
A Simple Framework for Finding Balanced Sparse Cuts via APSP∗

Li Chen† Rasmus Kyng‡ Maximilian Probst Gutenberg§ Sushant Sachdeva¶

Abstract

We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths.
Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows
with standard ball growing arguments.

Using Dijkstra’s algorithm for computing the shortest paths afresh every time gives a very simple algorithm
that runs in time Õ(m2/ϕ) and finds an Õ(ϕ)-sparse balanced cut, when the given graph has a ϕ-sparse
balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate
All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a
simple deterministic algorithm that finds mo(1)ϕ-sparse balanced cuts in m1+o(1)/ϕ time. Our deterministic
almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to
subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to
the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-
Peng-Saranurak (FOCS 2020).

1 Introduction

Graph partitioning is a fundamental algorithmic primitive that has been studied extensively. There are several
ways to formalize the question. We focus on the question of finding balanced separators in a graph. More precisely,

given an m-edge graph G = (V,E), the conductance of a cut is defined by ΦG(S) = |EG(S,S)|
min{vol(S),vol(V \S)} where

EG(S, S) is the set of edges with exactly one endpoint in S, and the volume of S, denoted vol(S) is the sum of the
degrees of vertices in S. We say that a cut (S, V \ S) is b-balanced if vol(S), vol(V \ S) ≥ b · vol(V). The objective
in the Balanced Separator problem is

Given positive parameters b, ϕ, α < 1, either find a cut (S, V \S) that is b-balanced and has conductance
ΦG(S) ≤ ϕ, or certify that every Ω(b)-balanced1 cut has conductance at least αϕ.

The Balanced Separator problem is a classic NP-hard problem and under the Small-Set-Expansion hypothesis,
even NP-hard to approximate to within an arbitrary constant [29]. Thus, the above formulation allows for α-
approximation for some α < 1. This problem has been studied extensively due to its application to divide-and-
conquer on graphs, and theoretical connections to random walks, spectral graph theory, and metric embeddings.

Our Results. In this paper, we present a very simple and intuitive algorithm for Balanced Separator.
Our algorithm gives a simple framework based on (scalar) multiplicative weights that reduces the problem to
computing approximate shortest paths in a graph under increasing lengths for the edges (decremental setting).
Our framework either finds a balanced cut with small conductance, or certifies that every balanced cut has large
conductance (Theorem 4.1).

If one simply uses Dijkstra’s algorithm to compute the necessary shortest paths afresh each time, our algorithm
gives an Õ(m2/ϕ) time algorithm that achieves approximation α = Ω(1/ log2 n) for cuts of constant balance, and

∗The full version of the paper can be accessed at https://arxiv.org/abs/2209.08845
†Georgia Tech, lichen@gatech.edu. Li Chen was supported by NSF Grant CCF-2106444.
‡ETH Zurich, kyng@inf.ethz.ch. The research leading to these results has received funding from the grant “Algorithms and

complexity for high-accuracy flows and convex optimization” (no. 200021 204787) of the Swiss National Science Foundation.
§ETH Zurich, maxprobst@ethz.ch. The research leading to these results has received funding from the grant “Algorithms and

complexity for high-accuracy flows and convex optimization” (no. 200021 204787) of the Swiss National Science Foundation.
¶University of Toronto, sachdeva@cs.toronto.edu. Sushant Sachdeva’s research is supported by an NSERC (Natural Sciences and

Engineering Research Council of Canada) Discovery Grant.
1Note that we allow the algorithm to return an Ω(b)-balanced sparse cut when the graph has a b-balanced sparse cut. Such an

algorithm is known as a pseudo-approximation algorithm. All known efficient algorithms for balanced cut find pseudo-approximations.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited42

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

α = Ω(1/ log n · log log n) for cuts of constant balance and conductance (Theorem 2.3). If we instead use known
no(1)-approximate deterministic dynamic algorithms for decremental All-Pairs-Shortest-Paths (APSP), we obtain
an algorithm that runs in m1+o(1)/ϕ and achieves an approximation of α = 1/no(1) (Theorem 2.2). This algorithm
has almost-optimal runtime in the size of the graph. We point out that algorithms are known that run in near-
linear/almost-linear time in m with no dependency in ϕ, however, most applications consider the balanced cut
problem for b = 1/no(1) and ϕ = 1/no(1).

Our reduction also extends to directed graphs (see [8, 16] for the generalizations of conductance and sparse cuts
to directed cuts; state-of-the-art and applications) where it reduces the problem to decremental All-Pairs Shortest
Paths in a directed graph. Since Dijkstra’s algorithm works on directed graphs, the former result thus translates
to directed graphs. The latter however relies on Data Structures that exploit the structure of the undirected
graph and therefore do not extend. We focus henceforth on undirected graphs, unless specified explicitly.

Our algorithm can be described very simply. We attempt to embed an explicit expander H as a multi-
commodity flow using paths of length Õ(ϕ−1) in G, while ensuring that the congestion on the edges in G is at

most Õ(ϕ−1). If the endpoints of an edge e ∈ H are connected in G using a short path, we use the path in G to
route e. Further, we increase the length of each edge on this path by a multiplicative factor. This increased length
makes it less likely that this path will be used in the future. A simple multiplicative-weights argument now allows
us to bound the congestion over the course of entire algorithm. If our algorithm succeeds in embedding most
edges of H in G, this provides us a certificate that all balanced cuts in G have conductance Ω̃(ϕ). If our algorithm

fails, we find several edges of H such that the endpoints of these edges are at distance Ω̃(ϕ−1) as measured by the
lengths of the edges computed by the algorithm. Now, we can apply a simple ball-growing argument to recover
a balanced cut of conductance ϕ.

Applications. While finding the Balanced Sparsest Cut is a crucial ingredient in Divide-And-Conquer
frameworks for many algorithms (see [33] for an introduction), and has various applications ranging from VLSI
Design, Image Segmentation [32] to PRAM emulation, we want to point out in particular that our algorithm
can be used to replace the use of the Cut-Matching framework [18] in the work of Saranurak-Wang [30] (see
Remark 4.2 in Section 4.1). Together, this gives an elegant framework for computing expander decompositions
which in turn have been pivotal in various recent breakthroughs in algorithmic graph theory with applications
to computing Electric Flows [34], Maximum Flows and Min-Cost Flows [10], Gomory-Hu Trees [2, 1] for finding
Global Min-Cuts deterministically [17, 21, 20], and many, many more.

Comparison to Previous Works. There has been a lot of work on algorithms for Balanced Separator. The
celebrated work of Leighton and Rao [19] showed that one could achieve an O(log n) approximation to Balanced
Separator by repeatedly solving a linear program that computes a fractional multi-commodity flow. Several
works give a faster implementation of this approach via multiplicative-weights algorithms for multi-commodity
flow [28, 35, 15, 13], and by using the Leighton-Rao result as a black-box to deduce that they compute an
O(log n) approximation. However, the running time they achieved for Balanced Separator was Ω(nm2) since they
repeatedly find and remove low-conductance cuts, each of which might be highly unbalanced, possibly introducing
a factor of n. In contrast, our algorithm works directly with balanced cuts, rather than multi-commodity flows.
Our algorithm is in the same spirit as the Garg-Könemann, Fleischer framework from [15, 13], but directly
incorporates the Leighton-Rao algorithm for finding low conductance cuts.

