
Improved Distributed Network Decomposition,

Hitting Sets, and Spanners, via Derandomization∗

Mohsen Ghaffari

MIT

ghaffari@mit.edu

Christoph Grunau

ETH Zurich

cgrunau@inf.ethz.ch

Bernhard Haeupler

ETH Zurich and CMU

bernhard.haeupler@inf.ethz.ch

Saeed Ilchi

ETH Zurich

saeed.ilchi@inf.ethz.ch

Václav Rozhoň

ETH Zurich

rozhonv@inf.ethz.ch

Abstract

This paper presents signiőcantly improved deterministic algorithms for some of the key problems in
the area of distributed graph algorithms, including network decomposition, hitting sets, and spanners.
As the main ingredient in these results, we develop novel randomized distributed algorithms that we
can analyze using only pairwise independence, and we can thus derandomize efficiently. As our most
prominent end-result, we obtain a deterministic construction for O(log n)-color O(log n · log log log n)-

strong diameter network decomposition in Õ(log3 n) rounds. This is the őrst construction that achieves
almost log n in both parameters, and it improves on a recent line of exciting progress on deterministic
distributed network decompositions [Rozhoň, Ghaffari STOC’20; Ghaffari, Grunau, Rozhoň SODA’21;
Chang, Ghaffari PODC’21; Elkin, Haeupler, Rozhoň, Grunau FOCS’22].

1 Introduction

This paper is centered on the area of distributed graph algorithms and provides new methods and tools for
developing improved deterministic distributed algorithms.

It has been a central, well-known, and well-studied theme in this area that, for many of the graph
problems of interest, known randomized algorithms outperform their deterministic counterparts. Concretely,
the randomized variants have been much faster and/or achieved better output properties, e.g., approximation
factors. As a prominent example, for several of the key problems of interestÐincluding maximal independent
set, maximal matching, ∆+ 1 vertex coloringÐwe have known O(log n) round randomized algorithms since
the 1986 work of Luby [20]. In contrast, developing even poly(log n)-time deterministic algorithms for many
of these problems remained open for nearly four decades. See for instance the 2013 book of Barenboim
and Elkin [5] which lists numerous such open questions. Only very recently, poly(log n)-time deterministic
algorithms for these problems were developed [30, 13, 9, 15, 11]. However, currently, these deterministic
algorithms are still quite far from their randomized counterparts.

In this paper, we focus on two of the most central tools in developing deterministic algorithms for local
graph problems, namely network decompositions and hitting sets, and we present signiőcantly improved
deterministic distributed constructions of these tools. From a technical perspective, our novelty is in
developing new randomized algorithms for these tools in such a way that we can analyze the algorithm
by assuming only pairwise independence in the randomness it uses. We then describe how one can leverage
this to derandomize the algorithms, i.e., to transform the randomized algorithm into an efficient deterministic
algorithm. We next review the model and then state our contributions in the context of the recent progress.

Model. We work with the standard distributed message-passing model for graph algorithms [26]. The
network is abstracted as an n-node graph G = (V,E) where each node v ∈ V corresponds to one processor
in the network. Communications take place in synchronous rounds. Per round, each processor/node can

∗The full version of the paper can be accessed at https://arxiv.org/abs/2209.11669
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send an O(log n)-bit message to each of its neighbors in G. This model is called CONGEST . The relaxed
variant of the model where we allow unbounded message sizes is called LOCAL . At the end of the round,
each processor/node performs some computations on the data that it holds, before we proceed to the next
communication round.

A graph problem in this model is captured as follows: Initially, the network topology is not known to the
nodes of the graph, except that each node v ∈ V knows its own unique O(log n)-bit identiőer and perhaps
some of the global parameters of the network, e.g., the number n of nodes in the network or a suitably tight
upper bound on it. At the end of the computation, each node should know its own part of the output, e.g.,
in the graph coloring problem, each node should know its own color. When we discuss a particular graph
problem, we will specify what part of the output should be known by each node.

1.1 Network Decomposition Perhaps the most central object in the study of deterministic distributed
algorithms for local graph problems has been the concept of network decomposition, which was introduced
by Awerbuch, Luby, Goldberg, and Plotkin [3]. We next deőne this concept and explain its usefulness. Then,
we discuss its existence and randomized distributed constructions. Afterward, we review the deterministic
distributed constructions, especially the recent breakthroughs, and state our contributions.

Generally, the vertices of any n-node network can be colored using O(log n) colors such that in
the subgraph induced by each color, each connected component has diameter O(log n). We call this
an O(log n)-color O(log n)-diameter network decomposition (or sometimes O(log n)-color O(log n)-strong-
diameter network decomposition, to contrast it with a weaker variant which we discuss later). This
decomposition enables us to think of the entire graph as a collection of O(log n) node-disjoint graphs, each
of which has a small O(log n)-diameter per component; the latter facilitates distributed coordination and
computation in the component. As a prototypical example, given such a network decomposition, one easily
gets an O(log2 n)-round deterministic algorithm for maximal independent set in the LOCALmodel: we process
the color classes one by one, and per color, in each O(log n)-diameter component, we add to the output a
maximal independent set of the nodes of the component that do not have a neighbor in the independent
sets computed in the previous colors. Each color is processed in O(log n) rounds, as that is the component
diameter, and thus the overall process takes O(log2 n) rounds. See [30, 16, 14] for how network decomposition
leads to a general derandomization method in the LOCALmodel, which transforms any poly(log n)-time
randomized algorithm for any locally checkable problem [23] (roughly speaking, problems in which any
proposed solution can be checked deterministically in poly(log n)-time, e.g., coloring, maximal independent
set, maximal matching) into a poly(log n)-time deterministic algorithm.

The existence of such a O(log n)-color O(log n)-diameter network decomposition follows by a simple ball-
growing process [4]. We build the colors one by one, and each time, we color at least half of the remaining
nodes with the next color. For one color i, start from an arbitrary node and grow its ball hop by hop, so long
as the size is increasing by at least a 2 factor per hop. This stops in at most O(log n) hops. Once stopped,
color the inside of the ball with the current color i, and remove the boundary nodes, deferring them to the
next colors. If we continue doing this from nodes that remain in the graph, in the end, at least half of the
nodes of the graph (which remained after colors 1 to i − 1) are colored in this color i, each carved ball has
diameter O(log n), and different balls are non-adjacent as we remove their boundaries.

Linial and Saks [19] gave a randomized distributed algorithm that computes almost such a network
decomposition in O(log2 n) rounds of the CONGESTmodel. The only weakness was in the diameter
guarantee: the vertices of each color are partitioned into non-adjacent clusters so that per cluster, every
two vertices of this cluster have a distance of at most O(log n) in the original graph. This is what we call
O(log n) weak-diameter. In contrast, if the distance was measured in the subgraph induced by the nodes
of this color, it is called a strong-diameter. A O(log2 n)-round CONGEST -model randomized algorithm
for O(log n)-color O(log n)-strong-diameter network decomposition was provided much later, by Elkin and
Neiman [10], building on a parallel algorithm of Miller, Peng, and Xu [22].

In contrast, even after signiőcant recent breakthroughs, deterministic constructions for network
decomposition are still far from achieving similar measures, and this suboptimality spreads to essentially all
applications of network decomposition in deterministic algorithms. The original work of Awerbuch et al. [3]
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gave a T -round deterministic LOCAL algorithm for c-color and d-strong-diameter network decomposition
where c = d = T = 2O(

√
logn log logn). All these bounds were improved to c = d = T = 2O(

√
logn) by

Panconesi and Srinivasan [24]. A transformation of Awerbuch et al. [2] in the LOCALmodel can transform
these into a O(log n)-color O(log n)-strong-diameter network decomposition, but the time complexity remains

2O(
√
logn) and this remained the state of the art for over nearly three decades.
Rozhoň and Ghaffari [30] gave the őrst poly(log n) time deterministic network decomposition with

poly(log n) parameters. Concretely, their algorithm computes a O(log n)-color O(log3 n)-weak-diameter
network decomposition in O(log8 n) rounds of the CONGESTmodel. The construction was improved to a
O(log n)-color O(log2 n)-weak-diameter network decomposition in O(log5 n) rounds of the CONGESTmodel,
by Grunau, Ghaffari, and Rozhoň [13]. Both of these constructions were limited to only a weak-diameter
guarantee. If one moves to the relaxed LOCALmodel with unbounded message sizes, then by combining
these with a known transformation of Awerbuch et al. [2], one gets O(log n)-color O(log n)-strong-diameter
network decompositions, in a time complexity that is slower by a few logarithmic factors. However, such
a transformation was not known for the CONGESTmodel, until a recent work of Chang and Ghaffari [9].
They gave a CONGEST -model reduction, which can transform the weak-diameter construction algorithm
of Grunau et al. [13] into a strong-diameter one, sacriőcing some extra logarithmic factors. Concretely,
they achieved a O(log n)-color O(log2 n)-strong-diameter decomposition in O(log11 n) rounds. The time
complexity of decomposition with these parameters was improved very recently by Elkin et al. [11], obtaining
a O(log n)-color O(log2 n)-strong-diameter decomposition in O(log5 n) rounds.

However, all these constructions are still far from building the arguably right object, i.e., an O(log n)-
color O(log n)-strong-diameter decomposition, in the CONGESTmodel. This was true even if we signiőcantly
relax the time complexity, and as mentioned before, this sub-optimality spreads to all applications.

Our contribution. In this paper, we present a novel deterministic construction of network decomposi-
tion which builds almost the right object, achieving an O(log n)-color O(log n · log log log n)-strong-diameter
decomposition, in poly(log n) rounds. We note that all previous construction techniques seem to require
diameter at least Ω(log2 n); see [9] for an informal discussion on this. Our algorithm breaks this barrier and
reaches diameter O(log n · log log log n). The key novelty is in designing a new randomized algorithm that
can be analyzed using only pairwise independence. We can thus derandomize this algorithm efficiently by
using previously known network decompositions in a black-box manner, and in poly(log n) time.

Furthermore, if we want faster algorithms, by a black-box combination of our new construction with
the technically-independent recent work of Faour, Ghaffari, Grunau, Kuhn, and Rozhoň [12] on locally
derandomizing pairwise-analyzed randomized algorithms (roughly speaking, their approach works by a
specialized weighted defective coloring, instead of using network decompositions), our construction becomes
much faster than all the previous constructions, and therefore provides the new state-of-the-art:

Theorem 1.1. There is a deterministic algorithm that, in any n-node network, computes an O(log n)-

color O(log n · log log log n)-strong-diameter decomposition in Õ(log3 n) rounds1 of the CONGESTmodel. The

algorithm performs Õ(m) computations in total, where m denotes the number of edges.

1.2 Hitting Set While network decomposition is a generic tool for derandomization in the LOCALmodel,
and also a key tool for derandomization in the CONGESTmodel with extensive applications, a more basic
tool that captures the usage of randomness in a range of distributed algorithms is hitting set, as we describe
next.

The Hitting Set Problem (basic case). Given a collection of łlargež sets in a ground set of elements,
randomness gives us a very simple way of selecting a łsmallž portion of the elements such that we have at
least one member of each set. The most basic variant is this: consider a bipartite graph G = (A ⊔ B,E)
where each node on one side A has degree at least k. By using randomness, we can easily deőne a small
subset B′ ⊆ B which, with high probability, has size O(|B| log n/k) and hits/dominates A, that is, each
node a ∈ A has a neighbor in B′. For that, simply include each element of B in B′ with probability

1We use the notation Õ(f(x)) = O(f(x) · poly log f(x)).
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p = O(log n/k). This randomized selection in fact works in zero rounds. Finding such a small subset B′ in a
deterministic manner is a key challenge in designing efficient deterministic distributed algorithms for many
problems. For instance, Ghaffari and Kuhn [17] pointed out that this is the only use of randomness in some
classic randomized algorithms for the construction of spanners and approximations of set cover. Indeed, a
variant of this hitting set problem is a key ingredient even in our construction of the network decompositions
mentioned above.

The Hitting Set Problem (general case). Generalizing the problem allows us to capture a much
wider range of applications. In some applications, we need to consider different sizes of the sets. Furthermore,
we may not need to hit all sets, but instead, we would like to minimize the number, or the total cost, of those
not hit. Following the bipartite graph terminology mentioned above, suppose each node a ∈ A has a cost ca,
and its degree is denoted by da. Randomized selection with probability p picks a subset B′ ⊆ B of size p|B|,
in expectation, where the total cost of A-nodes that do not have a neighbor in B′ is

∑
a∈A ca(1 − p)deg(a),

in expectation. As a side comment, we note that in all applications that we are aware of, we may assume
that ca ∈ [1, poly(n)]. Because of this, essentially without loss of generality, we can assume that for each
node a ∈ A we have deg(a) ≤ O( 1p · log n). This is because the total expected cost of higher degree nodes is

1/poly(n), which is negligible.
As an instructive example application, by deőning ca := deg(a), we get that the total number of edges

incident on A-nodes that are not hit is at most O(|A|/p), in expectation. This particular guarantee is the
sole application of randomness in some distributed constructions, e.g., the celebrated spanner construction
of Baswana and Sen [6].

Prior deterministic distributed algorithms for hitting set. There are two known distributed
constructions for hitting set [17, 8], as we review next. Both of these algorithms are based on showing that
a small collection of random bits are sufficient for the randomized algorithm and then using the conditional
expectation method to derandomize this. However, both algorithms are computationally inefficient and use
superpolynomial-time computations.

Ghaffari and Kuhn [17] observed that O(log n)-wise independence is sufficient for the randomized
algorithm in the basic hitting set problem, and thus O(log2 n) bits of randomness are sufficient for the
algorithm. Then, given a network decomposition with c colors and strong diameter d, we can derandomize
these bits one by one in a total of O(cd log2 n) rounds, by processing the color classes one by one and őxing
the bits in each color class in O(d) time. However, the resulting algorithm is not computationally efficient:
Each node has to perform nO(logn)-time local computations to calculate the conditional probabilities needed
in the method of conditional expectation.

