
Training of Deep Learning Pipelines on
Memory-Constrained GPUs via Segmented

Fused-Tiled Execution
Yufan Xu

yf.xu@utah.edu
University of Utah

Salt Lake City, Utah, USA

Saurabh Raje
saurabh.raje@utah.edu

University of Utah
Salt Lake City, Utah, USA

Atanas Rountev
rountev@cse.ohio-state.edu

Ohio State University
Columbus, Ohio, USA

Gerald Sabin
gsabin@rnet-tech.com
RNET Technologies
Dayton, Ohio, USA

Aravind Sukumaran-Rajam
a.sukumaranrajam@wsu.edu
Washington State University
Pullman, Washington, USA

P. Sadayappan
saday@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Abstract
Training models with massive inputs is a significant chal-

lenge in the development of Deep Learning pipelines to pro-
cess very large digital image datasets as required by Whole
Slide Imaging (WSI) in computational pathology and anal-
ysis of brain fMRI images in computational neuroscience.
Graphics Processing Units (GPUs) represent the primary
workhorse in training and inference of Deep Learning mod-
els. In order to use GPUs to run inference or training on
a neural network pipeline, state-of-the-art machine learn-
ing frameworks like PyTorch and TensorFlow currently re-
quire that the collective memory on the GPUs must be larger
than the size of the activations at any stage in the pipeline.
Therefore, existing Deep Learning pipelines for these use
cases have been forced to develop sub-optimal "patch-based"
modeling approaches, where images are processed in small
segments of an image [5, 7, 13, 15]. In this paper, we present
a solution to this problem by employing tiling in conjunc-
tion with check-pointing, thereby enabling arbitrarily large
images to be directly processed, irrespective of the size of
global memory on a GPU and the number of available GPUs.
Experimental results using PyTorch demonstrate enhanced
functionality/performance over existing frameworks.

CCS Concepts: • Computing methodologies→ Model-
ing methodologies;Machine learning;Neural networks; •
Software and its engineering→ Software performance;
Compilers.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CC ’22, April 02–03, 2022, Seoul, South Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9183-2/22/04.
https://doi.org/10.1145/3497776.3517766

Keywords: DNN, GPU, Large image training, Fusion, Tiling,
Memory-constrained execution, Checkpointing

ACM Reference Format:
Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind
Sukumaran-Rajam, and P. Sadayappan. 2022. Training of Deep
Learning Pipelines on Memory-Constrained GPUs via Segmented
Fused-Tiled Execution. In Proceedings of the 31st ACM SIGPLAN
International Conference on Compiler Construction (CC ’22), April
02–03, 2022, Seoul, South Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3497776.3517766

1 Introduction
Deep learning has transformed many applications of im-

age processing. However, a few domains with massive image
data, such as digital pathology and brain fMRI analysis, face
significant challenges in developing deep learning models
due to memory limitations. Virtually all deep learning to-
day uses the computational power of GPUs, which offers
significant performance improvement as compared to CPUs.
But GPUs have much less memory (usually 32 GiB or less).
Training of these Deep Learning pipelines requires that the
activations computed at each layer in the forward pass are
used to compute the gradients in the backward pass, where
the layers are processed in reverse order. Therefore, popular
machine learning frameworks like PyTorch [18] and Tensor-
Flow [1] normally store the forward activations at all layers
until the backward pass commences, and thus the total set of
activations must fit within GPU global memory. While sav-
ing/reloading activations from host memory is possible, the
low bandwidth between host and GPU has a drastic impact
on performance and hence this option is not used in PyTorch
or TensorFlow. This memory-constrained usage limitation
has forced researchers in these domains to use sub-optimal
models, either by coarsening the input data (e.g., brain fMRI
analysis [3]) or by use of suboptimal “patch” based modeling
using smaller slices of data from full images (e.g., digital
pathology [16]). In this paper, we develop a static compile-
time analysis and transformation approach to overcome this

https://doi.org/10.1145/3497776.3517766
https://doi.org/10.1145/3497776.3517766

CC ’22, April 02–03, 2022, Seoul, South Korea Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and P. Sadayappan

F1 F6F5F4F3F2

B1 B2 B3 B4 B5 B6

I2I1 I4I3 I5

I1I0 I3I2 I5I4

G1 G3G2 G5G4

Input (I0) I6

G6

...

...

Figure 1. Example of a sequential DNNpipelinewith 6 layers.
For layer 𝑙 , 𝐹𝑙 is the operator of the forward function, and
𝐵𝑙 is the corresponding backward function generated by the
ML framework; 𝐼 𝑙 represents an input activation (𝐼 0 is the
input) and 𝐺𝑙 represents a gradient.

problem, along with a demonstration via a prototype im-
plementation using the popular PyTorch machine learning
framework.
Our approach to enable the training of deep learning

pipelines on memory-constrained GPUs is to combine check-
pointing and recomputation with tiled execution. When the
operators of a sequence of consecutive layers in a DNN
pipeline are amenable to compatible tiling and fused exe-
cution of tiles across the layers, the memory requirements
can be dramatically reduced. However, not all sequences of
consecutive DNN layers can be compatibly tiled and fused.
Therefore, we develop an approach to identify consecutive
operators in a DNN pipeline that are mutually compatible
for fused-tiled execution, which we term an FT segment in
the DNN pipeline. We develop compile-time analyses for the
identification of feasible FT segments, and the determination
of effective tile sizes for efficient fused-tiled execution of the
layers within an FT segment.

We use the name SFT for our approach: Segmented Fused-
Tiled execution. The main contributions of the paper are:
• An abstraction to characterize DNN operators and se-
quences of DNN operators with regards to compatibly
tiled and fused (FT) execution (Sections 3 and 4.1);

• A compile-time algorithm for partitioning the layers of
a DNN pipeline into a sequence of FT segments for tiled
execution with checkpoint/recompute (Section 4.2);

• A compile-time algorithm for identifying tensor slice sizes
for efficient fused-tiled execution of FT segments (Sec-
tion 4.3);

• APyTorch-based implementation of the new SFT approach
to train deep learning pipelines on a memory-constrained
GPU (Section 5);

• An experimental evaluation demonstrating efficient execu-
tion of DNN training pipelines with massive input images
(up to 20K × 20K pixels) on a single GPU with only 11 GiB
memory (Section 6).

2 Background

2.1 Forward and backward propagation
Figure 1 shows an example of a DNN training pipeline.

During the forward pass, the forward operators (𝐹𝑛 , 𝑛 =

F1 F6F5F4F3F2

B1 B2 B3 B4 B5 B6

Input (I0)
I2I1 I4I3 I5

I1I0 I3I2 I5I4

G1 G3G2 G5G4

Checkpoint Checkpoint

segment 1 segment 2

I6

G6

...

...

Checkpoint

Figure 2. Checkpointing a network with 6 layers. The red
dashed lines represent recomputation of the activations that
were not stored. The backward pass therefore requires local
forward passes.

1, 2, ...) are evaluated in layer order. The input activation ten-
sors for each neural network layer (𝐼𝑛 , 𝑛 = 0, 1, 2, ...) must
be saved until they are used to compute the gradient by the
appropriate backward operator, as shown by the diagonal
edges between the forward and backward operators. After
the output layer (𝐹6 in this example), a loss function is eval-
uated and the gradient of the loss (𝐺6) is computed to start
the backward pass. In the backward pass, the operators (𝐵𝑛 ,
𝑛 = 1, 2, ...) are evaluated in reverse order. Since all inputs
𝐼𝑛 must be saved until the start of the back propagation, the
memory requirement grows linearly with the number of
neural network layers.
2.2 Memory reduction via checkpoint/recompute
The total memory required for DNN training can be re-

duced by saving only a subset of activations during the for-
ward pass and recomputing the unsaved activations when
they are needed during the backward pass [8]. The nodes that
save input activations in the forward pass are called check-
point nodes, while the remaining "non-checkpoint" nodes
release the memory for their activations after their use in
the forward pass. Figure 2 shows a checkpoint strategy for
the DNN pipeline from Figure 1. There are two checkpoint
segments; vertical bars in the figure represent the check-
point locations. The first segment contains 𝐹1 and 𝐹2, and
the second segment contains all layers from 𝐹3 to the end of
the network. During the backward pass within a segment,
the activations of the forward operators of all layers are
recomputed for all non-checkpoint nodes in the segment,
and are kept in memory until they are used during the back
propagation for that segment.