The groundbreaking work of Spielman and Teng on solving Laplacian linear systems [34] introduced the
notion of local algorithms for finding low-conductance cuts, where the running time of the algorithm scales
almost-linearly with the smaller size of the output cut. Thus the algorithm can be applied repeatedly to find
balanced cuts in almost-linear time. Inspired by this work, multiple local algorithms were proposed [3, 4]. While
all these algorithms are fast, and almost-linear in running time m1+o(1)/ϕ, they are inherently randomized, and

the balanced cut found has conductance Ω̃(
√
ϕ). In contrast, our algorithm is deterministic, and finds a cut of

conductance at most ϕ ·mo(1).
Another line of work develops fast SDP algorithms based on matrix-multiplicative weights. The most popular

of these is the Cut-Matching framework of Khandekar-Rao-Vazirani [18] which achieves near-optimal running
time Õ(m) on undirected graphs by using [27] as a subroutine, and running time m1+o(1) on directed graphs via
[23, 10]. Note that these algorithms do not have a dependency in ϕ. Inspired by [18], several works [6, 25, 26, 24]
obtained almost-linear time algorithms for Balanced Separator building on the matrix-multiplicative weights
framework. While the cut-matching framework and the resulting algorithms are elegant, they rely on rather
involved techniques that are non-intuitive. The celebrated work of Arora-Rao-Vazirani [7] obtained an O(

√
log n)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited43

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

approximation for Balanced Separator via an SDP based algorithm. Faster algorithms built on their ideas [5, 31]
achieved almost-linear running time with O(

√
log n) approximation. However, these algorithms are very involved,

based on matrix-multiplicative weights, randomized, and rely on near-linear time (approximate) max-flow. Our
algorithm and analysis work with scalar multiplicative weights and are very simple to understand. Further, our
algorithm only need to invoke approximate shortest-path oracles under increasing edge weights.

The only previous deterministic, almost-linear time approximation algorithm for Balanced Separator was
given recently by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak [12] achieving runtime m1+o(1) which is again
independent of ϕ. Their algorithm relies on a rather intricate recursive scheme that implicitly uses at each
recursion level a reduction to decremental APSP. But even the analysis on a single level relies on the rather
involved expander pruning framework. In contrast to their work, the simplicity of our algorithm and analysis
stands out.

We also point out that a generalization of [12] to weighted graphs was given by Li and Saranurak [22]. This
algorithm implicitly uses [12], and is therefore even more involved.

2 Main Result

We formally state our results in this section. Our main result is the following theorem.

Theorem 2.1. Given an n-vertex, m-edge graph G, an αAPSP-approx decremental APSP al-
gorithm and conductance parameter ϕ and balance parameter b ∈ [1/n, 1/4], the algorithm
LowConductanceCutOrCertify(G,ϕ, b) either

1. Returns a cut (S, S) with volG(S), volG(S) ≥ b · vol(G) with conductance ΦG(S) ≤ ϕ, or

2. Certifies that every cut (X,X) with volG(X), volG(X) = Ω(b · volG(G)) has conductance at least ϕ ·
Ω
(

1
αAPSP logn·log(1/b)·log(log(n)αAPSP/(bϕ))

)
= ϕ · Ω

(
1

αAPSP log3(n)

)
.

The algorithm is deterministic and requires the APSP data structure to undergo O(αAPSP ·mϕ−1 log3 n) updates,
queries it O(m) times and spends an additional O(αAPSP ·mϕ−1 log3 n) time.

Remark 2.1. Our algorithm requires the APSP data structure to work against an adaptive adversary, i.e. the
generated update sequence relies on the information obtained from queries to the data structure.

Remark 2.2. APSP data structures often answer queries in time proportional to the number of edges on the
approximate shortest path that they return. Our algorithm ensures that the number of such edges on all paths is
bounded by O(αAPSP ·mϕ−1 log3 n).

We note that for computing balanced cuts (i.e. cuts where b is constant) which is arguably the most interesting
case, our approximation guarantee becomes Ω(1/αAPSP log n · log(αAPSPϕ

−1 · log n)). For a decremental APSP data

structure with constant-approximation and ϕ ≥ Ω(1/ logO(1) n), this further simplifies to Ω(1/ log n log log n).
Using the efficient no(1)-approximate decremental APSP data structure from [9] or [11], we obtain the following

result2:

Theorem 2.2. Given an n-vertex, m-edge graph G, a conductance parameter ϕ and balance parameter b ∈
[1/n, 1/4], there is an algorithm LowConductanceCutOrCertify(G,ϕ, b) that can either

1. Find a cut (S, S) with volG(S), volG(S) ≥ b · vol(G) with conductance ΦG(S) ≤ ϕ, or

2. Certify that every cut (X,X) with volG(X), volG(X) = Ω(b · volG(G)) has conductance ϕ/no(1).

The algorithm is deterministic and runs in m1+o(1)/ϕ time.

On the other hand, one can run Dijkstra’s shortest path algorithm for every query and obtain the following:

2We remark that both data structures [9, 11] implicitly rely on the framework of Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak [12],
thus, our reduction in combination with these data structures does not yield a simpler algorithm in itself. We are however optimistic

that simpler data structures for the decremental APSP problem are available in the future that do not necessarily rely on expander
techniques.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited44

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Theorem 2.3. Given an n-vertex, m-edge graph G, a conductance parameter ϕ and balance parameter b ∈
[1/n, 1/4], there is a deterministic algorithm LowConductanceCutOrCertify(G,ϕ, b) that can either

1. Find a cut (S, S) with volG(S), volG(S) ≥ b · vol(G) with conductance ΦG(S) ≤ ϕ, or

2. Certify that every cut (X,X) with volG(X), volG(X) = Ω(b · volG(G)) has conductance ϕ ·
Ω
(

1
logn·log(1/b)·log(log(n)/(ϕb))

)
.

The algorithm is deterministic and runs in Õ(m2/ϕ) time.

3 Preliminaries

Sparsity and Expanders. In this article, we consider an undirected n-vertex graph G = (V,E). For such

a graph, we define the sparsity of a cut ∅ ⊊ S ⊊ V by ΨG(S) =
|EG(S,S)|

min{|S|,|S|} where EG(A,B) is defined to be the

set of edges with exactly one endpoint in A and B respectively. For any set S ⊆ V (G), we sometimes use the
shorthand EG(S) in place of EG(S, S = V \ S). The sparsity of a graph G is defined Ψ(G) = min∅⊊S⊊V Ψ(S). If
G contains no ψ-sparse cut, we say that G is a ψ-expander.

