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Abstract—Motivated by IoT security monitoring applications,
we consider the problem of a wireless monitor that must
implement a multi-channel scanning policy to minimize the Age
of Information (Aol) of received information. We model this
problem as a Markov Decision Process (MDP). To address the
curse of dimensionality, we propose various scanning policies of
low computational complexity. We compare the performance of
these policies against the optimal one in small instances, and
further simulate them using time-series data obtained from real
IoT device communication traces. We show that a policy, coined
Greedy Expected Area (GEA), performs well in many scenarios.

Index Terms—Wireless monitoring, Internet of Things, Mod-
eling, Simulation.

I. INTRODUCTION

The number of consumer and industrial Internet of Things
(IoT) applications have exploded in recent years. The diversity
of devices communicating in overlapping channel configu-
rations (especially in the busy unlicensed spectrum bands)
brings an interesting challenge of visibility, i.e., being able to
monitor as much activity as possible simultaneously. One key
motivation is security monitoring. The goal is to get a picture
as complete and current as possible of local wireless devices
to prevent wireless data exfiltration or any other activity of
unauthorized devices.

As a general-purpose technology for addressing any num-
ber of wireless protocols, Software-Defined Radio (SDR)
technology has grown into a multibillion-dollar market [1],
[2]. One compelling characteristic of wireless transceivers
implemented in software is the support for multiple protocols
at the same time, and the ability to — within the limits of
device capabilities — receive multiple channels at once. Despite
these advantages, typical SDR hardware is currently not yet
capable of capturing the entire ISM band concurrently, let
alone monitor multiple bands of relevant radio traffic across
the spectrum simultaneously.

We study the case of a passive monitor, which does not
control the transmission behavior of its data sources, and
aims to optimize the freshness of information across multiple
channels. The monitor can cover one or more (but not all)
channels at a time, and needs to decide which channel(s) to
tune into. This problem is motivated by SDR-based multi-
channel device enumeration across multiple IoT protocols [3].

This work contains the following key contributions:

David Starobinski
Electrical & Computer Engineering
Boston University
Boston, MA, USA
staro@bu.edu

« We introduce the problem of Aol minimization in multi-
channel monitoring of wireless [oT devices and show that
this problem can be formulated as an MDP optimization.

« We propose several monitoring policies of low complex-
ity and characterize their performance, for the general
case of a monitoring system with one or more devices
per channel and/or a single or multi-channel monitor.

« We prove the optimality of several of the proposed scan-
ning policies in the special case of a symmetric network
with one device per channel and a monitor capable of
scanning one channel at a time,

« We numerically compare the performance of the proposed
policies with the MDP solution. We show that one of
these policies, called Greedy Expected Area (GEA),
performs close to optimal even under adverse conditions.

e We further compare the performance of the various
policies using time-series of traffic collected from real-
world IoT device communication [3], [4].

The remaining sections of this paper are organized as
follows. Section II gives an overview of related work on multi-
channel monitoring and Aol optimization. Section III defines
key terms, proposes a general formulation for multi-channel
monitoring, and shows that it can be cast as an MDP opti-
mization problem. Section IV introduces various monitoring
policies of low complexity and analyzes their performance.
Section V evaluates the performance of the policies against the
optimal one, and with actual traces of IoT traffic. Section VI
concludes the paper.

II. RELATED WORKS

The Age of Information (Aol) metric is frequently used
to characterize freshness of information in networked sys-
tems [5]. Optimizing for Aol in a communication system is
not equivalent to simply maximizing throughput, as shown by
Kaul et al. [6] and further explored in a number of contexts
over the last decade, often in the context of wireless sensor
networks. Most research on Aol in wireless sensor networks
has focused on controlling transmission under certain con-
straints such as energy conservation [7]-[11], limited capacity
for concurrent communication [12]-[16], or lossy transmission
media [12], [13].

Alsliety and Aloi [17] discuss the challenges of using
software-defined radio (SDR) in telematics across multiple



protocols, and Choong [18] demonstrates a multi-channel Zig-
bee receiver implementation. These practical works motivate
the theoretical multi-channel monitoring problem studied in
our paper.

