket Pruning (LTP) is a recently proposed 
pruning technique for CNN training that addresses these 
shortcomings in existing pruning methodologies [11]. The 
pruned model obtained using LTP can be trained from 
scratch with little to no accuracy loss when compared to 
the original unpruned model. Hence, we can use fewer Re-
RAM crossbars to train the CNNs. Moreover, the pruned 
CNNs are reusable any number of times, i.e., we can train 
the same pruned CNN over and over, thereby amortizing 
the cost of pruning itself. However, LTP method is oblivi-
ous of the ReRAM crossbar structure. Hence, despite prun-
ing more than 90% of the CNN weights using LTP, we do 
not see commensurate hardware savings or performance 
gains in practice. In this work, we address the above short-
comings of existing ReRAM-based architectures and prun-
ing techniques. We present ReaLPrune, an iterative cross-
bar-aware pruning technique, that removes weights strate-
gically to save area, and improve performance and energy-
efficiency. Experiments demonstrate that ReaLPrune 
achieves high sparsity (more than 90%) for a variety of 
CNNs while also leading to significant hardware savings 
and performance benefits. 

3 LOTTERY TICKET PRUNING: CHALLENGES 
In this section, we discuss LTP and explain why it is not 
effective for an ReRAM-based architecture. 

3.1 Lottery Ticket Pruning (LTP) 
LTP is a pruning technique that can find sparse sub-net-

works for CNN training [11]. LTP shows that dense, ran-
domly initialized networks contain sparse subnetworks 
(referred as “winning tickets”), that when trained in isola-
tion, reach test accuracy comparable to the original net-
work using a similar number of iterations. LTP achieves 
significantly higher sparsity than existing pruning meth-
ods that uses regularization techniques such as L1/L2-
norm or group lasso. Fig. 1 explains the difference between 
LTP and conventional pruning. Conventional pruning 
techniques (that are targeted for inferencing) first train an 
unpruned network, and then prune the unimportant 
weights. The pruned network is then used for inferencing 
with the pretrained weights. In some cases, the pruned net-
work is further retrained (with weights initialized using 
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the pretrained weights) to recover accuracy loss. However, 
it should be noted that these pruned networks typically fail 
to reach the same accuracy when trained from scratch [11]. 
Hence, conventional pruning techniques that are targeted 
for inferencing are often not effective for CNN training. 
Unlike conventional pruning techniques, LTP prunes the 
CNN before training as shown in Fig. 1. LTP first prunes 
the network; the pruned network can then be used for mul-
tiple training instances. CNN training is expensive in terms 
of both storage and computation. Training a pruned net-
work from scratch has the potential to reduce computation 
and storage requirements as it involves fewer weights to 
store and train. This can significantly speed-up CNN train-
ing and is also more energy efficient.  

In [36] and [37], the authors present two pruning tech-
niques for training ML models. The PruneTrain method 
prunes the model during training from scratch using 
group lasso regularization. After every epoch, the weights 
are pruned, and the CNN is reconfigured to continue train-
ing on the pruned model. A similar strategy is adopted in 
[37]. The method proposed in [37] prunes weights after 
each epoch using a variable pruning threshold. In addition, 
this method incorporates the ability to recover incorrectly 
pruned weights in subsequent iterations. However, both 
these approaches prune the model during training. As 
mentioned earlier, it has the following drawbacks: (a) Un-
like the CNN, the hardware elements cannot be physically 
removed depending on the CNN size. The hardware (Re-
RAM-based system in this case) must be designed consid-
ering the worst-case scenario i.e., the unpruned CNN. 
Hence, there is no hardware savings using this method, 
and (b) The process of pruning has to be repeated every 
time the CNN model is trained. This is fundamentally dif-
ferent from what we aim to achieve. In this work, we want 
to prune the model before training. The pruned model can 
then be trained any number of times from scratch. This has 
the potential to improve power and performance in addi-
tion to reducing hardware requirements, all of which are 
necessary to enable training on end user devices.  

To identify a winning ticket, LTP adopts the following 
steps: 
• Randomly initialize the neural network with param-

eters !! at time " = 0.  
• Train the neural network for k iterations, resulting 

in parameters !".   

•  Prune p% of the smallest-magnitude weights. The 
parameter p can be chosen by the user.  

• Reset the unpruned weights to its original initializa-
tion value (i.e., !!). These remaining, unpruned 
weights constitute the winning ticket. 

• Retrain the winning ticket using same data and re-
peat the above steps until MAX iterations 

By repeating this process once (one-shot pruning) or in 
an iterative manner (iterative pruning), LTP can uncover 
winning tickets that are more than 90% sparse. These 
sparse models achieve high accuracy like their unpruned 
counterpart when trained from scratch. The iterative LTP 
consistently outperforms its one-shot counterpart for all 
CNNs [11]. The pruned sub-networks, also referred to as 
the “winning tickets”, exhibit many interesting features: 

• Aggressively pruned networks (with 95-99.5% of 
weights pruned) show no drop in accuracy while 
moderately pruned networks (50-90% pruning) 
often outperform their unpruned counterparts 
[11][21]. 

• The pruned networks meet/exceed the unpruned 
network’s test accuracy within the same number 
of iterations [11]. 