Parter and Yogev [25] pointed out that one can replace the O(log n)-wise independence with a
pseudorandomness generator for read-once DNFs and this reduces the number of bits to O(log n(log log n)3)ś
this was presented in a different context of spanners in the congested clique model of distributed computing.
More recently, Bezdrighin et al. [8] further reduced that bound to O(log n log log n), by applying a
pseudorandomness generator of Gopalan and Yeudayoff [18], which is particularly designed for hitting events.
This decreased the round complexity slightly to O(cd log n log log n). However, the conditional probability
computations still remain quite inefficient: they are nO(log logn)-time, which is still super-polynomial.

Our contribution. Instead of viewing the randomized hitting set algorithm as a one-shot process
which samples each node with probability p, we instead turn it into a more gradual procedure. Concretely,
we sample in k = O(log n) steps where in each step each node is sampled pairwise independently with
probability p/k. Because of this, we can derandomize each step separately (using an overall potential
function that ensures that the result after derandomizing all steps has the same guarantees as discussed
above for the randomized algorithm). Thanks to this, in contrast to the prior algorithms [17, 8] which

required super-polynomial computations, our algorithm uses only Õ(m) computations, summed up over the
entire graph, where m denotes the number of edges. Hence, our distributed algorithm directly provides a
near-linear time low-depth deterministic parallel algorithm for the hitting set problem.

Theorem 1.2. (Informal) There is a deterministic distributed algorithm that in poly(log n) rounds and

using Õ(m) total computations solves the generalized hitting set problem. That is, in the bipartite formulation
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mentioned above, the selected subset B′ has size O(p · |B|) and the total weight of nodes of A not hit by B′

is O(
∑

a∈A ca(1− p)deg(a)).

We present the formal version of this theorem in Theorem 7.3 for the CONGESTmodel of distributed
computing, and in Theorem 7.2 for the PRAM model of parallel computation.

Applications of hitting set. This efficiently derandomized hitting set has signiőcant applications for
a number of graph problems of interest. In this paper, as two examples, we discuss spanners and distance
oracles. In the case of spanners, this deterministic hitting set leads to the őrst deterministic spanner
algorithm with the best-known stretch-size trade-off, polylogarithmic round complexity, that has near-
linear time computations. The best previously known deterministic constructions required superpolynomial
computations [8] (and in the [17] case, had extra logarithmic factors in size). The formal statements are as
follows, and the proofs are presented in Section 8.1.

Corollary 1.1. (general stretch spanners, unweighted and weighted) There is deterministic dis-

tributed algorithm that, in poly(log n) rounds of the CONGESTmodel and with total computations Õ(m), for
any integer k ≥ 1, computes a (2k − 1)-spanner with O(nk + n1+1/k log k) and O(nk + n1+1/kk) edges for
unweighted and weighted graphs, respectively.

Corollary 1.2. (ultra-sparse spanners) There is deterministic distributed algorithm that, in poly(log n)

rounds of the CONGESTmodel and with total computations Õ(m), computes a spanner with size (1 + o(1))n
and with stretch log n · 2O(log∗ n) in weighted graphs.

By slight generalizations of our hitting set, we also obtain an efficient parallel derandomization of
approximate distance oracles constructions:

Corollary 1.3. (approximate distance oracle) Given an undirected weighted graph G = (V,E), a set
of sources S ⊆ V with s = |S|, and stretch and error parameters k and ε > 0, there is a deterministic

algorithm that solves the source-restricted distance oracle problem with Õε(ms1/k) work and Õε(poly(log n))
depth in the PRAMmodel. The data structure has size O(nks1/k) and for each query (u, v), the oracle can
return a value q in O(k) time that satisőes

d(u, v) ≤ q ≤ (2k − 1)(1 + ε)d(u, v).

The proof is presented in Section 8.2. The corresponding centralized randomized construction was
presented in the celebrated work of Thorup and Zwick [31]. A centralized derandomization was given by
Roddity, Thorup, and Zwick [28] but that approach does not appear to be applicable in parallel/distributed
settings of computation.

2 Preliminaries

We use standard graph theoretic notation throughout the paper. All graphs are undirected and unweighted.
For a graph G = (V,E), we use dG or just d to denote the distance metric induced by its edges. For sets of
nodes U,W ⊆ V (G), we generalize d by d(U,W ) = minu∈U,w∈W d(u,w).

Clustering Given a graph G, its cluster C is simply a subset of nodes of V (G). The strong-diameter
diam(C) of a cluster C is deőned as diam(C) = maxu,v∈C dG[C](u, v). We note that there is a related notion
of weak-diameter of a cluster C which is deőned as the smallest D such that ∀u, v ∈ C : dG(u, v) ≤ D. That
is, C can even be disconnected, but there has to be a short path between any two nodes if we are allowed to
use all nodes of G, not just nodes of C.

Although a cluster is simply a subset of V (G), during the construction of a clustering, we keep its center
node v ∈ C and often we work with an arbitrary breadth őrst search tree of C from v.

The basic object we construct in this paper is separated clusterings, which we formally deőne next.
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Definition 2.1. (s-separated clustering) Given an input graph G, a clustering C is a collection of
disjoint clusters C1, . . . , Ct, such that for each i we have Ci ⊆ V (G). We say that the clustering has (strong-
)diameter D whenever the diameter of each graph G[Ci], 1 ≤ i ≤ t, is at most D. We say that the clustering
is s-separated if for every 1 ≤ i < j ≤ t we have dG(Ci, Cj) ≥ s. We sometime refer to this by saying that
the clustering has separation s.

We will also need the following non-standard notion of s-hop degree of a cluster deőned as follows.

Definition 2.2. (s-hop degree) Let C be some clustering and C ∈ C be a cluster with a őxed spanning
tree TC rooted at r ∈ C. The s-hop degree of C in C is the minimum number d such that for each u ∈ C and
the unique path Pu from u to r in TC the following holds: The number of different clusters C ′ ∈ C such that
d(Pu, C

′) ≤ s is at most d.

The s-hop degree of a clustering C is the maximum s-hop degree over all clusters C ∈ C.

3 Improved Network Decomposition, Outline

To prove Theorem 1.1, our core result is captured by the following low-diameter clustering statement, which
clusters at least half of the vertices. Theorem 1.1 follows directly by repeating this clustering for O(log n)
iterations, each time in the graph induced by the nodes that remain unclustered in the previous iterations.

Theorem 3.1. There is a deterministic CONGEST algorithm that runs in Õ(log2 n) rounds and computes a
clustering of at least n

2 nodes, with strong diameter O(log n · log log log n), and separation 2.

There are three ingredients in proving Theorem 3.1, as we discuss next:
(A) Low-Degree Clustering. The most important ingredient, captured by Theorem 4.1 and proven

in Section 4, is a clustering that manages to cluster half of the vertices but in which we have relaxed the
separation/non-adjacency requirement of the clustering. Instead, we want each cluster to have s-hop degree
of at most ⌈100 log log(n)⌉. See Deőnition 2.2 for the deőnition. For this ingredient, we present a randomized
algorithm with pairwise analysis and then we derandomize it.

Theorem 3.2. Let s ≥ 2 be arbitrary. There exists a deterministic CONGEST algorithm running in
Õ(s log2(n)) rounds which computes a clustering C with

1. strong diameter O(s log(n)),

2. s-hop degree of at most ⌈100 log log(n)⌉, and

3. the number of clustered nodes is at least n/2.

(B) From Low-Degree to Isolation. The second ingredient, captured by Theorem 5.1 and proven in
Section 5 is able to receive the clustering algorithm of (A) and turn it into a true clustering with separation
s, but at the expense of reducing the number of clustered nodes by an O(log log n) factor. For this ingredient
as well, we őrst present a simple randomized algorithm with pairwise analysis, and then we derandomize it.

Theorem 3.3. Assume we are given a clustering C with

1. strong diameter O(s log(n)) and

2. s-hop degree of at most ⌈100 log log(n)⌉.

There exists a deterministic CONGEST algorithm running in Õ(s log2(n)) rounds which computes a clustering
Cout with

1. strong diameter O(s log(n)),

2. separation of s and

3. the number of clustered nodes is |C|
1000 log log(n) .
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(C) Improving Fraction of Clustering Nodes. The third and last ingredient, captured by
Theorem 6.1 and proven in Section 6, receives the clustering algorithm of part (B) with a suitably high
separation parameter (which is at least logarithmically related to the fraction of nodes clustered) and
transforms it into a clustering of at least half of the nodes, at the expense of reducing the separation to
simply 2. This ingredient is a deterministic reduction and needs no derandomization and explains the őnal
logarithm in the guarantees of Theorem 3.1 (the őrst two logarithms are coming already from Theorem 4.1).

Theorem 3.4. Let x ≥ 2 be arbitrary. Assume there exists a deterministic CONGEST algorithm A running
in R rounds which computes a clustering C with

1. strong diameter O(x log n),

2. separation 10 · x and

3. clustering at least n
2x nodes.

Then, there exists a deterministic CONGEST algorithm A′ running in O(2x(R + x log n)) rounds which
computes a clustering C′ with

1. strong diameter O(x log n),

2. separation 2 and

3. clustering at least n
2 nodes.

Having all three ingredients Theorems 4.1, 5.1, and 6.1, we simply put them all together to prove
Theorem 3.1.

Proof. [Proof of Theorem 3.1] Let x = ⌈log(2000 log log n)⌉. First, from Theorem 4.1, we get a clustering
of n/2 nodes with strong diameter O(log n · log log log n) and 10x-hop degree at most ⌈100 log log(n)⌉, in

Õ(log2 n) rounds. Feeding this clustering algorithm to Theorem 5.1 produces a clustering algorithm that

clusters n
2000 log logn nodes with strong diameter O(log n·log log log n) and separation 10x, in Õ(log2 n) rounds.

Hence, this clustering can be put as input for Theorem 6.1, which as a result gives a clustering of at least
n/2 nodes with strong diameter O(log n · log log log n), and separation 2, in Õ(log2 n) rounds.

4 Low-Degree Clustering

This section is devoted to proving the following theorem discussed in Section 3.

Theorem 4.1. Let s ≥ 2 be arbitrary. There exists a deterministic CONGEST algorithm running in
Õ(s log2(n)) rounds which computes a clustering C with

1. strong diameter O(s log(n)),

2. s-hop degree of at most ⌈100 log log(n)⌉, and

3. the number of clustered nodes is at least n/2.

Intuition Behind the Proof of Theorem 4.1. In this paragraph, we give a brief intuition behind
the proof of Theorem 4.1. Our clustering algorithm can be viewed as derandomization of the randomized
clustering algorithm of Miller, Peng, and Xu [22] (MPX). This is an algorithm that can cluster n/2 nodes
with strong diameter O(s log n) such that the s-hop degree of the constructed clustering is in fact 1, or in
other words, the clustering is s-separated.

In the MPX algorithm, we simply run a breadth őrst search from all nodes of V (G) at once, but every
node starts the search only after a random delay computed as follows. Every node v ∈ V (G) starts with the
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delay del(v) = O(s log n). Next, each node starts ŕipping a coin and each time it comes up heads, it decreases
its delay by 5s. If it comes up tails, it stops the process. That is, the delays come from an exponential
distribution; even more precisely, each node gets a head start coming from an exponential distribution, we
talk about delays and add O(s log n) to make all numbers positive with high probability.

The guarantees of the MPX algorithm stem from the following observation. Let u ∈ V (G) be arbitrary
and let wait(u) be the őrst time u is reached by above breadth őrst search with delays. Let frontier2s(u)
be the number of nodes v ∈ V (G) such that del(v) + d(v, u) ≤ wait(u) + 2s. That is, frontier2s(u) contains
nodes who can reach u after at most 2s additional steps after u is reached for the őrst time. We claim that
with positive constant probability frontier2s(u) = 1, i.e., after the őrst node reaches u, it takes at least 2s
additional steps until the next node reaches u.

To see this, replace each node v ∈ V (G) by a runner on a real line who starts at position d(u, v)+O(s log n)
(and may move toward left, as we soon discuss). Then, the exponential distribution that deőnes the delays
corresponds to each runner ŕipping her coin until it comes up tails. For each heads, the runner runs distance
5s to the left. We now let the runners ŕip the coins one by one. When a runner rj is ŕipping her coin, we
consider the leftmost runner r′j out of the runners r1, . . . , rj−1 that already ŕipped their coins. We observe
that if rj at some point reaches a position at most 5s to the right from r′j , we also have that rj runs to the
distance 5s to the left of r′j with positive constant probability.

Derandomization: Let us now explain the intuitive reason why we lose a factor of O(log log n) in
Theorem 4.1. Our derandomized algorithm simulates the coin ŕipping procedure step by step, for O(log n)
steps, until every runner őnally ŕips a tail and őnishes. In contrast to the previous simple algorithm, we now
have to track our progress after every step. So, our analysis is a derandomization of the following, different,
randomized analysis of the same running process. In this new randomized analysis, in each step i and for
each node u, we consider, very informally speaking, the event that the coin of all the t runners that are
currently at distance at most 2s from the leading runner comes up tail, where t is a parameter we compute
later. The probability of this event is 2−t. This means that the probability of this bad event happening in
one of the O(log n) steps is at most O(log n) ·2−t. Choosing t = O(log log n) makes this probability constant.
Going back to the analysis of MPX, we get that at least half of nodes u have |frontier2s(u)| = O(log log n).

Although this new randomized analysis loses a factor of O(log log n), we can derandomize it in this
section by setting up suitable potentials and derandomizing the coin ŕips of each step. To do so, we in fact
simulate one fully-independent coin ŕip of each node in O(log log n) steps where in each step we only use
pairwise-independent random bits.

The rest of the section is structured as follows. In Lemma 4.1, we show how computing suitable delays
gives rise to the őnal clustering. This step is simple and does not rely on derandomization. Theorem 4.2
then shows how to compute the node delays that simulate the MPX analysis as discussed above. To sample
even one łcoin ŕipž of MPX, we need to invoke O(log log n) times the local derandomization lemma of [12].
One call of this lemma corresponds to Theorem 4.3.