Conductance vs. Sparsity. Via a simple reduction replacing each vertex of degree d with an explicit
expander graph on d vertices (see appendix A), we can reduce to the case where every vertex has degree
at most 10. In such a graph, for any set S ⊆ V, |S| ≤ vol(S) ≤ 10|S|, and thus, instead of conductance

ΦG(S) = |EG(S,S)|
min{vol(S),vol(V \S)} , we can work with sparsity ΨG(S) = |EG(S,S)|

min{|S|,|V \S|} . Throughout the rest of the

article, we will therefore work with sparsity instead of conductance.
Expander Constructions. Given any n, there is a deterministic construction of a Ω(1)-expander on n

vertices of bounded degree. This will be an essential tool used in our proof and we use ψ0 to denote the universal
lower bound on the sparsity of such family of expanders.

Theorem 3.1. (See Thm. 2.4 of [12] based on Thm 2 of [14].) There is an universal constant ψ0 ∈ (0, 1)
and an algorithm ConstDegExpander(n) that returns a ψ0-expander H on a vertex set of size n with maximum
degree 9. The algorithm runs in time O(n).

Remark 3.1. While deterministic algorithms to construct a constant-degree, constant sparsity expander require
rather involved proof techniques, we prove in Appendix C a simple randomized algorithm to construct a O(log n)-
degree Ω(log n)-expander H in O(n log n) time. Using this randomized algorithm in place of the above theorem
only affects guarantees of our overall algorithm by polylogarithmic factors.

Graph Embeddings. Given graphs H and G that are defined over the same vertex set, then we say that
a function ΠH 7→G is an embedding if it maps each edge (u, v) ∈ H to a u-to-v path Pu,v = ΠH 7→G(u, v) in G.
We say that the congestion of ΠH 7→G is the maximum number of times that any edge e ∈ E(G) appears on any
embedding path:

cong(ΠH 7→G) = max
e∈E(G)

|{e′ ∈ E(H) | e ∈ ΠH 7→G(e
′)}|.

Certifying Expander Graphs via Embeddings. Graph embeddings are useful since they allow us to
argue that if we can embed a graph H that is known to be an expander into a graph G, then we can reason about
the sparsity of G, as shown below.

Lemma 3.1. Given a ψ-expander graph H and an embedding of H into G with congestion C, then G must be an

Ω
(
ψ
C

)
-expander.

Proof. Consider any cut (S, V \S) with |S| ≤ |V \S|. Since H is a ψ-expander, we have that |EH(S, V \S)| ≥ ψ|S|.
We also know by the embedding of H into G, that for each edge (u, v) ∈ EH(S, V \ S), we can find path a Pu,v
in G that also has to cross the cut (S, V \ S) at least once. But since each edge in G is on at most C such paths,
we can conclude that at least |EH(S, V \ S)|/C ≥ ψ|S|/C edges in G cross the cut (S, V \ S).

We use the following generalization of this Folklore result to balanced sparse cuts.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited45

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Lemma 3.2. Given a ψ-expander graph H, a subgraph H ′ ⊆ H with |E(H \H ′)| ≤ ψ
2 bn for some b ∈ [0, 1] and

an embedding ΠH′ 7→G of H ′ into G with congestion C, then for all cuts (S, S) where bn ≤ |S| ≤ n/2, we have

ΨG(S) = Ω
(
ψ
C

)
.

Proof. Observe that for each such (S, S), we have |EH′(S, S)| ≥ |EH(S, S)| − |E(H \H ′)| ≥ ψ|S| − ψ
2 bn ≥

ψ
2 |S|.

Using the same argument as above, the cut size of S in G is at least
∣∣EG(S, S)∣∣ ≥ ∣∣EH′(S, S)

∣∣ /C ≥ ψ|S|/2C.

Decremental All-Pairs Shortest-Paths (APSP). A decremental αAPSP-approximate All-Pairs Shortest-
Paths (APSP) data structure (abbreviated αAPSP-APSP) is a data structure that is initialized to an m-edge
n-vertex graph G and supports the following operations:

• IncreaseEdgeWeight(u, v,∆): increases the edge weight of (u, v) by ∆.

• QueryDistance(u, v): for any u, v ∈ V returns a distance estimate d̃(u, v) that αAPSP-approximates the
distance from u to v in the current graph G denoted dG(u, v), i.e. d̃(u, v) ∈ [dG(u, v), αAPSP · dG(u, v)].

• QueryPath(u, v): returns a path π from u to v in the current graph G of total weight d̃(u, v) (that is the
value of the distance estimate if queried).

We denote the total time required by the data structure to execute a series of q queries and u update operations
on an n-vertex constant-degree graph by TAPSP (q, u).

Recently, deterministic no(1)-approximate APSP data structures have been developed (see [11, 9]) that process
any sequence of Õ(m) edge weight increases in total time m1+o(1) while answering distance queries in time no(1)

time and for a path query, returns paths in time near-linear in the number of edges on the path (i.e. if it returns
a path P , it takes at most time |P |no(1). We conjecture that in the near-future, O(log n)-APSP data structures
are found that implement edge weight increases in time Õ(m) and answers distance queries in time Õ(1) and path
queries in time Õ(|P |).

4 Our Algorithm

In this section, we present an algorithm to find sparse cuts with respect to sparsity or embed an expander into
a constant-degree graph G. By standard reductions (given in Appendix A and Appendix B), one can translate
between sparsity and conductance and remove the bounded-degree assumption, both with only a constant loss in
quality. Thus, by proving the theorem below, we directly establish our main result, Theorem 2.1.

Theorem 4.1. Given a graph G of degree at most 10, an αAPSP-approx decremental APSP algorithm and sparsity
parameter ψ and balance parameter b ∈ [1/n, 1/4], there is an algorithm
SparseCutOrCertify(G,ψ, b) (Algorithm 2) that can either

1. Find a cut (S, S) with |S|, |S| ≥ bn of sparsity ≤ ψ, or

2. Certify that every cut (X,X) with |X|, |X| = Ω(bn) has sparsity

ψ · Ω
(

1
αAPSP logn·log(1/b)·log(log(n)αAPSP/(bψ))

)
.

The algorithm is deterministic and requires the APSP data structure to undergo O(αAPSP · n/ψ log3 n) updates,
queries it O(n) times and spends an additional O(αAPSP · n/ψ log3 n) time.

Remark 4.1. Our algorithm ensures that the total number of edges summed across all queried paths is bounded
by O(αAPSP · n/ψ log3 n).

The algorithm contains two phases. The first phase tries to embed an Ω(1)-expander into the input graph

G with congestion Õ(1/ψ). Let F be the subset of expander-edges the algorithm cannot embed. If |F | = O(bn),

i.e. the algorithm embed all but O(bn) edges, Lemma 3.2 ensures that every b-balanced cut has sparsity Ω̃(ψ).
Otherwise, |F | = Ω(bn) and the algorithm outputs an edge weight w such that every (u, v) ∈ F are far apart
w.r.t. w . In this case, the second phase is initiated to extract a sparse Ω(b)-balanced cut from these far-apart
pairs of vertices.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited46

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

4.1 An Algorithm to Separate Or Certify First, we present the algorithm for the first phase that either
embeds a large portion of an expander or finds a large set of far-apart vertex-pairs w.r.t. some edge weights w .