• The winning tickets generalize across a variety of 
datasets (including Fashion MNIST, SVHN, 
CIFAR-10/100, ImageNet, and Places365), i.e., 
they are dataset agnostic [18]. 

• The lottery networks work equally well with dif-
ferent optimizers (such as SGD, Adam, etc.) with 
high accuracy [18]. 

• The lottery network can be easily trained using 
different hyper-parameter settings, especially if it 
is generated using larger datasets [18]. 

• Winning tickets can be identified at very early 
stages of training with aggressively low-cost 
training algorithms to reduce computation effort 
and runtime for LTP [20]. 

• We can stretch (or squeeze) the pruned network 
into another deeper (or shallower) network from 
the same family i.e., the pruned network charac-
teristics are transferable across CNNs of the same 
family [38]. 

These features of LTP make it an attractive choice for 
pruning CNNs for the purpose of training. Hence, we 
choose the LTP strategy in this work for pruning. We can 
then train these pruned CNNs on ReRAM-based systems 
from scratch. 

3.2 Challenges with LTP 
Despite these advantages, LTP is not suited for ReRAM-

based architectures as it is unaware of the crossbar struc-
ture and the mapping policy used to map CNN weights to 
the ReRAM cells. Fig. 2 explains this problem. As shown in 
Fig. 2(a), we consider a scenario where 12 out of the 16 Re-
RAM cells are zero (sparsity level: 75%). As every row/col-
umn in Fig. 2(a) has at least one non-zero entry, we cannot 
save any hardware. Here, we define ‘hardware savings’ as 

 

 
 
 
 
 
 
 
 

 
Fig. 1: Illustration of LTP and its difference with conventional pruning 
techniques. 
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the fraction of ReRAM cells that can be simply turned off 
(by power gating) or reused for other purposes (e.g., map-
ping other non-zero weights of the CNN) without affecting 
the correctness of the intended MAC operation. However, 
a crossbar cannot control individual ReRAM cells to avoid 
storing the zero weights and save hardware. This happens 
as an input to the crossbar activates the entire row while 
the output is obtained by accumulating the sum of currents 
from all the cells along a single column. Therefore, if even 
one cell in a row/column has a non-zero value, any naïve 
attempt to turn off or reuse the other cells storing zeros, 
will produce incorrect results. 

Similarly, compressing/rearranging the non-zero en-
tries to save hardware is also ineffective. In Fig. 2(b), we 
have rearranged the remaining four non-zero entries (from 
Fig. 2(a)) on a single column to highlight the problem. As 
shown in Fig. 2(b), this results in an incorrect output (the 
correct and intended output %# is shown in Fig. 2(a)). 
Hence, we must preserve and use all the 16 cells as shown 
in Fig. 2(a) to ensure correct outputs. As a result, there is 
no hardware saving despite 75% sparsity in Fig. 2(a). We 
can only save ReRAM resource (cells) when an entire 
row/column is filled with zeros; such a row/column can 
be utilized for other purposes/computations without af-
fecting the correctness of the intended output unlike Fig. 
2(b). Hence, even though many cells in Fig. 2(a) are storing 
zeros, we must leave them as it is, i.e., there is no hardware 
saving. This observation indicates that crossbar-unaware 
sparsity does not proportionately translate to savings in 
hardware, especially for ReRAM-based systems.  

This problem is exacerbated for larger crossbars. Typi-
cally, 128×128 crossbars are used for CNN training and in-
ferencing [7][10][12]. Similar to Fig. 2(a), we cannot save 
any ReRAM resource if we have 128 non-zero entries (out 
of a total of 128×128=16384 entries, sparsity level: 99.2%), 
with each row/column having at least one non-zero value; 
note that this represents a worst-case scenario. Overall, 
crossbar-unaware pruning strategies, such as LTP, are not 
suited for ReRAM crossbars as they may not lead to signif-
icant hardware savings despite high amount of pruning. 
Hence, a suitable pruning strategy for ReRAM-based sys-
tems must be aware of the crossbar structure and the map-
ping strategy adopted to represent weights on ReRAM 
cells. 

4 CROSSBAR-AWARE REALPRUNE 
In this section, we first discuss the important features of 

the ReRAM crossbars that govern the formulation of the 
ReaLPrune technique. Next, we present the overall train-
ing process that incorporates ReaLPrune for crossbar-
aware LTP. 
4.1 Crossbar awareness 

