RealPrune: ReRAM Crossbar-aware Lottery
Ticket Pruned CNNs

Biresh Kumar Joardar, Member, IEEE, Janardhan Rao Doppa, Member, IEEE, Hai (Helen) Li,
Fellow, IEEE, Krishnendu Chakrabarty, Fellow, IEEE, and Partha Pratim Pande, Fellow, IEEE

Abstract—Training machine learning (ML) models at the edge (on-chip training on end user devices) can address many
pressing challenges including data privacy/security, increase the accessibility of ML applications to different parts of the world by
reducing the dependence on the communication fabric and the cloud infrastructure, and meet the real-time requirements of
AR/VR applications. However, existing edge platforms do not have sufficient computing capabilities to support complex ML
tasks such as training large CNNs. ReRAM-based architectures offer high-performance yet energy efficient computing platforms
for on-chip CNN training/inferencing. However, ReRAM-based architectures are not scalable with the size of the CNN. Larger
CNNs have more weights, which requires more ReRAM cells that cannot be integrated in a single chip. Moreover, training larger
CNNs on-chip will require higher power, which cannot be afforded by these smaller devices. Pruning is an effective way to solve
this problem. However, existing pruning techniques are either targeted for inferencing only, or they are not crossbar-aware. This
leads to sub-optimal hardware savings and performance benefits for CNN training on ReRAM-based architectures. In this
paper, we address this problem by proposing a novel crossbar-aware pruning strategy, referred as RealLPrune, which can prune
more than 90% of CNN weights. The pruned model can be trained from scratch without any accuracy loss. Experimental results

indicate that ReaLPrune reduces hardware requirements by 77.2% and accelerates CNN training by ~20x compared to
unpruned CNNs. RealLPrune also outperforms other crossbar-aware pruning techniques in terms of both performance and
hardware savings. In addition, ReaLPrune is equally effective for diverse datasets and more complex CNNs.

Index Terms —ReRAM, Machine Learning, Pruning, CNN

1 INTRODUCTION

EEP learning (DL) has enabled significant growth in

diverse real-world applications ranging from face
recognition and AR/VR to natural language processing
and computer vision [1]. However, existing DL applica-
tions are computation intensive and are typically deployed
on the cloud. For example, most voice assistants, e.g., Ap-
ple Siri and Microsoft’s Cortana, are based on cloud com-
puting and do not function if the network is unavailable.
Smaller edge devices are insufficient to support the com-
putations associated with many DL algorithms including
the training of Convolutional Neural Networks (CNNs).
However, there is a growing necessity to address the prob-
lem of training on the edge platforms due to a multitude of
factors [1][2][3]. First, for many important applications
(e.g., mobile health and recommendation systems), privacy
and security are important concerns [4][5]. Second, ven-
dors often want to personalize their ML-driven prod-
ucts/applications for each user; this will require incremen-
tal learning on the edge. For instance, Google G-board uses
federated learning to collaboratively train the typing pre-
diction model on smartphones [3]. Each user uses their
own typing records to train G-board. Hence, the trained G-
board can be used immediately, powering experiences that

e B. K. Joardar, H. Li, and K. Chakrabarty are with the Department of Elec-
trical and Computer Engineering, Duke University, Durham, NC 27708;
E-mails: {bireshkumar.joardar, hai.li, krish}@duke.edu;.

e J. R. Doppa, and P. P. Pande are with the School of Electrical Engineering
& Computer Science, Washington State University, Pullman, WA 99163;
E-mails: {jana.doppa, pande}@wsu.edu.

is personalized to each user. Third, there is a need to in-
crease the accessibility of Al applications to different parts
of the world by reducing the dependence on the commu-
nication fabric and the cloud infrastructure. Fourth, many
of these applications such as robotics and AR/ VR require
low latency, which may not be achievable without per-
forming the computation directly on the edge platform.
However, existing edge platforms are still not capable of
training large ML models such as CNNs and addressing
this problem is one of the primary foci of this work.

Emerging resistive random-access memory (ReRAM)
has been shown to be an effective platform for efficient
training and inferencing of deep learning algorithms, in-
cluding CNNs [6][7]. ReRAM-based systems can be used
to enable low-power training on the edge. Recently Re-
RAM-based prototypes for CNN inferencing and training
have been demonstrated [8][9]. ReRAM crossbars can effi-
ciently perform matrix-vector multiplication, which forms
the backbone of most CNN computations [7]. Prior work,
such as Pipelayer [6] and AccuReD [10], have shown that
ReRAM- based architectures can outperform GPUs for
training CNNs while consuming less energy. In addition,
ReRAM-based systems are more area-efficient compared
to their GPU counterparts and do not require expensive
off-chip memory access due to their “in-memory” nature
of computation [7].

Despite these advantages, ReRAM-based architectures
are not scalable with the size of CNNs. Deep CNNss (i.e.,
CNNs with many layers) involve many weights, which ne-
cessitates many ReRAM crossbars for storage and

computation [10]. Unlike GPUs where each CNN layer is
processed one after another, ReRAM processes the CNN
layers in a pipelined fashion [6]. In a pipelined implemen-
tation, all layers of the CNN are active at the same time,
i.e., the computations of all the layers are performed sim-
ultaneously; each layer processes a different input image.
Hence, ReRAM-based architectures must store all the
weights on-chip, which necessitates many crossbars. More-
over, training requires storing intermediate data (such as
activations) to be used during the backward phase of train-
ing [6]. Overall, this necessitates many ReRAM crossbars
for storage and computation. This is especially problematic
for deep CNNs such as VGG-19. VGG19 involves 143 mil-
lion weights and storing all the weights will necessitate at
least 143 million ReRAM cells, which is expensive in terms
of both area and power, especially for edge devices.
Clearly, this problem must be addressed to enable training
on end user devices.

Pruning is an effective way to reduce the amount of stor-
age and computation needed for CNN training/inferenc-
ing [11]. Pruning reduces the number of weights in a CNN
by forcing some of the weights to be zero. Multiplications
and additions with zero are functionally redundant; multi-
plication with zero yields a zero and the sum of any num-
ber with zero is the number itself. Hence, we can safely
omit storing and computing with zero weights. This can
lead to potential savings in terms the total number of Re-
RAM crossbars necessary for CNN training. However, con-
ventional pruning techniques are oblivious to the crossbar
structure. Simply pruning weights does not translate to Re-
RAM crossbar savings without the knowledge of the un-
derlying mapping mechanism. Crossbar-aware pruning
strategies can solve this problem. Crossbar-aware pruning
approach results in relatively more hardware savings de-
spite potentially lower levels of sparsity than their conven-
tional ReRAM-unaware counterparts. However, existing
crossbar- aware pruning strategies are targeted for CNN
inferencing only [12][13]. The pruned networks obtained
using these methods cannot be trained from scratch with-
out accuracy loss [11]. Moreover, CNN training requires
the storage of both weights and activations. As a result,
simply pruning the weights may not lead to significant re-
ductions in the number of activations that must also be
stored during training.

Therefore, there is a clear need to develop new crossbar-
aware pruning strategies for CNN training on smaller de-
vices. Towards this goal, we propose the first ReRAM
crossbar-aware pruning technique for CNN training,
which aims to reduce both the number of weights and ac-
tivations that must be stored on ReRAM crossbars. We re-
fer to the proposed technique as ReaLPrune. ReaLPrune is
inspired by the recently proposed Lottery Ticket Pruning
(LTP) hypothesis [11]. It combines the insights from LTP
with the key attributes of the crossbar structure and the
mapping strategy, guided by practical considerations
adopted in ReRAMs for training CNNs. ReaLPrune can
prune more than 90% of the CNN weights on average. The

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

model pruned using RealPrune, can be trained from
scratch with no accuracy loss using inexpensive hardware,
compared to its unpruned counterpart. Moreover, due to
its crossbar-aware nature, the resulting sparsity directly
translates to a high amount of hardware (ReRAM crossbar)
savings. RealLPrune also outperforms existing pruning
techniques (including crossbar- aware methods) in terms
of achievable sparsity. This enables us to accelerate the
training of deeper and larger CNNs on hardware con-
strained platforms (such as edge devices, i.e., edge Al). The
key contributions of this work are as follows:

e We show that despite pruning more than 90% of
the weights, LTP is unable to achieve similar levels
of hardware savings or performance improve-
ment in practice, for a ReRAM-based architecture.

e We propose a novel crossbar-aware pruning strat-
egy, referred to as ReaLPrune. This strategy
achieves more than 90% sparsity while reducing
hardware requirements and enhancing perfor-
mance significantly.

e Experimental analysis indicates that ReaLPrune-
enabled training is ~20x faster than training with
unpruned models on an ReRAM-based architec-
ture.

