Maximum Length-Constrained Flows and Disjoint Paths:
Distributed, Deterministic and Fast*

Bernhard Haeupler D Ellis Hershkowitz Thatchaphol Saranurak
Carnegie Mellon University & Carnegie Mellon University & University of Michigan
ETH Ziirich ETH Ziirich
haeupler@cs.cmu.edu dhershko@cs.cmu.edu thsaQumich.edu
Abstract

Computing routing schemes that support both high throughput and low latency is one of the
core challenges of network optimization. Such routes can be formalized as h-length flows which
are defined as flows whose flow paths are restricted to have length at most A. Many well-studied
algorithmic primitives—such as maximal and maximum length-constrained disjoint paths—are
special cases of h-length flows. Likewise the optimal h-length flow is a fundamental quantity
in network optimization, characterizing, up to poly-log factors, how quickly a network can
accomplish numerous distributed primitives.

In this work, we give the first efficient algorithms for computing (1 — €)-approximate h-length
flows. We give deterministic algorithms that take O(poly(h, %)) parallel time and O(poly(h, %) .
20(‘/@)) distributed CONGEST time. We also give a CONGEST algorithm that succeeds
with high probability and only takes O(poly(h, 1)) time.

Using our h-length flow algorithms, we give the first efficient deterministic CONGEST al-
gorithms for the maximal length-constrained disjoint paths problem—settling an open question
of Chang and Saranurak (FOCS 2020)—as well as essentially-optimal parallel and distributed
approximation algorithms for maximum length-constrained disjoint paths. The former greatly
simplifies deterministic CONGEST algorithms for computing expander decompositions. We
also use our techniques to give the first efficient (1 — €)-approximation algorithms for bipartite

2111.01422v2 [cs.DS] 4 Apr 2022

.
.

arxiv

b-matching in CONGEST. Lastly, using our flow algorithms, we give the first algorithms to
efficiently compute h-length cutmatches, an object at the heart of recent advances in length-
constrained expander decompositions.

*First two authors supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588,
NSF CAREER award CCF1750808, a Sloan Research Fellowship, funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement 949272) and the
Swiss National Foundation (project grant 200021-184735). Second author also supported by the Air Force Office of
Scientific Research under award number FA9550-20-1-0080.

Contents

1 Introduction
1.1 Our Contributions
1.1.1 Algorithms for Length-Constrained Flows
1.1.2 Applications of our Length-Constrained Flow Algorithms

2 Notation and Conventions
3 Length-Constrained Flows, Moving Cuts and Main Result

4 Intuition and Overview of Approach
4.1 Using Lightest Path Blockers for Multiplicative Weights
4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths
4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding
4.4 Overview of Paper e

5 Preliminaries
5.1 Deterministic CONGEST Maximal and Maximum Independent Set
5.2 Deterministic Low Diameter Decompositions
5.3 Sparse Neighborhood Covers
5.4 Cycle Covers o

6 Path Counts for h-Layer S-T" DAGs
7 Randomized Blocking Integral Flows in h-Layer DAGs

8 Deterministic and Distributed Near Eulerian Partitions
8.1 High-Girth Cycle Decompositions
8.2 Efficient Algorithms for Computing Near Eulerian Partitions

9 Deterministic Blocking Integral Flows in h-Layer DAGs
9.1 Tterated Path Count Flows
9.2 Deterministic Rounding of Flows in h-Layer DAGs
9.2.1 Turning Flows on (1 — ¢)-Near Eulerian Partitions
9.2.2 Extracting Integral S-T Subflows,
9.2.3 Flow Rounding Algorithm,
9.3 Deterministic Blocking Integral Flows

10 h-Length (1 + ¢)-Lightest Path Blockers
10.1 Length-Weight Expanded DAG
10.2 Decongesting Flows L L
10.3 Computing h-Length (1 + ¢)-Lightest Path Blockers