A typical Conv layer operation in a CNN has a total of 
OC filters, where each filter is of shape IC×K×K. The pa-
rameters IC and OC represent the number of channels in 
the input and output of the convolution layer, respectively. 
The input to a Conv layer is a tensor of shape IC×I×I while 
the output is of shape OC×O×O. The output is obtained af-
ter multiplying the weights with the inputs. The parame-
ters I and O represent the dimensionality of the input and 
output of a convolution layer respectively. Fig. 3(a) shows 
how the weights of a Conv layer are mapped to ReRAM 
crossbars. Some Conv layers have millions of trainable 
weights, which cannot be mapped to one ReRAM crossbar; 
each crossbar typically stores a maximum of 128×128 en-
tries. Hence, the weights of a Conv layer are mapped on to 
multiple ReRAM crossbars as shown in Fig. 3(a). From Fig. 
3(a), we note that to save a column in an ReRAM crossbar 
(i.e., all entries in the same column are zero), we must 
prune one (or more) channels of a filter (Channel-wise 
pruning as shown in Fig. 3(c)). Pruning an entire filter (of 
shape IC×K×K) also achieves similar results (Filter-wise 
pruning as shown in Fig. 3(b)). As mentioned earlier, ‘sav-
ing a row/column’ implies that all the ReRAM cells in the 
saved row/column can be freely reused for other purposes 
without affecting the output of the MAC operation as 
shown in Fig. 2. Similarly, to save a row in a ReRAM cross-
bar (i.e., all entries in a row are zero), we must prune mul-
tiple (or all) weights at the same index for all the filters (in-
dex-wise pruning as shown in Fig. 3(d)). We use these in-
sights to develop ReaLPrune.  
Next, unlike inferencing, CNN training involves an addi-
tional backward phase for calculating error/weight gradi-
ents. The error/weight gradient calculations require stor-
ing the activations from the forward phase. Therefore, Re-
aLPrune must also prune the activations to reduce the total 
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Fig. 2: (a) Mapping a pruned matrix on ReRAM crossbars, and (b) incorrect 
results obtained after rearranging the non-zero entries. 
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ReRAM requirements. However, pruning activations us-
ing LTP (which prunes only the weights) is not straightfor-
ward. Activations are input-dependent and can be pruned 
only when the entire filter is filled with zeros; pruning an 
entire weight filter (of shape IC×K×K) causes an output 
channel to vanish (i.e., pruned). On the other hand, the 
pruning of only one (or few) channels/indices of the 
weights does not result in a zero activation. Therefore, Re-
aLPrune must prioritize pruning entire filters to simulta-
neously reduce the number of weights and activations that 
must be stored on ReRAMs. 

Here, it should be noted that the crossbar-aware prun-
ing (as shown in Fig. 3) is different from traditional struc-
tured pruning (such as [27]) that are targeted for GPU-
based platforms. For instance, the structured pruning 
method in [21] prunes a channel from all the filters of a 
CNN layer. However, as shown in Fig. 3(c), that is not the 
case for crossbar-aware pruning. As shown in Fig. 3(c), 
pruning a channel in one filter does not necessitate prun-
ing the corresponding channel of all the other filters to re-
duce hardware requirements. Similarly, in the case of in-
dex-wise pruning, we do not need to prune the same index 
of all the filters at the same time. 
4.2 ReaLPrune technique 

Similar to LTP (Fig. 1), ReaLPrune has two stages: (a) 
Pruning the neural network, and (b) In-field training (de-
ployment) of the pruned model. In this sub-section, we 
present the pruning phase of ReaLPrune. As shown in Fig. 
3(b)-(d), ReaLPrune prunes (a) filter-wise, to reduce the 
number of ReRAM cells required for storing both the acti-
vations and weights, (b) channel-wise, to ensure that one 
or more columns in a ReRAM crossbar is filled with zero, 
and (c) index-wise, to prune all entries along the same row 
in a crossbar. To maximize the amount of pruning, ReaL-
Prune adopts a coarse-to-fine pruning strategy, i.e., we 
start by pruning filter-wise (the coarsest granularity of 
pruning), followed by channel-wise and then finally index-
wise pruning (the finest granularity of pruning). We prior-
itize and initiate ReaLPrune with filter-wise pruning as it 
is the only pruning strategy that reduces both activations 
and weights. However, due to its coarse granularity, it does 

not lead to significant amount of pruning without sacrific-
ing accuracy. Hence, we gradually shift towards finer gran-
ularity of pruning to ensure maximum possible sparsity for 
achieving the same accuracy as the unpruned variant. We 
present the high-level details of ReaLPrune in Algorithm 1.  

Algorithm 1 shows the overall training process using 
ReaLPrune. As shown in Algorithm 1, the input to ReaL-
Prune is the CNN model and the percentage of weights (p) 
we want to prune after each iteration. The output of ReaL-
Prune is the pruned CNN model, which when trained in 
isolation from scratch, will lead to comparable accuracy as 
its unpruned counterpart. We begin by initializing the 
CNN model (&#$#%#&' at " = 0) as shown in Line 1 of Algo-
rithm 1. We can use any of the commonly used initializa-
tion schemes here e.g., Xavier, Kaiming, etc. Next, we per-
form the following steps: (a) train the model for E epochs 
(Line 3), (b) Prune the lowest p percentile of non-zero 
weights by magnitude following the crossbar-aware coarse 
to fine pruning strategies (i.e., filter-wise, channel-wise 
and index-wise) (Line 4), (c) if the testing accuracy of 
pruned model is lower than the baseline accuracy (for un-
pruned CNN), undo last pruning and shift to finer pruning 
strategy (Lines 5-7); if the accuracy drop is zero, then no 
action is necessary, (d) Reinitialize the network (Line 8 of 
Algorithm 1) with &#$#%#&' from " = 0 (except the pruned 
weights) and repeat Steps (a)-(d). The pruning repeats un-
til MAX iterations are reached or until there is an accuracy 
drop. The CNN model that has the maximum amount of 
sparsity with no accuracy drop is returned by the algo-
rithm.  