The rest of the paper is organized as follows. Section 2
presents relevant prior work related to pruning and Re-
RAM- based architectures. Section 3 motivates the neces-
sity of a crossbar-aware mapping strategy. Section 4 intro-
duces the proposed ReaLPrune technique. We evaluate Re-
aLPrune’s effectiveness in Section 5. Finally, we conclude
this paper by summarizing the findings in Section 6.

2 RELATED PRIOR WORK

In this section, we present relevant prior work on Re-
RAM-based CNN accelerators and model pruning tech-
niques.

2.1 ReRAM-based architectures

ReRAMs can be used to perform in situ multiply-and-
accumulate (IMA) operation, which forms the core of CNN
computational kernel. Hence, ReRAM-based architectures
are popular for accelerating inferencing for CNNs [7]. A
working prototype of ReRAM-based architecture for CNN
inferencing has been demonstrated by researchers from
CEA-Leti [8]. Recent work has attempted to design Re-
RAM-based systems for CNN training [6][10][14]. How-
ever, lower precision of computing, the lack of normaliza-
tion layers, and endurance issues have presented a chal-
lenge towards adopting ReRAM based accelerators for
CNN training [10][30][41]. It is well known that the weight
gradients in a CNN are very sensitive to precision [10].
Hence, training with low precision representation can of-
ten lead to accuracy loss or failure to train altogether. The
poor accuracy problem can be addressed by using a com-
bination of ReRAMs and GPUs [15]. However, GPUs are
relatively slower than ReRAMs for performing IMA oper-
ations. This can result in relatively sub-optimal

AUTHOR ET AL.: TITLE

performance. In [31], the authors solve the problem of
training at low precision using stochastic rounding. In [10],
the authors propose using GPUs to support normalization
layers for training deep CNNs. However, all these ReRAM-
based systems assume ideal ReRAM behavior. Due to im-
mature fabrication process, ReRAM cells often have vari-
ous types of faults [28][29]. Moreover, the frequent weight
updates involved in CNN training can lead to new faults
as ReRAM cells have relatively poor write endurance.
CNN training and inferencing on non-ideal ReRAM cross-
bars can lead to accuracy drop [29][41]. Several methods
including the use of error correction code (ECC), weight
clipping, and selective weight updates, have been pro-
posed to enable successful CNN training and inferencing
even in presence of faulty ReRAM cells [29][42]. By incor-
porating these techniques in conventional ReRAM-based
architectures, we can train CNNs with minimal accuracy
drop even when many ReRAM cells are damaged / defec-
tive. We can adopt these measures in an ReRAM-based ar-
chitecture for enabling reliable CNN training in the pres-
ence of faults and defects. However, all the above-men-
tioned architectures utilize conventional unpruned CNNSs,
which tend to have high area, relatively low performance,
and high energy requirements. In this work, we demon-
strate the potential of training already pruned CNNs on
ReRAM-based architectures. Our experiments indicate
that training pruned CNNs from scratch requires signifi-
cantly fewer hardware resources and also reduces execu-
tion time, which meets the requirements of training on
edge.

2.2 CNN Pruning

It is estimated that training a single unpruned neural
network can cost over $10,000 and emit as much carbon as
five cars over their lifetimes [19]. Pruning can solve this
challenge by reducing the storage and energy require-
ments. It also accelerates both CNN training and inferenc-
ing. Several pruning techniques have been proposed in the
literature [11][16][26][27]1[39]. However, all these tech-
niques are unaware of ReRAM crossbar structure. The
mapping of CNN weights to the ReRAM crossbars is very
different than conventional GPUs. In a ReRAM crossbar,
each input activates all the cells in a row of the ReRAM
crossbar. Similarly, each output activates all the cells in a
column of the ReRAM crossbar. Pruning techniques that
are unaware of these features of the ReRAM crossbar, may
not lead to any hardware savings or performance benefits
as we explain and experimentally demonstrate in more de-
tail later. Crossbar aware pruning techniques have been
proposed recently [12][13][17][40]. However, all these
methods are targeted for CNN inferencing and are not as
effective for training. The networks pruned using these
types of methods typically fail to reach the same accuracy
as their unpruned counterparts, when trained from scratch
[11]. Pruning methods for supporting faster CNN training
have also been proposed [36][37]. However, these methods
start with an unpruned CNN and then prune weights after
each epoch/iteration of training. While this strategy can

improve performance, it is not amenable to reducing the
hardware requirements. Hardware design must be done
considering the worst-case scenario. In this case, we need
an ReRAM-based system that can support the unpruned
CNN. Even though the CNN is pruned over the next few
epochs/iterations, the hardware cannot be pruned/re-
duced at runtime, i.e., the additional cells will still remain
in the design. Hence, there is no hardware savings follow-
ing this strategy. In addition, the pruning has to be re-
peated every time the same CNN model needs to be
trained from scratch, which is fundamentally different
from what we aim to achieve. In this work, we want to
prune before training. The pruned model can then be
trained from scratch and /or incrementally.

Lottery Ticket Pruning (LTP) is a recently proposed
pruning technique for CNN training that addresses these
shortcomings in existing pruning methodologies [11]. The
pruned model obtained using LTP can be trained from
scratch with little to no accuracy loss when compared to
the original unpruned model. Hence, we can use fewer Re-
RAM crossbars to train the CNNs. Moreover, the pruned
CNNs are reusable any number of times, i.e., we can train
the same pruned CNN over and over, thereby amortizing
the cost of pruning itself. However, LTP method is oblivi-
ous of the ReRAM crossbar structure. Hence, despite prun-
ing more than 90% of the CNN weights using LTP, we do
not see commensurate hardware savings or performance
gains in practice. In this work, we address the above short-
comings of existing ReRAM-based architectures and prun-
ing techniques. We present ReaLPrune, an iterative cross-
bar-aware pruning technique, that removes weights strate-
gically to save area, and improve performance and energy-
efficiency. Experiments demonstrate that ReaLPrune
achieves high sparsity (more than 90%) for a variety of
CNNs while also leading to significant hardware savings
and performance benefits.

3 LOTTERY TICKET PRUNING: CHALLENGES

In this section, we discuss LTP and explain why it is not
effective for an ReRAM-based architecture.

3.1 Lottery Ticket Pruning (LTP)

LTP is a pruning technique that can find sparse sub-net-
works for CNN training [11]. LTP shows that dense, ran-
domly initialized networks contain sparse subnetworks
(referred as “winning tickets”), that when trained in isola-
tion, reach test accuracy comparable to the original net-
work using a similar number of iterations. LTP achieves
significantly higher sparsity than existing pruning meth-
ods that uses regularization techniques such as L1/L2-
norm or group lasso. Fig. 1 explains the difference between
LTP and conventional pruning. Conventional pruning
techniques (that are targeted for inferencing) first train an
unpruned network, and then prune the unimportant
weights. The pruned network is then used for inferencing
with the pretrained weights. In some cases, the pruned net-
work is further retrained (with weights initialized using

Train
P Prune
- - |:'|>
- ” Conventional pruning
ES 5 O\©<8Tr:>ain ‘\og]
Prune LTP

Fig. 1: Illustration of LTP and its difference with conventional pruning
techniques.

the pretrained weights) to recover accuracy loss. However,
it should be noted that these pruned networks typically fail
to reach the same accuracy when trained from scratch [11].
Hence, conventional pruning techniques that are targeted
for inferencing are often not effective for CNN training.
Unlike conventional pruning techniques, LTP prunes the
CNN before training as shown in Fig. 1. LTP first prunes
the network; the pruned network can then be used for mul-
tiple training instances. CNN training is expensive in terms
of both storage and computation. Training a pruned net-
work from scratch has the potential to reduce computation
and storage requirements as it involves fewer weights to
store and train. This can significantly speed-up CNN train-
ing and is also more energy efficient.

In [36] and [37], the authors present two pruning tech-
niques for training ML models. The PruneTrain method
prunes the model during training from scratch using
group lasso regularization. After every epoch, the weights
are pruned, and the CNN is reconfigured to continue train-
ing on the pruned model. A similar strategy is adopted in
[37]. The method proposed in [37] prunes weights after
each epoch using a variable pruning threshold. In addition,
this method incorporates the ability to recover incorrectly
pruned weights in subsequent iterations. However, both
these approaches prune the model during training. As
mentioned earlier, it has the following drawbacks: (a) Un-
like the CNN, the hardware elements cannot be physically
removed depending on the CNN size. The hardware (Re-
RAM-based system in this case) must be designed consid-
ering the worst-case scenario i.e. the unpruned CNN.
Hence, there is no hardware savings using this method,
and (b) The process of pruning has to be repeated every
time the CNN model is trained. This is fundamentally dif-
ferent from what we aim to achieve. In this work, we want
to prune the model before training. The pruned model can
then be trained any number of times from scratch. This has
the potential to improve power and performance in addi-
tion to reducing hardware requirements, all of which are
necessary to enable training on end user devices.