11 Computing Length-Constrained Flows and Moving Cuts

11
11
11
12
13

14

15

18
19
22

23
24
27
27
29
30
32

33
34
36
37

40

12 Application: Maximal and Maximum Disjoint Paths

12.1 Maximal and Maximum Disjoint Path Variants
12.2 Reducing Among Variants L L
12.3 Maximal Disjoint Path Algorithms
12.4 Maximum Disjoint Path Algorithms
12.5 On the Hardness of Maximum Disjoint Paths

13 Application: Simple Distributed Expander Decompositions

14 Application: (1 — ¢)-Approximate Distributed Bipartite b>-Matching
15 Application: Length-Constrained Cutmatches

16 Conclusion and Future Work

A Generalizing Our Results to Multi-Commodity

A.1 Multi-Commodity Definitions and Our Multi-Commodity Results

A.2 Computing Multi-Commodity Length-Constrained Flows and Moving Cuts

43
43
44
46
47
48

48

49

50

52

52
52
54

1 Introduction

Throughput and latency are two of the most fundamental quantities in a communication network.
Given node sets S and T', throughput measures the rate at which bits can be delivered from S to
T while the worst-case latency measures the maximum time it takes for a bit sent from S to arrive
at T'. Thus, a natural question in network optimization is:

How can we achieve high throughput while maintaining a low latency?

If we imagine that each edge in a graph incurs some latency and edges in a graph can only support
limited bandwidth, then achieving high throughput subject to a latency constraint reduces to
finding a large collection of paths that are both short and non-overlapping. One of the simplest and
most well-studied ways of formalizing this is the maximal edge-disjoint paths problems (henceforth
we use h-length to mean length at most h).

Maximal Edge-Disjoint Paths: Given graph G = (V| E), length constraint h > 1
and two disjoint sets S, T C V, find a collection of h-length edge-disjoint S to T paths
‘P such that any h-length S to T path shares an edge with at least one path in P.

The simplicity of the maximal edge-disjoint paths problem has made it a crucial primitive in numer-
ous algorithms. For example, algorithms for maximal edge-disjoint paths are used in approximating
maximum matchings [30] and computing expander decompositions [14, 38]. While efficient random-
ized algorithms are known for maximal edge-disjoint paths in the CONGEST model of distributed
computation [12, 30], no deterministic CONGEST algorithms are known. Indeed, the existence of
such algorithms was stated as an open question by Chang and Saranurak [12].

Of course, a maximal collection of routing paths need not be near-optimal in terms of cardinality
and so a natural extension of the above problem is its mazimum version.

Maximum Edge-Disjoint Paths: Given graph G = (V| E), length constraint A > 1
and disjoint sets S,T" C V, find a max cardinality collection of h-length edge-disjoint S
to T paths.

While this problem and its variants have received considerable attention [7, 9, 27], it is unfortunately
known to suffer from strong hardness results: the above problem has an 2(h) integrality gap and
is Q(h)-hard-to-approximate under standard complexity assumptions in the directed case [4, 19].
Indeed, as observed in several works [1, 21, 27|, working in the presence of latency bounds in the
form of a length constraint can make otherwise tractable problems computationally infeasible and
render otherwise structured objects poorly behaved.

In large part, the above problems are common primitives because their solutions are special
cases of a more general class of routing schemes that are central to distributed computing. Namely,
they are special cases of length-constrained flows.

Maximum Length-Constrained Flow: Given digraph D = (V, A), length constraint
h > 1 and two disjoint sets S, T C V, find a collection of h-length S to T" paths P and a
value fp > 0 for P € P where -, fp < 1 for every a € A and) p fp is maximized.