Several efforts have developed schemes for checkpoint/re-
compute execution during training; an overview is presented
by Rojas et al. [20]. However, none of these schemes can be
used when the size of a single activation is too large to fit in
GPU memory, i.e., the scenario we address in this paper.
2.3 Fused-Tiled execution

Tiling and fusion have been used in the design of acceler-
ators for inference in DNNs [2, 24]. Tiling and fusion allow a
subset (tile) of the input activation data to be moved into the
accelerator, and then the tile is processed through a series

Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution CC ’22, April 02–03, 2022, Seoul, South Korea

conv2d conv2d

Th

TwTw+2fs

Th+2fr

Tw+4fs

Th+4fr

W

H

W W

HH

fs
fr

fs
fr

Figure 3. Tile size computation in a convolutional network
with 2D convolutions using stride 1 with a kernel size 𝑅 × 𝑆 ;
fill/padding values are 𝑓𝑟 = (𝑅 − 1)/2 and 𝑓𝑠 = (𝑆 − 1)/2.

Table 1. Description of convolution parameters.

Description Description
𝐵 Batch size 𝐾 Output channel
𝐻 Height of Input 𝑅 Height of Kernel/Filter
𝑊 Width of Input 𝑆 Width of Kernel/Filter
𝑂ℎ Height of Output 𝑓𝑟 Padding value in 𝐻
𝑂𝑤 Width of Output 𝑓𝑠 Padding value in𝑊
𝐶 Input channel 𝑝 Stride size

of individual layers to generate the output tile. For such a
fused-tiled execution, additional “halos” must be available
for slices of input activations, as described below. Figure 3
shows a short network segment with a sequence of two 2D
convolutional operators. Let the kernel size be 𝑅 × 𝑆 with a
stride of 1. In a standard untiled 2D convolution, the input
is padded/filled such that the output activation size matches
the input activation size. The vertical fill size is 𝑓𝑟 = (𝑅−1)/2
and the horizontal fill size is 𝑓𝑠 = (𝑆 − 1)/2, allowing the ap-
plication of the kernel to boundary activations. The dashed
box surrounding the entire activation represents the filled
shape of the input, accounting for the padding.

In a tiled execution, each computational tile produces a 2D
slice of the full activation. In order to produce a slice of size
𝑇ℎ ×𝑇𝑤 at the output of the second conv2d stage, a slightly
larger input data slice of size (𝑇ℎ +2𝑓𝑟) × (𝑇𝑤 +2𝑓𝑠) is needed.
Thus, in order to compute the𝑇𝑤 ×𝑇ℎ tile output of the fused
convolution (the pink shaded area in Figure 3), the input
to the second convolution must be (𝑇𝑤 + 2𝑓𝑠) × (𝑇ℎ + 2𝑓𝑟),
which is represented by central pink tile with the blue fill
halo. Similarly, to produce the (𝑇𝑤+2𝑓𝑠)×(𝑇ℎ+2𝑓𝑟) output tile
after the first convolution, the input to the fused convolutions
must be (𝑇𝑤 + 4𝑓𝑠) × (𝑇ℎ + 4𝑓𝑟) (the yellow, blue, and pink
areas).

The above example has only shown the expanding halo of
the data slices that must be computed by a sequence of stages
during forward propagation. For fused-tiled execution of the
combined forward/backward pipeline for DNN training, ad-
ditional inter-dependencies on tile sizes must be considered,
as elaborated later in the paper. Another challenge is the
identification of opportunities for fused-tiled execution for
arbitrary DNN pipelines.

Network
Segmentation

Tile Size
Analyzer

Tiled
Execution
(PyTorch)

x y
Arbitrary Deep Neural

Network Graph

Segmented
Deep Neural Network

Graph
x y

Segmented Fused Tile
Deep Neural Network

Graph
x y

Figure 4. Overview of our approach: FT segmentation (Sec-
tion 4.2), tile-size analyzer (Section 4.3), and PyTorch execu-
tion management (Section 5).

3 Overview of Solution
In this section, we describe our solution to the problem

of training deep learning pipelines when GPU memory is
insufficient to hold large activations, as encountered in the
analysis of WSI (Whole Slide Imaging) in digital pathology.
We devise an approach (the first to our knowledge) for fused-
tiled execution of the combined operator graph comprised of
the forward operators provided by the user and the backward
operators automatically generated by an ML framework like
PyTorch.

Figure 4 presents a high-level overview of our approach.
1. The first step in our analysis is the partitioning of an

arbitrary DNN graph into segments of consecutive layers
that can be compatibly fused and tiled. While the forward
function can represent an arbitrary DAG, a linear order of
execution of the layers (operators) of the forward graph is
assumed to be pre-determined by the user, as is common
in ML frameworks like TensorFlow and PyTorch. We find
maximal sets of consecutive DNN layers whose operators
are mutually compatible with respect to tiling and fusion.
The entire DNN graph is partitioned into such FT sets,
with saved activations (checkpoints) between segments
and fused-tiled execution within each FT segment. We
describe how we formalize compatibility of operators in
Section 4.1 and details of the algorithm for identifying
maximal FT segments in Section 4.2.

2. Within each FT segment, all operators can be executed in
a fused-tiled fashion, with an identical number of tiles for
all operators in the segment. However, the tile sizes for
these operators have inter-dependencies that have to be
analyzed to determine the minimal buffer sizes for correct
fused-tiled execution of that FT segment. This analysis is
described in Section 4.3.

3. Some details of our fused-tiled implementation in PyTorch
are discussed in Section 5. Experimental results for three
DNN pipelines (VGG-16, VGG-19 [21], and DarkNet[19])

CC ’22, April 02–03, 2022, Seoul, South Korea Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and P. Sadayappan

F1 F4F3F2

B1 B2 B3 B4

Input (I0)
I2I1 I3

I1I0 I3I2

G1 G3G2

Checkpoint

segment 1

I4

G4

...

...

Checkpoint

Figure 5. Tiling dataflow in a segment with 4 layers. The
checkpoint-segment contains operator 1, 2, 3.

are presented in Section 6, demonstrating the ability to
process large images as needed for whole-slide image
analysis in digital pathology [7] (results for 10K × 10K
and 20K × 20K images are presented).
Figure 5 shows a small three layer segment of a neural

network used to compare the dataflow for a baseline exe-
cution and the proposed segmented fused-tiled execution
(our scheme). The steps involved in training using each of
these implementations are given in Table 2. For the baseline
execution, all activations 𝐼𝑛 (𝑛 = 1, 2, 3) are saved in memory.
As a result, the input activations just go forward through the
network 𝐹1 . . . 𝐹4, the loss is computed, and then back prop-
agation computes gradients 𝐺𝑛 (𝑛 = 1, 2, 3). All activations
must be stored concurrently.
The fused-tiled execution first breaks up the input acti-

vation into some number of tiles (e.g., 16), denoted with a
subscript 𝐼𝑖 , 𝑖 = 0, . . . , 15, and then runs each tile through the
forward pass of an FT segment. In the example, the forward
and backward operation for all layers (including the loss) are
computed after all tiles have gone through forward layer 𝐹3
in the network segment depicted. The back propagation for
layers 1 through 4 proceeds tile-by-tile as follows. Gradient
𝐺3
0 (i.e., tile 0, layer 3) is computed using the checkpointed

activation 𝐼 30 and the just computed gradient𝐺4 (i.e., a tile is
recomputed). In order to compute 𝐼 30 , tile 0 is processed from
checkpoint 1 through checkpoint 2 (i.e., through 𝐹1, 𝐹2, and
𝐹3). Note, during this forward recompute pass, all tile 0 acti-
vations are saved (𝐼 10 and 𝐼

2
0 in this example). The recomputed

𝐼 10 and 𝐼
2
0 are used to compute the gradients𝐺1

0 and𝐺
2
0 . After

all gradients are computed for tile 0, all of the temporarily
saved recomputed tile activations have been freed. Next, the
remaining tiles are processed (i.e., 1, . . . , 15 in this example)
sequentially.
In the fused-tiled execution each checkpoint activation

needs to be saved, along with the activations for each layer
of a single tile (which can be arbitrarily small). Fused-tiled
segments allow full intermediate activations to never be
fully saved (only tiles). Adding more layers to an FT seg-
ment reduces the number of full activations that must be
saved, but only increases the memory for a segment by a
tile. This provides a significant memory savings compared
to checkpoint/recompute, especially in many popular net-
works where the large activations are between convolution

and pooling layers. In these networks, these large activations
never need to be fully saved and nearly arbitrarily large input
images can be processed.