To identify a winning ticket, LTP adopts the following
steps:

¢ Randomly initialize the neural network with param-

eters 6, at time t = 0.
e Train the neural network for k iterations, resulting
in parameters 6.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

e Prune p% of the smallest-magnitude weights. The
parameter p can be chosen by the user.

o Reset the unpruned weights to its original initializa-
tion value (i.e., 6y). These remaining, unpruned
weights constitute the winning ticket.

¢ Retrain the winning ticket using same data and re-
peat the above steps until MAX iterations

By repeating this process once (one-shot pruning) or in
an iterative manner (iterative pruning), LTP can uncover
winning tickets that are more than 90% sparse. These
sparse models achieve high accuracy like their unpruned
counterpart when trained from scratch. The iterative LTP
consistently outperforms its one-shot counterpart for all
CNN:Ss [11]. The pruned sub-networks, also referred to as
the “winning tickets”, exhibit many interesting features:

o Aggressively pruned networks (with 95-99.5% of
weights pruned) show no drop in accuracy while
moderately pruned networks (50-90% pruning)
often outperform their unpruned counterparts
[11][21].

e The pruned networks meet/exceed the unpruned
network’s test accuracy within the same number
of iterations [11].

o The winning tickets generalize across a variety of
datasets (including Fashion MNIST, SVHN,
CIFAR-10/100, ImageNet, and Places365), i.e.,
they are dataset agnostic [18].

o The lottery networks work equally well with dif-
ferent optimizers (such as SGD, Adam, etc.) with
high accuracy [18].

o The lottery network can be easily trained using
different hyper-parameter settings, especially if it
is generated using larger datasets [18].

¢ Winning tickets can be identified at very early
stages of training with aggressively low-cost
training algorithms to reduce computation effort
and runtime for LTP [20].

e We can stretch (or squeeze) the pruned network
into another deeper (or shallower) network from
the same family i.e., the pruned network charac-
teristics are transferable across CNNs of the same
family [38].

These features of LTP make it an attractive choice for
pruning CNNs for the purpose of training. Hence, we
choose the LTP strategy in this work for pruning. We can
then train these pruned CNNs on ReRAM-based systems
from scratch.

3.2 Challenges with LTP

Despite these advantages, LTP is not suited for ReRAM-
based architectures as it is unaware of the crossbar struc-
ture and the mapping policy used to map CNN weights to
the ReRAM cells. Fig. 2 explains this problem. As shown in
Fig. 2(a), we consider a scenario where 12 out of the 16 Re-
RAM cells are zero (sparsity level: 75%). As every row / col-
umn in Fig. 2(a) has at least one non-zero entry, we cannot
save any hardware. Here, we define “hardware savings’ as

AUTHOR ET AL.: TITLE

Xip W1 |0 |0 JO x, Wy

Xz, 0 10 |0 |wo o, W

x350 |0 Ws 10 X35 W3

Xq=> 0 |ws |0 0 x‘;-»—ﬁL
A 4 v A 4 A 4

v
\/}’i = W; * X; Ky, = 3w, x;

(a) (b)
Fig. 2: (a) Mapping a pruned matrix on ReRAM crossbars, and (b) incorrect
results obtained after rearranging the non-zero entries.

the fraction of ReRAM cells that can be simply turned off
(by power gating) or reused for other purposes (e.g., map-
ping other non-zero weights of the CNN) without affecting
the correctness of the intended MAC operation. However,
a crossbar cannot control individual ReRAM cells to avoid
storing the zero weights and save hardware. This happens
as an input to the crossbar activates the entire row while
the output is obtained by accumulating the sum of currents
from all the cells along a single column. Therefore, if even
one cell in a row/column has a non-zero value, any naive
attempt to turn off or reuse the other cells storing zeros,
will produce incorrect results.

Similarly, compressing/rearranging the non-zero en-
tries to save hardware is also ineffective. In Fig. 2(b), we
have rearranged the remaining four non-zero entries (from
Fig. 2(a)) on a single column to highlight the problem. As
shown in Fig. 2(b), this results in an incorrect output (the
correct and intended output y; is shown in Fig. 2(a)).
Hence, we must preserve and use all the 16 cells as shown
in Fig. 2(a) to ensure correct outputs. As a result, there is
no hardware saving despite 75% sparsity in Fig. 2(a). We
can only save ReRAM resource (cells) when an entire
row/column is filled with zeros; such a row/column can
be utilized for other purposes/computations without af-
fecting the correctness of the intended output unlike Fig.
2(b). Hence, even though many cells in Fig. 2(a) are storing
zeros, we must leave them as it is, i.e., there is no hardware
saving. This observation indicates that crossbar-unaware
sparsity does not proportionately translate to savings in
hardware, especially for ReRAM-based systems.

22
!

Crossbars
(a) (d)
Fig. 3: Illustration of (a) how weights of a Conv layer are mapped on to
ReRAM crossbars, and (b) Filter-wise, (c¢) Channel-wise, and (d) index-
wise pruning strategies adopted in ReaLPrune. (Gray shaded regions in-
dicate which regions are pruned in each of the strategies).

1111

Weight
mapping to
ReRAMs

=N

0C

111 |

PP

2
>
b
——
H

!

This problem is exacerbated for larger crossbars. Typi-
cally, 128128 crossbars are used for CNN training and in-
ferencing [7][10][12]. Similar to Fig. 2(a), we cannot save
any ReRAM resource if we have 128 non-zero entries (out
of a total of 128x128=16384 entries, sparsity level: 99.2%),
with each row / column having at least one non-zero value;
note that this represents a worst-case scenario. Overall,
crossbar-unaware pruning strategies, such as LTP, are not
suited for ReRAM crossbars as they may not lead to signif-
icant hardware savings despite high amount of pruning.
Hence, a suitable pruning strategy for ReRAM-based sys-
tems must be aware of the crossbar structure and the map-
ping strategy adopted to represent weights on ReRAM
cells.

4 CROSSBAR-AWARE REALPRUNE

In this section, we first discuss the important features of
the ReRAM crossbars that govern the formulation of the
RealPrune technique. Next, we present the overall train-
ing process that incorporates ReaLPrune for crossbar-
aware LTP.

4.1 Crossbar awareness

A typical Conv layer operation in a CNN has a total of
OC filters, where each filter is of shape ICxKxK. The pa-
rameters IC and OC represent the number of channels in
the input and output of the convolution layer, respectively.
The input to a Conv layer is a tensor of shape ICxIxI while
the output is of shape OCxOxO. The output is obtained af-
ter multiplying the weights with the inputs. The parame-
ters I and O represent the dimensionality of the input and
output of a convolution layer respectively. Fig. 3(a) shows
how the weights of a Conv layer are mapped to ReRAM
crossbars. Some Conv layers have millions of trainable
weights, which cannot be mapped to one ReRAM crossbar;
each crossbar typically stores a maximum of 128x128 en-
tries. Hence, the weights of a Conv layer are mapped on to
multiple ReRAM crossbars as shown in Fig. 3(a). From Fig.
3(a), we note that to save a column in an ReRAM crossbar
(i.e., all entries in the same column are zero), we must
prune one (or more) channels of a filter (Channel-wise
pruning as shown in Fig. 3(c)). Pruning an entire filter (of
shape ICxKxK) also achieves similar results (Filter-wise
pruning as shown in Fig. 3(b)). As mentioned earlier, ‘sav-
ing a row/column’ implies that all the ReRAM cells in the
saved row / column can be freely reused for other purposes
without affecting the output of the MAC operation as
shown in Fig. 2. Similarly, to save a row in a ReRAM cross-
bar (i.e., all entries in a row are zero), we must prune mul-
tiple (or all) weights at the same index for all the filters (in-
dex-wise pruning as shown in Fig. 3(d)). We use these in-
sights to develop ReaLPrune.