In several formal senses, length-constrained flows are the problem that describes how to efficiently
communicate in a network. Haeupler et al. [20] showed that, up to poly-log factors, the maximum
length-constrained flow gives the minimum makespan of multiple unicasts in a network, even when

(network) coding is allowed. Even stronger, the “best” length-constrained flow gives, up to poly-log
factors, the optimal running time of a CONGEST algorithm for numerous distributed optimization
problems, including minimum spanning tree (MST), approximate min-cut and approximate shortest
paths [22]. Despite the key role these flows play in distributed computing, there are currently no
known distributed (or even parallel!) algorithms for computing them. The need for algorithms for
length-constrained flows is further highlighted by the fact that many classic optimization problems
(such as matchings) reduce to length-constrained flows with small values of h.

Thus, in summary a well-studied class of routing problems aims to capture both latency and
throughput concerns. These problems are known to serve as important algorithmic primitives as
well as complete characterizations of the distributed complexity of many problems. However, even
the simplest of these problems—maximal edge-disjoint paths—lacks good deterministic CONGEST
algorithms; even worse virtually nothing is known about parallel or distributed algorithms for the
maximum version of this problem and its fractional generalization, length-constrained flows.

1.1 Owur Contributions

We give the first efficient algorithms for computing these objects in several models of computation.

1.1.1 Algorithms for Length-Constrained Flows

Given a digraph with n nodes and m arcs, our main theorem shows how to deterministically

compute h-length flows that are (1—e)-approximate in O(poly(h, %)) parallel time with m processors

and O(poly(h, 1). 20(VIogn)) qistributed CONGEST time. We additionally give a randomized

CONGEST algorithm that succeeds with high probability and runs in time O(poly(h, 1)).1 As an

immediate consequence of our parallel algorithms we also get deterministic sequential algorithms

running in O(m - poly(h, %)) time; to our knowledge no such algorithms were previously known.
Additionally, our algorithms satisfy three desirable properties.

1. General Capacities, Lengths and Multi-Commodity: Our algorithms work for general
arc capacities (i.e. connection bandwidths), general lengths (i.e. connection latencies) and
multi-commodity flow variants.

2. Dual Solution: Not only do our algorithms compute a primal solution for length-constrained
flows but they also compute a certifying dual solution; a so-called moving cut, which is an
object of algorithmic utility in its own right; see, e.g. [22].

3. Optimal Integrality: The flows we compute are “as integral as possible.” In particular,
for constant € > 0 (and unit capacities) they are a convex combinations of O(h) sets of arc-
disjoint paths. No near-optimal h-length flow can be a convex combination of o(h) such sets
since, by an averaging argument, this would violate the aforementioned Q(h) integrality gap.

We give a more formal description of our results for length-constrained flows in Section 3.

1.1.2 Applications of our Length-Constrained Flow Algorithms

We give several applications of our length-constrained flow algorithms.

'We use O notation to suppress dependence on poly(logn) factors and we use “with high probability” to mean

. o 1
with probability at least 1 —] and.

Maximal and Maximum Edge-Disjoint Paths First, as an almost immediate corollary of
our length-constrained flow algorithms, we derive the first deterministic CONGEST algorithms
for maximal edge-disjoint paths and essentially-optimal parallel and distributed algorithms for the
maximum edge-disjoint paths problem as well as for many variants of these problems. The former
result settles the open question of Chang and Saranurak [12]. The latter result crucially relies on the
optimal integrality of our length-constrained flows and matches known hardness-of-approximation
results. See Section 12 for details.

Simpler Distributed Expander Decompositions Deterministically. As a consequence of
our maximal edge-disjoint paths algorithms, we are able to greatly simplify known distributed
algorithms for deterministically computing expander decompositions.

We refer the reader to Chang and Saranurak [12] for a more thorough overview of the area,
but provide a brief synopsis here. An (¢, ¢) expander decomposition removes an e fraction of edges
from a graph so as to ensure that each remaining connected component has conductance at least
¢. Expander decompositions have led to many recent exciting breakthroughs, including in solving
linear systems [39], unique games [2, 36, 40], minimum cut [26], and dynamic algorithms [33].