Lemma 4.1. Given an αAPSP-APSP data structure, two graphs G and H over the same vertex set V where G has
maximum degree 10, a congestion parameter C ∈ [1, n], and a balance parameter b ∈ [1/n, 1/2]. The algorithm
SeparateOrCertify(G,H,C, b) (Algorithm 1) outputs either

1. A set of weights w ∈ RE(G)
≥1 with ∥w∥1 ≤ 20n, a number b′ ∈ [b, 1/2], and a subset of edges F ⊆ E(H) with

|F | > 10b′n such that

∀(u, v) ∈ F, distw (u, v) >
C

b′
, or

2. A graph H ′ ⊆ H with |E(H) \ E(H ′)| ≤ 10bn and an embedding ΠH′ 7→G that maps each edge (u, v) in H ′

to a uv-path in G with congestion O(C · αAPSP · log(1/b) · log(C · αAPSP/b)).

The algorithm is deterministic and requires the APSP data structure to undergo O(CαAPSPn log
2 n) edge updates

and O(n) distance queries along with additional O(CαAPSPn log
2 n) time.

Algorithm 1: SeparateOrCertify(G,H,C, b)

1 H ′ = (V, ∅); ΠH′ 7→G ← ∅; w ← 1|E(G)|; η ← 1
4CαAPSP log2(10/b)

.

2 Maintain an αAPSP-approximate APSP data structure on G weighted by w .
3 for i = 0, 1, . . . , ⌊log2(1/b)⌋ do
4 foreach e = (u, v) ∈ E(H) \ E(H ′) do
5 if APSP.QueryDist(u, v) ≤ 2i · CαAPSP then
6 Add e to H ′; ΠH′ 7→G(e)← APSP.QueryPath(u, v).
7 foreach f ∈ ΠH′ 7→G(e) do
8 APSP.IncreaseWeight(e, ηwe); we ← (1 + η)we.
9 end

10 end

11 end
12 if |E(H) \ E(H ′)| > 10n/2i then return (w , 2−i, E(H) \ E(H ′)).

13 end
14 return (H ′,ΠH′ 7→G).

The Algorithm. Algorithm 1 implements SeparateOrCertify(G,H,C, b). Here, the task of finding an
embedding of H into G is interpreted as a multicommodity flow problem, that is each edge (u, v) ∈ H gives rise
to the demand to route one unit of flow from u to v. Later, we use a ψ0-expander in place of H.

The goal of the algorithm is to find such an embedding/ multicommodity flow with small congestion which
combined with our choice of H certifies that G is a good (almost) expander (i.e. contains no balanced sparse cut).
Here, we guess the congestion to be roughly C and want to enforce cong(ΠH 7→G) ≤ C. In fact, we even provide
a slightly tighter analysis.

To achieve this goal, we use a technique which is an instance of the Multiplicative Weight Update (MWU)
framework. Initially, we define a uniform weight function w with weights over G. We try to embed each edge
(u, v) ∈ E(H) using a short uv-path Puv in G with respect to w . Whenever we embed an edge (u, v) in such a
way and the path Puv contains an edge e ∈ E(G), we increase the weight we by a multiplicative factor (1 + η).
Naturally, after t edges have been embedded by using the edge e, we have scaled up the weight of e by a factor
of (1 + η)t. Using ex ≤ (1 + 2x), x ∈ [0, 1], and setting η ≈ C ensures that the weight we approaches a large
polynomial in n for t≫ 2η log n (which again is ≈ C).

At the same time, the algorithm only embeds edges (u, v) ∈ E(H) if the distance between the endpoints in
G w.r.t. w is small. This ensures that ∥w∥1 = O(n log(1/b)) and that we never use an edge e into which many
embedding paths are already routed.

More precisely, we proceed in rounds to embed edges in H. At later rounds (i.e. when i large), we have
already embed a large number of edges in H. Since the number of remaining edges is small, we allow for them

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited47

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

to be embed with slightly longer paths which still lets us argue that ∥w∥1 is increased by at most O(n) in the
current round. If in any round, it is not possible to embed many of the remaining edges with paths of weight at
most the current threshold, we can simply return these edges and end up in the first scenario.

Correctness (Returning in Line 12). We start by proving the following claim which then immediately
establishes correctness if Algorithm 1 terminates at Line 12 (i.e. in the second scenario).

Invariant 4.1. After the i-th iteration of the for-loop in Line 3, we have ∥w∥1 ≤ 10n(1+2ηCαAPSP ·(i+1)) ≤ 20n.

Proof. Initially, ∥w∥1 = ∥1|E(G)|∥1 ≤ 10n.
To gauge the increase in ∥w∥1 during the i-th iteration of the for-loop, consider the effect of embedding a

new edge e in the foreach-loop starting in Line 4 (we only consider such iterations if the if-statement in Line 5
evaluates true as otherwise w does not change). Letting wOLD denote w just before the foreach-loop iteration
and wNEW right after. We clearly have that ∥wNEW ∥1 = ∥wOLD∥ + η · wOLD(ΠH′ 7→G(e)) from Line 8. But
since the if-statement was true, we have that wOLD(ΠH′ 7→G(e)) ≤ 2i · CαAPSP. We conclude that each edge that
is newly embed increases ∥w∥1 by at most η · 2i · CαAPSP.

At the beginning of the i-th iteration of the for-loop, there are at most 10n/2i edges in in E(H)\E(H ′). At the
very first iteration i = 0, |E(H)| ≤ 20n as the max degree of H is at most 10. Later, |E(H) \E(H ′)| ≤ 10n/2i−1

holds or otherwise the algorithm would terminate after the (i− 1)-th iteration in Line 12. Thus, during the i-th
iteration, the foreach-loop in Line 4 iterates over at most 10n/2i−1 edges as well. We can bound the total increase
of ∥w∥1 during the i-th iteration by

10n

2i−1
· η · 2i · CαAPSP = 20n · ηCαAPSP.

The total number of iterations is at most ⌊log2(1/b)⌋ + 1. This establish the second inequality using the
definition of η.

Note that for every edge (u, v) that is in E(H) \E(H ′) when the algorithm returns in Line 12, the preceding
foreach-loop iterated over (u, v) and found that APSP.QueryDist(u, v) > 2i ·CαAPSP (as otherwise (u, v) would
have been added to E(H ′)). But this implies that distw (u, v) > 2i · C = C/b′ by our choice of b′. To establish
correctness, it only remains to use the if-condition preceding Line 12 and observe that the condition does not hold
when i = 0.

Correctness (Returning in Line 14). It is straight-forward to see from Algorithm 1 that ΠH′ 7→G is a
correct embedding from H ′ to G and that |E(H) \E(H ′)| ≤ 10bn. It thus only remains to bound the congestion
of ΠH′ 7→G.

Lemma 4.2. The congestion of ΠH′ 7→G is at most 2 log(2CαAPSP/b)
η .