4 Problem Formalization & Algorithm Details

4.1 Problem Formalization
An example of fused-tiled (FT) executionwas seen in Fig. 3,

where each of the 16 tiles of the second conv2d operator
could be executed by fusion with a corresponding tile for the
first operator. A chain of such conv2d operators can clearly
also be executed in FT fashion. For a DAG of operators to be
executable in a fused-tiled manner, each operator must be FT-
compatible with respect to one or more pairs of compatible
dimensions of input/output tensors, and the interconnected
operators must be mutually FT-compatible. We formalize
this below.
4.1.1 FT-Compatible Operators:
An operator is defined as FT-compatible with respect to

a pair of input/output tensor dimensions if a slice of the
output tensor with extent 𝑇𝑑 along some dimension can be
computed using only a slice of the input tensor with extent
𝜎𝑑𝑇𝑑 + 𝛿𝑑 along the input’s dimensions, for constants 𝜎 and
𝛿 . For example, consider the 2D convolution operator (for
simplicity without stride/dilation parameters):

Out [𝑛, 𝑘, ℎ,𝑤] =
∑︁
𝑐,𝑟,𝑠

In[𝑛, 𝑐, ℎ + 𝑟,𝑤 + 𝑠] ∗ Ker [𝑘, 𝑐, 𝑟, 𝑠] (1)

Consider a slice of the output tensor Out [𝑇𝑛,𝑇𝑘 ,𝑇ℎ,𝑇𝑤],
with slices of size 𝑇𝑛 ,𝑇𝑘 ,𝑇ℎ ,𝑇𝑤 , respectively along the batch,
channel, height, and width dimensions. In order to compute
such a slice of the output tensor, only a subset of elements
of the input tensor will be needed. As previously illustrated
in Figure 3, the minimal slice of the input tensor will be of
size In[𝑇𝑛,𝐶,𝑇ℎ + 𝑅 − 1,𝑇𝑤 + 𝑆 − 1], where 𝐶 is the number
of input channels and 𝑅 and 𝑆 are the stencil size along the
height and width directions. Thus, the conv2D operator is
FT-compatible with respect to the batch, height, and width
dimensions of the input/output tensors, but not with respect
to the channel dimension. The parameters relating the FT-
compatible dimensions are: 𝜎𝑛 = 1, 𝛿𝑛 = 0; 𝜎ℎ = 1, 𝛿ℎ = 𝑅−1;
𝜎𝑤 = 1, 𝛿𝑤 = 𝑆 − 1.

An operator with FT-compatible dimensions can be effi-
ciently executed in a tiled manner, where slices of the out-
put tensor can be produced using slices of the input tensor.
Although the set of slices of the input tensors required to
produce disjoint slices of the output tensors are not disjoint
(as was illustrated in Fig. 5), the amount of redundant compu-
tations will be relatively low when the slice sizes are chosen
to be large. We define FT-compatible segments as the group
of connected operators in a DNN pipeline with mutually
consistent FT-compatible dimensions.
4.1.2 FT-compatible Segments:
Two connected operators in a DNN pipeline are FT-

compatible if they are both FT-compatible with respect to

Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution CC ’22, April 02–03, 2022, Seoul, South Korea

Table 2. Sequences for the computation for a baseline training and segmented fused tiled training. 𝐹𝑙 (𝐼𝑎𝑖) depicts the 𝑙𝑡ℎ
forward layer with an input 𝐼𝑎 for the 𝑖𝑡ℎ tile. 𝐵𝑙 (𝐺𝑎𝑖) is the backward operation for layer 𝑙 with input gradient 𝐺𝑎𝑖 . 𝑖 in the
Tiling-Checkpoint method represents the number of the tiles that we partition the input into. Saved activations are denoted
with a bar on the top.

Base 𝐹1(𝐼 0) 𝐹2(𝐼 1) 𝐹3(𝐼 2) 𝐹4(𝐼 3) 𝐵4(𝐿𝑜𝑠𝑠) 𝐵3(𝐺3) 𝐵2(𝐺2) 𝐵1(𝐺1)

Tile-Checkpoint 𝐹1(𝐼 0
𝑖
) 𝐹2(𝐼 1

𝑖
) 𝐹3(𝐼 2

𝑖
) 𝐹4(𝐼 3

𝑖
) 𝐵4(𝐿𝑜𝑠𝑠) 𝐹1(𝐼 0

𝑖
) 𝐹2(𝐼 1

𝑖
) 𝐵3(𝐺3

𝑖
) 𝐵2(𝐺2

𝑖
) 𝐵1(𝐺1

𝑖
)︸ ︷︷ ︸ ︸ ︷︷ ︸

𝑖∈0..15 𝑖∈0..15

at least one common tensor dimension. An FT-compatible
segment is a set of adjacent layers in a DNN pipeline for
which all operators (we only reason with respect to the for-
ward operators since the backward operators have the same
FT-compatibility properties as the corresponding forward
operators) are all mutually FT-compatible with respect to
at least one common tensor dimension. The FT-compatible
dimensions of an FT-compatible segment are the common set
of dimensions that are FT-compatible for all the operators in
the set of DNN layers constituting the segment. A maximal
FT-compatible segment is one that cannot be extended on
either side without violating FT-compatibility.

Figure 6 shows a sequence of four operators (grey colored
oval shapes) and the input/output tensors (yellow colored
rectangles). Each operator’s computation can be represented
as a single perfectly nested loop or a sequence of perfectly
nested loops that can be tiled with hyper-rectangular tiles.
Further, i) any dimension of any tensor operand (input or
output to the operator) can only have a single tileable loop in-
dex in its access expression, and ii) any loop index is used to
index at most one dimension of any tensor. The above proper-
ties define a map from each tensor operand’s data dimension
to the operator’s loop iteration space index, as illustrated
in Fig. 6. Consider the conv2D operator defined in Eq. 1. It
represents a 7D loop nest that has five tileable loops (we do
not consider the small kernel stencil loops as tileable) cor-
responding to batch, input channel, output channel, image
height, and image width. These five tileable iteration space
dimensions are represented as 5 vertices within each conv2D
operator in Figure 6. Each input/output multi-dimensional
tensor has a vertex for each distinct dimension, within the
yellow rectangles representing the tensors (we do not ex-
plicitly model the conv2D operators’ weight matrix (Ker) in
this graph, but only the tensors that “flow” on the edges of
the forward operator graph). The maps between each tensor
dimension to the corresponding iteration-space dimension
of the operator are also marked as edges connecting the cor-
responding vertices in the figure. It may be seen that the
composition of these tensor-dimension-to-loop-index maps
results in connected components in a graph comprised of the
union of vertices from all operators in the graph. In the exam-
ple of Fig. 6, there is a maximal FT-segment that includes all
four operators, with respect to the batch (B) index. However,
the minimal tile sizes for such an FT-segment would require

Listing 1. Data Structures

class EdgeMeta{

Vector <int > size;

Vector <int > inpToIter;

Vector <int > iterToOut;

Vector <float > delta;

Vector <float > scale;

OpMeta* src;

OpMeta* target;

}

class OpMeta{

int id;

int readyCnt;

Vector <int > iterSpace;

Vector <int > fullIterSpace;

Vector <EdgeMeta > inEdges;

Vector <EdgeMeta > outEdges;

OpMeta *dominator;

OpMeta *postDominator;

Map <pair <EdgeMeta*,int >,vector <pair <EdgeMeta*,

int >>> connection;

}

the full extents along 𝐻 and𝑊 , which would be infeasible
for the massive images in digital pathology WSI (Whole
Slide Imaging). But a smaller FT-segment exists, comprised
of the first three operators (first two convolutions and one
maxpooling), which is FT-compatible with respect to three
indices (𝐵,𝐻,𝑊), where much smaller tile sizes can be used
because the 𝐻 and𝑊 dimensions are also tileable for this
smaller FT-segment.