Chang and Saranurak [12] gave the first deterministic CONGEST algorithms for constructing
expander decompositions. However, while much of expander decomposition construction reduces
to maximal edge-disjoint paths, the authors observe:

In the deterministic setting, we are not aware of an algorithm that can [efficiently] solve
[maximal disjoint paths]... [A solution to this problem would] simplify our deterministic
expander decomposition and routing quite a bit. [12]

As a result of the lack of such algorithms, the authors employ significant technical work-arounds.

Our deterministic CONGEST algorithms for maximal edge-disjoint paths when plugged into
the results of Chang and Saranurak [12] greatly simplify deterministic distributed algorithms for
expander decompositions. See Section 13 for further details.

Bipartite b-Matching. Using our length-constrained flow algorithms, we give the first efficient
(1 — e)-approximations for bipartite b-matching in CONGEST. b-matching is a classical problem
in combinatorial optimization which generalizes matching where we are given a graph G = (V| E)
and a function b : V — Z~g. Our goal is to assign integer values to edges so that each vertex v
has at most b(v) assigned value across its incident edges. b-matching and its variants have been
extensively studied in distributed settings [5, 8, 16, 16, 17, 28]. A standard folklore reduction which
replaces vertex v with b(v) non-adjacent copies and edge e = {u, v} with a bipartite clique between
the copies of u and v reduces b-matching to matching but requires overhead maxy, ,yep b(u) - b(v)
to run in CONGEST. Thus, the non-trivial goal here is a CONGEST algorithm whose running
time does not depend on b. Currently, the best algorithm in CONGEST is a (% — g)-approximation
of Fischer [16] running in time O(poly(log 1)).

Similarly to classical matching, it is easy to reduce bipartite b-matching to an O(1)-length
flow problem. Thus, applying our algorithms for length-constrained flows and some of the flow
rounding techniques we develop in this work allows us to give the first (1 — ¢)-approximation for
b-matching in bipartite graphs running in CONGEST time ON(poly(%) : 20(*/@)). Our algorithms
are deterministic though similar results even for the randomized setting do not seem to be known.
See Section 14 for further details.

Length-Constrained Cutmatches. Lastly, our results allow us to give the first efficient con-
structions of length-constrained cutmatches. Informally, an h-length cutmatch with congestion ~
is a collection of h-length ~-congestion paths between two vertex subsets along with a moving cut
that shows that adding any more h-length paths to this set would incur congestion greater than ~.
See Section 15 for details.

A recent work [23] uses our algorithms for length-constrained cutmatches to give the first efficient
constructions of a length-constrained version of expander decompositions. This work, in turn, uses
these constructions to, among other things, give CONGEST algorithms for many problems including
MST, (1 + €)-min-cut and (1 + €)-shortest paths that are guaranteed to run in sub-linear rounds as
long as such algorithms exist on the input network.

2 Notation and Conventions

Before moving on to a formal statement of length-constrained flows, moving cuts and our results
we introduce some notation and conventions. Suppose we are given a digraph D = (V, A).

Digraph Notation. We will associate three functions with the arcs of D. We clarify these here.

1. Lengths: We will let ¢ = {{,}, be the lengths of arcs in A. These lengths will be input to
our problem and determine the lengths of paths when we are computing length-constrained
flows. Throughout this work we imagine each ¢, is in Z~¢. Informally, one may think of ¢ as
giving link latencies. We will assume ¢, is always poly(n).

2. Capacities: We will let U = {U,}, be the capacities of arcs in A. These capacities will
specify a maximum amount of flow (either length-constrained or not) that is allowed over
each arc. Throughout this work we imagine each U, is in Z>¢ and we let Upax give max, U,.
We will assume Upay is poly(n). Informally, one may think of U as link bandwidths.

3. Weights: We will let w = {w,}, stand for the weights of arcs in A. These weights will be
given by our moving cut solutions. Throughout this work each w, will be in Rsq.