Next, unlike inferencing, CNN training involves an addi-
tional backward phase for calculating error/weight gradi-
ents. The error/weight gradient calculations require stor-
ing the activations from the forward phase. Therefore, Re-
aLPrune must also prune the activations to reduce the total

Algorithm 1. Pruning using Real.Prune

Input: CNN model, pruning percentage p

Output: Pruned CNN model

Algorithm:

1: | Initialize: w € Wipti0:5

While itr < MAX ITER and no accuracy drop:
Train for £ epochs

Prune (p) based on the crossbar structure and
magnitude of weights

If New_accuracy < Baseline_accuracy

R

Undo last pruning step
Switch to finer pruning strategy

Reinitialize remaining weights with w;,;ia:1
Return Pruned Model

D A

ReRAM requirements. However, pruning activations us-
ing LTP (which prunes only the weights) is not straightfor-
ward. Activations are input-dependent and can be pruned
only when the entire filter is filled with zeros; pruning an
entire weight filter (of shape ICxKxK) causes an output
channel to vanish (i.e., pruned). On the other hand, the
pruning of only one (or few) channels/indices of the
weights does not result in a zero activation. Therefore, Re-
aLPrune must prioritize pruning entire filters to simulta-
neously reduce the number of weights and activations that
must be stored on ReRAMs.

Here, it should be noted that the crossbar-aware prun-
ing (as shown in Fig. 3) is different from traditional struc-
tured pruning (such as [27]) that are targeted for GPU-
based platforms. For instance, the structured pruning
method in [21] prunes a channel from all the filters of a
CNN layer. However, as shown in Fig. 3(c), that is not the
case for crossbar-aware pruning. As shown in Fig. 3(c),
pruning a channel in one filter does not necessitate prun-
ing the corresponding channel of all the other filters to re-
duce hardware requirements. Similarly, in the case of in-
dex-wise pruning, we do not need to prune the same index
of all the filters at the same time.

4.2 RealPrune technique

Similar to LTP (Fig. 1), ReaLPrune has two stages: (a)
Pruning the neural network, and (b) In-field training (de-
ployment) of the pruned model. In this sub-section, we
present the pruning phase of RealLPrune. As shown in Fig.
3(b)-(d), ReaLPrune prunes (a) filter-wise, to reduce the
number of ReRAM cells required for storing both the acti-
vations and weights, (b) channel-wise, to ensure that one
or more columns in a ReRAM crossbar is filled with zero,
and (c) index-wise, to prune all entries along the same row
in a crossbar. To maximize the amount of pruning, Real-
Prune adopts a coarse-to-fine pruning strategy, i.e., we
start by pruning filter-wise (the coarsest granularity of
pruning), followed by channel-wise and then finally index-
wise pruning (the finest granularity of pruning). We prior-
itize and initiate ReaLPrune with filter-wise pruning as it
is the only pruning strategy that reduces both activations
and weights. However, due to its coarse granularity, it does

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

not lead to significant amount of pruning without sacrific-
ing accuracy. Hence, we gradually shift towards finer gran-
ularity of pruning to ensure maximum possible sparsity for
achieving the same accuracy as the unpruned variant. We
present the high-level details of ReaLPrune in Algorithm 1.

Algorithm 1 shows the overall training process using
ReaLPrune. As shown in Algorithm 1, the input to ReaL-
Prune is the CNN model and the percentage of weights (p)
we want to prune after each iteration. The output of Real-
Prune is the pruned CNN model, which when trained in
isolation from scratch, will lead to comparable accuracy as
its unpruned counterpart. We begin by initializing the
CNN model (Wy1i0; at t = 0) as shown in Line 1 of Algo-
rithm 1. We can use any of the commonly used initializa-
tion schemes here e.g., Xavier, Kaiming, etc. Next, we per-
form the following steps: (a) train the model for E epochs
(Line 3), (b) Prune the lowest p percentile of non-zero
weights by magnitude following the crossbar-aware coarse
to fine pruning strategies (i.e., filter-wise, channel-wise
and index-wise) (Line 4), (c) if the testing accuracy of
pruned model is lower than the baseline accuracy (for un-
pruned CNN), undo last pruning and shift to finer pruning
strategy (Lines 5-7); if the accuracy drop is zero, then no
action is necessary, (d) Reinitialize the network (Line 8 of
Algorithm 1) with wy;q from t = 0 (except the pruned
weights) and repeat Steps (a)-(d). The pruning repeats un-
til MAX iterations are reached or until there is an accuracy
drop. The CNN model that has the maximum amount of
sparsity with no accuracy drop is returned by the algo-
rithm.

The ReaLPrune technique follows the iterative magni-
tude pruning with the reinitialization strategy, to reach the
sparse model; this strategy is inspired by LTP. As men-
tioned earlier, LTP also adopts an iterative magnitude
pruning strategy where the lowest p percentile of weights
(by magnitude) is pruned after each training iteration.
However, LTP prunes weights without considering their
locations. In contrast, RealL.Prune is crossbar-aware. As an
example, we prune an entire filter (in filter-wise pruning)
if the average weight of that filter is among the lowest p
percentile considering all the filters of the CNN. Similarly,
we prune an entire channel (in channel-wise pruning) or
the same index on multiple filters (in filter-wise pruning)
if the average weight of that channel or that index, is
among the lowest p percentile respectively. By repeatedly
pruning a small fraction (lowest p percentile) of the
weights in each iteration, following the coarse-to-fine strat-
egy, ReaLPrune is able to prune more than 90% of the
weights. These savings directly translate to hardware sav-
ings and better performance.

4.3 Mapping RealPrune to Hardware

In this sub-section, we discuss the implementation of
RealPrune (including its in-field deployment) on hard-
ware. As shown in Algorithm 1, the pruning step requires
iterative training (Line 3 of Algorithm 1). Here, we first em-
phasize that this training (for obtaining the pruned model)

AUTHOR ET AL.: TITLE

RealPrune
Phase-1: Crosshar-
aware pruning on

» GPUs
Unpruned and

untrained model

»

Pruned (crossbar
aware) but
untrained model

RealPrune
Phase-2: Deployment
(Training from scratch

on ReRAMs)

»

Pruned and

trained model
(any dataset)

Fig. 4: Deploying RealPrune in edge hardware. The pruning phase is implemented using GPUs (on the cloud). This phase incorporates the crossbar
knowledge (i.e., which weights will be mapped to which crossbar) for pruning; the deployment phase (in-field training) is done using ReRAM crossbars

is separate from the in-field training during the deploy-
ment phase. The pruning phase of Real Prune is a one-time
process only. Hence, the training required for crossbar-
aware pruning (Line 3 of Algorithm 1) can be implemented
using other hardware alternatives (e.g., GPUs, TPUs, etc.);
this step is not being implemented on ReRAMs. Once, the
pruned model is obtained, the remaining weights are re-
wound to their original values at t = 0, and then deployed
on ReRAM crossbars for all future training instances with
any dataset. Recall that models pruned using LTP can be
trained from scratch without any accuracy loss. This ena-
bles us to train deep and large CNNs on hardware con-
strained platforms (such as edge devices).

Fig. 4 illustrates the implementation of the different
stages of RealLPrune on suitable hardware platforms. As
shown in Fig. 4, the pruning (and the associated training;
Line 3 of Algorithm 1) is implemented using conventional
GPUs. This step incorporates the crossbar knowledge (i.e.,
which weights are mapped to which crossbar) during the
pruning phase as discussed earlier in Sec. 4.1. Note that the
mapping of CNN weights to ReRAM crossbars is deter-
ministic following [6]. For instance, all weights belonging
to the same filter in a Conv layer are mapped to the same
crossbar column [6]. We incorporate such mapping infor-
mation in phase 1 (pruning step) of ReaLPrune. Once, the
pruned model is obtained, we map the remaining weights
to ReRAM crossbars as shown in Fig. 5. Fig. 5(a) shows the
target ReRAM-based on-chip training hardware; we dis-
cuss the architecture is more detail in next section. Fig. 5(b)
shows an example where 16 weights are mapped to a 4x4
ReRAM crossbar. Four weights (ws, w;, wy;, wyg), all be-
longing to the same column, are pruned (i.e., denoted by
the red color). As a result, we can reuse these four cells for
other computations (e.g., map another set of weights),
without affecting accuracy. This results in significant hard-
ware savings and performance improvement as we show
later. Overall, the ReRAM crossbars are used for training
the pruned model in-field, from scratch (i.e., deployment
phase of ReaLPrune); the pruning itself need not be imple-
mented using ReRAMs.

5 EXPERIMENTAL RESULTS

In this section, we first compare ReaLPrune with other
pruning techniques in terms of network sparsity and
hardware savings. Next, we present results on the full-
system speed-up for in-field training enabled by
Real Prune.