Proof. Let us fix any edge e ∈ E(G). Note that each time we add an embedding path in the foreach-loop starting
in Line 4 that contains e, we increase the weight we to (1 + η)we. Since initially, we = 1, we have that after t
times that the edge e was used to embed an edge in the foreach-loop, we have that we = (1 + η)t ≥ etη/2 since

ex ≤ 1 + 2x for x ∈ [0, 1]. In particular, if the algorithm embeds t times into e for t > 2 log(2CαAPSP/b)
η , then at the

end of the algorithm, we would have we >
2CαAPSP

b .
However, note that by the if-condition in Line 5, we never embed into an edge e that has weight more than

2log2(1/b) ·CαAPSP =
CαAPSP

b since otherwise the path using this edge has higher weight. We can thus conclude that

at the end of the algorithm, we ≤ (1 + η)CαAPSP

b ≤ 2CαAPSP

b , which leads to a contradiction.

Run time Analysis. The for-loop of the algorithm runs at most O(log(1/b)) iterations and in the ith

iteration at most O(n/2i) edges are iterated over in the foreach-loop starting in Line 4. Thus, the total number
of queries to the APSP data structure can be bounded by O(

∑
i n/2

i) = O(n).
The time the algorithm spends updating the weights in Line 8 can be bounded by observing that each edge

e has its weight increased only after an additional embedding path was added through e; but the congestion is
bounded by O(log n/η) by Lemma 4.2, thus the foreach-loop is executed at most O(n log n/η) times over the
entire course of the algorithm. This concludes our analysis of the number of updates to the APSP data structure.
The runtime analysis of the algorithm follows along the same line of reasoning.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited48

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Remark 4.2. Our algorithm can be extended to compute expander decompositions, following the approach of [30].
We refer the reader to this paper for additional background and the necessary definitions. For readers familiar
with [30], we briefly describe the key step we need to implement: When SeparateOrCertify(G,H,C, b) certifies
that most edges in the expander H can be embedded into G (and hence by Lemma 3.2 there are no sparse balanced
cuts in G) then we need to be able to extract a large expander from G so that we only need to recurse on a small
(potentially) non-expanding part To find an induced subgraph with large expansion, we first produce a new graph
G′ by adding the edges E(H) \ E(H ′) to G. This ensures that G′ is a good expander. We then use the expander
pruning of [30] to delete the same edges E(H) \ E(H ′) from G′, resulting in a large leftover expander G′′ with
vertex set V ′′. By construction G[V ′′] is now a large expander.

4.2 Extracting the Sparsest Cut In order to prove Theorem 4.1, we now have to show how to extract a
sparsest cut from the weight function that is returned in case no embedding is found. We point out that in order
to do so it is significantly more convenient to work with an integral weight function w . We therefore round the
weight function that we obtain Lemma 4.1 up which might result in ∥w∥1 being at most twice as large as stated.

We use the following auxiliary algorithm that finds a cut with few edges crossing given any two vertices at
large distance.

Claim 4.1. The procedure FindThinLayer(G,w , u, v,D) takes a graph G weighted by w ∈ NE(G)
≥1 and two

vertices u, v such that distw (u, v) > D for some integer D > 4 log2 ∥w∥1. It returns a set of vertices S ̸= ∅ such
that |S| ≤ |V |/2 and |EG(S, V \ S)| ≤ 4w(EG(S)) log2 ∥w∥1

D . The algorithm runs in time O(|EG(S)| log |EG(S)|).

Given this auxiliary algorithm, we can state the final algorithm and prove our main result, Theorem 4.1.
As described before, we use the algorithm SeparateOrCertify(G,H,C, b̂) with a constant degree, constant
sparsity expander H. It is straight-forward to conclude that G contains no balanced sparse cuts, if the procedure
can embed H.

Otherwise, we take the weight function and repeatedly find a separator between the endpoints of edges in
F that are far from each other (using the auxiliary algorithm). Note that if there are roughly b′n edges in F at
distance roughly C/b′, then using the auxiliary algorithm repeatedly with D ≈ C/b′, produces a cut where the
smaller side has Ω(|F |) = Ω(b′n) vertices. Using the guarantees from the auxiliary procedure, we further have
that the number of edges in the induced cut are at most Õ(b′n/C). Thus, the sparsity of the cut must be Õ(1/C)
where C ≈ 1/ψ by our choice of parameters.

Algorithm 2: SparseCutOrCertify(G,ψ, b)

1 H ← ConstDegExpander(|V (G)|); C ← 320 log n/ψ;
2 if SeparateOrCertify(G,H,C, 2b) returns (H ′,ΠH′ 7→G) then
3 return (H ′,ΠH′ 7→G).
4 end
5 else // i.e. if it returns (w , b′, F)
6 ŵ ← ⌈w⌉.
7 X ← V (G).
8 D ← 2C/b′.
9 while ∃(u, v) ∈ H[X] ∩ F and |V \X| ≤ n/4 do

// distŵ (u, v) > D
10 S ← FindThinLayer(G[X], ŵ , u, v,D).
11 X ← X \ S.
12 end
13 return V \X.

14 end

Theorem 4.2. Given a graph G of degree at most 10, an αAPSP-approx decremental APSP algorithm and sparsity
parameter ψ and balance parameter b ∈ [1/n, 1/4], there is an algorithm
SparseCutOrCertify(G,ψ, b) (Algorithm 2) that can either

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited49

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1. Find a cut (S, S) with |S|, |S| ≥ bn of sparsity ≤ ψ, or

2. Certify that every cut (X,X) with |X|, |X| = Ω(bn) has sparsity

ψ · Ω
(

1
αAPSP logn·log(1/b)·log(log(n)αAPSP/(bψ))

)
.

The algorithm is deterministic and requires the APSP data structure to undergo O(αAPSP · n/ψ log3 n) updates,
queries it O(n) times and spends an additional O(αAPSP · n/ψ log3 n) time.

Proof. The case where Algorithm 2 returns in Line 3 follows directly from Lemma 4.1, Theorem 3.1 and
Lemma 3.2. Let us therefore analyze the remaining case where the algorithm returns in Line 13 (the while-
loop can be seen to terminate since each iteration shrinks the set X by Claim 4.1 and X = ∅ trivially has no two
vertices at far distance).

We first prove that the final set V \X has size b′n ≤ |V \X| ≤ 3
4n:

• b′n ≤ |V \ X|: Initially, H[X] = H and F ⊆ H contains more than 10b′n edges by Lemma 4.1. Every
edge (u, v) ∈ F has distŵ (u, v) ≥ distw (u, v) > C/b′. Since the maximum degree of H is 10, as long as
|V \X| < b′n, H[X] contains all but 10b′n edges from H. Thus, H[X] ∩ F is not empty and the while-loop
continues. We conclude that b′n ≤ |V \X| holds.

• |V \X| ≤ 3
4n: Since the while-loop condition allows only invocations of FindThinLayer if |V \X| ≤ n/4,

and since this procedure returns the smaller side of the cut it produces by Claim 4.1 (which is found on
G[X]), we can conclude that at the end of the algorithm |V \X| ≤ n/4 + n/2 ≤ 3

4n.

This indicates that |X| ≥ n/4 ≥ b′n/2 ≥ bn since 2b ≤ b′ ≤ 1
2 .