Basic Deőnitions To prove Theorem 4.1, we őrst need to deőne the notions of delay, waiting time,
and a frontier:

Definition 4.1. (delay del, waiting time waitdel(u), and frontier frontierDdel(u)) A delay function
del is a function assigning each node u ∈ V a delay del(u) ∈ {0, 1, . . . , O(s log(n))}. The waiting time
of a node u ∈ V , with respect to a delay function del, is deőned as

waitdel(u) = min
v∈V

(del(v) + d(v, u)) .

The intuition behind waitdel(u) is as follows: Assume that each node v starts sending out a token at time
del(v). Then, wait(u) is the time it takes until u receives the őrst token.

Furthermore, for every parameter D ≥ 0, the frontier of width D of a node u ∈ V , with respect to a
delay function del, is deőned as

frontierDdel(u) = {v ∈ V : del(v) + d(v, u) ≤ waitdel(u) +D}.
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σ

u

v

cu

del(cu)

Figure 1: The őgure shows the run of the clustering algorithm constructing Cdel. The algorithm can be
seen as starting a breadth őrst search from a single node σ connected to every node u ∈ V (G) with an edge
of length del(u) (the CONGEST implementation of the algorithm does not need to simulate any such node
σ). The value wait(u) is the time until the search reaches the node u. The node that reaches u the őrst
is denote cu. Moreover, we cluster only nodes such that the size of their frontier of width 2s is at most
O(log log n). For example, the node v is not clustered because after it is reached by the őrst node cv, it is
reached by Ω(log log n) other nodes in the following 2s steps. It can be seen that for any w on the path from
cu to u, we have frontier2s(w) ⊆ frontier2s(u), hence the constructed clusters are connected.

Informally, frontierD(u) contains each node v whose token arrives at u at most D time units after u receives
the őrst token.

Clustering from given delays. The delay of each vertex is computed by a procedure provided in
Algorithm 1. Before discussing that, we őrst explain how each delay function del, along with a separation
parameter s, give rise to a clustering Cdel: The clustering Cdel clusters all the nodes that have a small frontier
of width 2s. In particular, each node u ∈ V (G) satisfying |frontier2s(u)| ≤ ⌈100 log log(n)⌉ is included in
some cluster of Cdel. More concretely, each clustered node u gets clustered to the cluster corresponding to
the node with the smallest identiőer in the set frontier0(u). In other words, u gets clustered with the cluster
of the minimizer of wait(u), where we use the smallest identiőer to break ties. In the following text, we
denote this node by cu. See Figure 1 for an illustration of this clustering.

Lemma 4.1. Let del be a delay function and Cdel the corresponding clustering, as described above. Then,
the clustering Cdel has

1. strong diameter O(s log n),

2. s-hop degree at most ⌈100 log log(n)⌉ and

3. the set of clustered nodes is equal to |{u ∈ V : frontier2s(u)| ≤ ⌈100 log log(n)⌉}|.

Moreover, the clustering Cdel can be computed in O(s log n log log n) CONGEST rounds.

To prove Lemma 4.1, we őrst observe that the frontiers have the following property.

Claim 4.1. Let w be any node on a shortest path from u to cu and let D ≥ 0. Then, we have (I)
frontierD(w) ⊆ frontierD(u), and (II) cw = cu.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2540

D
o

w
n
lo

ad
ed

 0
5
/1

0
/2

3
 t

o
 1

9
5
.1

7
6
.1

1
3
.2

3
8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Proof. First, we prove (I) frontierD(w) ⊆ frontierD(u). Consider any v ∈ frontierD(w). We prove that
v ∈ frontierD(u). Since v ∈ frontierD(w), we have

del(v) + d(v, w) ≤ del(cu) + d(cu, w) +D.

Since w lies on a shortest path from cu to u, we can add d(w, u) to both sides of the equation to conclude
that

del(v) + d(v, w) + d(w, u) ≤ del(cu) + d(cu, u) +D = wait(u) +D,

and thus we have
del(v) + d(v, u) ≤ wait(u) +D.

Hence, we have v ∈ frontierD(u) and (I) is proven.
Next, we prove (II) cw = cu. In view of the above proof of (I), it suffices to show that cu ∈ frontier0(w).

To prove cu ∈ frontier0(w), we use the fact that cu ∈ frontier0(u) and write

del(cu) + d(cu, u) = wait(u) ≤ wait(w) + d(w, u)

Subtracting d(w, u) from both sides of the equation and using that w lies on a shortest path from u to cu
gives

del(cu) + d(cu, w) ≤ wait(w).

Thus cu ∈ frontier0(w) and we are done.

Having Claim 4.1, we now go back to present a proof of Lemma 4.1.

Proof. [Proof of Lemma 4.1] We start with the őrst property. Let u be an arbitrary clustered node and recall
that cu is its cluster center. As cu ∈ frontier0(u), we have d(cu, u) = wait(u). Moreover,

wait(u) = min
v∈V

del(v) + d(v, u) ≤ del(u) + d(u, u) = del(u) = O(s log n).

Hence, we have d(cu, u) = O(s log n). Moreover, Claim 4.1 gives that all nodes on a shortest path from cu
to u are also clustered to cu, implying that the diameter of the cluster is O(s log n).

Next, we prove the second property. Consider an arbitrary clustered node w. We őrst show that for an
arbitrary clustered node y with d(w, y) ≤ s, it holds that cy ∈ frontier2s(w). To see this, we őrst use the
deőnition of cw to write

del(cy) + d(cy, y) ≤ del(cw) + d(cw, y)

On one hand, we can use triangle inequality to lower bound the left-hand side by

del(cy) + d(cy, y) ≥ del(cy) + d(cy, w)− d(w, y)

On the other hand, we can use triangle inequality to upper bound the right hand side by

del(cw) + d(cw, y) ≤ del(cw) + d(cw, w) + d(w, y).

Putting the two bounds together, we conclude that

del(cy) + d(cy, w) ≤ del(cw) + d(cw, w) + 2d(w, y) ≤ wait(w) + 2s,

where we used our assumption d(w, y) ≤ 2s. Thus, cy ∈ frontier2s(w).
Now, let u be an arbitrary clustered node and Pu the unique path between u and cu in the tree associated

with the cluster. Furthermore, let C ∈ Cdel be a cluster with d(Pu, C) ≤ s. Then there exists w ∈ Pu and
y ∈ C with d(w, y) ≤ s and the discussion above implies cy ∈ frontier2s(w).
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We now use Claim 4.1, which implies that frontier2s(w) ⊆ frontier2s(u). Hence, for each cluster C with
d(Pu, C) ≤ s, the corresponding cluster center is contained in frontier2s(u). As u is clustered, we know that
|frontier2s(u)| ≤ ⌈100 log log n⌉. Therefore, the s-hop degree of Cdel is at most ⌈100 log log(n)⌉.

The third property follows directly from the deőnition. To őnish the proof, we need to show that the
algorithm can be implemented in O(s log n · log log n) rounds. To see this, note that we can compute for each
node u whether |frontier2s(u)| ≤ ⌈100 log log(n)⌉ or not, as follows: We run a variant of breadth őrst search
that takes into account the delays, where each node v starts sending out a BFS token at time del(v). Recall
that in classical breadth őrst search, after a node u is reached for the őrst time by a token (sent from cu),
it broadcasts this token to all its neighbors and then it does not redirect any other tokens sent to it. In our
version of the search, each node stops redirecting only after at least ⌈100 log log(n)⌉ tokens arrived (we do
not take into account tokens that have already arrived earlier) or after it counts 2s steps from the arrival
of the őrst token. It can be seen that this algorithm can be implemented in the desired number of rounds.
Moreover, every node u learns the value of |frontier2s(u)| whenever the value is at most ⌈100 log log(n)⌉ and
otherwise, it learns the value is larger than this threshold.

In view of Lemma 4.1, to prove the randomized variant of Theorem 4.1 with pairwise analysis, it suffices
to show that Algorithm 1 stated next computes a delay function del such that the expected number of nodes
u with |frontier2s(u)| ≤ ⌈100 log log(n)⌉ is at least n/2. We later discuss how this is derandomized.

4.1 Computing Delays This subsection is dedicated to proving the following theorem that asserts that
we can compute a suitable delay function that can be plugged in Lemma 4.1 that constructs a clustering
from it.

Theorem 4.2. Algorithm 1 runs in Õ(s log2(n)) CONGEST rounds and computes a delay function del that
satisőes

|{u ∈ V : |frontier2sdel(u)| ≤ ⌈100 log log(n)⌉}| ≥ n/2.(4.1)

Algorithm 1 Computing Delay Function del

Input: A parameter s, an algorithm Ai,j computing a good set from Deőnition 4.6 in Õ(s log n) rounds
Output: A delay function del from Deőnition 4.1 satisfying (4.1)

1: procedure Delays
2: V active

0 ← V
3: R← ⌊2 log(n)⌋
4: k ← ⌈100 log log(n)⌉
5: ∀u ∈ V : del0(u)← 5sR
6: for i← 1, 2, . . . , R do
7: Wi,0 ← ∅
8: for j ← 1, 2, . . . , k do
9: Si,j ← Ai,j(deli−1,Wi,j−1) ▷ Si,j ⊆ V active

i−1

10: Wi,j ←Wi,j−1 ∪ Si,j

11: V active
i ←Wi,k

12: for ∀u ∈ V do
13: if u ∈ V active

i then
14: deli(u)← deli−1(u)− 5s
15: else
16: deli(u)← deli−1(u)

17: del← delR
18: return del
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Intuitive Description of Algorithm 1. The algorithm runs in R = ⌊2 log(n)⌋ phases and each phase
consists of k = ⌈100 log log n⌉ iterations. In iteration j of phase i, algorithm Ai,j is a deterministic algorithm
which computes a good set Si,j ⊆ V active

i−1 as deőned later in Deőnition 4.6. The algorithm description of Ai,j

is deferred to Section 4.2. The high-level intuition is that Ai,j derandomizes the randomized process which
obtains Si,j from V active

i−1 by including each vertex with probability 1
4k , pairwise independently. Repeating this

pairwise independent sampling process k times then simulates including each vertex from V active
i−1 to V active

i

with positive probability. The derandomization of the pairwise independent process is done efficiently using
a novel local derandomization procedure introduced in [12] which essentially allows to efficiently derandomize
algorithms that only rely on pairwise analysis.

Throughout the algorithm, each node is assigned a delay. At the beginning, each node u is assigned a
delay of del0(u) = 5sR = O(s log n). In each subsequent phase, for each node u, we have two possibilities: if
u ∈ V active

i , the delay of node u is decreased by 5s, i.e., deli(u) = deli−1(u)− 5s if u ∈ V active
i ; if u /∈ V active

i ,
then its delay stays the same, i.e., deli(u) = deli−1(u) if u /∈ V active

i .
For every u ∈ V , we deőne the shorthand waiti(u) = waitdeli(u) and for every D ≥ 0, we deőne

frontierDi (u) = frontierDdeli(u).
Communication Primitives. For the deterministic algorithm Ai,j which computes the set Si,j , it is

important that each node u can efficiently compute the set alivei−1(u) and deadi−1(u) that are deőned next.
Let us give a brief intuition behind the deőnition. In the łrunner intuitionž from the beginning of the section,
we want to know in every step all runners that are currently at distance at most 2s after the front runner.
For these runners, we want to ensure that not all of them stop running in one step. In the reality of the
distributed CONGESTmodel, we however cannot compute even the size of frontier2s(u).

Fortunately, for our purposes if the number of łrunnersž that are distance at most 2s from the front
runner is larger than O(log log n), it roughly speaking suffices to work with the őrst O(log log n) runners in
the analysis. This is formalized by the following deőnition of alive and dead nodes (dead nodes are runners
that stopped ŕipping coins).

Definition 4.2. [alivei(u)/deadi(u)] For every vertex u ∈ V and i ∈ {0, 1, . . . , R}, let deadi(u) ⊆
frontier2si (u) \ V active

i be an arbitrary subset of size min(k, |frontier2si (u) \ V active

i |) and alivei(u) ⊆
frontier2si (u) ∩ V active

i be an arbitrary subset of size min(k − |deadi(u)|, |frontier
2s
i (u) ∩ V active

i |).

Note that |alivei(u)|+ |deadi(u)| ≤ min(k, |frontier2si (u)|) and |deadi(u)| ≤ |alivei−1(u)|+ |deadi−1(u)|.
For each node v ∈ V , let Mi−1(v) = {u ∈ V : v ∈ alivei−1(u)}. Then, we need some simultaneous and
efficient communication, that allows each v ∈ V to broadcast a message to all nodes in Mi−1(v), and for v
to receive an aggregate of messages prepared for v in nodes Mi−1(v).

Lemma 4.2. Suppose that we are at the beginning of some phase i ∈ [R]. Given delay function deli−1, and

given the set V active

i−1 , there exists a CONGEST algorithm running in Õ(s log n) rounds which computes for
each node u ∈ V the sets alivei−1(u) and deadi(u). Moreover, let Mi−1(v) = {u ∈ V : v ∈ alivei−1(u)}. Then,

there exists an Õ(s log n) round CONGEST algorithm that allows each node v to send one O(log n)-bit message

that is delivered to all nodes in Mi−1(v). Similarly, there also exists an Õ(s log n) round CONGEST algorithm
that given O(log n)-bit messages prepared at nodes in Mi−1(v) speciőc for node v, it allows node v to receive

an aggregation of these messages, e.g., the summation of the values, in Õ(s log n) rounds.

Proof. [Proof of Lemma 4.2] We run a variant of breadth őrst search (BFS) that takes into account the

delays, and runs in Õ(s log n) rounds: Each node v starts sending out a BFS token at time deli−1(v), where
the token also includes the information whether v ∈ V active

i or not. During the entire process, each node u
forwards per time step at most k = ⌈100 log log n⌉ BFS tokens, breaking ties in favoring of tokens coming
from nodes v /∈ V active

i . That is, all tokens that arrive at the same time step are forwarded in the next time
step, except that the node forwards at most k tokens in this time step, and moreover, the node őrst includes
all tokens from nodes v /∈ V active

i (up to k) before including tokens from nodes v ∈ V active
i . Since per time

step each node forwards at most k tokens, each time step can be implemented in at most k rounds of the
CONGESTmodel. Furthermore, node u starts counting time from the moment that it received the very őrst
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token (while forwarding any received tokens, up to k per time step), and after 2s time steps have passed,
node u does not forward any other tokens.