A set of operators that form a connected component rep-
resents a set of loop indices in the iteration spaces of those
operators that are FT-compatible. Listing 2 shows the al-
gorithm that identifies dimensions in the operator graph
that are compatible with fused-tiled execution (connected
components) and Listing 1 shows the corresponding data
structures. First, we iterate through each node in the graph
(Line 2). In Line 3, we set the connection map of a given
node to the empty set. Then, for the given node, we iterate
through each input edge (Line 4). In Lines 7 and 8, we map
each dimension of the input edge to the iteration space in

CC ’22, April 02–03, 2022, Seoul, South Korea Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and P. Sadayappan

Listing 2. Generate Graph IR

1 constructGraph(Vector g, int memCapacity){

2 for(i=0, i < len(g), i++)

3 g[i]. connection [] = {}

4 for parent in g[i]. inEdges

5 tmpIterToInpMap [] = {}

6 // connect input space to iteration space

7 for d in 0 to len(parent.inpToIter)

8 tmpIterToInpMap[parent.inpToIter[d]] = d

9 for outMeta in g[i]. outEdges

10 //using iter. space , connect inp. to out.

space

11 for inpDimId , iterId in tmpIterToInpMap

12 g[i]. connection[<parent ,inpDimId >]. insert(

<outMeta ,outMeta.iterToOut[iterId]>)

13 }

tmpIterToInpMap, i.e., we construct an iteration space to in-
put dimension map. In Line 9, we iterate through each output
edge. Note that iterToOut contains the iteration space to out-
put dimension map. Using iterToInp and iterToOut, we map
each input edge dimension to the corresponding output edge
dimension (Lines 11 and 12). Thus, after execution of the
algorithm in Listing 2, we have an internal representation of
a graph with the information illustrated in the example of
Figure 6.

B

C
K
H

W

B

C

H

W

B

C

H

W

B

C

H

W

B

C

B

C
K

H
W

B

C

H

W

B

C

K

B

K

Conv2d Conv2d Pooling FC

Figure 6. Illustration of FT-compatible segments

4.2 Partitioning of DNN pipeline into FT-compatible
segments

In this subsection, we explain how we partition the DNN
pipeline into segments separated by checkpoints. The opera-
tors within a segment can be executed in a fused-tiled man-
ner. Listing 3 shows the corresponding algorithms. Any node
whose output size is less than thememory capacity (𝑚𝑎𝑦𝑇𝑖𝑙𝑒)
can be checkpointed, whereas a node whose output does not
fit in memory (𝑚𝑢𝑠𝑡𝑇𝑖𝑙𝑒) must be executed using the fused-
tile strategy. Lines 2 to 4 classifies each operator as “must
tile (𝑚𝑢𝑠𝑡𝑇𝑖𝑙𝑒 == 𝑇𝑟𝑢𝑒)” or “may tile (𝑚𝑢𝑠𝑡𝑇𝑖𝑙𝑒 == 𝐹𝑎𝑙𝑠𝑒)”
based on the output tensor size and memory capacity. The
loop in line 5 iterates over each node in the operator graph.
We ignore “may tile” nodes in Line 6. For each “must tile”
node, we try to find a fused-tileable path containing the cur-
rent node that starts at a checkpoint and ends at a checkpoint

Listing 3. Partition DNN pipeline into Fused-Tileable seg-
ments

1 findSegments(Vector g, int memCapacity){

2 for n in len(g)

3 mustTile[n] =

4 (
∏
(g[n]. outEdges.size [:]) < memCapacity)

5 for(i=0, i < len(g), i=end)

6 if(! mustTile[i]) continue

7 start = i; end = i + 1

8 // include all post dominators

9 // in the current segment

10 Queue q{i}

11 while (!q.empty ())

12 prev_end = end

13 n = q.pop

14 if(g[n]. postDominator.id >= end)

15 end = g[n]. postDominator.id

16 while(end <len(g)&& mustTile[end])

17 end++

18 q.enque(prev_end:end)

19 FTdims = FTdimsIntersect(g,start , end)

20 bool success = checkMemCapacity(start , end ,

21 FTdims);

22 if(! success) return(OUT_OF_MEMORY)

23 }

24
25 FTdimsIntersect(Vector g, int start , int end){

26 Map <<InTensorMeta*,int >,bool > FTdims

27 for parent in g[start]. inEdges

28 for i in 0 to len(parent.size)

29 queue q({g[start],parent ,i})

30 while (!q.empty ())

31 node , inpTensor , dim = q.pop()

32 if(!len(node.connection[<inpTensor ,i>]) !=

len(node.outEdges))

33 FTdims[<parent ,i>]= False

34 break

35 else

36 for (outMeta , odim) in node.connection[<

inpTensor ,i>]

37 if(outMeta.target < end)

38 q.enque ({ outMeta.target , outMeta , odim})

39 FTdims[<parent ,i>]= True

40 return FTdims

41 }

(each checkpoint node must be “may tile”). For any such valid
segment, the dominators of all nodes in the segment should
either be a checkpoint (“may tile”) or be present in the seg-
ment. Moreover, all post dominators of a given node, except
the post dominator of the end node, must be present in the
partition. Lines 10 to 17 ensure these properties. Initially, we
add the start node to a queue (Line 9). For each node in the
queue, we check whether its post dominator is present in
the current segment. If not, we move the endpoint of the

Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution CC ’22, April 02–03, 2022, Seoul, South Korea

current segment to a node that can be checkpointed and is
topologically greater than or equal to the current post domi-
nator (Lines 14-17). All nodes between the old endpoint and
new endpoint are added to the queue in Line 18. As they are
processed, their post dominators are also included in this
segment.

Once a valid partition is segment, we identify all the com-
patible fused-tiled dimensions in function FTdimsIntersect
(Lines 25 to 40). This is done by taking each dimension of the
start operator of the segment and checking whether there is
a fused-tileable path from start to end. For each operator, we
check if the corresponding input dimension is fused-tileable
(Line 32 to 33). If not, we mark the dimension as not fused-
tileable compatible (False) and move to the next dimension.
If it is fused-tileable compatible, we enqueue all operators
that use the current operator’s output and are a part of this
segment, along with the corresponding dimension to the
queue (Line 36 to 38). Once all dimensions are processed
𝐹𝑇𝑑𝑖𝑚𝑠 is returned, which indicates whether each dimen-
sion is fused-tileable compatible. In Line 20, we check if the
current partition can fit in memory and if not, we throw
an "OUT_OF_MEMORY" error (as a suitable SFT was not
possible).
4.3 Determination of buffer sizes for SFT execution
Given a graph segmentation generated using Listing 4.2

and a minimal number of tiles, the exact required tile size
of each operation must be computed. The checkpoints re-
quired to support a segmentation define the output tensors
that must be stored and the dimensions that can be tiled.
However, the exact tile sizes will vary for each operator due
to the relationship of the input tensors to the iteration space
and output tensors for a given operation. For instance, a
2D max pool with a stride of 2 results in a reduction in the
output width and output height by a factor of 2. In contrast,
the [𝐵,𝐶, 𝐾,𝑇𝑤,𝑇ℎ] iteration space for a 2D convolution op-
eration generating a tensor tile of size [𝐵, 𝐾,𝑇ℎ,𝑇𝑤] must
have a valid input tensor of size [𝐵,𝐶,𝑇ℎ + 2𝑓𝑟 ,𝑇𝑤 + 2𝑓𝑠] (see
Table 3 for definitions for some common neural network
operations).
The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒 function in Listing 4 calculates the

required iteration space and tensor tile size for every node
in a segment’s autograd network graph. The required tensor
dimensions are deduced from the characterization of each
operation, as per the tensor dimension dependencies from
Table 4. The iteration space is deduced using a mapping of
the tensor dimensions to the iteration space dimensions.
Table 4 defines the tile size required for each input ten-

sor to process a tiled iteration space for two common op-
erations (𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑚𝑎𝑥𝑝𝑜𝑜𝑙) using the tiled tensor
dimension requirements in Table 3 and inherent opera-
tion characteristics. Each input tensor has a set of vec-
tors that define the required input size during the com-
putation of an iteration space tile. Each vector represents