Tripathi and Moharir [7] and Sombabu and Moharir [8]
discuss a system in which multiple sensors communicate to
a monitor via a number of communication channels. They
propose scheduling policies that optimize Aol at the monitor
and energy consumption of sensors. Zhou and Saad [9], [10]
introduce system comprised of distributed, energy-constrained
sensors, and propose a semi-distributed policy in which sam-
pling is controlled by the sensors, and update transmission
by the monitor. Kadota et al. [12] develop and characterize
transmission scheduling policies, and analyze the performance
of these policies under various channel conditions. These
findings are applied to improve the MAC layer implementation
of Wi-Fi networks to improve real-world information freshness
in wireless communication [19]. Our work differs from these
above works in that it assumes that wireless nodes send data
at arbitrary times out of the control of the monitor, and the
monitor instead needs to switch channels to receive updates. In
our work, we discuss multiple receiver-side channel switching
policies, and characterize their performance under different
monitoring scenarios.

Gu et al. [13] and Leng et al. [14] characterize Aol
measurement and optimization in cognitive radio-based IoT,
where multiple classes of IoT devices operate at different
priorities and signal-to-noise ratios, competing for a shared
medium. Similarly, Chen et al. [11] and Leng et al. [15] discuss
Aol in the context of energy harvesting nodes, in which Aol
minimization is in direct competition with energy constraints
of the transmitting nodes. Our work considers a monitor that
is not energy constrained, and arbitrary devices out of the
control of the monitor. While we do not address transmission
challenges of shared spectrum in cognitive radios, we envision
that our work could be applied in that context.

Atay et al. [20] introduce the concept of “Aol regret” as
the penalty of operating without the knowledge of certain
system parameters needed to truly minimize Aol, and propose
an algorithm that minimizes Aol regret faster than previously
known algorithms. In our work, we focus on the case of a static
population of devices exhibiting certain known transmission
statistics (which may have been obtained by a preceding
learning phase).

Zou et al. [16] propose a Markov Decision Process (MDP)-
based formulation of heterogeneous multi-channel systems
and scheduling algorithms that minimize total system Aol.
Their work, as well as all previous work discussed, focuses
on optimal transmission scheduling under certain constraints,
whereas our work assumes lack of control over transmissions,
and focuses on minimizing Aol based on scheduling the set
of channels at the receiver side.

III. PROBLEM FORMULATION

In this section, we define terminology used in this work, and
introduce a general model for minimizing Age of Information

(Aol) in multi-channel monitoring with the help of a Markov
Decision Process (MDP).

A. Model

We consider a communication medium with C' channels,
indexed ¢ = 1,2,...,C, and D devices, indexed d =
1,2,..., D. The sets of channels and devices are respectively
denoted C and D. Each device d € D transmits on one
channel ¢ € C. Devices do not switch between channels.

We assume that each device d transmits packets following
a Poisson process with rate A4, independent from the activity
of other devices. Thus, the probability that device d transmits
during a time slot At is

pa = Pr(d transmits within At) =1 —e 25t (1)

From now on, we thus consider a discretized time-slotted
model, wherein the probability that device d transmits during
a given slot is pg, independent of any other event. The time
slots are denoted t = 1,2,...,7T, where T is the time horizon.

Throughout this paper we assume a loss-free channel. Note
that is possible for two devices to successfully transmit during
the same slot At on the same channel, because the transmis-
sion time of a packet is assumed to be significantly shorter
than the duration of a slot. The model can be generalized to
a lossy channel, whereby py represents the probability that d
transmits and the transmission is successfully received.

A monitor collects messages from the set of devices D.
The monitor can observe one or more contiguous channels at
the same time, limited by the capabilities of the underlying
hardware constraining its instantaneous bandwidth, i.e., the
range of RF spectrum it can simultaneously capture. We denote
by C the set of channel tuples that the monitor can listen to and
Cinaz the number of channels in each tuple. In each time slot,
the monitor can only tune to one channel tuple. For instance,
if there are C' = 4 channels and the monitor can listen to
Cinaz = 2 channels at a time, then C = {(1, 2), (2,3),(3,4)}.