The ReaLPrune technique follows the iterative magni-
tude pruning with the reinitialization strategy, to reach the 
sparse model; this strategy is inspired by LTP. As men-
tioned earlier, LTP also adopts an iterative magnitude 
pruning strategy where the lowest p percentile of weights 
(by magnitude) is pruned after each training iteration. 
However, LTP prunes weights without considering their 
locations. In contrast, ReaLPrune is crossbar-aware. As an 
example, we prune an entire filter (in filter-wise pruning) 
if the average weight of that filter is among the lowest p 
percentile considering all the filters of the CNN. Similarly, 
we prune an entire channel (in channel-wise pruning) or 
the same index on multiple filters (in filter-wise pruning) 
if the average weight of that channel or that index, is 
among the lowest p percentile respectively. By repeatedly 
pruning a small fraction (lowest p percentile) of the 
weights in each iteration, following the coarse-to-fine strat-
egy, ReaLPrune is able to prune more than 90% of the 
weights. These savings directly translate to hardware sav-
ings and better performance. 
4.3 Mapping ReaLPrune to Hardware 

In this sub-section, we discuss the implementation of 
ReaLPrune (including its in-field deployment) on hard-
ware. As shown in Algorithm 1, the pruning step requires 
iterative training (Line 3 of Algorithm 1). Here, we first em-
phasize that this training (for obtaining the pruned model) 

Algorithm 1. Pruning using ReaLPrune 
Input: CNN model, pruning percentage p 
Output: Pruned CNN model 
Algorithm: 
1: Initialize: ! ß !#$#%#&';  
2: While itr < MAX_ITER and no accuracy drop: 
3:  Train for E epochs 
4:  Prune (p) based on the crossbar structure and 

magnitude of weights  
5:  If New_accuracy < Baseline_accuracy  
6:   Undo last pruning step 
7   Switch to finer pruning strategy 
8:  Reinitialize remaining weights with !#$#%#&'  
9: Return Pruned Model  
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is separate from the in-field training during the deploy-
ment phase. The pruning phase of ReaLPrune is a one-time 
process only.  Hence, the training required for crossbar-
aware pruning (Line 3 of Algorithm 1) can be implemented 
using other hardware alternatives (e.g., GPUs, TPUs, etc.); 
this step is not being implemented on ReRAMs. Once, the 
pruned model is obtained, the remaining weights are re-
wound to their original values at " = 0, and then deployed 
on ReRAM crossbars for all future training instances with 
any dataset. Recall that models pruned using LTP can be 
trained from scratch without any accuracy loss. This ena-
bles us to train deep and large CNNs on hardware con-
strained platforms (such as edge devices).  

Fig. 4 illustrates the implementation of the different 
stages of ReaLPrune on suitable hardware platforms. As 
shown in Fig. 4, the pruning (and the associated training; 
Line 3 of Algorithm 1) is implemented using conventional 
GPUs. This step incorporates the crossbar knowledge (i.e., 
which weights are mapped to which crossbar) during the 
pruning phase as discussed earlier in Sec. 4.1. Note that the 
mapping of CNN weights to ReRAM crossbars is deter-
ministic following [6]. For instance, all weights belonging 
to the same filter in a Conv layer are mapped to the same 
crossbar column [6]. We incorporate such mapping infor-
mation in phase 1 (pruning step) of ReaLPrune. Once, the 
pruned model is obtained, we map the remaining weights 
to ReRAM crossbars as shown in Fig. 5. Fig. 5(a) shows the 
target ReRAM-based on-chip training hardware; we dis-
cuss the architecture is more detail in next section. Fig. 5(b) 
shows an example where 16 weights are mapped to a 4×4 
ReRAM crossbar. Four weights (&(,	&),	&**,	&*+), all be-
longing to the same column, are pruned (i.e., denoted by 
the red color). As a result, we can reuse these four cells for 
other computations (e.g., map another set of weights), 
without affecting accuracy. This results in significant hard-
ware savings and performance improvement as we show 
later. Overall, the ReRAM crossbars are used for training 
the pruned model in-field, from scratch (i.e., deployment 
phase of ReaLPrune); the pruning itself need not be imple-
mented using ReRAMs.  

5 EXPERIMENTAL RESULTS 
In this section, we first compare ReaLPrune with other 

pruning techniques in terms of network sparsity and 
hardware savings. Next, we present results on the full-
system speed-up for in-field training enabled by 
ReaLPrune. 