Layer s

grad
kernel

Layer s+1 Layer s+2

conv
kernel

conv
kernel

Δker
kernel

grad
kernel

Δker
kernel

max
pool

grad

Layer s+3

max
pool

grad

Checkpoint Checkpoint

dim: 1024
(4 tiles)

256 258 129 131 66

6613
2134268270

128
130

256
258

129 66

1024 512 512 128fullIterationSpace:
iterationSpace: 270 268 132 66

0 1 2 3 4 5 6 7 8 9
0 ⏹

1

2
3 ⏹⏹ ⏹

4 ⏹⏹

5 ⏹

6 ⏹

7
8 ⏹

9 ⏹⏹

id: 0

id: 1

id: 2

id: 3

id: 4

id: 5

id: 7

id: 6

id: 8

id: 9

slice[out][in]

id3: #max pool fwd, initial values
 fullIterationSpace = [1, 3, 1024, 1024]
 iterationSpace = [1, 3, 256, 256]
 inputTensors = [([0,0,0,0], [0,0,0,0], [1,1,2,2],
 [0,1,2,3], [T,T,T,T], id0)]
 outputTensors ={ id5: ([0,0,0,0], [0,1,2,3]),
 id7: ([0,0,0,0], [0,1,2,3]),
 id4: ([0,0,0,0], [0,1,2,3])}

id3: #max pool fwd, final values
 fullIterationSpace = [1, 3, 1024, 1024]
 iterationSpace = [1, 3, 268, 268]
 inputTensors = [([1,3,268,268], [0,0,0,0],
 [1,1,2,2], [0,1,2,3], [T,T,T,T], id0)]
 outputTensors ={ id5: ([1,3,134,134], [0,1,2,3]),
 id7: ([1,3,130,130], [0,1,2,3]),
 id4: ([1,3,129,129], [0,1,2,3])}

Figure 7. Example neural network segment with two con-
volution and two max pooling layers. The numbers on each
edge represent the 𝑇ℎ and 𝑇𝑤 iteration space required as-
suming a global (𝑓 𝑢𝑙𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒) output tensor tile size
of [1,𝐶, 64, 64], a global (𝑓 𝑢𝑙𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒) input iteration
space of [1,𝐶, 1024, 1024], and the creation of 4 tiles in each
dimension (16 total tiles), i.e., 𝐼𝑁 [1,𝐶,𝑇ℎ = 256,𝑇𝑤 = 256]
and 𝑂𝑈𝑇 [1, 𝐾,𝑇ℎ = 64,𝑇𝑤 = 64]. Edge annotation denote
the 𝑇ℎ (and 𝑇𝑤) tile size required for the tensor.

an entry for each dimension in the tensor or iteration
space (e.g., [𝐵𝑎𝑡𝑐ℎ,𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝐻𝑒𝑖𝑔ℎ𝑡,𝑊 𝑖𝑑𝑡ℎ]). These meta-
data vectors support the tile size propagation for each in-
put tensor (𝑖) through each operation’s iteration space via
i.size[i]=n.iterSpace[idx]*i.scale[:]+i.delta[:] in Line 20 to
22. The delta (𝛿) and (𝜎) vectors contain the parameters
described in Section 4.1.1. 𝑖𝑛𝑝𝑇𝑜𝐼𝑡𝑒𝑟 defines the mapping
between an input tensor’s dimensions and the operation’s
iteration space, e.g., [0, 1, 2, 3] for max pool and [0, 1, 3, 4]
for convolution where iteration space dimension 2 (𝐾) is
not included in the input tensor (which has dimensions
[𝐵,𝐶, 𝐻,𝑊]). Using these propagation functions, the re-
quired tile sizes for the source tensors of each edge can be
computed and updated.
Figure 7 depicts an example autograd graph segment for

a series of convolution (with kernels of size 𝑅 × 𝑆) and max
pooling (with a stride of 𝑝 = 2) stages. The segments 𝐼𝑁
and 𝑂𝑈𝑇 tensor are checkpointed in memory. The forward
graph is shown by red arrows, and the backward graph for
gradient (𝑔𝑟𝑎𝑑) and delta kernel (Δ𝑘𝑒𝑟) operations are shown
with green arrows. Pooling layers do not have any learned
parameters and hence do not have a Δ kernel update oper-
ation. The edges are annotated with the width and height
tile size (𝑇ℎ=𝑇𝑤) (assuming the batch size 𝑇𝑏 = 𝐵 = 1 and
the channel dimension is not streamable due to the convo-
lutions), as computed by Listing 4. The Δ𝑘𝑒𝑟 nodes are leaf
nodes that update the kernel, but have no subsequent output
tensors. Therefore, these nodes base their input iteration
space requirements solely on the initial 𝑖𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒 . Note that
while the output tile size being generated is 64, the grad
operation requires a halo of size 2 ∗ 𝑓𝑟 and thus, the forward
pass must generate a tile of size 66.

CC ’22, April 02–03, 2022, Seoul, South Korea Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and P. Sadayappan

Table 3. Input tile shape required to process an iteration space tile and the corresponding output tensor shape for some
common neural network forward operators.

IN Iter. Space OUT
Linear [𝑇𝑏 ,𝐶] [𝑇𝑏 ,𝐶, 𝐾] [𝑇𝑏 , 𝐾]
Convolution [𝑇𝑏 ,𝐶,𝑇ℎ + 2𝑓𝑟 ,𝑇𝑤 + 2𝑓𝑠] [𝑇𝑏 ,𝐶, 𝐾,𝑇ℎ,𝑇𝑤] [𝑇𝑏 , 𝐾,𝑇ℎ,𝑇𝑤]
Max Pool [𝑇𝑏 ,𝑇𝑐 ,𝑇ℎ × 𝑝,𝑇𝑤 × 𝑝] [𝑇𝑏 ,𝑇𝑐 ,𝑇ℎ,𝑇𝑤] [𝑇𝑏 ,𝑇𝑐 ,𝑇ℎ,𝑇𝑤]
Avg Pool [𝑇𝑏 ,𝐶,𝐻,𝑊] [𝑇𝑏 ,𝐶,𝐻,𝑊] [𝑇𝑏 ,𝐶]
ReLU [𝑇𝑏 ,𝑇𝑐 ,𝑇ℎ,𝑇𝑤] [𝑇𝑏 ,𝑇𝑐 ,𝑇ℎ,𝑇𝑤] [𝑇𝑏 ,𝑇𝑐 ,𝑇ℎ,𝑇𝑤]
Softmax [𝑇𝑏 ,𝑇𝑐 , 𝐻,𝑊] [𝑇𝑏 ,𝑇𝑐 , 𝐻,𝑊] [𝑇𝑏 ,𝑇𝑐 , 𝐻,𝑊]

Table 4. Tile propagation functions from the tile iteration space to the corresponding input tensor tile range for two common
neural network operations. The 𝛿 and 𝜎 vector define the required input tensor dimensions to compute the iteration space
dimensions (referenced through the 𝑖𝑛𝑝𝑇𝑜𝐼𝑡𝑒𝑟), corresponding to the tensor shape requirements in Table 3.