Let us think of one tree for each node v, which is rooted at v and includes all nodes u that have received
the token of node v. Every node u receives the tokens of all nodes in frontier2si−1(u), if there are at most k
of them. If there are more than k, node u learns at least k of them, with the following guarantee: The set
of learned tokens includes all tokens from v /∈ V active

i , up to k (if there were more).
Hence, given the received tokens, each node u can form deadi−1(u) ⊆ frontier2si−1(u) \ V

active
i−1 , which is

subset of size min(k, |frontier2si−1(u) \ V
active
i−1 |). Furthermore, node u can form alivei−1(u) ⊆ frontier2si−1(u) ∩

V active
i−1 , which is a subset of size min(k − |deadi−1(u)|, |frontier

2s
i−1(u) ∩ V active

i−1 |).
By repeating the same communication, each node v is able to send one message which is delivered to all

nodes Mi−1(v) = {u ∈ V : v ∈ alivei−1(u)}, all simultaneously in Õ(s log n) rounds. Moreover, by repeating
the same communication pattern but in the reverse direction of time, we can do an aggregation along each
tree, again all simultaneously in Õ(s log n) rounds, allowing each node v to receive an aggregation of the
messages prepared for v in nodes Mi−1(v).

Potential Functions In this paragraph, we deőne an outer potential Φi for every phase i and an inner
potential ϕi,j for every iteration j within phase i. The inner potential satisőes that if ϕi,j−1 ≤ ϕi,j in each
iteration j, then Φi ≤ Φi−1 + n. The outer potential satisőes that Φ0 = 2n and if ΦR ≤ 10n log(n), then
|{u ∈ V : |frontier2s(u)| ≤ 100 log log(n)}| ≥ 9n

10 .

Definition 4.3. (Outer Potential) For every i ∈ {0, 1, . . . , R}, the outer potential of a node u after
phase i is deőned as

Φi(u) = e
|deadi(u)|

10 .

The outer potential after phase i is deőned as

Φi =
∑

u∈V

Φi(u) + 2i|V active

i |.

Here, "after phase 0" should be read as "the beginning of phase 1". Algorithm 1 will make sure that the
outer potential is sufficiently small. A small outer potential after phase i implies on one hand that there
are not too many nodes u for which |deadi(u)| is large and on the other hand ensures that there are not too
many nodes in V active

i , i.e., |V active
i | ≲ n

2i .
The following lemma captures the usefulness of the outer potential.

Lemma 4.3. (Outer Potential Lemma) We have Φ0 ≤ 2n. Moreover, if ΦR ≤ 10n log(n), then
|{u ∈ V : |frontier2sdel(u)| ≤ 100 log log(n)}| ≥ 9n

10 .

Proof. First, note that ΦR ≥ 2R|V active
R | > 10n log(n)|V active

R |. As we assume that ΦR ≤ 10n log(n), this
directly implies V active

R = ∅. In particular, every u ∈ V with |frontier2sdel(u)| > 100 log log(n) contributes

ΦR(u) = e
|deadR(u)|

10 ≥ e
min(k,|frontier2sdel(u)|

10 ) ≥ 100 log(n)

to the potential. Hence, there can be at most ΦR/(100 log(n)) ≤ n/10 such nodes and therefore
{u ∈ V : |frontier2sdel(u)| ≤ 100 log log(n)} ≥ 9n

10 , as desired.

Definition 4.4. [Pessimistic Estimator Probability pi,j(u)] For i ∈ [R] and j ∈ {0, 1, . . . , k}, the pessimistic
estimator probability of a node u after iteration j within phase i is deőned as

pi,j(u) = I(alivei−1(u) ∩Wi,j = ∅) ·

(
1−
|alivei−1(u)|

10k

)k−j

.
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Here, "after iteration 0", should be read as "the beginning of iteration 1". Let us brieŕy elaborate
on the deőnition of pi,j(u). Assume that we would compute Si,j by sampling each vertex in V active

i−1 with
probability 1

4k pairwise independently. By a simple pairwise analysis, one can show that this would imply

Pr[Si,j ∩ alivei−1(u) ̸= ∅] ≥
|alivei−1(u)|

10k . Hence, if we are currently at the beginning of iteration j within
phase i just prior to sampling the set Si,j , then pi,j−1(u) is an upper bound on the probability that no node
in alivei−1(u) is contained in V active

i (which one should think of as a bad event).

Definition 4.5. [Inner Potential]
The inner potential of a node u after iteration j of phase i is deőned as

ϕi,j(u) = pi,j(u)e
|deadi−1(u)|+|alivei−1(u)|

10 .

The inner potential after iteration j of phase i is deőned as

ϕi,j =
∑

u∈V

ϕi,j(u) + |Wi,j |2
i +

k − j

k
2i−1|V active

i−1 |.

Again, assume for a moment that we would compute Si,j by sampling each vertex in V active
i−1 with

probability 1
4k pairwise independently. Assume we are at the beginning of iteration j within phase i just prior

to sampling Si,j . Then, using the fact that E[pi,j(u)] ≤ pi,j−1(u), one directly gets that E[ϕi,j(u)] ≤ ϕi,j−1(u)
and it also follows that E[ϕi,j ] ≤ ϕi,j−1. Moreover, one can also show that E[Φi(u)] ≤ ϕi,j−1(u) + 1 and
E[Φi] ≤ ϕi,j−1 + n. In more detail, if at least one node in alivei−1(u) is contained in V active

i , one can show
that this implies deadi(u) = ∅ and therefore Φi(u) = 1. On the other hand, in the previous discussion
we mentioned that with probability at most pi,j−1(u) no node in alivei−1(u) is included in V active

i , and as
|deadi−1(u)|+ |alivei−1(u)| ≤ |deadi(u)|, we have pi,j−1(u)Φi(u) ≤ ϕi,j−1.

Lemma 4.4. (Inner Potential Lemma) For i ∈ [R] and j ∈ {0, 1, . . . , k}, Assume that in every iteration
j of phase i, Si,j is computed in such a way that ϕi,j ≤ ϕi,j−1. Then, Φi ≤ Φi−1 + n and ΦR ≤ 4n log(n).

Proof. For each node u ∈ V , we have

ϕi,0(u) = pi,0(u)e
|deadi−1(u)|+|alivei−1(u)|

10 =

(
1−
|alivei−1(u)|

10k

)k−0

e
|deadi−1(u)|+|alivei−1(u)|

10 ≤ e
|deadi−1(u)|

10 = Φi−1(u).

Therefore,

ϕi,0 =
∑

u∈V

ϕi,0(u) + |Wi,0|2
i +

k − 0

k
2i−1|V active

i−1 | ≤
∑

u∈V

Φi−1(u) + 2i−1|V active
i−1 | = Φi−1.

Consider an arbitrary u ∈ V . Next, we show that

e
|deadi(u)|

10k =: Φi(u) ≤ ϕi,k(u) + 1 = I(alivei−1(u) ∩ V active
i = ∅)e

|deadi−1(u)|+|alivei−1(u)|

10k + 1.

It is easy to verify that the inequality is satisőed if alivei−1(u) ∩ V active
i = ∅, as |deadi(u)| ≤

|deadi−1(u)| + |alivei−1(u)|. Therefore, it remains to consider the case that there exists at least one node
v ∈ alivei−1(u) ∩ V active

i . The existence of such a node v implies

waiti(u) ≤ deli(v) + d(v, u) = deli−1(v) + d(v, u)− 5s ≤ waiti−1(u) + 2s− 5s = waiti−1(u)− 3s.

For every node w /∈ V active
i , we have deli(w) = deli−1(w) and therefore

deli(w) + d(w, u) = deli−1(w) + d(w, u) ≥ waiti−1(u) ≥ waiti(u) + 3s > waiti(u) + 2s

and thus w /∈ frontier2si (u). Hence, deadi(u) = ∅ and the inequality is satisőed. Therefore,
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ϕi,k =
∑

u∈V

ϕi,k(u) + |Wi,k|2
i +

k − k

k
2i−1|V active

i−1 | ≤

(
∑

u∈V

Φi(u)− 1

)
+ |V active

i |2i = Φi − n.

A simple induction implies ϕi,k ≤ ϕi,0. Therefore,

Φi ≤ ϕi,k + n ≤ ϕi,0 + n = Φi−1 + n.

As Φ0 ≤ 2n according to Lemma 4.3, a simple induction implies

ΦR ≤ Φ0 +Rn ≤ (2 +R)n ≤ 4n log n.

Good Set Si,j: We are now going to deőne the good set of nodes Si,j . Note that this is the part of
Algorithm 1 whose deőnition we postponed.

Definition 4.6. (Good Set Si,j) For a set Si,j ⊆ V active

i−1 and u ∈ V , let

Yi,j(u) = 1− |alivei−1(u) ∩ Si,j |+

(
|alivei−1(u) ∩ Si,j |

2

)
.

We refer to the set Si,j as good if

∑

u∈V

Yi,j(u)
ϕi,j−1(u)

1− (|alivei−1(u)|/(10k))
+ |Si,j | · 2

i ≤
∑

u∈V

ϕi,j−1(u) +
2i−1

k
|V active

i−1 |.

Lemma 4.5. If Si,j is a good set, then ϕi,j ≤ ϕi,j−1.

Proof. For each u ∈ V , we have

I(alivei−1(u) ∩ Si,j = ∅)pi,j−1(u)

1− (|alivei−1(u)|/(10k))
=

I(alivei−1(u) ∩ Si,j = ∅)I(alivei−1(u) ∩Wi,j−1 = ∅) ·
(
1− |alivei−1(u)|

10k

)k−(j−1)

1− (|alivei−1(u)|/(10k))

= I(alivei−1(u) ∩Wi,j = ∅)

(
1−
|alivei−1(u)|

10k

)k−j

= pi,j(u).

It also holds that I(alivei−1(u) ∩ Si,j = ∅) ≤ Yi,j(u). Therefore,

Yi,j(u)
ϕi,j−1(u)

1− (|alivei−1(u)|/(10k))
≥ I(alivei−1(u) ∩ Si,j = ∅)

pi,j−1(u)e
|deadi−1(u)|+|alivei−1(u)|

10

1− (|alivei−1(u)|/10k)

= pi,j(u)e
|deadi−1(u)|+|alivei−1(u)|

10

= ϕi,j(u).

Thus, we get

ϕi,j =
∑

u∈V

ϕi,j(u) + |Wi,j |2
i +

k − j

k
2i−1|V active

i−1 |

≤
∑

u∈V

Yi,j(u)
ϕi,j−1(u)

1− (|alivei(u)|/10k)
+ (|Si,j |+ |Wi,j−1|)2

i +
k − j

k
2i|V active

i−1 |

≤
∑

u∈V

ϕi,j−1(u) +
2i−1

k
|V active

i−1 |+ |Wi,j−1|2
i +

k − j

k
2i−1|V active

i−1 |

= ϕi,j−1.
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We now combine all the pieces to prove the main theorem of this subsection.
Proof of Theorem 4.2 We assume that in iteration j of phase i, Ai,j computes a good set Si,j .

Therefore, Lemma 4.5 implies that ϕi,j ≤ ϕi,j−1. According to Lemma 4.4, this implies that ΦR ≤ 4n log(n).
Therefore, Lemma 4.3 implies that |{u ∈ V : |frontier2sdel(u)| ≤ ⌈100 log log(n)⌉}| ≥ n/2, as desired. It remains
to discuss the CONGEST round complexity.

Algorithm 1 has R · k = Õ(log n) iterations in total. In iteration i of phase j, algorithm Ai,j runs in

Õ(s log n) CONGEST rounds. Hence, the overall CONGEST complexity of Algorithm 1 is Õ(s log2 n).
Global Derandomization Here, we informally sketch a variant of Algorithm 1 which performs a global

derandomization using the method of conditional expectation. A more formal discussion of this approach,
though in a different context, is discussed in Section 7.3 where we derandomize our algorithm for the hitting
set problem in the CONGESTmodel. See in particular Theorem 7.3.

Definition 4.7. (Good Random Set Si,j (In Expectation)) For a set Si,j ⊆ V active

i−1 and u ∈ V , let

Yi,j(u) = 1− |alivei−1(u) ∩ Si,j |+

(
|alivei−1(u) ∩ Si,j |

2

)
.

We refer to a randomly computed subset Si,j ⊆ V active

i−1 as good in expectation if

E

[
∑

u∈V

Yi,j(u)
ϕi,j−1(u)

1− (|alivei−1(u)|/(10k))
+ |Si,j | · 2

i

]
≤
∑

u∈V

ϕi,j−1(u) +
2i−1

k
|V active

i−1 |.

Note that we can recover Deőnition 4.6 if we drop the expectation. Assume we choose Si,j by including each
node in V active

i−1 with probability 1
4k , pairwise independently. One can show that the resulting set Si,j is good

in expectation. Moreover, the pairwise distribution over the random set Si,j can be realized with a random

seed length of Õ(log n) using the construction of [28, 21] that is described in Section 7.3. The goal is now to
őx the random seed one by one in such a way that the resulting deterministic set Si,j is a good set.

For the following discussion, let X =
∑

u∈V Yi,j(u)
ϕi,j−1(u)

1−(|alivei−1(u)|/(10k)) + |Si,j | · 2
i. The method of

conditional expectation works by őxing the bits of the random seed one by one, each time őxing the i-th bit
in such a way that

E[X|őrst i bits are őxed to b0, . . . , bi] ≤ E[X|őrst i− 1 bits are őxed to b0, . . . , bi−1].

In particular, this ensures that

E[X|all bits are őxed] ≤ E[X] ≤
∑

u∈V

ϕi,j−1(u) +
2i−1

k
|V active

i−1 |

and hence the corresponding deterministic set Si,j is indeed a good set. To őnd such a bit bi, it suffices to
compute two things:

• E[X|őrst i bits are őxed to b0, . . . , bi−1, 0], and

• E[X|őrst i bits are őxed to b0, . . . , bi−1].