5.1 Experimental setup 
The pruning phase of ReaLPrune is implemented using 

NVIDIA Titan Xp GPU with 24GB of memory. The pruned 
(but untrained) network is then mapped to a manycore Re-
RAM-based PIM architecture for evaluating in-field train-
ing speed-up and hardware savings. Fig. 5 shows the target 
hardware platform, which consists of multiple ReRAM 
tiles. Each ReRAM tile can be configured for both storage 
and computation. Each tile includes eDRAM buffers, IMA 
units, output registers, along with shift-and-add, ReLu, 
and max-pool units. The IMAs have multiple crossbar ar-
rays along with other peripheral circuitry, e.g., ADCs, con-
nected with a shared bus. In line with prior work [7][10], 
16-bit fixed-point precision is used for the computations on 
ReRAMs. The specific embodiment of the target architec-
ture considered in this work consists of 256 ReRAM tiles. 
The tiles are connected using a mesh network-on-chip 
(NoC). Here it should be noted that mesh NoCs are not 
typically suited for multi-hop long-range communication. 
However, CNN training involves data sharing between ad-
jacent layers only. Hence, long-range communication can 
be avoided by appropriately mapping the CNN layers to 
different processing tiles [10]. As a result, a simple NoC to-
pology such as mesh is sufficient as the communication 
backbone in ReRAM-based architectures. Each ReRAM tile 
consists of 96 crossbars (each crossbar is of size 128×128) 
and the associated peripherals such as ADC, DAC, etc. 
Each ReRAM tile requires 0.37 mm2 area and consumes 
0.33 W power [7]. The ReRAM crossbars operate at 10 
MHz. We use NeuroSim V2.0 to evaluate full-system area 
and performance of the ReRAM architecture after map-
ping the pruned CNN model [31]. NeuroSim V2.0 provides 
support for on-chip training and includes hardware for 
feed-forward, error-calculation, weight-gradient-calcula-
tion and weight-update. Hence, it is suitable for evaluating 
CNN training on ReRAM-based systems. 

CNNs used for evaluation: We choose four well known 
CNNs: VGG-11, VGG-16, VGG-19, and ResNet-18 for experi-
mental analysis [23][24]. The CNNs are trained on the CIFAR-

 
Fig. 4: Deploying ReaLPrune in edge hardware. The pruning phase is implemented using GPUs (on the cloud). This phase incorporates the crossbar 
knowledge (i.e., which weights will be mapped to which crossbar) for pruning; the deployment phase (in-field training) is done using ReRAM crossbars 
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Fig. 5: Illustration of the (a) ReRAM-based architecture for CNN training, 
and (b) mapping the pruned weights on the ReRAM crossbar 
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10 dataset as an example [25]. However, as discussed earlier, 
the pruned lottery network generalizes across a variety of da-
tasets (including Fashion MNIST, SVHN, CIFAR-10/100, 
ImageNet, and Places365) [18]. We show in Sec. 5.5 that simi-
lar to LTP, ReaLPrune is highly effective for different datasets 
and other deeper CNNs as well. The CNNs were imple-
mented using PyTorch and trained on a NVIDIA Titan Xp 
GPU with 24GB of memory. The training was done using Xa-
vier initialization, learning rate (LR) of 0.1, batch size of 128, 
and SGD optimizer. The LR was decreased by 5% after every 
epoch. The use of Xavier initialization enables us to success-
fully train the deep CNNs. We train all the CNNs for 50 
epochs. Here, it should be noted that both the unpruned and 
pruned CNNs take similar time to reach same accuracy [11]. 

Baseline pruning techniques: As discussed in Section 2, 
there are multiple ways to prune a CNN. We can prune dur-
ing training as done in [36][37]. However, as mentioned ear-
lier, the objective of our work is to prune before in-field train-
ing (as shown in Fig. 4); hence, these methods are not suitable 
as baselines here. A reinforcement learning (RL) based prun-
ing approach is proposed in [40]. However, this approach is 
not suitable for CNN training as the RL model has to be re-
trained every time the weights change (due to weight up-
dates). The most common method of pruning requires adding 
a regularization term to the loss function, such as the L1-norm 
of weights or a group LASSO that uses L1-norm or L2-norm 
of groups of weights for structured pruning [16][17][27]. The 
regularizer penalizes complex models and prefers simpler 
models which perform well on the training data and leads to 
better generalization in both theory and practice. This causes 
the optimization process to automatically prefer small abso-
lute values for weights or groups of weights. The less im-
portant weights become zero (or too small) in the process, 
thereby sparsifying the model. We choose two different prun-
ing techniques from this family of pruning methods as repre-
sentatives, to compare with ReaLPrune. We choose a block 
pruning technique (referred as ‘Block’ hereafter) that uses 
group LASSO to prune blocks of weights [16]. We adapt this 
technique for the crossbar configuration in our target architec-
ture. Also, we employ a recently proposed crossbar-aware 
pruning (referred as ‘CAP’) technique [13]. CAP utilizes a 
multi-group LASSO algorithm to prune groups of weights 
that would otherwise be mapped along a column in an Re-
RAM crossbar. Here, it should be noted that these two prun-
ing approaches achieve similar levels of pruning as the other 
methods (such as [12][17][27]); hence, they are suitable as 
baselines to evaluate the effectiveness of ReaLPrune. Both 
Block and CAP are implemented in an iterative manner to en-
sure maximum possible pruning without sacrificing accuracy 
compared to their unpruned counterparts. We also choose 
LTP as the representative state-of-the-art crossbar-unaware 
pruning technique as the third baseline as it achieves one of 
the highest levels of sparsity among the pruning techniques 
considered here [11]. We prune 25% of the remaining non-
zero weights after each iteration based on their magnitude 
(i.e., ) = 0.25 in Algorithm-1). Please note that the pruning 
percentile (p) is a hyperparameter (similar to learning rate), 

and the value of p can be decided by the user. 
Reliability of training: In this work, we assume ideal Re-