5.1 Experimental setup

The pruning phase of ReaLPrune is implemented using
NVIDIA Titan Xp GPU with 24GB of memory. The pruned
(but untrained) network is then mapped to a manycore Re-
RAM-based PIM architecture for evaluating in-field train-
ing speed-up and hardware savings. Fig. 5 shows the target
hardware platform, which consists of multiple ReRAM
tiles. Each ReRAM tile can be configured for both storage
and computation. Each tile includes eDRAM buffers, IMA
units, output registers, along with shift-and-add, ReLu,
and max-pool units. The IMAs have multiple crossbar ar-
rays along with other peripheral circuitry, e.g., ADCs, con-
nected with a shared bus. In line with prior work [7][10],
16-bit fixed-point precision is used for the computations on
ReRAMs. The specific embodiment of the target architec-
ture considered in this work consists of 256 ReRAM tiles.
The tiles are connected using a mesh network-on-chip
(NoCQ). Here it should be noted that mesh NoCs are not
typically suited for multi-hop long-range communication.
However, CNN training involves data sharing between ad-
jacent layers only. Hence, long-range communication can
be avoided by appropriately mapping the CNN layers to
different processing tiles [10]. As a result, a simple NoC to-
pology such as mesh is sufficient as the communication
backbone in ReRAM-based architectures. Each ReRAM tile
consists of 96 crossbars (each crossbar is of size 128x128)
and the associated peripherals such as ADC, DAC, etc.
Each ReRAM tile requires 0.37 mm”* area and consumes
0.33 W power [7]. The ReRAM crossbars operate at 10
MHz. We use NeuroSim V2.0 to evaluate full-system area
and performance of the ReRAM architecture after map-
ping the pruned CNN model [31]. NeuroSim V2.0 provides
support for on-chip training and includes hardware for
feed-forward, error-calculation, weight-gradient-calcula-
tion and weight-update. Hence, it is suitable for evaluating
CNN training on ReRAM-based systems.

CNN' s used for evaluation: We choose four well known
CNNs: VGG-11, VGG-16, VGG-19, and ResNet-18 for experi-
mental analysis [23][24]. The CNNss are trained on the CIFAR-

ReRAM tile

Register Add .
Max
Pool

w2

3

‘\
‘\
\\
s B
SN
S
))

We

W9 |Wio W11 W12

Shift & |
‘Add

Eam
BE
4y

A Wig |Wis [Wie
pocoad| 2| ’

(a) (b)
Fig. 5: llustration of the (a) ReRAM-based architecture for CNN training,
and (b) mapping the pruned weights on the ReRAM crossbar

10 dataset as an example [25]. However, as discussed earlier,
the pruned lottery network generalizes across a variety of da-
tasets (including Fashion MNIST, SVHN, CIFAR-10/100,
ImageNet, and Places365) [18]. We show in Sec. 5.5 that simi-
lar to LTP, ReaLPrune is highly effective for different datasets
and other deeper CNNs as well. The CNNs were imple-
mented using PyTorch and trained on a NVIDIA Titan Xp
GPU with 24GB of memory. The training was done using Xa-
vier initialization, learning rate (LR) of 0.1, batch size of 128,
and SGD optimizer. The LR was decreased by 5% after every
epoch. The use of Xavier initialization enables us to success-
fully train the deep CNNs. We train all the CNNs for 50
epochs. Here, it should be noted that both the unpruned and
pruned CNNss take similar time to reach same accuracy [11].
Baseline pruning techniques: As discussed in Section 2,
there are multiple ways to prune a CNN. We can prune dur-
ing training as done in [36][37]. However, as mentioned ear-
lier, the objective of our work is to prune before in-field train-
ing (as shown in Fig. 4); hence, these methods are not suitable
as baselines here. A reinforcement learning (RL) based prun-
ing approach is proposed in [40]. However, this approach is
not suitable for CNN training as the RL model has to be re-
trained every time the weights change (due to weight up-
dates). The most common method of pruning requires adding
a regularization term to the loss function, such as the L1-norm
of weights or a group LASSO that uses L1-norm or L2-norm
of groups of weights for structured pruning [16][17][27]. The
regularizer penalizes complex models and prefers simpler
models which perform well on the training data and leads to
better generalization in both theory and practice. This causes
the optimization process to automatically prefer small abso-
lute values for weights or groups of weights. The less im-
portant weights become zero (or too small) in the process,
thereby sparsifying the model. We choose two different prun-
ing techniques from this family of pruning methods as repre-
sentatives, to compare with ReaLPrune. We choose a block
pruning technique (referred as ‘Block’ hereafter) that uses
group LASSO to prune blocks of weights [16]. We adapt this
technique for the crossbar configuration in our target architec-
ture. Also, we employ a recently proposed crossbar-aware
pruning (referred as ‘CAP’) technique [13]. CAP utilizes a
multi-group LASSO algorithm to prune groups of weights
that would otherwise be mapped along a column in an Re-
RAM crossbar. Here, it should be noted that these two prun-
ing approaches achieve similar levels of pruning as the other
methods (such as [12][17][27]); hence, they are suitable as
baselines to evaluate the effectiveness of ReaLPrune. Both
Block and CAP are implemented in an iterative manner to en-
sure maximum possible pruning without sacrificing accuracy
compared to their unpruned counterparts. We also choose
LTP as the representative state-of-the-art crossbar-unaware
pruning technique as the third baseline as it achieves one of
the highest levels of sparsity among the pruning techniques
considered here [11]. We prune 25% of the remaining non-
zero weights after each iteration based on their magnitude
(i.e, p = 0.25 in Algorithm-1). Please note that the pruning
percentile (p) is a hyperparameter (similar to learning rate),

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and the value of p can be decided by the user.

Reliability of training: In this work, we assume ideal Re-
RAM behavior. However, as mentioned earlier, non-ideal Re-
RAMs have many shortcomings that can affect the quality of
CNN training, such as the use of low precision (16-bit fixed
point in this case) and write endurance. These issues can be
addressed using very simple techniques. To mitigate the ac-
curacy loss due to the use of 16-bit fixed point precision, sto-
chastic rounding can be used [10]. Stochastic rounding is an
unbiased rounding scheme that makes a probabilistic deci-
sion of where to round and has the desirable property that the
expected rounding error is zero. The use of stochastic round-
ing leads to successful CNN training at less than 1% area over-
head [10]. To address the problem of write endurance, we can
adopt the low rank training (LRT) algorithm proposed in [9],
which reduces the number of weight updates by two orders
of magnitude. As an example, training a CNN for 50 epochs
on CIFAR-10, with batch size of 128, results in ~20k weight
updates. Prior work has reported ReRAM write endurance
between 10°-10" writes [43][44]. Even if we assume the most
pessimistic scenario of 10° writes, the LRT method will allow
us to train more than 5000 times assuming that the training
configuration (e.g., batch size, number of epochs, and dataset
size) remains the same. Alternatively, we can adopt a magni-
tude-based weight update method as outlined in [42]. Either
of these methods can be used to reduce the number of writes
necessary for CNN training. In spite of all these measures,
faults can still happen due to a variety of reasons [28][29]. We
can adopt additional counter measures such as ECC, and
weight clipping to continue reliable training. For instance, the
use of weight clipping enables successful CNN training with
up to 5% fault density, while introducing significantly low
overheads [29]. Hence, we can train the pruned CNNs ob-
tained using ReaLPrune, even if the ReRAMs were non-ideal.
However, since addressing reliability issues in ReRAMs is not
the focus of this work, we will assume ideal behavior for
demonstrating the effectiveness of ReaLPrune and for all fur-
ther analysis.

5.2 Accuracy after pruning

First, we compare the effectiveness of each of the pruning
techniques in terms of the achievable sparsity. For this pur-
pose, we first prune the CNNs using the four different meth-
ods to obtain the respective sparse networks. Here, our goal
is to find the sparsest possible CNN that can be trained from
scratch to achieve prediction accuracy that is at par or higher
than the baseline accuracy. We define ‘baseline accuracy’ as
the accuracy obtained after training the original unpruned
CNN model. Fig. 6(a) shows the amount of pruning that each
technique can achieve without sacrificing accuracy for all the
four CNNs. As shown in Fig. 6(a), all these techniques can
prune a significant percentage of weights when they are ap-
plied in an iterative fashion. LTP performs the best and can
prune 97.2% of the weights on average. ReaLPrune can prune
95.5% of the weights on average for the four CNNs consid-
ered here. Block and CAP prune 87.3% and 87.5% of weights
on average, respectively. Models with higher levels of prun-
ing (than what we report here) failed to reach baseline

AUTHOR ET AL.: TITLE

,, HELTP mCAP Block m RealPrune

g 20%

20 —
° 10%)
g g
£ 3
2 I odln HHEN <

0% [| I] I
VGG1ll VGG16 VGG19 Res18

(a)

B Unpruned mLTP
100

CAP mBlock m RealPrune

80
60
40
20
0
VGG11 VGG16 VGG19 Res18
(b)

Fig. 6: (a) Percentage of non-zero weights remaining in the models after pruning, and (b) Accuracy obtained after training the pruned models for 50

epochs from scratch simulating an on-field training

accuracy when trained from scratch. ReaLPrune can remove
more weights than Block and CAP as it adopts multiple prun-
ing strategies (filter-wise, channel-wise, and index-wise prun-
ing) as discussed in Sec. 4.2; both Block and CAP adopt a sin-
gular pruning strategy (row/column-wise pruning) [6][10].
As shown in Fig. 6(a), LTP is the clear winner in terms of the
achievable sparsity for all CNNs. However, as we show in
next sub-section, it fails to reduce hardware requirements pro-
portionate with the high levels of pruning.