The Aol of device d represents the timeliness of information
available to the monitor based on the difference between the
current time and the last time it received a packet from d.
Thus, we denote q4(t) =t — uq(t) the age of information of
device d, where t is the current time slot and ug(t) is the last
time slot in which the monitor received a packet from d.

Our work differs from most previous works that deal with
Aol, in that the monitor has no control over the transmission
behavior of the devices it observes. However, the monitor can
select the channels on which to listen. Thus, at each time slot,
the monitor needs to select a channel tuple ¢ € C. The Aol
of each device d € D is updated as follows:

q(t+1)=

{O if d transmits and is on ¢ € ¢ @)

qa(t) +1 otherwise.



A common metric for measuring the freshness of the
information is the sum of the Aols averaged over all devices
and time slots, that is,
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The expectation is taken over the random realizations of packet
transmissions by devices. We assume that the Aol of each
device is initialized to 0, i.e., gq(1) = 0 for all d € D. Note
that Eq. (3) can easily be generalized to a weighted sum to
capture devices of varying importance. For simplicity, in this
paper, we assume that each device has the same weight.

B. Markov Decision Process (MDP)

Our goal is to determine the optimal policy that the monitor
should follow to minimize J. We consider an infinite-horizon
average reward problem, where 7" — 0o, so we can focus only
on stationary policies (which do not depend on t). A policy
determines an action based on the current state. A state s of
the system can be represented by the Aol of each device, i.e.,
s=(q1,92,---,9p). We drop the time index ¢, since it does
not matter for stationary policies. Since each device always
stays on the same channel, there is no need to add channel
state variables (i.e., there is a fixed mapping between each
device and the channel on which it resides).

A policy 7 determines an action a for each state s. In our
case, the action a is the selection of a channel tuple ¢ € C.
We denote by J™ the Aol under policy w. Thus, our goal is
to determine the optimal policy 7* that minimizes J™, that
is,

7" = argmin J7. ()
T
A technicality is that the optimal solution 7* is generally
guaranteed to exist only under a finite state space [21]. This
can be addressed by truncating the state space such that the
Aol of any device cannot exceed a certain value.

The optimization problem of Eq. (3) can be cast as an
MDP, which can be solved using relative value iteration [21].
Computing the optimal policy is possible in small instances
but becomes intractable for larger instances due to state-space
explosion. Hence, in the next section, we present several
scanning policies of low computational complexity.

IV. SCANNING POLICIES

In this section, we introduce various scanning policies
that are computationally feasible. We prove the optimality
of several of these policies in a special case that reduces
to a wireless broadcast scheduling problem studied in the
literature [12].

A. General case

We consider the general case of a monitoring system with
one or more devices per channel and a monitor capable of
listening to one or more channels. We next present several
policies that easily lend themselves to implementation.

For the purpose of illustrating the policies, consider a system
with C' = 3 channels and a monitor than can listen to
Cinaz = 2 channels. Thus C = {(1,2),(2,3)}. Suppose that
the system contains D = 4 devices with device 1 on channel 1,
devices 2 and 3 on channel 2, and device 4 on channel 3. Last,
assume that the transmission probability of the devices are
p1 =0.5,p2 =0.1,p3 = 0.2, p4 = 0.8 and the Aol of the de-
vices, at a certain time slot, are ¢; = 4,92 = 2,q3 = 3,q4 = 3.

a) Random: In the Random policy, the monitor selects
a (contiguous) channel tuple ¢ at random within the set C in
each time slot. This policy has the advantage of being very
simple to implement since the monitor does not to keep track
of the state of individual devices (i.e., it is stateless). However,
it generally performs worse than stateful policies.

b) Greedy Aol (GAol): The GAol policy identifies the
device with the highest Aol and the channel ¢ on which this
device operates. The GAol policy then selects at random any
channel tuple c that contains the channel c. Using the example
above, device 1 has the highest Aol (equal 4), and therefore
c = 1. As a result, the monitor selects the channel tuple ¢ =
(1,2) (the only tuple that contains channel 1).