RAM behavior. However, as mentioned earlier, non-ideal Re-
RAMs have many shortcomings that can affect the quality of 
CNN training, such as the use of low precision (16-bit fixed 
point in this case) and write endurance. These issues can be 
addressed using very simple techniques. To mitigate the ac-
curacy loss due to the use of 16-bit fixed point precision, sto-
chastic rounding can be used [10]. Stochastic rounding is an 
unbiased rounding scheme that makes a probabilistic deci-
sion of where to round and has the desirable property that the 
expected rounding error is zero. The use of stochastic round-
ing leads to successful CNN training at less than 1% area over-
head [10]. To address the problem of write endurance, we can 
adopt the low rank training (LRT) algorithm proposed in [9], 
which reduces the number of weight updates by two orders 
of magnitude. As an example, training a CNN for 50 epochs 
on CIFAR-10, with batch size of 128, results in ~20k weight 
updates. Prior work has reported ReRAM write endurance 
between 106-1012 writes [43][44]. Even if we assume the most 
pessimistic scenario of 106 writes, the LRT method will allow 
us to train more than 5000 times assuming that the training 
configuration (e.g., batch size, number of epochs, and dataset 
size) remains the same. Alternatively, we can adopt a magni-
tude-based weight update method as outlined in [42]. Either 
of these methods can be used to reduce the number of writes 
necessary for CNN training. In spite of all these measures, 
faults can still happen due to a variety of reasons [28][29]. We 
can adopt additional counter measures such as ECC, and 
weight clipping to continue reliable training. For instance, the 
use of weight clipping enables successful CNN training with 
up to 5% fault density, while introducing significantly low 
overheads [29]. Hence, we can train the pruned CNNs ob-
tained using ReaLPrune, even if the ReRAMs were non-ideal. 
However, since addressing reliability issues in ReRAMs is not 
the focus of this work, we will assume ideal behavior for 
demonstrating the effectiveness of ReaLPrune and for all fur-
ther analysis. 
5.2 Accuracy after pruning 
First, we compare the effectiveness of each of the pruning 
techniques in terms of the achievable sparsity. For this pur-
pose, we first prune the CNNs using the four different meth-
ods to obtain the respective sparse networks. Here, our goal 
is to find the sparsest possible CNN that can be trained from 
scratch to achieve prediction accuracy that is at par or higher 
than the baseline accuracy. We define ‘baseline accuracy’ as 
the accuracy obtained after training the original unpruned 
CNN model. Fig. 6(a) shows the amount of pruning that each 
technique can achieve without sacrificing accuracy for all the 
four CNNs. As shown in Fig. 6(a), all these techniques can 
prune a significant percentage of weights when they are ap-
plied in an iterative fashion. LTP performs the best and can 
prune 97.2% of the weights on average. ReaLPrune can prune 
95.5% of the weights on average for the four CNNs consid-
ered here. Block and CAP prune 87.3% and 87.5% of weights 
on average, respectively. Models with higher levels of prun-
ing (than what we report here) failed to reach baseline 
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accuracy when trained from scratch. ReaLPrune can remove 
more weights than Block and CAP as it adopts multiple prun-
ing strategies (filter-wise, channel-wise, and index-wise prun-
ing) as discussed in Sec. 4.2; both Block and CAP adopt a sin-
gular pruning strategy (row/column-wise pruning) [6][10]. 
As shown in Fig. 6(a), LTP is the clear winner in terms of the 
achievable sparsity for all CNNs. However, as we show in 
next sub-section, it fails to reduce hardware requirements pro-
portionate with the high levels of pruning.  

Once we have the pruned models, we can then use them 
for in-field, on-chip training. Fig. 6(b) shows the accuracy 
achieved by the sparse models (from Fig 6(a)) compared to 
the baseline accuracy (i.e., accuracy of the unpruned model) 
when trained from scratch for 50 epochs simulating an in-
field, on-chip training. As shown in Fig. 6(b), all the pruned 
models achieve at par or slightly higher accuracy than their 
unpruned counterpart when trained for 50 epochs. For in-
stance, the unpruned ResNet-18 model achieves 87.95% accu-
racy when trained for 50 epochs. Following the same training 
configuration, the ReaLPrune-enabled model achieves 
90.66% accuracy even when 94.4% of its weights are pruned. 
This happens as pruning acts as a regularizer, which makes 
the sparse model generalize better on unseen data (as shown 
in Fig. 6(b)). However, we see a steep decline when we con-
tinue to prune more weights than what we report in Fig. 6(a). 
This happens as the network now has very few parameters 
and is unable to learn all meaningful representations from the 
input. These observations are also in line with prior work [11]. 
This experiment shows that we can use these suitably pruned 
models for on-chip training on the edge without accuracy 
loss.  

5.3 Hardware savings due to pruning 
As shown in Fig. 4, crossbar rows/columns with all zero 
weights can be reused for other purposes without affecting 

the intended output i.e., we will need fewer ReRAM cells to 
train the pruned model compared to the unpruned baseline. 
Fig. 7 shows the number of ReRAM crossbars that are neces-
sary to train the pruned models (from Fig. 6(a)) compared to 
their unpruned counterparts. Here, it should be noted that the 
number of ReRAM crossbars can vary based on the amount 
of parallelism adopted for accelerating the CNN training [6]. 
In a pipelined training implementation, the slower CNN lay-
ers will dominate the execution time. Hence, these slower lay-
ers are typically accelerated by replicating the weights using 
additional ReRAM crossbars [6]. To ensure fair comparison in 
terms of the hardware savings, we choose an iso-performance 
setting, i.e., we ensure equal amount of parallelism, and hence 
equal performance, for the four pruning techniques. 