Next, we bound the sparsity of the cut V \ X. Let S1, S2, . . . , Sk be the sets returned by procedure
FindThinLayer one after another over the course of the while-loop, such that V \X = ∪Si. We first observe
that these sets are vertex-disjoint since after the i-th iteration, the procedure FindThinLayer is invoked on the
graph Gi = G[V \ (S1 ∪ . . . ∪ Si)] to find Si+1. Further, the final cut (X,V \X) contains only edges that were
previously in a thin layer, i.e.

EG(X,V \X) ⊆
⋃
i

EGi(V \ (S1 ∪ . . . ∪ Si), Si).

It remains to use the guarantee of Claim 4.1 that for each Si, we have |EGi(Si, V \ (S1 ∪ . . . ∪ Si))| ≤
4ŵ(Si) log2 ∥w∥1

D and by the vertex-disjointness of S1, S2, . . . , Sk, we thus have that

|EG(X,V \X)| ≤ |
⋃
i

EGi
(Si, V \ (S1 ∪ . . . ∪ Si))| ≤

∑
i

4ŵ(Si) log ∥ŵ∥1
D

≤ 4∥ŵ∥1 log ∥ŵ∥1
D

=
8n · b′ log n

C

where we use ∥w∥ ≤ 20n from Theorem 4.1 and ŵ is obtained from rounding up w , and our choice of D. Since
we have shown that |X|, |V \ X| ≥ b′n/2 ≥ bn, choosing C = 320 log n/ψ, we have Ψ(V \ X) = Ψ(X) ≤ ψ, as
desired.

We use the disjointness of S1, S2, . . . , Sk to argue that the total time spend in procedure FindThinLayer
can be bounded by O(n log n). The remainder of the runtime analysis is trivial given Lemma 4.1.

It remains to provide an implementation of FindThinLayer(G,w , u, v,D) and prove Claim 4.1. The
algorithm follows a simple ball-growing procedure. It grows balls from both endpoints u and v. Because the
distance between u and v are guaranteed to be large, the procedure takes longer time. However, these two balls
cannot be larger than the entire graph. There must be a moment that one of the ball grows only by a thin layer.

Claim 4.1. The procedure FindThinLayer(G,w , u, v,D) takes a graph G weighted by w ∈ NE(G)
≥1 and two

vertices u, v such that distw (u, v) > D for some integer D > 4 log2 ∥w∥1. It returns a set of vertices S ̸= ∅ such
that |S| ≤ |V |/2 and |EG(S, V \ S)| ≤ 4w(EG(S)) log2 ∥w∥1

D . The algorithm runs in time O(|EG(S)| log |EG(S)|).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited50

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. Since distw (u, v) > D by assumption, we have that at least one of u and v have their ball to radius D/2
contain at most half the vertices in G. More formally, for some z ∈ {u, v}, |BG,w (z,D/2)| ≤ |V |/2. We claim
that there is a radius 0 < r ≤ D/2, such that taking S = B(z, r) satisfies the above guarantees. For this proof,
it is convenient to define the following auxiliary function Φ(z, r) =

∑
e∈E Φ(z, r, e) where the latter functions are

defined for all edges e = (x, y) ∈ E by

Φ(z, r, e) =


| distw (z, x)− distw (z, y)| if distw (z, x) ≤ r and distw (z, y) ≤ r
r − distw (z, x) if distw (z, x) ≤ r < distw (z, y)

r − distw (z, y) if distw (z, y) ≤ r < distw (z, x)

0 otherwise

Here, an edge e = (x, y) ∈ E(G) contributes the distance between its two endpoints x and y (which is at most
we) to Φ(z, r, e) if both endpoints are fully contained in the ball B(z, r). If neither of the endpoints are contained
it contributes 0. Otherwise, e = (x, y) contributes the distance of the endpoint closer to z to the boundary of the
ball. In both cases, 0 ≤ Φ(z, r, e) ≤ we. This means in particular that the weight of edges incident to B(z, r)
denoted by w(E(B(z, r))) is always greater-equal to Φ(z, r), i.e. w(E(B(z, r))) ≥ Φ(z, r) for all r.

Note further that Φ(z, r + 1) − Φ(z, r) is exactly |EG(B(z, r), V \ B(z, r))|, the number of edges that leave
B(z, r). To see this, observe that an edge e = (x, y) contributes 1 to the difference if distw (x, z) ≤ r < r + 1 ≤
distw (y, z) holds, i.e. e leaves B(z, r). Otherwise, the contribution of e are identical in both Φ(z, r) and Φ(z, r+1).
Here we use that w is integral and so are distances in G.

Given this set-up, assume for contradiction that for all 0 < r < D/2, we have

Φ(z, r + 1) >

(
1 +

4 log2 ∥w∥1
D

)
Φ(z, r).

By induction we have that

Φ(z,D/2) ≥
(
1 +

4 log2 ∥w∥1
D

)D/2−1

Φ(z, 1) > ∥w∥1

where we use that 1 + x ≥ 2x for x ∈ [0, 1]. This would give a contradiction since ∥w∥1 ≥ w(E(B(z,D/2))) ≥
Φ(z,D/2) > ∥w∥1.

Therefore, there must be some radius 0 < r < D/2 such that

Φ(z, r + 1) ≤
(
1 +

4 log2 ∥w∥1
D

)
Φ(z, r).

Combining with our previous discussion yields that

|E(B(z, r), V \B(z, r))| = Φ(z, r + 1)− Φ(z, r)

≤ 4 log2 ∥w∥1
D

Φ(z, r)

≤ 4w(E(B(z, r))) log2 ∥w∥1
D

.

We can therefore take S = B(z, r), as desired.
Finally, to compute this cut, we run Dijkstra’s algorithm from u and v in parallel and check for the earliest

radius r for either of them such that the inequality holds. Thus, the algorithm runs in time O(|EG(S)| log |EG(S)|).

References

[1] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak, and Ohad Trabelsi.
Breaking the cubic barrier for all-pairs max-flow: Gomory-hu tree in nearly quadratic time. FOCS, 2022.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited51

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

[2] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for gomory–hu tree in unweighted
graphs. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1725–1737,
2021.

[3] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Using pagerank to locally partition a graph. Internet
Mathematics, 4(1):35–64, 2007.

[4] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceedings of the Forty-first
Annual ACM Symposium on Theory of Computing, STOC ’09, pages 235–244, New York, NY, USA, 2009. ACM.

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. O(sqrt(log(n)) approximation to SPARSEST CUT in õ(n2) time.
SIAM J. Comput., 39(5):1748–1771, 2010.

[6] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs. In David S.
Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 227–236. ACM, 2007.

[7] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and graph partitioning.
J. ACM, 56(2):5:1–5:37, 2009. Announced at STOC’04.

[8] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental reachability,
scc, and shortest paths via directed expanders and congestion balancing. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1123–1134. IEEE, 2020.

[9] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental sssp and
approximate min-cost flow in almost-linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 1000–1008. IEEE, 2022.

[10] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum
flow and minimum-cost flow in almost-linear time. Accepted to FOCS’2022, 2022.

[11] Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 626–639, 2021.