In general we will treat a path P = ((v1,v2), (ve,v3),...) as series of consecutive arcs in A (all
oriented consistently towards one endpoint). For any one of these weighting functions ¢ € {¢,U, w},
we will let dy(u,v) give the minimum value of a path in D that connects u and v where the value
of a path P is ¢(P) := > .p#(a). That is, we think of dg(u,v) as the distance from u to v with
respect to ¢. We will refer to paths which minimize w as lightest paths (so as to distinguish them
from e.g. shortest paths with respect to ¢).

We let 61 (v) := {a : a = (v,u)} and NT(v) := {u : (v,u) € A} give the out arcs and out
neighborhoods of vertex v. d~(v) := {a : a = (u,v)} and N~ := {u : (u,v) € A} are defined
symmetrically. We let P(u,v) be all simple paths between u and v and for W, W' C V., we let
PW,W') := Upew.wew P(w,w’) give all paths between vertex subsets W and W'.

Given sources S € V and sinks T € V, we say that D is an S-T DAG if 6 (v) =0 iff v € S
and 67 (v) = 0 iff v € T. We say that such an S-T' DAG is an h-layer DAG if the vertex set V can
be partitioned into h + 1 layers S =V UVo U...UVj4q = T where any arc a = (u,v) is such that
u € V; and v € V; for some ¢ and j > i. We say that D has diameter at most d if in the graph
where we forget about arc directions in D every pair of vertices is connected by a path of at most d

edges. Notice that the diameter of an h-layer S-T' DAG might be much larger than h, for example,
when S and T are large sets of vertices.

For a (di)graph D = (V, A) and a collection of subgraphs H of D, we let D[H] be the graph
induced by the union of all elements of H. A[H] is defined as all elements of A which are contained
in some element of H.

(Non-Length Constrained) Flow Notation and Conventions. We will make extensive use
of non-length constrained flows and so clarify our notation for such flows here.

Given a DAG D = (V, A) with capacities U we will let a flow f be any assignment of non-negative
values to arcs in a where f,; gives the value that f assigns to a and f, < U, for every a. If it is ever
the case that f, > U, for some a, we will explicitly state that this “low” does not respect capacities.
We say that f is an integral flow if it assigns an integer value to each arc. We let f(A") :=>" 4 fa
for any A" C A. We define the deficit of a vertex v as deficit(f,v) := | Za€6+(f,v) fa— Zaeé_(v) fal-
We will let supp(f) := {a: f, > 0} give the support of flow f.

Given desired sources S and sinks T', we let deficit(f) := >_,zq p deficit(f,v) be the total
amount of flow produced but not at .S plus the amount of flow consumed but not at T'; likewise, we
say that a flow f is an S-T flow if fdeficit(f) = 0. We let val(f) = J,eg f(07(s)) be the amount
of flow delivered by an S-T" flow f and we say that f is a-approximate if val(f) > a - val(f*) where
f* is the S-T flow that maximizes val. We say that f is a-blocking for o € [0, 1] if for every path
from S to T there is some a € P where f, > « - U,. We say that a 1-blocking flow is blocking. We
say that flow f’ is a subflow of f if f! < f, for every a.

Given a maximum capacity of Unax, we may assume that every flow f is of the form f =", f (@)
where (f), € {0,2'°8(Umax)=1} for every a and 4; that is, a given flow can always be decomposed
into its values on each bit. We call £ the ith bit flow of f and call the decomposition of f into
these flows be the bitwise decomposition of f.

Length-Constrained Notation. Given a length function ¢, vertices u,v € V and length con-
straint h > 1, we let Pp(u,v) := {P € P(u,v) : £(P) < h} be all paths between u and v which have
length at most h. For vertex sets W and W', we let Pr,(W,W') := {P € P(W,W') : {(P) < h}.
If G also has weights w then we let dgl)(u, v) 1= minpep, (4p) W(P) give the minimum weight of a

length at most h path connecting u and v. For vertex sets W, W’ C V we define dgl)(I/V, W’y =
minpep, (w,wr) w(P) analogously. As mentioned an h-length path is a path of length at most h.