As shown in Fig. 7, under an iso-performance setting, 
the number of required ReRAM crossbars is significantly 
reduced by all the four pruning techniques. However, Re-
aLPrune achieves the highest amount of hardware savings 
despite pruning fewer weights than LTP. From Fig. 7, we 
note that ReaLPrune reduces the number of ReRAM cross-
bars necessary for training by 77.2% on average. LTP re-
duces hardware requirements by only 58.9% on average 
due to its crossbar-unaware nature, despite pruning more 
weights than ReaLPrune (Fig. 7(a)). Interestingly, Block 
and CAP achieve similar levels of hardware savings as LTP, 
despite pruning significantly fewer weights. Block and 
CAP reduces hardware requirements by 58.7% and 59% re-
spectively. This happens as Block and CAP are crossbar-
aware; hence, they can reduce hardware requirements de-
spite pruning fewer weights.  

We note that the amount of hardware savings is always 
less than the amount of pruning. This is expected as not all 
the pruned weights lead to hardware savings, as demon-
strated in Fig. 2. In addition, ReRAM crossbars are required 
to store both the CNN weights and activations. However, 
weights and activations are pruned by different extents. 
This happens as only filter-wise pruning can prune activa-
tions (as shown in Fig. 3); channel-wise, index-wise, or 
other pruning strategies do not lead to an activation being 
zero. Hence, fewer activations are pruned than weights. As 
a result, the overall amount of hardware savings is always 
less than the amount of pruning despite the crossbar-
awareness. 

 
Fig. 7: Number of crossbars required for on-chip training after pruning 
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Fig. 6: (a) Percentage of non-zero weights remaining in the models after pruning, and (b) Accuracy obtained after training the pruned models for 50 
epochs from scratch simulating an on-field training 
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5.4 Impact on performance 
Next, we compare the speed-up enabled by the different 
pruning techniques compared to their unpruned counter-
part on the same ReRAM-based architecture. Here, we do 
not show any performance comparison with respect to 
GPUs because prior work [6][14][33] has already demon-
strated that ReRAMs are more efficient than GPUs for 
CNN training. Unlike the experiment in Section 5.2, we as-
sume an iso-area setting for this analysis i.e., the number 
of ReRAM crossbars available is equal in all cases. Fig. 8(a) 
shows the speed-up when the different CNNs are trained 
using ReRAMs. As shown in Fig. 8(a), all the pruned CNN 
models lead to faster training than the unpruned model. 
ReaLPrune outperforms the other methods and achieves 
the highest speed-up (19.7×) for CNN training on average 
(under iso-area conditions) compared to the unpruned ver-
sion. Fig. 8(b) explains this observation in more detail. It 
shows the minimum number of ReRAM crossbars and the 
corresponding computation time required by each convo-
lution layer of an unpruned ResNet-18 (denoted as C1-
C17). The CNN layers C11-C17 use up more than 80% of 
the ReRAM crossbars to store their weights, leaving only a 
handful of crossbars for the other layers. However, these 
layers (C11-C17) process smaller sized inputs than C1-C5. 
As shown in Fig. 8, the computation time for the first few 
layers (C1-C5) are the highest even though the number of 
weights associated with these layers are limited.  
It is well known that CNNs are trained following a pipe-
lined implementation on ReRAM-based architectures [6]. 
In a pipelined implementation, the slowest layer deter-
mines the overall execution time; in the case of unpruned 
ResNet-18, layers C1-C5 dominate the execution time. 
Hence, the slower layers must be accelerated by replicating 
the weights on additional ReRAM crossbars. However, in 
an unpruned ResNet-18, very few crossbars are available 
for these computation-heavy layers (more than 80% of the 
resources are used up for storing the weights of the layers 
C11-C17); this leads to lower speed-up in training. Unlike 
the unpruned model, ReaLPrune (and other pruning tech-
niques) reduces the number of weights that need to be 
stored. This leads to significant hardware savings com-
pared to the unpruned variant as shown in Fig. 7. In an iso-
area setting, hardware savings translate to unutilized Re-
RAM crossbars. By using these available resources, we can 
accelerate the slower CNN layers. This leads to signifi-
cantly higher speed-up for ReaLPrune, despite using the 

same total number of ReRAM crossbars as its unpruned 
counterpart (iso-area). 
Finally, it should be noted that pruning (using either ReaL-
Prune, or the other techniques considered in this work) is 
a one-time effort. As shown in Fig. 1 and Fig. 4, our aim is 
to prune first, and then use the pruned model for all future 
training. We perform the iterative pruning using ReaL-
Prune only once; this step can be implemented using 
GPUs, TPUs, etc. The pruned model can then be made 
available publicly (e.g., via GitHub) for anyone to down-
load and use. These pruned models can then be deployed 
on ReRAMs and reused for training (and inferencing) any 
number of times, thereby amortizing the cost (time/energy 
spent) for the pruning itself. 