¢) MaxSum: The MaxSum policy sums up the Aol of
all the devices in each channel tuple, and selects the channel
tuple with the largest sum. Denote by D, the set of devices
operating on any channel belonging to channel tuple c. Then,
the sum of Aols for tuple c is

> )

deD,

For the example above, the sum of Aols in tuple (1,2) is 9,
while for tuple (2, 3) it is 8, resulting in selection of (1, 2).
d) Greedy Expected Area (GEA): The GEA policy is

the most sophisticated policy discussed, taking into account
the transmission probability of devices. It also observes that
Eq. (3) is in effect a form of area minimization. Indeed, the
sum of ages of each device over time can be viewed as the
sum of areas. In an interval between two Aol resets, if the
Aol of a device reaches value @, then the “area” contribution
during this interval is Zq 00 =Q(Q+1)/2.

The GEA policy computes for each channel tuple ¢ the area
that one can expect to trim by the next time slot, that is

> palaa+1)(ga +2)- (©6)
deD,

The GEA policy then selects the tuple ¢ for which Eq. (6) is
the largest. Back to our example, the expected area in tuple
(1,2) is 20.2, while for tuple (2,3) it is 21.2. Hence, the
monitor selects channel tuple (2, 3).

B. Analysis

We next analyze the performance of the above policies in a
special case.

Theorem 1. Consider a monitoring system with one device
per channel and a monitor that can listen to only one channel
at a time, i.e., Cpnae = 1. Then, the optimization problem



of Eq. (3) is identical to the optimization problem of Eq. (3)
in [12].

Proof. The work in [12] considers a single-hop wireless
network with a base station (BS) sending information to M
clients. In each slot, the BS transmits a packet to a selected
client ¢ over the wireless channel. The packet is successfully
delivered to client ¢ with probability p, and a transmission
error occurs with probability 1 —p;. The Aol of client ¢ is reset
only if the BS transmits to client ¢ and client ¢ successfully
receives the packet. Otherwise, the Aol increments by 1.
Eq. (3) in [12] corresponds to the minimization of the Aol
averaged over time and devices which is identical to Eq. (3) in
our paper. Thus, for the special case of one device per channel
and one channel to tune in, the problem of selecting which
channel to listen to is the same as the problem of selecting
which client to transmit to in [12]. In terms of notation, M
and p; in [12] respectively correspond to D and py in our
model. O

The work in [12] proposes and analyzes several policies,
namely the Random, Greedy, Max-Weight and Whittle’s Index
policies. The immediate corollary of Theorem 1 is that all
the results obtained in [12] for these policies in the special
case of one device per channel and a monitor capable of
listening to only one channel at a time apply directly to
our model. Specifically, in that special case, the GAol and
MaxSum policies are identical to the Greedy policy of [12],
and the GEA policy is very similar to the Max-Weight and
Whittle’s Index policies of [12]. We can further establish the
following result.

Theorem 2. Consider a monitoring system with one device
per channel and a monitor that can listen to only one channel
at a time, i.e., Cppqr = 1. Consider a symmetric network where
pa =p € (0,1] for all d € D. Then, the GAol, MaxSum, and
GEA policies are all optimal.

Proof. Theorem 5 in [12] establishes the optimality of the
Greedy policy in the symmetric network case. The GAol,
MaxSum, and GEA policies in that case are all equivalent to
the Greedy policy of [12], hence their optimality follows. [J

V. EVALUATION

We evaluate the performance of the various policies by
making use of two experimental studies. The first experimental
setup consists of an MDP, solved using the Python Markov
Decision Toolbox [22]. This setup allows for the creation of
arbitrary monitoring scenarios based on definition of the MDP
state space, action space, transition model and reward model.
Based on this model, the optimal policy can be computed
from scratch by means of relative value iteration. Crucially,
it can also be used to compare the optimal policy with the
scanning policies introduced in Section IV. The second exper-
imental setup is based on real-world traces of wireless traffic
collected in over-the-air experiments with smart home devices
by Gvozdenovic et al. [3], [4]. Based on these time series,
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Fig. 1. Two channels with one device on each with transmission rates A1

and A2. The monitor scans a single channel at a time. The rate asymmetry
ratio A2 /A1 on the z-axis represents the ratio of the increasingly faster rate
of device 2 on channel 2 over the constant rate of device 1 on channel 1
(A1 = 0.2). The GEA policy performs close to optimal in all scenarios. The
GAol and MaxSum policies perform optimally in the symmetric case but
become worse under strongly asymmetric conditions.

we can simulate a multi-channel monitor and characterize the
performance of the various policies.