Once we have the pruned models, we can then use them
for in-field, on-chip training. Fig. 6(b) shows the accuracy
achieved by the sparse models (from Fig 6(a)) compared to
the baseline accuracy (i.e.,, accuracy of the unpruned model)
when trained from scratch for 50 epochs simulating an in-
field, on-chip training. As shown in Fig. 6(b), all the pruned
models achieve at par or slightly higher accuracy than their
unpruned counterpart when trained for 50 epochs. For in-
stance, the unpruned ResNet-18 model achieves 87.95% accu-
racy when trained for 50 epochs. Following the same training
configuration, the ReaLPrune-enabled model achieves
90.66% accuracy even when 94.4% of its weights are pruned.
This happens as pruning acts as a regularizer, which makes
the sparse model generalize better on unseen data (as shown
in Fig. 6(b)). However, we see a steep decline when we con-
tinue to prune more weights than what we report in Fig. 6(a).
This happens as the network now has very few parameters
and is unable to learn all meaningful representations from the
input. These observations are also in line with prior work [11].
This experiment shows that we can use these suitably pruned
models for on-chip training on the edge without accuracy
loss.

5.3 Hardware savings due to pruning
As shown in Fig. 4, crossbar rows/columns with all zero
weights can be reused for other purposes without affecting

HLTP mCAP mBlock mRealPrune

VGG1l VGG16 VGG19 Res18

60%

40%

20%

Xbars required
compared to
unpruned CNNs

0

X

Fig. 7: Number of crossbars required for on-chip training after pruning

the intended output i.e., we will need fewer ReRAM cells to
train the pruned model compared to the unpruned baseline.
Fig. 7 shows the number of ReRAM crossbars that are neces-
sary to train the pruned models (from Fig. 6(a)) compared to
their unpruned counterparts. Here, it should be noted that the
number of ReRAM crossbars can vary based on the amount
of parallelism adopted for accelerating the CNN training [6].
In a pipelined training implementation, the slower CNN lay-
ers will dominate the execution time. Hence, these slower lay-
ers are typically accelerated by replicating the weights using
additional ReRAM crossbars [6]. To ensure fair comparison in
terms of the hardware savings, we choose an iso-performance
setting, i.e., we ensure equal amount of parallelism, and hence
equal performance, for the four pruning techniques.

As shown in Fig. 7, under an iso-performance setting,
the number of required ReRAM crossbars is significantly
reduced by all the four pruning techniques. However, Re-
aLPrune achieves the highest amount of hardware savings
despite pruning fewer weights than LTP. From Fig. 7, we
note that ReaLPrune reduces the number of ReRAM cross-
bars necessary for training by 77.2% on average. LTP re-
duces hardware requirements by only 58.9% on average
due to its crossbar-unaware nature, despite pruning more
weights than ReaLPrune (Fig. 7(a)). Interestingly, Block
and CAP achieve similar levels of hardware savings as LTP,
despite pruning significantly fewer weights. Block and
CAP reduces hardware requirements by 58.7% and 59% re-
spectively. This happens as Block and CAP are crossbar-
aware; hence, they can reduce hardware requirements de-
spite pruning fewer weights.

We note that the amount of hardware savings is always
less than the amount of pruning. This is expected as not all
the pruned weights lead to hardware savings, as demon-
strated in Fig. 2. In addition, ReRAM crossbars are required
to store both the CNN weights and activations. However,
weights and activations are pruned by different extents.
This happens as only filter-wise pruning can prune activa-
tions (as shown in Fig. 3); channel-wise, index-wise, or
other pruning strategies do not lead to an activation being
zero. Hence, fewer activations are pruned than weights. As
a result, the overall amount of hardware savings is always
less than the amount of pruning despite the crossbar-
awareness.

10

30 B Unpruned mLTP = CAP mBlock m RealPrune

g
320 B
° S
g o
o 10 £
i [I s

o O 1] | [
VGG11 VGG16 VGG19 Res18

(a)

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

20% e Time e ReRAM 30% v
. 20%
109]
ETT 10%
= o
0% 0% 2

€1 €3 ¢ C7 (9 (11 C13 Ci15 C17

ResNet-18 layers
(b)

Fig. 8: (a) Overall execution time speed-up achieved by the different pruned models compared to unpruned CNNs, when training is done using Re-
RAMs, and (b) Layer-wise ReRAM crossbars requirement and corresponding execution time for ResNet-18.

5.4 Impact on performance

Next, we compare the speed-up enabled by the different
pruning techniques compared to their unpruned counter-
part on the same ReRAM-based architecture. Here, we do
not show any performance comparison with respect to
GPUs because prior work [6][14][33] has already demon-
strated that ReRAMs are more efficient than GPUs for
CNN training. Unlike the experiment in Section 5.2, we as-
sume an iso-area setting for this analysis i.e., the number
of ReRAM crossbars available is equal in all cases. Fig. 8(a)
shows the speed-up when the different CNNs are trained
using ReRAMs. As shown in Fig. 8(a), all the pruned CNN
models lead to faster training than the unpruned model.
RealPrune outperforms the other methods and achieves
the highest speed-up (19.7x) for CNN training on average
(under iso-area conditions) compared to the unpruned ver-
sion. Fig. 8(b) explains this observation in more detail. It
shows the minimum number of ReRAM crossbars and the
corresponding computation time required by each convo-
lution layer of an unpruned ResNet-18 (denoted as C1-
C17). The CNN layers C11-C17 use up more than 80% of
the ReRAM crossbars to store their weights, leaving only a
handful of crossbars for the other layers. However, these
layers (C11-C17) process smaller sized inputs than C1-C5.
As shown in Fig. 8, the computation time for the first few
layers (C1-C5) are the highest even though the number of
weights associated with these layers are limited.

It is well known that CNNs are trained following a pipe-
lined implementation on ReRAM-based architectures [6].
In a pipelined implementation, the slowest layer deter-
mines the overall execution time; in the case of unpruned
ResNet-18, layers C1-C5 dominate the execution time.
Hence, the slower layers must be accelerated by replicating
the weights on additional ReRAM crossbars. However, in
an unpruned ResNet-18, very few crossbars are available
for these computation-heavy layers (more than 80% of the
resources are used up for storing the weights of the layers
C11-C17); this leads to lower speed-up in training. Unlike
the unpruned model, ReaLPrune (and other pruning tech-
niques) reduces the number of weights that need to be
stored. This leads to significant hardware savings com-
pared to the unpruned variant as shown in Fig. 7. In an iso-
area setting, hardware savings translate to unutilized Re-
RAM crossbars. By using these available resources, we can
accelerate the slower CNN layers. This leads to signifi-
cantly higher speed-up for ReaLPrune, despite using the

same total number of ReRAM crossbars as its unpruned
counterpart (iso-area).

Finally, it should be noted that pruning (using either Real-
Prune, or the other techniques considered in this work) is
a one-time effort. As shown in Fig. 1 and Fig. 4, our aim is
to prune first, and then use the pruned model for all future
training. We perform the iterative pruning using Real-
Prune only once; this step can be implemented using
GPUs, TPUs, etc. The pruned model can then be made
available publicly (e.g., via GitHub) for anyone to down-
load and use. These pruned models can then be deployed
on ReRAMs and reused for training (and inferencing) any
number of times, thereby amortizing the cost (time /energy
spent) for the pruning itself.