[12] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A deterministic
algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 1158–1167. IEEE, 2020.

[13] Lisa K Fleischer. Approximating fractional multicommodity flow independent of the number of commodities. SIAM
Journal on Discrete Mathematics, 13(4):505–520, 2000.

[14] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer and
System Sciences, 22(3):407–420, 1981.

[15] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow and other fractional
packing problems. SIAM Journal on Computing, 37(2):630–652, 2007.

[16] Yiding Hua, Rasmus Kyng, Maximilian Probst Gutenberg, and Zihang Wu. Maintaining expander decompositions
via sparse cuts. SODA 2023, 2022.

[17] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear time. Journal of the
ACM (JACM), 66(1):1–50, 2018.

[18] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single commodity flows. J. ACM,
56(4):19:1–19:15, 2009.

[19] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation
algorithms. J. ACM, 46(6):787–832, November 1999.

[20] Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 384–395, 2021.

[21] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 85–92. IEEE, 2020.

[22] Jason Li and Thatchaphol Saranurak. Deterministic weighted expander decomposition in almost-linear time. arXiv
preprint arXiv:2106.01567, 2021.

[23] Anand Louis. Cut-matching games on directed graphs. arXiv preprint arXiv:1010.1047, 2010.
[24] L. Orecchia, S. Sachdeva, and N. K. Vishnoi. Approximating the exponential, the lanczos method and an Õ(m)-time

spectral algorithm for balanced separator. In STOC, 2012.
[25] Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and Nisheeth K. Vishnoi. On partitioning graphs via

single commodity flows. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 461–470. ACM, 2008.

[26] Lorenzo Orecchia and Nisheeth K. Vishnoi. Towards an sdp-based approach to spectral methods: a nearly-linear-
time algorithm for graph partitioning and decomposition. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 532–545. SIAM, 2011.

[27] Richard Peng. Approximate undirected maximum flows in O(m polylog(n)) time. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1862–1867. SIAM, 2016. Available at

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited52

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://arxiv.org/abs/1411.7631.
[28] Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms for fractional packing and covering

problems. Mathematics of Operations Research, 20(2):257–301, 1995.
[29] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion problems. In 2012 IEEE

27th Conference on Computational Complexity, pages 64–73, 2012.
[30] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger, and simpler. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,, SODA ’19, 2019.
[31] Jonah Sherman. Breaking the multicommodity flow barrier for o(vlog n)-approximations to sparsest cut. In FOCS,

pages 363–372. IEEE Computer Society, 2009.
[32] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis

and machine intelligence, 22(8):888–905, 2000.
[33] David B Shmoys. Cut problems and their application to divide-and-conquer. Approximation algorithms for NP-hard

problems, pages 192–235, 1997.
[34] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,

and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
81–90, 2004.

[35] Neal E. Young. Randomized rounding without solving the linear program. In Proceedings of the Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’95, page 170–178, USA, 1995. Society for Industrial and Applied
Mathematics.

A Reducing Conductance to Sparsity

Here, we prove Theorem 2.1. The proof is an adaption of Lemma 5.4 and Theorem 5.5 of [12].
The Transformation Algorithm. Our algorithm is essentially a wrapper function around our main result

Theorem 4.1. That is, we first construct a bounded degree graph Ĝ from G, then run the algorithm from
Theorem 4.1 on Ĝ. If the algorithm certifies that Ĝ has no balanced sparse cuts, we prove that G has no
balanced low-conductance cuts. Otherwise, if the algorithm returns a sparse cut in Ĝ, we recover a balanced
low-conductance cut in G.

We first describe the construction of Ĝ given G = (V,E). Let us assume an arbitrary ordering of the edges

incident to each vertex v ∈ V . Ĝ = (V̂ , Ê) is constructed as follows:

1. For each vertex v ∈ V , create a set of vertices Xv = {v1, v2, . . . , vdeg(v)}, and an ψ0-expander Hv on Xv

using Theorem 3.1. Add Hv to Ĝ.

2. For each edge e = (u, v) ∈ E, we add (ui, vj) to Ê if e is the ith (and jth) edge incident to u (and v,
respectively).

Clearly, Ĝ has vol(G) = 2m vertices and each vertex has at most 10 incident edges, 9 from the expander and 1
from the corresponding edge in G.

We now run the algorithm from our main result, Theorem 4.1, on the graph Ĝ. If the algorithm certifies that
no b-balanced ψ-sparse cut exists in Ĝ, we return the same result for G. Otherwise, we run Algorithm 3 on the
returned cut (A,A) in Ĝ to obtain a Ω(b)-balanced Ω(ψ)-sparse cut (S, S) in G. It is straight-forward to check
that Algorithm 3 is deterministic and runs in time linear in the number of edges of G and thus the runtimes
stated in Theorem 4.1 are asymptotically not affected.

Algorithm 3: Transform(G, Ĝ,A ⊆ V (Ĝ))

1 return S = {u ∈ V | |Xu ∩A| ≥ |Xu \A|}.

Certifying G. We start by showing that if no Ω(b)-balanced O(ψ)-sparse cut is found on Ĝ, then no such
cut exists in G either.

Lemma A.1. Given a balance parameter b ∈ (0, 1/4), if every cut (X,X) in Ĝ with |X| ,
∣∣X∣∣ ≥ b · |V (Ĝ)| has

ΨĜ(S) ≥ ψ, then every cut (S, S) in G with volG(S), volG(S) ≥ b · vol(G) has ΦG(X) ≥ ψ.

Proof. Let (S, S) be any cut in G with volG(S), volG(S) ≥ b · vol(G). Define XS = ∪u∈SXu and XS = ∪u ̸∈SXu =

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited53

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

XS . Observe that |EG(S, S)| = |EĜ(XS , XS)| because the ψ0-expander edges in Ĝ do not appear in the cut and

every cut edge (ui, vj) in Ĝ corresponds to the cut edge (u, v) ∈ G.
By construction of Ĝ, we have that |XS | = volG(S) and |XS | = volG(S) and therefore |XS |, |XS | ≥ b ·vol(G) =

b|V (Ĝ)| by assumption on (S, S). Thus (XS , XS) is balanced in Ĝ and we can use the guarantee that ΦĜ(XS) ≥ ψ.
This yields

|EG(S, S)| = |EĜ(XS , XS)| ≥ ψ ·min{|XS | ,
∣∣XS

∣∣} = ψ ·min{vol(S), vol(S)}.

Returning a Sparse Cut. It remains to prove that the above algorithm transforms any balanced sparse cut
in Ĝ to a balanced low conductance cut in G. We prove this claim in two steps. We first show that the number
of edges in the cut (S, S) in G is comparable to the number of edges in (A,A) in Ĝ.

Claim A.1. |EG(S, S)| = O
(∣∣EĜ(A,A)∣∣).

Proof. Define XS = ∪u∈SXu. Consider any vertex u ∈ V , we have that the graph Hu contributes at least
ψ0 ·min{|Xu ∩A|, |Xu \A|} edges to the cut

∣∣EĜ(A,A)∣∣. But in Ĝ, the number of edges incident to Xu that are

in the cut (S, S) but where previously not in the cut (A,A) can be at most min{|Xu ∩ A|, |Xu \ A|} since Hu is
contained entirely in S or S and only one additional edge is incident to each vertex in Xu.