Operation Convolution Max Pool
Function Forward Grad Δ Ker Forward Grad
Input Tensor 𝑎𝑐𝑡𝑖𝑛 𝑔𝑟𝑎𝑑𝑖𝑛 𝑔𝑟𝑎𝑑𝑖𝑛 𝑎𝑐𝑡𝑖𝑛 𝑎𝑐𝑡𝑖𝑛 𝑔𝑟𝑎𝑑𝑖𝑛 𝑎𝑐𝑡𝑖𝑛

Delta (𝛿) [0,0,2𝑓𝑟 ,2𝑓𝑠] [0,0,2𝑓𝑟 ,2𝑓𝑠] [0,0,0,0] [0,0,2𝑓𝑟 ,2𝑓𝑠] [0,0,0,0] [0,0,0,0] [0,0,0,0]
Scale (𝜎) [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,p,p] [1,1,p,p] [1,1,p,p]
inpToIter [0,1,3,4] [0,2,3,4] [0,2,3,4] [0,1,3,4] [0,1,2,3] [0,1,2,3] [0,1,2,3]

Listing 4. computeTileSize

1 computeTileSize(Graph auto_graph , Vector

initialReadyNodes , int numTiles){

2 readyNodes.add(initialReadyNodes)

3 // Initialize the default iteration space

4 for n in auto_graph

5 n.iterSpace [:] = n.fullIterSpace [:]

6 for n in initalReadyNodes

7 n.iterSpace [:] = n.fullIterSpace [:]/ numTiles

8 // Process all nodes whose outputs are "ready"

9 while(readyNodes.notEmpty ())

10 n = readyNodes.pop()

11 // Aggregate output tensor sizes to determine

12 // iteration space required for node n

13 rs = {0} // reduced output tensor size

14 for outMeta in n.outEdges

15 rs[:] = max(rs[:], outMeta.size [:])

16 for (i, idx) in enumerate(n.iterToOut)

17 n.iterSpace[i] = rs[idx]

18 // Update required input tensor sizes

19 for iMeta in n.inTensors:

20 for (i, idx) in enumerate(iMeta.inpToIter)

21 iMeta.size[i] = n.iterSpace[idx]*

22 iMeta.scale [:]+

23 iMeta.delta [:]

24 iMeta.src.outEdges[i].size [:] = iMeta.size

[:]

25 // Identify ready neighbors

26 iMeta.src.readyCnt ++

27 if iMeta.src.readyCnt ==len(iMeta.src.

outEdges)

28 readyNodes.add(iMeta)

29 }

The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒 function in Listing 4 computes the
required iteration space (𝑛.𝑖𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒) and initialize it for
each terminating node in Line 5, and tensor (𝑡𝑒𝑛𝑠𝑜𝑟 .𝑠𝑖𝑧𝑒)
tile sizes for the operations in the 𝑎𝑢𝑡𝑜_𝑔𝑟𝑎𝑑 graph segment
based on the number of tiles required for each dimension
(e.g. 𝑛𝑢𝑚𝑇𝑖𝑙𝑒𝑠) in Line 7. The function performs a reverse
traversal of an autograd computation graph (see an example
graph Figure 7) to calculate the tile sizes. The reversal traver-
sal adds all leaf nodes, like Δ𝑘𝑒𝑟 (with no input edges in the
segment) to a ready queue (𝑟𝑒𝑎𝑑𝑦𝑁𝑜𝑑𝑒𝑠) in Line 2. Once all
output edges are ready, the required tile sizes can be updated
and the node can be added to 𝑟𝑒𝑎𝑑𝑦𝑁𝑜𝑑𝑒𝑠 . Note that a node
will become ready when its last output neighbor marks itself
as ready in Line 26 to 27.
The required input tensor tile sizes can be computed it-

eratively using the propagation functions in Table 4 (for
simplicity without stride/dilation parameters). The iteration
space tile size can be computed by using a max reduction
over all output tensors Line 13 and 14.When the 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒
is empty, all nodes have been processed and the required tile
sizes have been updated (this ends the while loop in Line 9).

5 Implementation

We implement SFT in PyTorch1, because it is a
prevalent machine learning framework that has sup-
port for checkpoint/recompute using 𝑛𝑛.𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 and
𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 . Our SFT PyTorch implementation
includes custom tiled forward operators, custom tiled au-
tograd functions (i.e., backward functions), static analysis,
memory management for tiling, and training.

1The software is available at https://github.com/HPCRL/SFT-CC2022-AE

Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution CC ’22, April 02–03, 2022, Seoul, South Korea

The tool works in two phases: static analysis and regular
training execution. The static analysis is performed only
once, before the start of the tiled training execution. The
primary PyTorch modifications include:
• Customized tiled autograd functions: The tiled forward
functions are not symmetric to the backward functions,
we do not rely on auto-generated gradient functions in
PyTorch. The autograd functionsmust compute the "ghost"
cells (determined statically), and the ghost cells may differ
during the forward and backward operations. Further, the
updates by the Δ𝑘𝑒𝑟𝑛𝑒𝑙 must correspond to the correct
tile despite the overlap "ghost" cells. These details require
modifications to the existing autograd functions.

• Optimized PyTorch internal context manager for recom-
putation in checkpoint segments across different tiled ex-
ecutions: By default PyTorch uses a naive context man-
agement strategy to save activations and meta-data for
recomputation. There is no memory buffer reuse crossing
multiple tiled executions, which wastes GPU memory and
eventually results in out-of-memory errors. Also, redun-
dant buffer allocations slow down the training process. We
optimize the current context manager by using caching to
share the same buffer across different tiled executions.

• Two new operators to handle our SFT checkpoint seg-
ments. The split node starts the segment and fetches the
tiled-input data. The join node marks the end of the seg-
ment, collects all tiled-output pieces, and merges them
into one tensor for further computation. We also extended
the 𝑛𝑛.𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 container to support tiled execution
with checkpointing. The existing 𝑛𝑛.𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 in Pytorch
only accepts a tensor as input and produces an output
tensor. However, SFT execution requires additional meta-
information such as tile size, tile position, and padding
size, which is obtained from our static tile size analyzer
(Figure 4). This information is propagated along the chain
of operators to provide the required metadata for forward
and backward propagation.
We have intentionally created our APIs to be very close

to the existing PyTorch API so that the users can easily port
existing code to use the SFT framework.

6 Evaluation

6.1 Experimental setup
All experiments presented in this paper are performed us-

ing PyTorch v1.8.0a0 and Python v3.9.5. We used the Nvidia
CUDA compiler version v11.3.109 and the Nvidia deep neu-
ral network library – CUDNN v8.2. The experiments were
carried out on two Nvidia GPU systems. An Nvidia 2080 Ti
GPU was paired with an AMD Ryzen Threadripper 3990X
64-Core CPU and CPU RAM is 128 GiB in the first platform.
The second platform has an Nvidia A100 GPU paired with an
Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz 56 core CPU
and CPU RAM is 384 GiB. Both of the machines run Ubuntu

20.04. These machines represent different GPU generations
(Turing and Ampere). We evaluate VGG-16, VGG-19[21]and
DarkNet[19] networks to demonstrate the efficacy of our
approach.
We evaluate three strategies to perform a training epoch

for a single input image (one forward and one backward pass
using a batch size of 1) using a Mean Squared Error (MSE)
loss function:
1. Pytorch-Base: A standard PyTorch[18] implementation

of the training computing the forward and backward op-
erations, where all intermediate activations are stored.