It is possible to decompose X into X =
∑

u∈V Xu such that each node u, when given b0, b1, . . . , bi, alivei−1(u)
and ϕi−1,j(u), can efficiently compute E[Xu|b0, b1, . . . , bi], without any further communication. This in turn
allows us to compute E[X|b0, b1, . . . , bi] in O(D) rounds. Hence, given that every node knows alivei−1(u)

and ϕi−1,j(u), one can őnd a good set in Õ(D log n) CONGEST rounds, where D denotes the diameter of

the network. Hence, computing alivei−1(u) and ϕi−1,j(u) can be done in Õ(s log n) rounds at the beginning

of phase i. Moreover, alivei−1(u) and ϕi−1,j(u) can be computed at the beginning of phase i in Õ(s log n)
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rounds according to Lemma 4.2. Hence, the overall resulting run-time of this variant of Algorithm 1 is
Õ((D+s) log2(n)) = Õ(D log2 n). This is the complexity for the setting where we have a low-diameter global
tree of depth D. One can replace this by a standard application of network decomposition to reduce the
round complexity to poly(logn). In particular, given a c-color d-diameter network decomposition of GO(s),
we can use independent randomness for the nodes of different colors, and for each color, we can perform
the gathering and bit őxing in (s+ d)poly(log n) rounds. Hence, we can perform the same derandomization
in (s+ d)poly(log n) rounds. With the algorithm of [11] that computes a O(log n)-color poly(log n)-strong-
diameter network decomposition in spoly(log n) rounds [11], this becomes a complexity of spoly(log n) rounds
overall for the whole derandomization procedure. Please see the proof of Theorem 7.2 where we perform
such a global derandomization via network decomposition for the hitting set problem and provide more
of the lower-order details. Instead of diving into those details here, in this section, we focus on the local
derandomization which leads to a faster round complexity, as discussed in the next subsection.

4.2 Algorithm Ai,j via Local Derandomization This subsection is dedicated to providing the
description of Ai,j , that is proving Theorem 4.3 stated below. We note that this is the őnal missing piece in
the proof of Theorem 4.1.

Theorem 4.3. For every iteration j of phase i, there exists a CONGEST algorithm Ai,j which computes a

good set Si,j ⊆ V active

i−1 in Õ(s log n) rounds.

The algorithm Ai,j makes use of the local rounding framework of Faour et al. [12] to compute a good set
Si,j . Their rounding framework works via computing a particular weighted defected coloring of the vertices,
which allows the vertices of the same color to round their values simultaneously, with a limited loss in some
objective functions that can be written as summation of functions each of which depend on only two nearby
nodes. Next, we provide a related deőnition and then state their black-box local rounding lemma.

Definition 4.8. (long-range d2-Multigraph) A long-range d2-multigraph is a multigraph H =
(VH , EH) that is simulated on top of an underlying communication graph G = (V,E) by a distributed
message-passing algorithm on G. The nodes of H are a subset of the nodes of G, i.e., VH ⊆ V . The
edge set EH consists of two kinds of edges, physical edges and virtual edges. Physical edges in EH are edges
between direct neighbors in G. For each physical edge in e ∈ EH with V (e) = {u, v}, both nodes u and v
know about e. Virtual edges in EH are edges between two nodes u, v ∈ VH , and for each such virtual edge,
there is a manager node w which knows about this edge.

We next describe the assumed communication primitives. Let M(v) be the set of nodes w who manage
virtual edges that include v. We assume T -round primitives that provide the following: (1) each node v can
send one O(log n)-bit message that is delivered to all nodes in M(v) in T rounds; (2) given O(log n)-bit
messages prepared at nodes M(v) speciőc for node v, node v can receive an aggregation of these messages,
e.g., the summation of the values, in T rounds.

Definition 4.9. (Pairwise Utility and Cost Functions) Let H = (VH , EH) be a long-range d2-multigraph
of an underlying communication graph G = (V,E). For any label assignment x⃗ : VH → Σ, a pairwise
utility function is deőned as

∑
u inVH

u(u, x⃗) +
∑

e∈EH
u(e, x⃗), where for a vertex u, the function u(u, x⃗)

is an arbitrary function that depends only on the label of u, and for each edge e = {u, v}, the function
u(e, x⃗) is an arbitrary function that depends only on the labels of v and u. These functions can be different
for different vertices u and also for different edges e. A pairwise cost function is deőned similarly. For a
probabilistic/fractional assignment of labels to vertices VH , where vertex v assumes each label in Σ with a
given probability, the utility and costs are deőned as the expected values of the utility and cost functions, if
we randomly draw integral labels for the vertices from their corresponding distributions (and independently,
though of course each term in the summation depends only on the labels of two vertices and thus pairwise
independence suffices).

Lemma 4.6. [Faour et al. [12]] Let H = (VH , EH) be a long-range d2-multigraph of an underlying
communication graph G = (V,E) of maximum degree ∆, where the communication primitives have round
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complexity T . Assume that H is equipped with pairwise utility and cost functions u(·) and c(·) (with label set
Σ) and with a fractional label assignment λ. Further assume that the given rounding instance is polynomially

bounded in a parameter q ≤ n. Then for every constant c > 0 and every ε, µ > max
{
1/qc, 2−c

√
logn

}
,

if u(λ) − c(λ) > µu(λ), there is a deterministic CONGEST algorithm on G to compute an integral label
assignment ℓ for which u(ℓ) − c(ℓ) ≥ (1 − ε) ·

(
u(λ) − c(λ)

)
and such that the round complexity of the

algorithm is

T ·O

(
log2 q

ε · µ
·

(
|Σ| log(q∆)

log n
+ log log q

)
+ log q · log∗ n

)
.

Our Local Derandomization. In the following, for each node u ∈ V , we deőne cu =
ϕi,j−1(u)

1−(|alivei−1(u)|/(10k)) . The labeling space is whether each node in V active
i−1 is contained in Si,j or not, i.e.,

each node in V active
i−1 takes simply one of two possible labels Σ = {0, 1} where 1 indicates that the node is in

Si,j . For a given label assignment x⃗ ∈ {0, 1}V
active

i−1 , we deőne the utility function

u(x⃗) =
∑

u∈V

cu
∑

v∈alivei−1(u)

xv +
2i−1

k
|V active

i−1 | =
∑

v∈V




∑

u∈Mi(v)

cu


xv +

2i−1

k
|V active

i−1 |,

and the cost function
c(x⃗) =

∑

u∈V

cu
∑

v ̸=v′∈alivei−1(u)

xvxv′ +
∑

v∈V active

i−1

2ixv.

If the label assignment is relaxed to be a fractional assignment x⃗ ∈ [0, 1]V
active

i−1 , where intuitively now
xv is the probability of v being contained in Si,j , the same deőnitions apply for the utility and cost of this
fractional assignment.

Note that the utility function is simply a summation of functions, each of which depends on the label
of one vertex. Hence, it directly őts the rounding framework. To capture the cost function as a summation
of costs over edges, we next deőne an auxiliary multi-graph H as follows: For each node u ∈ V and every
v ̸= v′ ∈ alivei(u), we add an auxiliary edge between v and v′, with a cost function which is equal to cu
when both v and v′ are marked, and zero otherwise. Note that H is a long-range d2-Multigraph where the
communication primitives have round complexity Õ(s log n) as provided by Lemma 4.2.

We next argue that the natural fractional assignment where xv = 1
4k for each v ∈ V active

i−1 satisőes the
conditions of Lemma 4.6. First, note that these fractional assignments are clearly polynomially bounded in
q for q = k = O(log log n). Next, we discuss that, for the given fractional assignment, utility minus cost is
at least a constant factor of utility.

Claim 4.2. Let x⃗ ∈ [0, 1]V
active

i−1 with xv = 1
4k for every v ∈ V active

i−1 . Then, u(x⃗)− c(x⃗) ≥ u(x⃗)/2.

Proof. We have

u(x⃗) =
∑

u∈V

cu
∑

v∈alivei−1(u)

xv +
2i−1

k
|V active

i−1 |

≥ 2



∑

u∈V

cu
∑

v,v′∈alivei−1(u)

xvxv′ +
∑

v∈V active

i−1

2i
1

4k




≥ 2c(x⃗).

and therefore indeed u(x⃗)− c(x⃗) ≥ u(x⃗)/2.

Hence, we can apply Lemma 4.6 on these fractional assignments with µ = 1/2 and ε = 0.1, which runs in

Õ((log log log n)2) iterations of calling the communication primitives, each taking Õ(s log2 n) rounds. Hence,
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the entire procedure runs in Õ(s log2 n) rounds. As a result of applying Lemma 4.6 with these parameters,

we get an integral label assignment y⃗ ∈ {0, 1}V
active

i−1 which satisőes u(y⃗)− c(y⃗) ≥ 0.9(u(x⃗)− c(x⃗)). We can
then conclude

u(y⃗)− c(y⃗) ≥ 0.9(u(x⃗)− c(x⃗))

≥ 0.9

(
∑

u∈V

cu
|alivei−1(u)|

4k
+

2i−1

k
|V active

i−1 | −

(
∑

u∈V

cu
|alivei−1(u)|

16k
+

2i−2

k
|V active

i−1 |

))

≥
∑

u∈V

cu
|alivei−1(u)|

10k
.

This integral label assignment directly gives us Si,j . In particular, let Si,j = {v ∈ V active
i−1 : yv = 1}. Note

that

u(y⃗)− c(y⃗) =
∑

u∈V

cu

(
|alivei−1(u) ∩ Si,j | −

(
|alivei−1(u) ∩ Si,j |

2

))
+

2i−1

k
|V active

i−1 | − 2i|Si,j |,

and therefore

∑

u∈V

Yi,j(u)
ϕi,j−1(u)

1− (|alivei−1(u)|/(10k))
+ |Si,j | · 2

i =
∑

u∈V

cu − u(y⃗) + c(y⃗) +
2i−1

k
|V active

i−1 |

≤
∑

u∈V

cu −
∑

u∈V

cu
|alivei−1(u)|

10k
+

2i−1

k
|V active

i−1 |

≤
∑

u∈V

ϕi,j−1(u) +
2i−1

k
|V active

i−1 |,

which shows that Si,j is indeed a good set according to Deőnition 4.6. This completes the description of our
locally derandomized construction of good sets Si,j , hence completing the proof of Theorem 4.3.

5 From Low-Degree Clusters to Isolated Clusters

Theorem 5.1. Assume we are given a clustering C with

1. strong diameter O(s log(n)) and

2. s-hop degree of at most ⌈100 log log(n)⌉.

There exists a deterministic CONGEST algorithm running in Õ(s log2(n)) rounds which computes a clustering
Cout with

1. strong diameter O(s log(n)),

2. separation of s and

3. the number of clustered nodes is |C|
1000 log log(n) .

Similar as in Section 4, we could get the same guarantees with a CONGEST algorithm with round
complexity O(spoly(log n)) by performing a global derandomization with the help of a previously computed
network decomposition.

Proof. [Proof of Theorem 5.1] The clustering Cout is computed in two steps. In the őrst step, we use the
local rounding procedure to compute a clustering C′ which one obtains from C by only keeping some of the
clusters in C (any such cluster is kept in its entirety). Intuitively, the local rounding procedure derandomizes
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the random process which would include each cluster C from C in the clustering C′ with probability 1
2k ,

k = ⌈100 log log n⌉, pairwise independently. Given the clustering C′, we keep each node u ∈ C′ clustered in
Cout if and only if the s-hop degree of u in C′ is 1. Note that given C′, the output clustering Cout can be
computed in Õ(s log n) CONGEST rounds.

First, we discuss the őrst property, i.e., the strong diameter of the output clustering. The fact that the
clustering C has strong diameter O(s log(n)) directly implies that the clustering C′ also has strong diameter
O(s log(n)), simply because each cluster of C′ is exactly one of the clusters of C. We next argue that Cout also
has strong diameter O(s log n). Let u be a node clustered in C′ and Pu the unique path from u to its center
in the tree associated with its cluster. Then, it directly follows from the deőnition that for every w ∈ Pu,
the s-hop degree of w in C′ is at most the s-hop degree of u in C′. Therefore u being clustered in Cout implies
that w is also clustered in Cout. Hence, we conclude that Cout indeed has strong diameter O(s log n).

Next, we discuss the second property: The clustering Cout is s-hop separated. This directly follows from
the fact that by deőnition every clustered node has a s-hop degree of 1.

Finally, To prove Theorem 5.1, the only remaining thing is to prove the third property, i.e., that we

compute C′ in such a way that Cout clusters at least |C|
1000 log log(n) nodes. The rest of this proof is dedicated

to this property.
For each cluster C ∈ C, we let center(C) denote the cluster center of C and deőne Centers =

{center(C) : C ∈ C} as the set of cluster centers of C. Moreover, for each u clustered in C, recall that
cu is the cluster center of the cluster of u and let Pu be the unique u-cu path in the tree associated with this
cluster Cu. Now, let

Su = {C ∈ C : d(Pu, C) ≤ s}.

Note that the size of Su is equal to the s-hop degree of u, which by assumption is at most k.
The labeling space is for each cluster center whether its cluster is contained in C′ or not, i.e., each node

in Centers takes simply one of two possible labels {0, 1} where 1 indicates that the corresponding cluster is
in C′. For a given label assignment x⃗ ∈ {0, 1}Centers, we deőne

u(x⃗) =
∑

C∈C
|C|xcenter(C)

and

c(x⃗) =
∑

u∈V : u is clustered in C

∑

C∈Su\Cu

xcuxcenter(C).

If the label assignment is relaxed to be a fractional assignment x⃗ ∈ [0, 1]Centers, where intuitively now
xv is the probability of v’s cluster being contained in C′, the same deőnitions apply for the utility and cost of
this fractional assignment. The utility function is simply a summation of functions, each of which depends
on the label of one vertex in Centers. Hence, it directly őts the rounding framework.