Parallel and Distributed Models. Throughout this work the parallel model of computation
we will make use of is the EREW PRAM model [25]. Here we imagine that we are given some
number of processors as well as shared random access memory; every memory cell can be read or
written to by only one processor at a time.

The distributed model we will make use of is the CONGEST model, defined as follows [35]. The
network is modeled as a graph G = (V| E) with n = |V| nodes and m = |E| edges. Communication
is conducted over discrete, synchronous rounds. During each round each node can send an O(logn)-
bit message along each of its incident edges. Every node has an arbitrary and unique ID of O(logn)
bits, first only known to itself. The running time of a CONGEST algorithm is the number of
rounds it uses. We will slightly abuse terminology and talk about running a CONGEST algorithm
in digraph D; when we do so we mean that the algorithm runs in the (undirected) graph G which
is identical to D but where we forget the directions of arcs. In this work, we will assume that if an

arc a has capacity U, then we allow nodes to send O(U, - logn) bits over the corresponding edge,
though none of our applications rely on this assumption.?

3 Length-Constrained Flows, Moving Cuts and Main Result

We proceed to more formally define a length-constrained flow, moving cuts and our main result
which computes them. While we have defined length-constrained flows in Section 1 for unit capac-
ities, it will be convenient for us to formally define length-constrained flows for general lengths and
capacities in terms of a relevant linear program (LP). We do so now.

Suppose we are given a digraph D = (V, A) with arc capacities U, lengths ¢ and specified source
and sink vertices S and T. A maximum S to T flow in D in the classic sense can be defined as
a collection of paths between S and T where each path receives some value and the total value
incident to an edge does not exceed its capacity. This definition naturally extends to the length-
constrained setting where we imagine we are given some length constraint A > 1 and define a
length-constrained flow as a collection of S to T' paths each of length at most h where each such
path P receives some some value fp. Additionally, these values must respect the capacities of arcs.
More precisely, we have the following LP with a variable fp for each path P € Py(s,t).

max Z fp st (Length-Constrained Flow LP)
PeP(S,T)
S fp<Us, YacA
P:acP

0< fp VP € Pp(s,t)

For a length-constrained flow f, we will use the shorthand f(a) := > ps, fp and supp(f) := {P :
fp > 0} to give the support of f. We will let val(f) := ZPEPh(s,t) fp give the value of f. An
h-length flow, then, is simply a feasible solution to this LP.

Definition 3.1 (h-Length Flow). Given digraph D = (V,A) with lengths ¢, capacities U and
vertices S, T CV, an h-length S-T flow is any feasible solution to Length-Constrained Flow LP.

With the above definition of length-constrained flows we can now define moving cuts as the
dual of length-constrained flows. In particular, taking the dual of the above LP we get the moving
cut LP with a variable w, for each a € A.

min Z Uy -wg s.t. (Moving Cut LP)
acA

dwa>=1 VPePST)
aceP
0 < w, Va € A

An h-length moving cut is simply a feasible solution to this LP.

Definition 3.2 (h-Length Moving Cut). Given digraph D = (V, A) with lengths ¢, capacities U
and vertices S, T C V', an h-length moving cut is any feasible solution to Moving Cut LP.

2We only make use of this assumption once and only make use of it in our deterministic algorithms (in Lemma 10.3).
Furthermore, we do not require this assumption if the underlying digraph is a DAG.

We will use f and w to stand for solutions to Length-Constrained Flow LP and Moving Cut LP
respectively. We say that (f,w) is a feasible pair if both f and w are feasible for their respective
LPs and that (f,w) is (1 £ €)-approximate for e > 0 if the moving cut certifies the value of the
length-constrained flow up to a (1 —¢); ie. if (1 —¢€)> , Uy wa <> p fp.