A. Evaluation of policies and comparison to optimal

a) Two channels, one device each: First, we implement
an MDP model with two channels, each of which is occupied
by one device. Device 1 has a message generation rate of A\; =
0.2, while the message generation rate of device 2 increments
in steps of 0.2 in the range A\ = [0.2...2.0], such that the
message generation varies from a symmetric scenario where
A2 = A1 to an asymmetric scenario with a factor of 10 between
the two devices, i.e., Ay = 10 x \;. We refer to the ratio
A2/A1 as the rate asymmetry ratio. We assume a time slot
of length 1, i.e., At = 1. We truncate the state space to a
maximum Aol of 20, resulting in 882 distinct states in the
MDP, then solve it numerically using relative value iteration
to obtain an optimal solution. The algorithm stops when an
e-optimal policy for a stopping criterion of ¢ = 0.01 has been
found, or 1000 iterations have been exhausted. Subsequently,
we apply the policies introduced in Section IV to the model.
Then, we calculate the stationary distribution of the Markov
chain and calculate its Aol.

The results are shown in Figure 1. Per Theorem 1, the
setup considered in this case is equivalent to the scheduling
problem considered in [12]. All the policies, except for the
random one, achieve optimal performance in the symmetric
case A2 = \j, as predicted by Theorem 2 As asymmetry
increases, however, the Greedy Aol and MaxSum algorithms
fall behind significantly, whereas the GEA policy performs
near-optimal throughout.

b) Two channels, two devices each: In the case of
multiple devices per channel, we distinguish between vari-
ations of device asymmetry (DA) (i.e., two channels with
similar compositions of slow and fast devices) and channel
asymmetry (CA) (i.e., one channel containing slow devices and
another containing increasingly fast devices). In the following
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Fig. 2. Two channels with two devices on each. The monitor scans a single
channel at a time.

(a) device asymmetry: On each channel, one device operates at a constant rate,
and the other at an increasingly faster rate. The rate asymmetry ratio is the
ratio of the faster rate over the slower rate. The GEA and MaxSum policies
both perform close to optimal.

(b) channel asymmetry: On channel 1, both devices transmit at the same
constant rate, and on channel 2, the devices transmit at an increasingly faster
rate. Here, the GEA policy performs significantly better than the other policies.

experiments, devices 1 and 2 are on channel 1, and 3 and 4 on
channel 2. We again assume At = 1. The ratio of the faster
rate over the slower rate is the rate asymmetry ratio (RAR).

In the DA case, shown in Figure 2(a), we consider two
statistically similar channels. In each channel, one device
stays at the same transmission rate, i.e., Ay = A3 = 0.2,
while the traffic rate of the other device increases, i.e.,
A2 = Ay = [0.2...2.0], resulting in a RAR ranging from
1 to 10. To limit the size of the state space, the Aol in the
MDP model is truncated to a value of 5, resulting in 1250
states (and a 2592 x 2592 transition matrix). Note that while a
higher maximum value of Aol would be desirable, the problem
quickly becomes computationally infeasible. Under the DA
conditions, the GEA and MaxSum perform close to optimal,
while GAol trails behind with increasing asymmetry.

In the CA case, we consider one channel with two devices
sending at rates of \; = Ao = 0.2, and another channel with
two devices with rates A3 = Ay = [0.2...2.0], again result in
a RAR from 1 to 10. As shown in Figure 2(b), the GEA policy
again performs close to optimal under any of these conditions,
while GAol and MaxSum deteriorate even beyond random
channel selection under more pronounced channel asymmetry.
Interestingly, the MaxSum algorithm behaves significantly
different in the DA and CA scenarios. This can be explained
by its preference for the slower channel in the CA scenario,
in which it needlessly allows the “fast” channel to accumulate
age while waiting for slow devices to update.