To capture the cost function as a summation of costs over edges, we next deőne an auxiliary multi-graph
H as follows: For each node u clustered in C and every C1 ̸= C2 ∈ Su, we add an auxiliary edge between
center(C1) and center(C2) with a cost function which is equal to 1 when both C1 and C2 are contained
in C′, and zero otherwise. Note that H is a long-range d2-Multigraph, according to Deőnition 4.8. The
communication primitives can be implemented in Õ(s log n) rounds according to the lemma below.

Lemma 5.1. Let C be the input clustering of Theorem 5.1. There exists a CONGEST algorithm running in
Õ(s log n) rounds which computes for each node u ∈ V the sets {center(C) : C ∈ Su}. Moreover, for each

v ∈ Centers, let M(v) = {u ∈ V : Cv ∈ Su}. Then, there exists an Õ(s log n) round CONGEST algorithm
that allows each node v to send one O(log n)-bit message that is delivered to all nodes in M(v). Similarly,

there also exists an Õ(s log n) round CONGEST algorithm that given O(log n)-bit messages prepared at nodes
in M(v) speciőc for node v, it allows node v to receive an aggregation of these messages, e.g., the summation

of the values, in Õ(s log n) rounds.
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Proof. [Proof of Lemma 5.1] The proof follows roughly along the lines of the proof of Lemma 4.2. First, we
run the following variant of breadth őrst search: At the beginning, each node clustered in C has a token
which is equal to the identiőer of its cluster. Now, in each of the s iterations, each node that has received
at most k = ⌈100 log log n⌉ identiőers in the previous iteration forwards all the identiőers it has received to
its neighbors. If a node has received more than k identiőers, it selects k of them to forward. The őrst phase
can be implemented in O(ks) CONGEST rounds. It directly follows from the fact that the s-hop degree of C
is at most k that after the őrst phase each node w learns the identiőers of all cluster centers such that the
corresponding cluster C satisőes d(w,C) ≤ s. The next phase propagates this information up in the cluster
tree, from the root toward the leaves, such that each descendant of wÐi.e., any node whose cluster path
to the root passes through wÐlearns about all those cluster centers as well. The second phase consists of
O(s log n) iterations. In each iteration, each clustered node sends all the identiőers it learned about so far
to each of its children in the corresponding cluster tree. It again follows from the fact that the s-hop degree
of C is at most k that each of the O(s log n) iterations in the second phase can be implemented in O(k)

CONGEST rounds. Hence, the overall CONGEST runtime is Õ(s log n).
For each v ∈ Centers, let M(v) = {u ∈ V : Cv ∈ Su}. By repeating the above communication, we have

a Õ(s log n)-round procedure that delivers one message from each node v to all nodes M(v). By reversing
the same communication in time, we can also provide the opposite direction: if each node in M(v) starts

with a message for v, then in Õ(s log n) rounds, we can aggregate these messages and deliver the aggregate
to v, simultaneously for all v.

Claim 5.1. Let k = ⌈100 log log(n)⌉ and x⃗ ∈ [0, 1]Centers with xv = 1
2k for every v ∈ Centers. Note that

this fractional label assignment is polynomially bounded in q = k = O(log log n). Furthermore, we have
u(x⃗)− c(x⃗) ≥ u(x⃗)/2.

Proof. We have

u(x⃗) =
∑

C∈C
|C|xcenter(C) =

∑

C∈C

|C|

2k
=
|C|

2k
,

and

c(x⃗) =
∑

u∈V : u is clustered in C

∑

C∈Su\{Cu}
xcuxcenter(C) ≤

∑

u∈V : u is clustered in C

1

4k

|Su|

k
≤
|C|

4k
.

Therefore, indeed u(x⃗)− c(x⃗) ≥ u(x⃗)/2.

We now invoking the rounding of Lemma 4.6 with parameters µ = 0.5, ε = 0.5, and q = k = O(log log n)
on the fractional label assignment of x⃗ ∈ [0, 1]Centers where xv = 1

2k for every v ∈ Centers. The procedure

runs in Õ(s log n) rounds. As output, we get an integral label assignment y⃗ ∈ {0, 1}Centers which satisőes

u(y⃗)− c(y⃗) ≥ 0.5(u(x⃗)− c(x⃗)) ≥
|C|

8k
.

Let C ′ = {C ∈ C : ycenter(C) = 1}. Note that for every u ∈ C,

I(u is clustered in Cout) ≥ ycu −
∑

C∈Su\{Cu}
ycuycenter(C).
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Therefore,

|Cout| ≥
∑

u∈V : u is clustered in C
I(u is clustered in Cout)

≥
∑

u∈V : u is clustered in C


ycu −

∑

C∈Su\{Cu}
ycuycenter(C)




= u(y⃗)− c(y⃗)

≥
|C|

8k

and therefore Cout clusters enough vertices to prove Theorem 5.1.

6 Clustering More Nodes

In this section, we prove the following result, which says that once we have access to a clustering algorithm
that clusters a nontrivial proportion of nodes with sufficient separation, we can turn it into an algorithm
that clusters a constant proportion of nodes. We are paying for this with a slight decrease in the separation
guarantees.

Theorem 6.1. Let x ≥ 2 be arbitrary. Assume there exists a deterministic CONGEST algorithm A running
in R rounds which computes a clustering C with

1. strong diameter O(x log n),

2. separation 10 · x and

3. clustering at least n
2x nodes.

Then, there exists a deterministic CONGEST algorithm A′ running in O(2x(R + x log n)) rounds which
computes a clustering C′ with

1. strong diameter O(x log n),

2. separation 2 and

3. clustering at least n
2 nodes.

It follows from the analysis of Algorithm 2 and its subroutine Algorithm 3. To understand the pseudocode
of the algorithms, we note that for a set of nodes C ⊆ V (G) and D ∈ N0, we deőne

C≤D = {v ∈ V : d(C, v) ≤ D}.

Moreover, we say that a cluster C is good in Algorithm 3 if cut(C) < +∞. Otherwise, C is bad.
We start by analyzing Algorithm 3 in the following lemma. Importantly, the fourth condition for Ĉ in

the statement below states that the total number of unclustered vertices neighboring one of the clusters in
Ĉ is at most half the total number of clustered vertices. This is the reason why we can

Lemma 6.1. Let x ≥ 2 be arbitrary and C a clustering with

1. strong diameter O(x log n),

2. separation 10x and

3. clustering at least n
2x nodes.
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Algorithm 2 Making a clustering algorithm cluster half of the nodes

1: procedure ClusterHalfNodes(G)
2: C0 = ∅
3: N = ⌈4 · 2x⌉
4: for i = 1, 2 . . . , N do

5: Gi = G

[
V \

(⋃
C∈Ci−1

C
)≤1

]

6: C ← A(Gi)
7: Ĉi ← Expand(Gi, C)
8: Ci = Ci−1 ∪ Ĉi

return CN

Algorithm 3 Expanding an input clustering

Input: A graph G and its 10x-separated clustering C
Output: An expanded clustering Ĉ with small boundary

1: procedure Expand(G, C)
2: for C ∈ C do
3: Deőne cut(C) = min

{
0 ≤ i ≤ 3x : |C≤i+1| ≤ 1.5|C≤i|

}
and cut(C) = +∞ if no such i exists.

4: If cut(C) < +∞, deőne expand(C) = Ccut(C)

5: return Ĉ = {expand(C) : C ∈ C, cut(C) < +∞}

Then, Ĉ constructed in Algorithm 3 is a clustering with

1. strong diameter O(x log n),

2. separation 4x,

3. clustering at least 0.5 n
2x nodes and

4.
∣∣∣
(⋃

C∈Ĉ C
)≤1
∣∣∣ ≤ 1.5

∣∣∣
(⋃

C∈Ĉ C
)≤1
∣∣∣.

Moreover, the algorithm can be implemented in O(x log n) CONGEST rounds.

Proof. The őrst property follows from the fact that for a set S and D ∈ N0, diam(S≤D) ≤ diam(S) + 2D.
Hence, for a good cluster C,

diam(expand(C)) ≤ diam(C) + 2cut(C) = O(x log n).

To prove the second property, let C1 ̸= C2 ∈ C be two arbitrary good clusters. For i ∈ {1, 2}, let
ui ∈ expand(Ci) be arbitrary. By triangle inequality, we have:

d(u1, u2) ≥ d(C1, C2)− d(C1, u1)− d(C2, u2) ≥ 10x− 2 · 3x ≥ 4x.

To prove the third property, it suffices to show that at most 0.5 n
2x of the nodes are contained in bad

clusters. For a bad cluster C, a simple induction implies |C≤3x| ≥ 1.53x|C| ≥ 2 · 2x|C|. Therefore,

∑

C∈C,C is a bad cluster

|C| ≤
1

2x+1

∑

C∈C,C is a bad cluster

|C≤3x| ≤
n

2x+1
,

where the last inequality follows from the fact that for two clusters C1 ̸= C2 ∈ C, C
≤3x
1 ∩ C≤3x

2 = ∅.
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To prove the fourth property we write

∣∣∣∣∣∣∣



⋃

C∈Ĉ

C




≤1
∣∣∣∣∣∣∣
≤
∑

Ĉ∈Ĉ

|Ĉ≤1|

=
∑

C∈C : C is a good cluster

|(C≤cut(C))≤1|

=
∑

C∈C : C is a good cluster

|C≤cut(C)+1|

≤ 1.5
∑

C∈C : C is a good cluster

|C≤cut(C)|

= 1.5

∣∣∣∣∣∣∣



⋃

C∈Ĉ

C




≤1
∣∣∣∣∣∣∣
.

It remains to discuss the CONGEST computation. Since we have for any C1, C2 ∈ C that C≤3x
1 ∩C≤3x

2 = ∅,

each cluster C ∈ C can compute the values of C≤0
1 , C≤1

1 , . . . , C≤3x
1 by running one breadth őrst search from

C1 up to distance of 3x.

We are now ready to prove Theorem 6.1.

Proof. [Proof of Theorem 6.1] We show that the algorithm satisőes the following invariants for i ∈
{0, 1, . . . , N}:

1. Ci is 2-separated

2. |V (Ci)| ≥ n ·min(0.5, i
8·2x )

3. |V (C≤1
i )| ≤ 1.5|V (Ci)|

The base case i = 0 trivially holds. Now, consider an arbitrary i ∈ [N ] and assume that the invariant is
satisőed for i−1. To check the őrst invariant, let C1 ̸= C2 ∈ Ci be arbitrary. If C1, C2 ∈ Ci−1, then it follows
by induction that d(C1, C2) ≥ 2. If C1, C2 ∈ Ĉi, then it follows from Lemma 6.1 that dGi

(C1, C2) ≥ 2 which
also directly implies dG(C1, C2) ≥ 2. It remains to consider the case that one cluster, let’s say C1, is in Ci−1

and C2 is in Ĉi. We have

C2 ⊆ V (Gi) = V \ V (C≤1
i−1) ⊆ V \ C≤1

1

and therefore d(C1, C2) ≥ 2, as desired.
Next, we show that the second invariant is preserved. If |V (Ci−1)| ≥ n/2, then there is nothing to show.

Otherwise, we have

|V (Gi)| ≥ n− |V (C≤1
i−1)| ≥ n− 1.5|V (Ci−1)| ≥ n− 1.5

n

2
=

n

4
.

Therefore, according to Lemma 6.1, Ĉi clusters at least 0.5 (n/4)
2x = n

8·2x vertices, which together with

|V (Ci−1)| ≥ n · min(0.5, i−1
8·2x ) directly implies |V (Ci)| ≥ n · min(0.5, i

8·2x ). It remains to verify the third
property. According to Lemma 6.1, we have

|V (Ĉ≤1
i ) \ V (C≤1

i−1)| ≤ 1.5|V (Ĉi)|.
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Therefore,

|V (C≤1
i )| = |V (C≤1

i−1)|+ |V (Ĉ≤1
i ) \ V (C≤1

i−1)| ≤ 1.5|V (Ci−1)|+ 1.5|V (Ĉi)| = 1.5|V (Ci)|.

This őnishes the proof that the invariants are satisőed throughout the algorithm. Hence, CN is a 2-
separated clustering that clusters at least half of the vertices. Moreover, it directly follows from the strong
diameter guarantee of Lemma 6.1 that CN has strong diameter O(x log n). Finally, as Â has a round
complexity of O(x log n), it follows that CN is computed in O(2x(R + x log n)) CONGEST rounds. This
concludes the proof of Lemma 4.1.

7 Hitting Set

In this section, őrst, we introduce a variant of the hitting set problem. Next, we propose a simple
randomized algorithm for this problem using only pairwise independence. In the end, we describe an efficient
distributed/parallel derandomization of our randomized algorithm.

7.1 Problem Deőnition Consider a collection S = {S1, . . . , SN} of N subsets from the universe
{1, . . . , n} and let wi ≥ 0 be the weight that is assigned to Si. We say a subset H ⊆ [n] hits Si if H ∩Si ̸= ∅.
Our goal is to őnd a small H with a small cost. Cost of H is total weights of Si that are not hit by H,
i.e.,

∑
i:Si∩H=∅ wi. For a random subset H that includes each element with probability p independently, the

expected size of H is E[|H|] = np and its expected cost is

N∑

i=1

wi(1− p)|Si| ≈
N∑

i=1

wie
−|Si|p = τpS .

For example, suppose the regular case where |Si| = ∆. For p = 10 logN/∆, a random subset hits all sets
with high probability 1 − 1/poly(N) and for p = 1/∆, constant fraction of sets are hit. Two important
examples for weights is when wi = 1 and wi = |Si|. In the former, we simply count the number of not
hit sets. The latter indeed appears in our applications for constructing spanners and distance oracles (see
Section 8). There, we get penalized for each not hit set by its size.

In many applications, the expected size and cost of a random subset are enough. The challenge is to
őnd a subset deterministically. Based on this, we formulate the following problem where we combine our
two objectives in one potential function.