Thus, we can charge each edge in EHu(A,A) with at most 1/ψ0 edges from EĜ(S, S) \ EĜ(A,A) incident

on u and cover all such edges. We conclude that |EĜ(S, S)| ≤ |EĜ(A,A)| + |EĜ(A,A)|/ψ0, and finally use that

|EG(S, S)| = |EĜ(XS , XS)| as observed in Lemma A.1.

Next, we prove that (S, S) is a balanced cut.

Claim A.2. If ΨG(A) ≤ ψ0/2, we have volG(S) ≥ 1
2 |A| and volG(S) ≥ 1

2 |A|.

Proof. We prove volG(S) ≥ 1
2 |A| (the proof of volG(S) ≥ 1

2 |A| is symmetric). Let us assume for the sake

of contradiction that volG(S) < 1
2 |A|. We argued before that for every u ∈ V , we have |EHu

(A,A)| ≥
ψ0 · min{|A ∩ Xu|, |A \ Xu|}. We again define XS = ∪u∈SXu and observe that the fact that

∑
u∈S |A ∩ Xu| ≤

|XS | = volG(S) <
1
2 |A| implies that

∑
u∈S |A \ Xu| ≥ |A| − |XS | > 1

2 |A|. Definition of S also yields that
|A \Xu| ≤ |A ∩Xu|.

Combining insights, we conclude

|EĜ(A,A)| ≥
∑
u

|EHu
(A,A)| ≥

∑
u

ψ0 ·min{|A ∩Xu|, |A \Xu|} ≥
∑
u∈S

ψ0 · |A \Xu| >
ψ0

2
|A|

which implies that ΨG(A) > ψ0/2 which contradicts our assumption, as desired.

Finally, we combine our insights to prove Theorem 2.1.

Proof. [Proof of Theorem 2.1.] We have from the algorithm that |A|, |A| ≥ b · |V (Ĝ)| = 2bm. Therefore, by
Claim A.2, we produce a cut (S, S) in G with volG(S), volG(S) ≥ b/2 · vol(G). By Claim A.1, we further have

that |EG(S, S)| ≤ O(
∣∣EĜ(A,A)∣∣) and therefore ΦG(S) =

|EG(S,S)|
volG(S),volG(S)

= O

(
|EĜ(A,A)|

min{|A|,|A|}

)
= O(ϕ) where the last

equality stems from the fact that (A,A) had ΨĜ(A) ≤ ϕ by Theorem 4.1.

B The Constant-Degree Assumption

In this section, we prove that the following assumptions are without loss of generality.

Assumption B.1. When computing a sparse cut with respect to sparsity, we may assume at a cost of a constant
factor in the output quality that the input graph G has maximum degree 10.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited54

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. Consider obtaining the graph Ĝ from G by adding ⌈m/n⌉ self-loops to each vertex in G. We then invoke

Theorem 2.1 on Ĝ with ψ and parameter b.
Note first that in a connected graph G, we have that Ĝ ≤ 4m. Further, note that since self-loops do not

appear in cuts, we have EG(S, S) = EĜ(S, S) for all S.

Now, if the algorithm certifies low conductance of Ĝ, we have for each (S, S) in G where |S|, |S| ≥ 4b · n
that volĜ(S) ≥ |S|⌈m/n⌉ ≥ 4bm ≥ b · vol(Ĝ). Since |EG(S, S)| = |EĜ(S, S)| ≥ ψmin{volĜ(S), volĜ(S)} ≥
1
3ψmin{|S|, |S|}. Thus every 4b-balanced sparse cut has sparsity at least 1

3ψ. Otherwise, the algorithm returns a

cut (S, S) of conductance at most ϕ in Ĝ. But, we have ΦĜ(S) ≥ ΨĜ(S) = ΨG(S) for all S.

C A Simple Randomized Algorithm to Construct Low-Degree Expanders

Algorithm 4: RandConstDegExpander(n)

1 Construct an empty graph H on n vertices.
2 foreach v ∈ V (H) do
3 for i = 1, 2, . . . , k = 80 log n do
4 Sample a vertex u from V (H) uniformely and i.i.d. at random.
5 Add edge (u, v) to H.

6 end

7 end
8 return H

The Algorithm. Here, we provide Algorithm 4 which implements the algorithm mentioned in Remark 3.1.
Analysis. Before we start our analysis, we recall the following Chernoff bound.

Theorem C.1. Given i.i.d. {0, 1}-random variables X1, X2, . . . , Xk, X =
∑
iXi and any δ ≥ 0, we have

P [X ≥ (1 + δ)E[X]] ≤ e−
δ2E[X]
(2+δ) and P [X ≤ (1− δ)E[X]] ≤ e−

δ2E[X]
2 .

Let us first prove that H has bounded degree.

Claim C.1. Algorithm 4 returns H such that w.h.p., the maximum degree is O(log n).

Proof. Each vertex u is selected as the second endpoint of an edge added to H in the inner for-loop with
probability 1/n per iteration. As there are nk iterations of this for-loop, and each iteration is independent,
we have by the Chernoff bound that each vertex u is at most k times selected with probability at least
1− e− 4k

4 = 1− e−k = 1− n−32.
Since each vertex u has degree equal to k plus the number of times it is sampled, we have that its degree is

at most 2k with probability at most 1 − n−32. We obtain our result over all vertices in H by applying a union
bound.

Claim C.2. Algorithm 4 returns a Ω(log n)-expander H w.h.p.

Proof. Consider any set S with |S| ≤ n/2. Then, we have that E[EH(S, S)] ≥ 1
2 |S|k since each edge (u, v)

sampled when the foreach-loop iterates over a vertex v ∈ S has u ̸∈ S with probability at least 1
2 and there

are |S|k such sampling events. Since they are independent, we further have from the Chernoff bound that

P [|EH(S, S)| ≤ 1
4 |S|k] ≤ e

− |S|k
16 = n−5|S|. It is clear that if |EH(S, S)| > 1

4 |S|k then ΨH(S) ≥ k
4 = Ω(log n).

The remaining difficulty is that there are an exponential number of cuts so a union bound seems at first
hard to apply. However, we observe that there are at most

(
α
n

)
≤

(
ne
α

)α ≤ n3α for α ≥ 1 cuts where the
smaller half contains α vertices. As we have proven that a cut is ψ-sparse with probability at most n−5α, we
can thus conclude by a simple union bound argument that H is not Ω(log n)-expander with probability at most∑
α≥1

(
α
n

)
· n−5α ≤ 1/n.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited55

D
ow

nl
oa

de
d

05
/1

0/
23

 to
 2

4.
2.

12
7.

11
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Main Result
	Preliminaries
	Our Algorithm
	An Algorithm to Separate Or Certify
	Extracting the Sparsest Cut

	Reducing Conductance to Sparsity
	The Constant-Degree Assumption
	A Simple Randomized Algorithm to Construct Low-Degree Expanders