5.5 Scalability of ReaLPrune 
In this sub-section, we show that ReaLPrune is equally effec-
tive for larger datasets and CNNs. For this experiment, we 
choose three different datasets, namely SVHN, CIFAR-100, 
and Tiny ImageNet [25][34][35]. SVHN includes 73257 images 
of digits for training, 26032 images of digits for testing, and 
includes 10 classes. The dataset represents a significantly 
harder, unsolved, real-world problem (recognizing digits and 
numbers in natural scene images) and is obtained from house 
numbers in Google Street View images [34]. The CIFAR-100 
dataset has 100 classes containing 600 images each. There are 
500 training images and 100 testing images per class [25]. Tiny 
ImageNet is a subset of the ImageNet dataset from the well-
known ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC). The dataset contains 100,000 images of 200 classes 
(500 for each class) downsized to 64×64-colored images. Each 
class has 500 training images, and 50 test images [35]. It 
should be noted that other datasets (such as ImageNet) can 
also be used here. However, training repeatedly on the entire 
ImageNet dataset from scratch is prohibitively expensive. 
Hence, we refrain from using ImageNet in this work noting 
that our experiments on diverse small and large datasets pro-
vide strong demonstration of our key research hypotheses. 
The datasets chosen here, have varying number of classes 
(SVHN: 10 classes, CIFAR-100: 100 classes, and Ti-
nyImageNet: 200 classes). This is necessary to demonstrate 
the scalability of LTP and ReaLPrune with increasing task 
complexity. For training with these three datasets, we use Res-
Net-18 as the underlying CNN. We only modify the final fully 
connected layer in ResNet-18 to account for the different im-
age size and the different number of classes in each dataset. 
Here, we choose ResNet-18 as an example only. Similar 
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Fig. 8: (a) Overall execution time speed-up achieved by the different pruned models compared to unpruned CNNs, when training is done using Re-
RAMs, and (b) Layer-wise ReRAM crossbars requirement and corresponding execution time for ResNet-18. 
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observations are made with other CNNs as well. 
In addition to new datasets, we also choose two relatively 
deeper CNN models, namely MobileNet [45], and ResNet-34. 
MobileNet is a simple and not very computationally intensive 
CNN with 28 layers, targeted for mobile vision applications. 
The MobileNet architecture factorizes a standard convolution 
into a depthwise convolution, and a 1 × 1 convolution called 
a pointwise convolution to reduce the model size. MobileNet 
is significantly smaller in size than VGGs despite having more 
layers. Hence, it is more challenging to prune. ResNet-34 is 
the deepest CNN considered in this work with 34 layers. Both 
these models are used with the CIFAR-10 dataset for this eval-
uation. By studying the behavior of ReaLPrune on these two 
larger models, we demonstrate the scalability of the proposed 
method for deeper CNNs.  
From previous experiments (Fig. 6), we have demonstrated 
that both Block and CAP methods do not achieve comparable 
levels of sparsity as LTP and ReaLPrune. Hence, for this anal-
ysis, we only focus on LTP and ReaLPrune. Fig. 9 shows the 
percentage of weights remaining after pruning using LTP and 
ReaLPrune for the different datasets and deep CNNs. As 
shown in Fig. 9, the amount of sparsity that can be achieved 
after pruning decreases as the complexity of dataset increases. 
For instance, LTP was able to prune ~99% of the weights for 
SVHN (simplest of the three datasets) while it can only 
achieve 92.5% sparsity for TinyImageNet (most complex 
among the three datasets). This is expected as more weights 
are necessary to extract/learn distinguishing features among 
the different images of the more complex datasets. Interest-
ingly, ReaLPrune achieves LTP-like sparsity for all the da-
tasets irrespective of its size/complexity. As expected, LTP 
prunes slightly higher number of weights than ReaLPrune 
(which is similar to the observations in Fig. 6). Similarly, Re-
aLPrune is equally effective on deeper CNNs such as Mo-
bileNet (28 layers) and Resnet-34 (34 layers). In both cases, Re-
aLPrune achieves similar amount of pruning as LTP. Here, it 
should be noted that both LTP and ReaLPrune are not able to 
prune a lot of weights in MobileNet as shown in Fig. 9. This 
happens as MobileNet, by design, has fewer parameters to 
begin with. Hence, it is challenging to achieve extreme spar-
sity in MobileNet similar to the other CNNs. Overall, Fig. 9 
shows that ReaLPrune is equally effective as a crossbar-aware 
pruning technique, irrespective of the dataset and CNN size 
for enabling high-performance on-chip training.  

6 CONCLUSIONS 
CNN training is expensive in terms of both the storage and 
computation requirements. Training a pruned network (from 
scratch) can alleviate this problem. However, existing cross-
bar unaware pruning techniques are not suited for this pur-
pose. To address this problem, we have described a crossbar-
aware pruning technique called ReaLPrune that achieves ex-
treme sparsity (comparable to lottery ticket pruning), while 
also providing considerable savings in hardware. Our analy-
sis has shown that ReaLPrune can prune 95.5% of CNN 
weights on average, which reduces hardware requirements 
by 77.2% compared to the unpruned version on average. In 
addition, ReaLPrune achieves 19.7× speed-up in execution 
time compared to the unpruned version on an ReRAM-based 
manycore architecture. ReaLPrune also outperforms other 
state-of-the-art pruning techniques, including crossbar-aware 
ones, in terms of both execution time and hardware savings. 
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