5.5 Scalability of ReaLPrune

In this sub-section, we show that ReaL.Prune is equally effec-
tive for larger datasets and CNNs. For this experiment, we
choose three different datasets, namely SVHN, CIFAR-100,
and Tiny ImageNet [25][34][35]. SVHN includes 73257 images
of digits for training, 26032 images of digits for testing, and
includes 10 classes. The dataset represents a significantly
harder, unsolved, real-world problem (recognizing digits and
numbers in natural scene images) and is obtained from house
numbers in Google Street View images [34]. The CIFAR-100
dataset has 100 classes containing 600 images each. There are
500 training images and 100 testing images per class [25]. Tiny
ImageNet is a subset of the ImageNet dataset from the well-
known ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). The dataset contains 100,000 images of 200 classes
(500 for each class) downsized to 64x64-colored images. Each
class has 500 training images, and 50 test images [35]. It
should be noted that other datasets (such as ImageNet) can
also be used here. However, training repeatedly on the entire
ImageNet dataset from scratch is prohibitively expensive.
Hence, we refrain from using ImageNet in this work noting
that our experiments on diverse small and large datasets pro-
vide strong demonstration of our key research hypotheses.
The datasets chosen here, have varying number of classes
(SVHN: 10 classes, CIFAR-100: 100 classes, and Ti-
nyImageNet: 200 classes). This is necessary to demonstrate
the scalability of LTP and RealLPrune with increasing task
complexity. For training with these three datasets, we use Res-
Net-18 as the underlying CNN. We only modify the final fully
connected layer in ResNet-18 to account for the different im-
age size and the different number of classes in each dataset.
Here, we choose ResNet-18 as an example only. Similar

AUTHOR ET AL.: TITLE

mLTP M RealPrune

SVHN C100 T-lmg Mobile Res34
Fig. 9: Fraction of weights remaining after pruning using ReaLPrune com-
pared to LTP for larger datasets, and deep CNN models. (C100: Cifar-100,
T-Img: TinyImageNet, Mobile: MobileNet, Res34: ResNet-34)

(9]
o o

Weights
remaining (%)
=)

=N W b
o o o

observations are made with other CNNs as well.

In addition to new datasets, we also choose two relatively
deeper CNN models, namely MobileNet [45], and ResNet-34.
MobileNet is a simple and not very computationally intensive
CNN with 28 layers, targeted for mobile vision applications.
The MobileNet architecture factorizes a standard convolution
into a depthwise convolution, and a 1 x 1 convolution called
a pointwise convolution to reduce the model size. MobileNet
is significantly smaller in size than VGGs despite having more
layers. Hence, it is more challenging to prune. ResNet-34 is
the deepest CNN considered in this work with 34 layers. Both
these models are used with the CIFAR-10 dataset for this eval-
uation. By studying the behavior of RealLPrune on these two
larger models, we demonstrate the scalability of the proposed
method for deeper CNNEs.

From previous experiments (Fig. 6), we have demonstrated
that both Block and CAP methods do not achieve comparable
levels of sparsity as LTP and Real.Prune. Hence, for this anal-
ysis, we only focus on LTP and ReaLPrune. Fig. 9 shows the
percentage of weights remaining after pruning using LTP and
ReaLPrune for the different datasets and deep CNNs. As
shown in Fig. 9, the amount of sparsity that can be achieved
after pruning decreases as the complexity of dataset increases.
For instance, LTP was able to prune ~99% of the weights for
SVHN (simplest of the three datasets) while it can only
achieve 92.5% sparsity for TinyImageNet (most complex
among the three datasets). This is expected as more weights
are necessary to extract/learn distinguishing features among
the different images of the more complex datasets. Interest-
ingly, ReaLPrune achieves LTP-like sparsity for all the da-
tasets irrespective of its size/complexity. As expected, LTP
prunes slightly higher number of weights than Real.Prune
(which is similar to the observations in Fig. 6). Similarly, Re-
aLPrune is equally effective on deeper CNNs such as Mo-
bileNet (28 layers) and Resnet-34 (34 layers). In both cases, Re-
aLPrune achieves similar amount of pruning as LTP. Here, it
should be noted that both LTP and Real Prune are not able to
prune a lot of weights in MobileNet as shown in Fig. 9. This
happens as MobileNet, by design, has fewer parameters to
begin with. Hence, it is challenging to achieve extreme spar-
sity in MobileNet similar to the other CNNs. Overall, Fig. 9
shows that ReaLPrune is equally effective as a crossbar-aware
pruning technique, irrespective of the dataset and CNN size
for enabling high-performance on-chip training.

6 CONCLUSIONS

CNN training is expensive in terms of both the storage and
computation requirements. Training a pruned network (from
scratch) can alleviate this problem. However, existing cross-
bar unaware pruning techniques are not suited for this pur-
pose. To address this problem, we have described a crossbar-
aware pruning technique called ReaLPrune that achieves ex-
treme sparsity (comparable to lottery ticket pruning), while
also providing considerable savings in hardware. Our analy-
sis has shown that RealLPrune can prune 95.5% of CNN
weights on average, which reduces hardware requirements
by 77.2% compared to the unpruned version on average. In
addition, ReaLPrune achieves 19.7x speed-up in execution
time compared to the unpruned version on an ReRAM-based
manycore architecture. ReaLPrune also outperforms other
state-of-the-art pruning techniques, including crossbar-aware
ones, in terms of both execution time and hardware savings.

ACKNOWLEDGMENT

This work was supported in part by the US National Sci-
ence Foundation (NSF) under grants CNS-1955353, CNS-
1955196, and by the USA Army Research Office grant
WO9T1NF-17-1-0485. Biresh Kumar Joardar was also sup-
ported in part by NSF Grant # 2030859 to the Computing
Research Association for the CIFellows Project.

REFERENCES

[1] D. Xu, et. al., “Edge Intelligence: Architectures, Challenges, and
Applications,” in arXiv:2003.12172v2

[2] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong, “Federated
Machine Learning: Concept and Applications,” in ACM Transactions
on Intelligent Systems and Technology 10, 2, Article 12,2019

[3] B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google Research
Blog, vol. 3, 2017.

[4] Official Journal of the European Union. General data protection

regulation. https://eur-lex.europa.cu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679. Online; accessed
12/02/2021.

[5] California consumer privacy act home page.

https://www.caprivacy.org/. Online; accessed 14/02/2021

[6] L.Song,X.Qian, H.Liand Y. Chen, "PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning," 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2017, pp. 541-552.

[71 A. Shafiee et al., "ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars," 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 14-26.

[8] T.F.Wuetal, "14.3 A 43pJ/Cycle Non-Volatile Microcontroller with
4.7pus Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and
Resilience Techniques," 2019 IEEE International Solid- State Circuits
Conference - (ISSCC), 2019, pp. 226-228.

[9] M. Giordano et al., "CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge Al

Accelerator with 2 MByte On-Chip Foundry Resistive RAM for

Efficient Training and Inference," 2021 Symposium on VLSI Circuits,

2021, pp. 1-2,

B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li and K. Chakrabarty,

"AccuReD: High Accuracy Training of CNNs on ReRAM/GPU

Heterogeneous 3-D Architecture," in IEEE Transactions on Computer-

[10]

12

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Aided Design of Integrated Circuits and Systems, vol. 40, no. 5, pp.
971-984, May 2021.

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in International Conference on
Learning Representations (ICLR), 2019

C. Chu et al., "PIM-Prune: Fine-Grain DCNN Pruning for Crossbar-
Based Process-In-Memory Architecture," 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1-6.

J. Meng, L. Yang, X. Peng, S. Yu, D. Fan and J. -S. Seo, "Structured
Pruning of RRAM Crossbars for Efficient In-Memory Computing
Acceleration of Deep Neural Networks," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1576-1580,
May 2021.

A. Ankit et al., "PANTHER: A Programmable Architecture for Neural
Network Training Harnessing Energy-Efficient ReRAM," in IEEE
Transactions on Computers, vol. 69, no. 8, pp. 1128-1142, 1 Aug. 2020.

B. K. Joardar, B. Li, J. R. Doppa, H. Li, P. P. Pande and K. Chakrabarty,
"REGENT: A Heterogeneous ReRAM/GPU-based Architecture
Enabled by NoC for Training CNNs," 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2019, pp. 522-527.

X. Ma et. al., “BLK-REW: A Unified Block-based DNN Pruning
Framework using Reweighted Regularization Method” in
arXiv:2001.08357, 2020

L. Liang et al., "Crossbar-Aware Neural Network Pruning," in IEEE
Access, vol. 6, pp. 58324-58337, 2018.

A. S.Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them
all: generalizing lottery ticket initializations across datasets and
optimizers” in Neural Information Processing Systems (NeurIPS),
Vancouver, 2019.