¢) Multi-channel monitoring: We consider a multi-
channel scanning scenario with four channels, and a monitor
that can simultaneously monitor two channels at a time (i.e.,
C = {(1,2),(2,3),(3,4)}). We assume one device on each
channel. The device on channel 1 transmits in each time slot
(p1 = 1.0), while the devices on all other channels transmit
with probability p» = p3 = ps = «, where o decreases
from 1 down to 0.1. As shown in Figure 3, GEA performs
near optimally, while the performance of the MaxSum policy
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Fig. 3. A scenario with four channels, one device on each, and transmission
probabilities [1, o, «, . The monitor scans two channels simultaneously. The
GEA policy performs close to optimal.
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Fig. 4. A monitor scanning three out of 10 channels simultaneously. There are
two devices on each channel. The GEA policy performs by far the best under
asymmetric channel conditions (CA), while under other conditions, GEA and
MaxSum perform slightly better than Random and much better than GAol.

degrades as the channels become more asymmetric.

B. Trace-based simulation

The second experimental setup is based on real-world traces
provided by Gvozdenovic et al. [3], [4]. The traces were
obtained by recording Zigbee and Bluetooth LE traffic in a
controlled environment for 10 minutes each. The resulting
PCAP files are converted into anonymized time series. This
measurement campaign resulted in 48 trace files containing
at least two devices, and 28 trace files containing 6 or more
devices. In contrast to the MDP model, running the simulation
model allows for larger channel and device configurations, as
the entire state transition model does not have to be computed.

We consider 10 channels with two devices on each, and a
monitor simultaneously scanning three channels at a time. We
construct three scenarios:

Symmetric: 10 traces are randomly selected from the avail-
able trace files without replacement and used as channels.
DA: 20 traces are randomly selected from the available traces
without replacement. For each channel, the device with
the slowest and fastest transmission rate are selected
(these statistics are contained in the trace files). The RAR



for these device pairs is computed for each trace, and the
10 traces with the highest ratio are used as channels.

CA: 20 traces are randomly selected from the available traces
without replacement. Traces are sorted by the mean
device transmission rate (contained in the trace files). The
five traces with the lowest and highest mean transmission
rate respectively are selected as the 10 channels.

Each of these scenarios is repeated independently 20 times,

and the results averaged.

These trace-based results are summarized in Figure 4. The
GEA policy outperforms other policies significantly under
channel asymmetry, i.e., when devices on some channels
update at a significantly slower rate than devices on other
channels. This is the case in multi-protocol scanning, where
transmission rates across observed protocols can span orders of
magnitude [3]. In the other scenarios, MaxSum and GEA have
a slight advantage over random channel selection, whereas
GAol performs noticeably worse. This is a result of GAol
selecting individual channels containing the highest-Aol de-
vices, then randomly selecting tuples containing that channel,
whereas MaxSum and GEA compute a tuple selection based
on the the highest scoring group of channels.

VI. CONCLUSION

We presented a new perspective on Aol optimization for
a passive monitor which cannot influence the arbitrary data
sources it is monitoring, relying purely on channel switching
policies. We formulated this problem using MDPs in order
to comparatively study different single and multi-channel
scanning policies. We further compared policy performance
using real IoT device traffic.

While the MDP can be solved in small instances, it becomes
intractable as the number of devices increases. To address
this, we proposed and evaluated several policies, using both
synthetic and real traffic traces. We showed that a policy,
coined Greedy Expected Area (GEA), performs well in many
of the scenarios. In particular, under channel asymmetry,
GEA significantly outperforms all other discussed policies.
For small instance, we also showed that GEA performs near
the optimal solution solved using the MDP. We also formally
proved the optimality of GEA, GAol, and MaxSum in the
special case of a symmetric network with a single device per
channel and single channel monitoring.

The traces used in this work have been made available to
the research community [4], so that researchers can propose
and compare other algorithms. Insight from these works may
lead to new discoveries on policies which perform well in large
constellations of channels and devices, which has implications
for monitoring large and crowded bands, such as the 2.4 GHz
band, across multiple channels and IoT protocols.
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