Definition 7.1. (Hitting Set Problem) Given a collection S = {S1, . . . , SN} of N subsets from the
universe {1, . . . , n}, an integer weight wi ≥ 0 for each Si, and a sampling parameter p ∈ (0, 1), őnd a subset
H that minimizes the potential function

(7.2) Φp
S(H) =

∑N
i=1 wi · 1[H ∩ Si = ∅]

τpS
+
|H|

np
.

So if Φp
S(H) = O(1), then H has size O(np) and its cost is O(τpS). Our goal is to őnd such a set with

constant potential function deterministically and efficiently. In the rest, we assume that N ≥ n as we can
add dummy sets with zero costs. We also assume that p ≤ 1/2 to ensure that 1 − p = e−Θ(p). Note that
the case p ≥ 1/2 is trivial since we tolerate constant deviation from a random subset and for p ≥ 1/2, the
expected size of a random subset is at least n/2. So our hitting can include all the n elements.

Hitting in Ordered Sets. There are applications where H is partially penalized even if we hit Si.
The amount of cost depends on which element of Si is being hit. In Section 8, we encounter a particular
instance of this generalization which is described in the following.

For each Si, there is no weight but there is an order πi(·) on its elements where πi(j) denotes the j-th
element of Si for j = 1, . . . , |Si|. Then, H has to pay k − 1 for Si if πi(k) ∈ H and

H ∩ {πi(1), . . . , πi(k − 1)} = ∅.
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If H does not hit Si at all, it has to pay |Si|. Cost of H is the sum of the expenses incurred by each Si. We
call this problem hitting ordered set. With this deőnition, the expected cost for a random H is

N∑

i=1

|Si|∑

j=1

(1− p)j

The hitting ordered set problem is related to the original setting of Deőnition 7.1 in the following sense.

Lemma 7.1. Given an instance I1 of the hitting ordered set problem with N sets S1, . . . , SN ⊆ [n], we
can construct an instance I2 of the original hitting set problem (see Deőnition 7.1) with O(N log n) sets in

O(
∑N

i=1 |Si|) time such that the following holds: For any H ⊆ [n], if c1 is the cost of H in I1 and c2 is the
cost of H in I2, then c1 ≤ c2 ≤ 3c1.

Proof. To construct I2, for each Si in I1, we add O(log n) sets to I2. Suppose 2ℓ ≤ |Si| < 2ℓ+1. For j ∈ [ℓ],
let Sj

i = {πi(1), . . . , πi(2
j)} and let Sℓ+1

i = Si. This completes the construction of sets of I2. Weight of Sj
i

in I2 is its size |Sj
i |.

Consider a subset H ⊆ [n] and let k be the minimum index that πi(k) ∈ H. Suppose k is |Si| + 1 if
there is no such index. So H has to pay k − 1 in I1. In I2, it has to pay

∑
j:|Sj

i
|<k |S

j
i | which lies in the

range [(k − 1), 3(k − 1)] and concludes the proof.

7.2 Iterative Sampling The goal of this section is to őnd H with Φp
S = O(1) for the hitting set problem

Deőnition 7.1. Let ∆ = maxi∈[N ] |Si|. Our algorithm has T = ⌈8p∆⌉ iterations. We start with a randomized
algorithm and then we derandomize it. For t = 1, . . . , T , let Pt be a pairwise-independent distribution over
n binary random variables Xt

1, . . . , X
t
n ∈ {0, 1} with bias q = 4p/T . That is:

∀i ∈ [n], ∀b ∈ {0, 1}, Pr[Xt
i = b] = qb(1− q)(1−b),

∀i, j ∈ [n], i ̸= j, ∀b, b′ ∈ {0, 1}, Pr[Xt
i = b,Xt

j = b′] = qb+b′(1− q)2−(b+b′).

Let the random subset Gt be {i ∈ [n] | Xt
i = 1}. We replace Gts one by one with an explicit set Ht. The

őnal output of the algorithm is H = ∪Tt=1H
t. Suppose we are in iteration t. Our goal is to őnd Ht. Let

(7.3) Y t
i =

∑

j∈Si

Xt
j −

∑

j∈Si

∑

k∈Si:j<k

Xt
jX

t
k.

If Gt does not hit Si, then Y t
i = 0. Otherwise, Y t

i ≤ 1 (because a ≤
(
a
2

)
+ 1 for all positive integers a). So

1− Y t
i is always greater than or equal to 1[Gt ∩ Si = ∅] and is a pessimistic estimator for the event that Gt

does not hit Si. We have the following upper bound on E[1− Y t
i ].

Lemma 7.2. E[1− Y t
i ] ≤ 1− 3|Si|p/T ≤ e−|Si|p/T .

Proof. Note that:

E[Y t
i ] = |Si|q −

(
|Si|

2

)
q2 ≥ |Si|q − |Si|

2q2/2 ≥ 3|Si|q/4 = 3|Si|p/T

where in the last inequality we use q = 4p/T ≤ 1/2∆ ≤ 1/2|Si|.

For a subset G ⊆ [n], we deőne the function f t(G) as

f t(G) =

∑
i:Si∩(H1∪···∪Ht−1)=∅(1− Yi) · wie

−|Si|(T−t)p/T

τpS
+

∑n
i=1 Xi +

∑t−1
j=1 |H

j |+ 4n(T − t)p/T

4np

where Xi = 1[i ∈ G] and Yi is deőned from X1, . . . , Xn similar to (7.3).
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Lemma 7.3. E[f1(G1)] ≤ 2.

Proof. Note that E[
∑n

i=1 X
1
i ] = nq = 4np/T and from Lemma 7.2, we have E[1− Y 1

i ] ≤ e−|Si|p/T . Plugging
these two bounds completes the proof.

Lemma 7.4. For t ≥ 2, we have:
E[f t(Gt)] ≤ f t−1(Ht−1).

Proof. Consider a subset Si. If one of H1, . . . , Ht−2 hits Si, then the contribution of Si to the both sides
of the inequality is zero. Otherwise, if Ht−1 hits Si, the contribution of Si to E[f t(Gt)] is zero. Note that
it may contribute a non-zero amount into the RHS since we use pessimistic estimator 1 − Yi. The only
remaining case is when Si is not hit in any of the őrst t− 1 iterations. Then, the contribution of Si to the
LHS is

E[1− Y t
i ] · wie

−|Si|(T−t)p/T ≤ wie
−|Si|(T−t+1)p/T

where we use Lemma 7.2. On the other hand, the contribution of Si to the RHS is exactly wie
−|Si|(T−t+1)p/T .

So the contribution of each Si to the LHS is less than or equal to its contribution to the RHS. Since
E[|Gt|] = nq = 4np/T , the second term that controls the size in f t(·) and f t−1(·) are equal which completes
the proof.

Theorem 7.1. If f t(Ht) ≤ E[f t(Gt)] for all t = 1, . . . , T , then

Φp
S(H = H1 ∪ · · · ∪HT ) ≤ 2.

Proof. From Lemma 7.3 and Lemma 7.4, we get that fT (HT ) ≤ 2. Comparing fT (HT ) and Φp
S(H) term

by term, we can easily see that fT (HT ) ≥ Φp
S(H).

If ∆≫ 1/p, then the number of iterations can be quite large. However, we are mostly interested in the
regime where the number of iterations is logarithmic. We can achieve this as stated in the following.

Corollary 7.1. Let S+ = {the őrst 10 logN/p elements of Si | |Si| ≥ 10 logN/p} and S− = S \ S+. Run
the algorithm twice: once for S− with the same set of weights as before and once on S+ by setting all weights
to N2. Let the output of these two runs be H− and H+. Then:

Φp
S(H = H− ∪H+) ≤ 4.

Each run takes at most O(logN) iterations. Moreover, all sets in S with size at least 10 logN/p are hit by
H.

7.3 Implementation The remaining piece of Theorem 7.1 is to őnd Ht such that f t(Ht) ≤ E[f t(Gt)].
We őrst start with the construction of a suitable pairwise distribution.

Construction of Pairwise Independent Distribution. From the algorithm of the previous section,
we need a pairwise distribution P on n binary random variables X1, . . . , Xn ∈ {0, 1} with bias q. Assume
that q = 2−ℓ for some ℓ ∈ N and n is a positive integer of the form n = 2m − 1 for m ∈ N. We use the
pairwise distribution that is used in [21, 7] which has a random seed of length ℓm = O(log 1/p · log n). Let
us quickly recall the construction. We őrst assign an ℓ-bit label Li to each Xi. Then, we set Xi to one if and
only if all the ℓ bits of Li is one. To construct the labels, we decompose the random seed R into ℓ groups
each containing m bits as follows:

R = r00 . . . r
0
m−1r

1
0 . . . r

1
m−1 . . . r

ℓ−1
0 rℓ−1

m−1

The j-th group rj0 . . . r
j
m−1 is for constructing the j-bit of Lis. To deőne Li(j) (the j-th bit of Li), we use

the bit representation of i. Suppose i =
∑m−1

k=0 bk2
k. Then:

Li(j) = b0r
j
0 ⊕ · · · ⊕ bm−1r

j
m−1
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This completes the construction. In the course of derandomization, we őx the random seed bit by bit.
Suppose we őx the őrst B bits of R to b0, . . . , bB−1 ∈ {0, 1}. This gives us a new distributionQ. The following
result by Berger, Rompel, and Shor [7] is an important tool to achieve work-efficient derandomization.

Lemma 7.5. ([7], Section 3.2) For any given subset A ⊆ [n], we can compute
∑

i∈A

EQ[Xi],
∑

i∈A

∑

j∈A

EQ[XiXj ]

with O(|A|) processors and in O(log n) depth in the PRAMmodel. In particular, we can compute these two
quantities in O(|A| log n) time in the standard model.

Bit Fixing. Suppose we are in iteration t and we want to őnd Ht such that f t(Ht) ≤ E[f t(Gt)]. Suppose
Pt is P as described above. If q is not a power of two (which is needed for the pairwise construction), replace
it with a power of two in the range [q, 2q). We can observe that for any H

(7.4) Φ2p
S (H) ≥ Φp

S(H)/2

So with this replacement, we lose at most a two factor in the őnal bound for the potential function. Now,
we start to őx the bits of the random seed of Pt. Suppose we already őxed the őrst B bits of the random
seed R by b0, . . . , bB−1. Let ex = E[f(Gt+1) | R(0) = b0, . . . , R(B − 1) = bB−1, R(B) = x] for x ∈ {0, 1}. If
e0 ≤ e1, then we őx bB to zero. Otherwise, we őx it to one. Suppose all the ℓm bits are őxed and suppose
that the random variable Xi is vi ∈ {0, 1} when we set the random seed to b0 . . . bℓm−1. Then, we set Ht to
{i ∈ [n] | vi = 1}. We can easily observe that f t(Ht) ≤ E[f t(Gt)].

PRAMModel. We have all the ingredients for implementing the algorithm in the PRAMmodel. This
leads to the following theorem.

Theorem 7.2. There is a deterministic algorithm that solves the hitting set problem by őnding a subset H
with Φp

S(H) ≤ 4 and with Õ(
∑N

i=1 |Si|) work and

O(⌈p∆⌉ · log 1/p · log2 n)

depth in the PRAMmodel. Moreover, there is a deterministic algorithm that őnds a subset H with Φp
S(H) ≤ 8

and such that H hits all Sis with size greater than 10 logN/p. This algorithm runs with Õ(
∑N

i=1 |Si|) work
and

O(logN · log 1/p · log2 n)

depth in the PRAMmodel.

Proof. The őrst algorithm is based on Theorem 7.1 and the second algorithm is based on Corollary 7.1. In
those two algorithms, the potential function is upper bounded by 2 and 4. Here, we can only guarantee 4
and 8. This is because q, the sampling probability of one iteration, may not be a power of two. As discussed
before (see (7.4)), we can handle this issue by paying an extra factor two in the approximation factor. In one
iteration, we have O(log 1/p · log n) bit őxing. For each bit, we need to compute two conditional expectation

which takes O(log n) depth and O(log n ·
∑N

i=1 |Si|) work using Lemma 7.5. Multiplying the number of
iterations gives us the claimed bounds.

CONGESTModel. First, let us describe how the hitting set problem is represented in the distributed
model. Consider an (N + n)-node bipartite network G = (A ⊔ B,E) where A = [N ] and B = [n]. A node
i ∈ A represents set Si and a node j ∈ B represents element j ∈ [n]. There is an edge between i ∈ A and
j ∈ B if and only of j ∈ Si. We assume that p, n, and τpS (or an upper bound of it) is known to all nodes.

To simulate global decision making, we use 3-separated network decomposition. We need to execute
the following operation fast: For an arbitrary color j, let C1, . . . , Cd be the set of clusters with color j in
the given 3-separated network decomposition. Suppose that each node v in C1 ∪ · · · ∪ Cd knows a value
av. For each cluster Ci, we want to broadcast the value

∑
v∈Ci

av to all nodes in Ci. We denote the round
complexity of executing this operation for all clusters C1, . . . , Cd by T agg

ND .
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Theorem 7.3. Given a Q-color 3-separated network decomposition with aggregation time T agg
ND (as described

above), there is a deterministic algorithm that solves the hitting set problem by őnding a subset H with
Φp

S(H) ≤ 4 in

O(⌈p∆⌉ ·Q · log 1/p · log n · T agg
ND )

rounds of the CONGESTmodel. Moreover, there is a deterministic algorithm that őnds a subset H with
Φp

S(H) ≤ 8 and such that H hits all Sis with size greater than 10 logN/p. This algorithm runs in

O(logN ·Q · log 1/p · log n · T agg
ND )

rounds of the CONGESTmodel.