E. Strubell, A. Ganesh, A. McCallum, “Energy and Policy
Considerations for Deep Learning in NLP” in Association for
Computational Linguistics (ACL), Florence, 2019

H. You et. al., “Drawing early-bird tickets: Towards more efficient
training of deep networks” in International Conference on Learning
Representations (ICLR), 2020

H. Zhou, J. Lan, R. Liu, J. Yosinski, “Deconstructing Lottery Tickets:
Zeros, Signs, and the Supermask”, in Neural Information Processing
Systems (NeurIPS), Vancouver, 2019

D. Fujiki, S. Mahlke, and R. Das, “In-Memory Data Parallel
Processor,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018,
New York, NY, USA, 1-14

K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” in International Conference on Learning
Representations (ICLR), 2015

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, in Conference on Computer Vision and Pattern
Recognition (CVPR), 2016

A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Technical Report, University of Toronto, 2009

S. Han, H. Mao, W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman
Coding” in International Conference on Learning Representations
(ICLR), 2016

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Neural Information Processing
Systems (NeurIPS), pages 2074-2082, 2016

A. Chaudhuri and K. Chakrabarty, "Analysis of Process Variations,
Defects, and Design-Induced Coupling in Memristors," 2018 IEEE
International Test Conference (ITC), 2018, pp. 1-10.

B. K. Joardar, J. R. Doppa, H. Li, K. Chakrabarty, and P. P. Pande,
“Learning to Train CNNs on Faulty ReRAM-based Manycore
Accelerators,” in ACM Transactions on Embedded Computing
Systems (TECS), 20, 5s, Article 55, 2021.

Z.He,J. Lin, R. Ewetz, J. Yuan and D. Fan, "Noise Injection Adaption:
End-to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural
Network Mapping," 2019 56th ACM/IEEE Design Automation
Conference (DAC), Las Vegas, NV, USA, 2019, pp. 1-6

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

(4]

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

X. Peng, S. Huang, H. Jiang, A. Lu and S. Yu, "DNN+NeuroSim V2.0:
An End-to-End Benchmarking Framework for Compute-in-Memory
Accelerators for On-Chip Training," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 11, pp. 2306-2319, Nov. 2021.

B. K. Joardar, N. Kannappan Jayakodi, J. R. Doppa, H. Li, P. P. Pande
and K. Chakrabarty, "GRAMARCH: A GPU-ReRAM based
Heterogeneous Architecture for Neural Image Segmentation," 2020
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2020, pp. 228-233.

M. Cheng et al., "TIME: A Training-in-Memory Architecture for
RRAM-Based Deep Neural Networks," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 834-847, May 2019.

Y Netzer et. al., “Reading Digits in Natural Images with Unsupervised
Feature Learning” in NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011
https:/tiny-imagenet.herokuapp.com/, (Accessed 5™ May, 2020)
S.Lym, et. al., “PruneTrain: Fast Neural Network Training by Dynamic
Sparse Model Reconfiguration,” in International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC),
2019, Denver, CO, USA.

J. Liu, Z. Xu, R. Shi, R. C. C. Cheung, H. K. H. So, “Dynamic Sparse
Training: Find Efficient Sparse Network From Scratch With Trainable
Masked Layers,” in International Conference on Learning
Representations (ICLR), 2020

X. Chen, et. al., “The Elastic Lottery Ticket Hypothesis,” in Neural
Information Processing Systems (NeurIPS), 2021

Y. Wang, et. al., “Pruning from Scratch,” in AAAI Conference on
Artificial Intelligence, 2020

S. Yang, et. al,, “AUTO-PRUNE: automated DNN pruning and
mapping for ReRAM-based accelerator,” in ACM International
Conference on Supercomputing (ICS), New York, NY, USA, 304-315
A. Grossi et al, "Resistive RAM Endurance: Array-Level
Characterization and Correction Techniques Targeting Deep Learning
Applications," in IEEE Transactions on Electron Devices, vol. 66, no.
3, pp. 1281-1288, March 2019.

L. Xia, Mengyun Liu, Xuefei Ning, K. Chakrabarty and Yu Wang,
"Fault-tolerant training with on-line fault detection for RRAM-based
neural computing systems," 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2017, pp. 1-6

A. Grossi et al, "Resistive RAM Endurance: Array-Level
Characterization and Correction Techniques Targeting Deep Learning
Applications," in IEEE Transactions on Electron Devices, vol. 66, no.
3, pp. 1281-1288, March 2019.

M. J. Lee, et. al., “A fast, high-endurance and scalable non-volatile
memory device made from asymmetric Ta205—x/TaO2—x bilayer
structures,” in Nature Mater 10, 625-630 (2011)

A. G. Howard, et. al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” in arXiv:1704.04861

Biresh Kumar Joardar (M’20) finished
his PhD from Washington State University
in 2020. He is currently a Post-doctoral
Computing Innovation Fellow (CI-Fellow)
at the Department of Electrical and Com-
puter Engineering at Duke University. His
current research interests include machine

AN

learning, manycore architectures, accelerators for deep learn-
ing, hardware reliability and security. He received the ‘Out-
standing Graduate Student Researcher Award’ at Washington
state University in 2019. His works have been nominated for
Best Paper Awards at prestigious conferences such as DATE
and NOCS. He is a member of the IEEE.

AUTHOR ET AL.: TITLE

Janardhan Rao Doppa (M’14) is
currently a George and Joan Berry Chair
Associate Professor with Washington State
University (WSU), Pullman, WA, USA.
His current research interests are at the
intersection of machine learning and

3 computing systems design. He received a
NSF CAREER Award (2019), an Outstanding Paper Award
at the AAAI (2013) conference, a Google Faculty Research
Award (2015), the Outstanding Innovation in Technology
Award from Oregon State University (2015). He received the
Reid-Miller Teaching Excellence Award (2018) and the
Outstanding Junior Faculty in Research Award (2020) from
the Voiland College of Engineering and Architecture at WSU.
He is among the 15 outstanding young researchers selected to
give Early Career Spotlight talk at the International Joint
Conference on Artificial Intelligence (2021).

Hai (Helen) Li (M’08-SM’16-F’19)
received her bachelor’s and master’s
degrees from Tsinghua University, China,
and her Ph.D. degree from Purdue
University, USA. She is Clare Boothe
Luce Professor and Associate Chair of the
Electrical and Computer Engineering
Department at Duke University. Her research interests
include neuromorphic computing systems, machine learning
and deep neural networks, memory design and architecture,
and cross-layer optimization for low power and high
performance. She has authored or co-authored more than 250
technical papers in peer- reviewed journals and conferences
and a book. She received 9 best paper awards from
international conferences. Dr. Li serves/served as an
Associate Editor of a number of IEEE/ACM journals. She
was the General Chair or Technical Program Chair of
multiple IEEE/ACM conferences. Dr. Li is a Distinguished
Lecturer of the IEEE CAS society (2018-2019) and a
distinguished speaker of ACM (2017-2020). Dr. Li is a
recipient of the NSF Career Award, DARPA Young Faculty
Award (YFA), TUM-IAS Hans Fischer Fellowship from
Germany, and ELATE Fellowship (2020). Dr. Li is an IEEE
fellow and a distinguished member of the ACM.

- Krishnendu Chakrabarty received the
Ph.D. degrees from the University of
Michigan, Ann Arbor, in 1995. He is now
the John Cocke Distinguished Professor
and Department Chair of Electrical and
Computer Engineering (ECE) at Duke
2| University. His current research projects
1nclude design-for-testability of integrated circuits and
systems (especially 3D integration and system-on-chip); Al
accelerators; microfluidic biochips; hardware security;
machine learning for healthcare; neuromorphic computing
systems. He is a Fellow of ACM, IEEE, and AAAS, and a
Golden Core Member of the IEEE Computer Society.

Partha Pratim Pande (M'05-SM'l1-
F'20) is a Professor and holder of the
Boeing Centennial Chair in computer
engineering at the school of Electrical
Engineering and Computer Science,
Washington State University, Pullman,
USA. He is currently the director of the
school. HlS current research interests are novel interconnect
architectures for manycore chips, on-chip wireless
communication networks, and heterogeneous architectures.
Dr. Pande currently serves as the Associate Editor-in-Chief
(A-EIC) of IEEE Design and Test (D&T). He is on the
editorial boards of IEEE Transactions on VLSI (TVLSI) and
ACM Journal of Emerging Technologies in Computing
Systems (JETC) and IEEE Embedded Systems letters. He was
the technical program committee chair of IEEE/ACM
Network-on-Chip Symposium 2015 and CASES (2019-
2020). He also serves on the program committees of many
reputed international conferences. He has won the NSF
CAREER award in 2009. He is the winner of the Anjan Bose
outstanding researcher award from the college of engineering,
Washington State University in 2013.