2. Pytorch-CheckPoint: A sequential checkpoint strategy
using the 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 function [9] in PyTorch.
This strategy splits the network into a given number of
segments 𝑠 .We evaluated 𝑠 values from 2 (always included)
to 2

√
𝐿, where L is the length of the chain (and the total

number of activation tensors stored is minimized).
3. SFT: The Segmented Fused-Tiled training strategy out-

lined in the paper. We split the original input along the
height and width dimensions and execute the input in
segmented tiles with our checkpoint/recompute PyTorch
implementation.
For each model, we vary input image sizes from 512 to

20480 (20K) square (I×I). Image sizes of 10𝐾 and 20𝐾 rep-
resent ×4 and ×2 magnification for WSI used in pathology.
The number of tiles along 𝐻 and𝑊 dimension are varied as
2𝑛 , where 𝑛 = 1, 2, 3, 4, 5 (i.e., 5 different configurations are
evaluated).

Wemeasure the execution time for each of the three strate-
gies and get the mean time over 5 runs. The execution time
for our method is selected by the best value among the 5
tile size configurations. The execution time is stable for all
three strategies over multiple executions. The input image
and model use 𝑓 𝑙𝑜𝑎𝑡32 precision and the image data layout
is 𝑁𝐶𝐻𝑊 .
6.2 Experimental results
Figure 8 shows the experimental results. The square

red cross represents the execution time obtained by the
standard Pytorch-Base strategy, and its absence from the
graph means that an out of memory error was encountered
when attempting to train an image of the given size. Yellow
crosses represent the results obtained with the Pytorch-
Checkpoint strategy for the shortest execution time among
all possible number of segments (from 2 to 2

√
𝐿). If both

Pytorch-Base and Pytorch-Checkpoint strategies are
available, we only show the execution time of Pytorch-
Base (as checkpoint/recompute is not required). The blue
dot shows the result obtained with our SFT strategy. The
image size (𝐻 ==𝑊) is plotted on the X-axis and the execu-
tion time (in seconds) is on the Y-axis. Since A100 has more
device memory than 2080Ti (40GiB compared to 11GiB), the
non-tiled strategies can process a larger input image size
on the A100. Since VGG-16, VGG-19 and DarkNet networks

CC ’22, April 02–03, 2022, Seoul, South Korea Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and P. Sadayappan

512 1024 2048 4096 10240 20480
Input Size

1

2

4

8

16

32

64

128
T

im
e(

s)
(a) VGG16 on 2080Ti

Pytorch-Base

Pytorch-Checkpoint

SFT

512 1024 2048 4096 10240 20480
Input Size

4

8

16

32

64

T
im

e(
s)

(d) VGG16 on A100

Pytorch-Base

Pytorch-Checkpoint

SFT

512 1024 2048 4096 10240 20480
Input Size

1

2

4

8

16

32

64

128

T
im

e(
s)

(b) VGG19 on 2080Ti

Pytorch-Base

Pytorch-Checkpoint

SFT

512 1024 2048 4096 10240 20480
Input Size

4

8

16

32

64

128

T
im

e(
s)

(e) VGG19 on A100

Pytorch-Base

Pytorch-Checkpoint

SFT

512 1024 2048 4096 10240 20480
Input Size

1

2

4

8

16

32

T
im

e(
s)

(c) Darknet on 2080Ti

Pytorch-Base

Pytorch-Checkpoint

SFT

512 1024 2048 4096 10240 20480
Input Size

2

4

8

16

T
im

e(
s)

(f) Darknet on A100

Pytorch-Base

Pytorch-Checkpoint

SFT

Figure 8. Experimental results VGG16, VGG19 and darknet on NVIDIA A100 and 2080Ti.

do have a huge number of trainable parameters (59 MB for
VGG-16, 78.4MB for VGG-19 and 79.7 MB for DarkNet), the
GPU device memory is mainly consumed by inputs and in-
termediate activation required during training. For example,
an input image of size 10𝐾 × 10𝐾 stored in single precision
(𝑓 𝑙𝑜𝑎𝑡32) would need a total GPUmemory of 118GiB, 129GiB
and 43GiB respectively for VGG-16, VGG-19 and Darknet to
store all activations and models.
In all six plots, we observe that SFT training is able to

process much larger input images than either the standard
PyTorch-Base strategy or the PyTorch-checkpoint strat-
egy. The vertical grey dashed line depicts the first image
size that neither Pytorch-Base nor Pytorch-Checkpoint
can handle for a given network and GPU pair. SFT has a
small runtime overhead (as compared to Pytorch-Base or

PyTorch-checkpoint) when the input activations fit in
memory. However, the runtime continues to scale linearly
with the image size.

7 Related Work

7.1 Operator Fusion
Considerable efforts have been directed at operator fu-

sion, where two or more operators in a DNN pipeline are
merged together to create a single combined kernel. The ben-
efits of operator fusion include a reduction in kernel launch
overhead. For example, this is a key optimization performed
by the XLA [22] compiler. Several other efforts have also
addressed such operator fusion [4, 17].

Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution CC ’22, April 02–03, 2022, Seoul, South Korea

We note that the way “fusion” is used in this work is rather
different from the operator-fusion described above, where
two or more operators in a DNN pipeline are fused together
to create a single combined kernel. In contrast, we fuse the
execution of corresponding tiles in a sequence of stages by
invoking each operator’s kernel on small tiles of data. Thus,
we do not generate any fused kernel code, but simply reuse
existing kernels by changing the size of the input/output
activations and the order of execution, as compared with
standard execution of the operators.
7.2 Out-of-core training

KARMA [23] is a system that combines out-of-core train-
ing with checkpointing. Out-of-core training involves swap-
ping out large activations from the GPU to the CPU memory
to alleviate the memory bottleneck. Using a novel perfor-
mance model, KARMA automates this decision-making of
swapping versus recomputing activations for a given neu-
ral network. However, KARMA does not enable processing
large-scale images where a single activation layer does not
fit on a GPU.
7.3 Multi-GPU Model Parallelism
Recent work leverages “model parallelism” [6, 25] to dis-

tribute the activations required during training across mul-
tiple GPUs. For instance, GEMS [13] provides a system for
hybrid model and data parallelism, along with relaxed syn-
chronisation. While they mention whole slide imaging in
the potential applications, their approach uses a well known
"patch" based analysis. Specifically, the experiments are con-
ducted on 1𝐾 × 1𝐾 input size. Other prior approaches based
on model parallelism also require this sub-optimal technique
to handle large WSI images.
7.4 Unified Memory

Tensorflow Huge Model Support [7] incorporates Nvidia
unified memory (UM) [14] along with several GPU memory
optimization techniques to train standard CNNs. This work
can support whole slide imaging (albeit they only demon-
strate ×4 resolution and requires 100s of GPU days for train-
ing). However, the open-source implementation is not stable
enough to run common neural networks like VGG16. There-
fore, we could not compare this against SFT. For a single
GPU setting, swapping the sections of the image back and
forth across host memory and device memory would make
the entire training process bandwidth bound. The PCIe band-
width is about 5 orders of magnitude lower than the GPU
peak performance at 32-bit precision. As a result, as reported
by Chen at al. [7], HMS gets 30× slower as the image size (in
pixels) quadruples (from 11𝐾 × 11𝐾 image to 21.5𝐾 × 21.5𝐾
image), while SFT time just increases by 4×, i.e., proportional
to increase in image size.
7.5 Convolutions Over Distributed Memory

DistConv [10] is an extension built over Livermore Big Ar-
tificial Neural Network toolkit [11] that performs distributed

convolutions over a cluster of GPUs. Given the size of the
image, distributed convolutions place a lower bound on the
number of GPUs that are required to train the network. For
a 100K × 100K image, for example, twenty 32GB GPUs will
be required to simply hold the input image. The first stage
of an image DNN pipeline typically increases the size of
the output activations by a factor of 5-10 (the number of
channels increases from 3 to at least 32, while the image
height/width gets halved); further increasing the number
of GPUs required. We were also not able to set up LBANN
as per the documentation given. The version incompatibil-
ity among dependencies causes multiple compilation and
linkage errors.
DistDL [12] shows performance improvement over Dist-

Conv and provides a PyTorch extension to partition a large
image into multiple smaller disjoint images over a cluster of
CPUs. During the forward or backward passes, neighbour-
hood regions of the image, as required by the convolution
kernel, are sent over the network. However, the current im-
plementation does not have a GPU backend support, making
an empirical comparison impossible.