Proof. We want to derandomize iteration t. In contrast to the PRAMmodel Theorem 7.2, in the
CONGESTmodel, we do not have global communication and so we cannot decide which bit should be őxed in
a straightforward way. However, we can simulate such global decision-making with network decomposition
paying an extra factor Q in the round complexity. For each cluster C, we independently draw a sample
from the pairwise-independent distribution P with bias q. Recall that the input graph is a bipartite graph
G = (A⊔B,E). These samples assign a binary value to each node of B. Observe that the assigned values are
also pairwise independent since the product of pairwise independent distributions is pairwise-independent.
Now, to derandomize, we go through the colors one by one. Suppose we are working on color j ∈ [Q] with
d clusters C1, . . . , Cd. Moreover, suppose the őrst b bits of random seeds of C1, . . . , Cd are őxed. We őx the
(b+1)-th bit. Let us emphasize that each cluster has its own random seed and different clusters may őx the
(b + 1)-th bit differently. Consider cluster Ci and a node v ∈ A that is either in Ci or is in the boundary
of Ci (i.e., v is not in Ci but has a neighbor in Ci). So this node represents a set Sv in the corresponding
hitting set problem. We assign two values a0v and a1v to v where axv corresponds to the case when we őx the
(b+1)-bit of the random seed of Ci to x. Note that each neighbor of v represents an element of Sv. If v has
a neighbor in the clusters with color {1, . . . , j − 1} that is already decided to be in H (our őnal hitting set),
then we set axv to zero. So suppose this is not the case and let d be the number of neighbors of v that are
not in Ci and are in a cluster with color in {j + 1, . . . , Q}. Then, we set axv to

(1 +
(
d
2

)
q2 − dq) · F x

v · wve
−|Si|(T−t)p/T

τpS

where F b
v is

F x
v = E[1 +

∑

u∈Ci∩B:u∈Sv

∑

u∈Ci∩B:u∈Sv∧u<u′

XuXu′ −
∑

u∈Ci∩B:u∈Sv

Xu | őrst b bits and (b+ 1)-th bit is x]

where Xu represents the indicator random variable of element u. Note that the given network decomposition
is 3-separated and so all the boundaries of C1, . . . , Cd are disjoint. So v can compute F b

v in Õ(|Sv|) according
to Lemma 7.5. Also, note that that this gives us the contribution of Sv to

E[f t(·) | őrst b bits and (b+ 1)-th bit is x]

Next, for each element u ∈ Ai, set axu to

E[Xu | őrst b bits and (b+ 1)-th bit is x]

4np
.

In the end, for each cluster Ci, we compute two values exi for x ∈ {0, 1} which is

∑

v∈Ci∪(∂(Ci)∩B)

axv
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where ∂(Ci) denotes the boundary of Ci. We broadcast ebi to each nodes in Ci. This can be done in O(T agg
ND )

rounds for all Cis simultaneously. Next, nodes of Ci set the (b+1)-bit of the random seed to zero if e0i ≤ e0i
and set it to one otherwise. This completes the bit őxing.

There are T sampling iterations (if we apply Theorem 7.1, T = ⌈p∆⌉, and if we apply Corollary 7.1,
T = O(logN)), Q colors, and O(log 1/p · log n) bits to őx for each color. Multiplying these numbers
gives us the number of bit őxing. Taking into account that őxing each bit takes O(T agg

ND ) rounds of the
CONGESTmodel concludes the proof.

Corollary 7.2. There is a deterministic algorithm that solves the hitting set problem by őnding a subset
H ⊆ [n] with Φp

S(H) = O(1) in poly(log n) rounds of the CONGESTmodel and with total computations

Õ(m).

Proof. There is a work-efficient deterministic algorithm for őnding a 3-separated O(log n)-color network
decomposition in polylog(n) rounds and with T agg

ND = polylog(n)(see Theorem 2.12 of Rozhoň and
Ghaffari [30]). Plugging this bound in Theorem 7.3 concludes the proof.

8 Applications of Hitting Set

In this section, we discuss two applications of the hitting set problem. One is the distributed construction of
multiplicative spanners and the other is the parallel construction of distance oracles. Let us quickly deőne
these notions. A subgraph H = (V,E′) ⊆ G = (V,E) is an α-spanner of G if for all pairs of nodes u, v ∈ V ,
we have:

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v).

A distance oracle is a data structure that accepts a pair of nodes (u, v) as a query and returns their distance
in G. In Section 8.2, we discuss source-restricted approximate distance oracle in which s nodes of G are
marked as source and it is guaranteed that u is always a source. The term łapproximatež allows the oracle
to return an approximation of dG(u, v) rather than its exact value.

8.1 Spanners

Theorem 8.1. There is deterministic algorithm in poly(log n) rounds of the CONGESTmodel and with total

computations Õ(m) that őnds a (2k − 1)-spanner with O(nk + n1+1/k log k) and O(nk + n1+1/kk) edges for
unweighted and weighted graphs, respectively.

Proof. We derandomize Baswana-Sen algorithm [6]. Let us quickly recall this algorithm. It consists of k
steps. The input of step i is a clustering denoted by Ci. Each cluster has a center node known to all of its
members. The input of the őrst step is the trivial clustering: there are n clusters each containing a single
node. During one step, we sample some of the clusters, and then based on that sampling, some nodes stay in
their clusters, some get unclustered, and some join other clusters. After this, the current step i terminates,
and the new clustering Ci+1 is passed to the next step. Here is what we do in step i for i ≤ k− 1 (we discuss
the last step, i equals k, later):

1. Each cluster of Ci is sampled with probability p = n−1/k.

2. A node that is in a sampled cluster, stays put in its own cluster.

3. For a node v in an unsampled cluster, let C1, . . . , Cd be the set of clusters containing at least one
neighbor of v. Let ei = {ui ∈ Ci, v} be an edge with the minimum weight between v and one of the
nodes in Ci. If there are several edges with the minimum weight, v selects one of them arbitrarily. Let
wi be the weight of ei. Without loss of generality, suppose w1 ≤ · · · ≤ wd. If all of C1, . . . , Cd are
unsampled, v adds all edges e1, . . . , ed to the output spanner and gets unclustered. Otherwise, let j be
the minimum index for which Cj is sampled. Then, v adds e1, . . . , ej to the output spanner and joins
the sampled cluster Cj . Note that all such v runs this step simultaneously.
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In the last step, we do the exact same thing except that we sample no cluster (each cluster is sampled with
probability zero rather than n−1/k).

The output of Baswana-Sen is always a (2k− 1)-spanner and only the size of the output depends on the
randomness. From the algorithm description, you can see that the only randomized part of the Baswana-
Sen algorithm is the sampling of clusters. Our goal is to őnd the set of sampled clusters of each step
deterministically. If we have the following properties on the set of sampled clusters, then we can guarantee
the claimed bounds on the size of the output spanner (see [8], Lemma 3.3):

(a) For each i, the number of clusters in Ci is at most n1−(i−1)/k.

(b) The number of edges added to the output spanner is bounded as follows: For the unweighted case, the
total number of edges added by nodes with at least γ1n

1/k log k neighboring clusters for a large enough
constant γ1 > 0 is at most O(n1+1/k/k). For the weighted case, all nodes add at most O(n1+1/k) edges
to the output.

(c) A node that is clustered in Ci, remains clustered if it has at least γ2n
1/k log n neighbouring clusters for

a large enough constant γ2 > 0.

We can frame these properties as a hitting set problem. To avoid cluttering the notation, we refer to the
universe size in the corresponding hitting set problem of step i by nh

i and its number of sets by Nh
i . In

step i, we have the following hitting set problem: There is an element in the universe for each cluster in
Ci. So nh

i = |Ci| ≤ n. For each clustered node v in Ci, there is a set Sv containing all of its neighboring
clusters. So Nh

i ≤ n. The parameter p for the hitting set problem is set to the sampling probability of
Baswana-Sen divided by a large enough constant γ3 > 0, i.e., p = n−1/k/γ3 (note that the last step is
already deterministic and no derandomization is needed there). For unweighted graphs, we set the weight
of Sv to its size wv = |Sv|. For weighted graphs, we consider the hitting ordered set problem as discussed
in Lemma 7.1. For each clustered node v, we assign the order πv(·) on Sv. Suppose that the neighboring
clusters of v are C1, . . . , Cd and the minimum weight of an edge between Ci and v is wi. Then Ci comes
before Cj in πv(·) if wi < wj or wi = wj and i < j.

With straightforward calculations, we can see that all the three required properties are satisőed if we
solve the presented hitting set problem with Corollary 7.2 (for the hitting ordered set problem, we őrst use
the reduction Lemma 7.1).

We have k ≤ log n steps in total. As described above, each step can be derandomized by solving a
hitting set problem. So the total round complexity is poly(log n) by applying Corollary 7.2. One issue here
is that each element in the deőned hitting set problem corresponds to a cluster. This issue can be handled
by contracting each cluster to a node and using the fact that the network decomposition of [30] also works
on contracted graphs. This slows down the round complexity only by a factor k = O(log n) as each cluster
has diameter k.

Theorem 8.2. For any ε > 0, there is deterministic distributed algorithm in poly(log n)/ε rounds of the

CONGESTmodel and with total computations Õ(m) that őnds a spanner with size n(1 + ε) and with stretch
O(log n · 2log

∗ n/ε) and O(log n · 4log
∗ n/ε) stretch for unweighted and weighted graphs, respectively.

Proof. We derandomize the algorithm of Pettie [27] to get a spanner with O(n) edges and with stretch
O(log n · 2log

∗ n) and O(log n · 4log
∗

n) for unweighted and weighted graphs, respectively. Pettie’s algorithm
is combining O(log∗ n) application of Baswana-Sen back to back and the hitting set problem we encounter
in Pettie’s algorithm, is exactly the same as the Baswna-Sen. So we do not repeat this here. We refer
interested readers to Theorem 1.5 of [8] where the full algorithm and a slower derandomized version of it
is discussed. Let us note that the original algorithm of Pettie only works for unweighted graphs, but with a
simple modiőcation which is proposed in [8], it can work on weighted graphs as well. To reduce the number
of edges from O(n) to n(1 + ε), we apply the deterministic reduction of [8], Theorem 1.2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2562

D
o

w
n
lo

ad
ed

 0
5
/1

0
/2

3
 t

o
 1

9
5
.1

7
6
.1

1
3
.2

3
8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



8.2 Approximate Distance Oracles This section is devoted to the parallel implementation of the
approximate distance oracle by Roditty, Thorup, and Zwick [28]. There, given a weighted graph G = (V,E),
a stretch parameter k, and a set of s sources S ⊆ V , they deterministically construct a data structure of size
O(kns1/k) and in Õ(ms1/k) time. For a query (u, v), the data structure can compute a value q such that

d(u, v) ≤ q ≤ (2k − 1)d(u, v)

in O(k) time. See Algorithm 4 for their algorithm for constructing the data structure and Algorithm 5 for
how they evaluate a query.

Algorithm 4 Approximate Distance Oracle [28]

1: procedure DistOracle(G, k)
2: A0 = S,Ak = ∅.
3: ℓ = 10s1/k log n.
4: for i = 1, . . . , k − 1 do
5: For each v ∈ V , őnd pi(v) ∈ Ai−1 such that d(pi(v), v) = d(Ai−1, v).
6: For every v ∈ V , compute Ni−1(v) which is the set of ℓ closest nodes to v in Ai−1.
7: Find a set Ai ⊆ Ai−1 such that:

(a) |Ai| ≤ s1−i/k.
(b) Ai hits Ni−1(v) for all v ∈ V.
(c)
∑

v∈V |{w ∈ Ai−1 −Ai | d(w, v) < d(Ai, v)}| = O(ns1/k).

8: For each v ∈ V , compute pk−1(v).
9: For every v ∈ V , set B(v) = Ak−1.

10: for i = 0, . . . , k − 2 do
11: For every v ∈ V , set B(v) = B(v) ∪ {w ∈ Ni(v) | d(w, v) < d(Ai+1, v)}.

12: For each v ∈ V , create a hash table H(v) with an entry (v, d(v, w)) for each w ∈ B(v).

Algorithm 5 Evaluating a query [28]

1: procedure Query(u ∈ S,v)
2: w = u, i = 0.
3: while w ̸∈ B(v) do
4: i = i+ 1.
5: (u, v)← (v, u).
6: w ← pi(u)

return d(w, u) + d(w, v)

Theorem 8.3. Given an undirected weighted graph G = (V,E), a set of s sources S ⊆ V , stretch parameter
k, and error ε > 0, there is a deterministic algorithm that solves the source-restricted distance oracle problem
with Õε(ms1/k) work and Õε(poly(log n)) depth in the PRAMmodel. The data structure has size O(nks1/k)
and for each query (u, v), the oracle can return a value q in O(k) time that satisőes

d(u, v) ≤ q ≤ (2k − 1)(1 + ε)d(u, v).

Proof. It is enough to provide a parallel algorithm with Õε(poly(log n)) depth for computing Ai, Ni(·), and
the hash table. This gives us all the ingredients we need to run the algorithm.

Note that őnding a suitable Ai in Algorithm 4 is just an instance of hitting ordered set problem and we
can apply Lemma 7.1 and Corollary 7.1. The universe is Ai−1 and for each v ∈ V , we want to hit the set
Ni−1(v). We also need to determine πi,v(·). An element w comes before w′ in this order if d(w, v) < d(w′, v).
If the distances are equal, we break the tie based on the identiőer of w and w′. If we set the sampling
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probability to p = s−1/k/γ for a large enough constant γ > 0 (indeed γ = 24 is enough), then we can

compute a suitable Ai satisfying all the three required properties with Õ(m) work and Oε(poly(log n)) depth
in the PRAMmodel using Theorem 7.2 and the reduction Lemma 7.1.

In [28], they compute Ni(·) by running ℓ instances of Single Source Shortest Path problem (SSSP). There
is no known parallel algorithm for SSSP with poly-logarithmic depth. However, recently, Rozhoň et al. [29]
proposed a work-efficient algorithm for computing (1 + ε)-approximation of SSSP with poly-logarithmic
depth. We can replace the exact computation with an approximation, losing (1 + ε) in the őnal stretch
guarantee.

For computing the hash tables, we can apply the construction of Alon and Naor [1]. There, they provide
a deterministic hash table of t elements into O(t) space with read access of O(1) time. While they did not
discuss the parallel implementation of their construction, their algorithm can be implemented in poly(log n)
depth in a straightforward way. Their approach is derandomizing a randomized hash function using the
method of conditional expectation on epsilon-biased spaces. They deőne a potential function (see section
3.1. of [1]) which is a simple aggregation and can be parallelized. We do not discuss the full details as the
implementation is straightforward.
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