8 Conclusion
This paper develops a segmented fused-tiled (SFT) ap-

proach to enable the training of Deep Neural Networks using
very large images, overcoming a significant current limita-
tion in popular ML frameworks like PyTorch and TensorFlow.
We develop algorithms to generate fused-tiled-compatible
segments and for determination of the memory requirements
for the fused-tiled segments. Fused-tiled execution was en-
abled in the PyTorch framework and was evaluated experi-
mentally with VGG-16, VGG-19, and Darknet DNN pipelines
on an Nvidia 2080Ti and an A100 machine. The implemen-
tation shows that there is minimal overhead for the tiled
implementation and that the tiled implementation scales to
large input image sizes well. Our developments enable arbi-
trarily large input image sizes to be used directly for training
machine learning models instead of the current practice of
using image pre-coarsening or patch-based processing in
domains like digital pathology and computational neuro-
science.

Acknowledgments
Research reported in this publication was supported in

part by the National Institute Of Biomedical Imaging And
Bioengineering of the National Institutes of Health under
Award Number R41EB032722, and by the National Science
Foundation through awards 2018016, 2119677, and 2118737.
The content is solely the responsibility of the authors and
does not necessarily represent the official views of the Na-
tional Institutes of Health or the National Science Founda-
tion.

CC ’22, April 02–03, 2022, Seoul, South Korea Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and P. Sadayappan

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016.
Fused-layer CNN accelerators. In 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[3] Riddhish Bhalodia, Shireen Y Elhabian, Ladislav Kavan, and Ross T
Whitaker. 2018. Deepssm: A deep learning framework for statistical
shape modeling from raw images. In International Workshop on Shape
in Medical Imaging. Springer, 244–257.

[4] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Alexandre V
Evfimievski, and Prithviraj Sen. 2018. On optimizing operator fusion
plans for large-scale machine learning in systemml. arXiv preprint
arXiv:1801.00829 (2018).

[5] Gabriele Campanella, Matthew G Hanna, Luke Geneslaw, Allen Mi-
raflor, Vitor Werneck Krauss Silva, Klaus J Busam, Edi Brogi, Victor E
Reuter, David S Klimstra, and Thomas J Fuchs. 2019. Clinical-grade
computational pathology using weakly supervised deep learning on
whole slide images. Nature medicine 25, 8 (2019), 1301–1309.

[6] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. 2018. Effi-
cient and robust parallel dnn training through model parallelism on
multi-gpu platform. arXiv preprint arXiv:1809.02839 (2018).

[7] Chi-Long Chen, Chi-Chung Chen, Wei-Hsiang Yu, Szu-Hua Chen,
Yu-Chan Chang, Tai-I Hsu, Michael Hsiao, Chao-Yuan Yeh, and Cheng-
Yu Chen. 2021. An annotation-free whole-slide training approach to
pathological classification of lung cancer types using deep learning.
Nature communications 12, 1 (2021), 1–13.

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174 (2016).

[9] Torch Contributors. 2018. Periodic checkpointing in pytorch. https:
//pytorch.org/docs/stable/checkpoint.html.

[10] Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir,
and Brian Van Essen. 2019. Improving strong-scaling of CNN train-
ing by exploiting finer-grained parallelism. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 210–220.

[11] Brian Van Essen, Hyojin Kim, Roger A. Pearce, Kofi Boakye, and Barry
Chen. 2015. LBANN: livermore big artificial neural network HPC
toolkit. In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, MLHPC 2015, Austin, Texas, USA,
November 15, 2015. ACM, 5:1–5:6. https://doi.org/10.1145/2834892.
2834897

[12] Russell J Hewett and Thomas J Grady II. 2020. A linear algebraic
approach to model parallelism in deep learning. arXiv preprint
arXiv:2006.03108 (2020).

[13] Arpan Jain, Ammar Ahmad Awan, Asmaa M. Aljuhani, Jahanzeb Maq-
bool Hashmi, Quentin G. Anthony, Hari Subramoni, Dhableswar K.

Panda, Raghu Machiraju, and Anil Parwani. 2020. GEMS: GPU-
Enabled Memory-Aware Model-Parallelism System for Distributed
DNN Training. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 1–15. https:
//doi.org/10.1109/SC41405.2020.00049

[14] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. 2015. An
Evaluation of Unified Memory Technology on NVIDIA GPUs. In 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. 1092–1098. https://doi.org/10.1109/CCGrid.2015.105

[15] Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen,
Matteo Barbieri, and Faisal Mahmood. 2021. Data-efficient and weakly
supervised computational pathology on whole-slide images. Nature
Biomedical Engineering (2021), 1–16.

[16] Pooya Mobadersany, Lee AD Cooper, and Jeffery A Goldstein. 2021.
GestAltNet: aggregation and attention to improve deep learning of
gestational age from placental whole-slide images. Laboratory Investi-
gation (2021), 1–10.

[17] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.
2021. DNNFusion: accelerating deep neural networks execution with
advanced operator fusion. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation. 883–898.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[19] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks
in C. http://pjreddie.com/darknet/.

[20] Elvis Rojas, Albert Njoroge Kahira, Esteban Meneses, Leonardo
Bautista-Gomez, and Rosa M. Badia. 2020. A Study of Checkpointing in
Large Scale Training of Deep Neural Networks. CoRR abs/2012.00825
(2020). arXiv:2012.00825 https://arxiv.org/abs/2012.00825

[21] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[22] TensorFlow. 2019. XLA: Optimizing Compiler for TensorFlow. https:
//www.tensorflow.org/xla.

[23] Mohamed Wahib, Haoyu Zhang, Truong Thao Nguyen, Aleksandr
Drozd, Jens Domke, Lingqi Zhang, Ryousei Takano, and Satoshi Mat-
suoka. 2020. Scaling Distributed Deep Learning Workloads beyond
the Memory Capacity with KARMA. CoRR abs/2008.11421 (2020).
arXiv:2008.11421 https://arxiv.org/abs/2008.11421

[24] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
2018. Deepthings: Distributed adaptive deep learning inference on
resource-constrained iot edge clusters. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2348–
2359.

[25] Wentao Zhu, Can Zhao,Wenqi Li, Holger Roth, Ziyue Xu, andDaguang
Xu. 2020. Lamp: Large deep nets with automated model parallelism
for image segmentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 374–384.

https://www.tensorflow.org/
 https://pytorch.org/docs/stable/checkpoint.html
 https://pytorch.org/docs/stable/checkpoint.html
https://doi.org/10.1145/2834892.2834897
https://doi.org/10.1145/2834892.2834897
https://doi.org/10.1109/SC41405.2020.00049
https://doi.org/10.1109/SC41405.2020.00049
https://doi.org/10.1109/CCGrid.2015.105
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://pjreddie.com/darknet/
https://arxiv.org/abs/2012.00825
https://arxiv.org/abs/2012.00825
 https://www.tensorflow.org/xla
 https://www.tensorflow.org/xla
https://arxiv.org/abs/2008.11421
https://arxiv.org/abs/2008.11421

	Abstract
	1 Introduction
	2 Background
	2.1 Forward and backward propagation
	2.2 Memory reduction via checkpoint/recompute
	2.3 Fused-Tiled execution

	3 Overview of Solution
	4 Problem Formalization & Algorithm Details
	4.1 Problem Formalization
	4.2 Partitioning of DNN pipeline into FT-compatible segments
	4.3 Determination of buffer sizes for SFT execution

	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Experimental results

	7 Related Work
	7.1 Operator Fusion
	7.2 Out-of-core training
	7.3 Multi-GPU Model Parallelism
	7.4 Unified Memory
	7.5 Convolutions Over Distributed Memory

	8 Conclusion
	Acknowledgments
	References