We clarify what it means to compute (f, w) in CONGEST. When we are working in CONGEST
we will say that f is computed if each vertex v stores the value f,(h') := ZPEP}—hh/(Svaﬂt) fp for

every a € A and b/ < h. Here, we let Py (s, a,t) be all paths in Py(s,t) of the form P’ =
(a1,a9,...a,b1,ba,...) where the path (a,bi,bs,...) has length exactly b’ according to £. We say
moving cut w is computed if each vertex v knows the value of w, for its incident arcs. Likewise,
we imagine that each node initially knows the capacities and lengths of its incident arcs.

With the above notions, we can now state our main results which say that one can efficiently
compute a feasible pair (f,w) in parallel and distributedly. In the following we say f is integral
if fp is an integer for every path in P (S,T"). The notable aspect of our results is the polynomial
dependence on h and %; the polynomials could be optimized to be much smaller.

Theorem 3.1. Given a digraph D = (V, A) with capacities U, lengths ¢, length constraint h > 1,
€ > 0 and source and sink vertices S,T C V', one can compute a feasible h-length flow, moving cut
pair (f,w) that is (1 & €)-approzimate in:

1. Deterministic parallel time ON(EL9 - hAT) with m processors
2. Randomized CONGEST time O(E% - h'7) with high probability;
3. Deterministic CONGEST time O (E% CRAT + 6% -8 (pee)'?).
Also, f=mn- Z?Zl fj where n = O(e?), k=0 (5%) and each f; is an integral h-length S-T' flow.

All of our algorithms compute and separately store each f;. The above result immediately gives
the deterministic parallel and randomized CONGEST algorithms running in time O(poly(h, %))
mentioned in Section 1.1. For our deterministic CONGEST algorithms, pcc in the above gives
the quality of the optimal deterministic CONGEST cycle cover algorithm. We formally define
this parameter in Section 5 but for now we simply note that poc < 20(Vlogn) by known re-
sults [24, 34]. Applying this bound on pcc gives deterministic CONGEST algorithms running in
time O(poly(h, %) . 20(\/@)). If pcc is shown to be poly(logn), we immediately would get an
O(poly(h, %)) time deterministic algorithm for solving (1 — €)-approximate h-length flow in CON-
GEST. Also, as mentioned in Section 1.1, k in the above result is optimal up to O(l) factors by
the results of Guruswami et al. [19] and Baier et al. [4].

4 Intuition and Overview of Approach

Before moving on to details, we give an overview of our strategy for computing length-constrained
flows. For simplicity, we will assume that the capacity U, of arc a is 1 in this section.

4.1 Using Lightest Path Blockers for Multiplicative Weights

Computing a length-constrained flow, moving cut pair is naturally suggestive of the following
multiplicative-weights-type approach. We initialize our moving cut value w, to some very small

value for every a. Then, we find a lightest h-length path from S to T according to w, send some
small (= €) amount of flow along this path and multiplicatively increase the value of w on all arcs
in this path by ~ (1 + €). We repeat this until S and T" are at least 1 apart according to dgb).
The principle shortcoming of such an algorithm is that it is easy to construct examples where
there are polynomially-many arc-disjoint hA-length paths between S and T and so we would clearly
have to repeat the above process at least polynomially-many times until S and T are at least 1
apart according to dq(,?). This is not consistent with our goal of poly(h) complexities since h may
be much smaller than n. To solve this issue, we use an algorithm similar to the above but instead
of sending flow along a single path at a time, we send it along a large batch of arc-disjoint paths.
What can we hope to say about how long such an algorithm takes to make S and T at least 1
apart according to dg”)2 T it were the case that every lightest (according to w) h-length path from
S to T shared an arc with some path in our batch of paths then after each batch we would know

that we increased dgl)(S, T) by some non-zero amount. However, there is no way to lower bound

this amount; in principle we might only increase dgL)(S, T) by some tiny € > 0. To solve this issue
we find a batch of arc-disjoint paths which have weight essentially dgL)(S, T) but which share an

arc with every h-length path with weight at most (1 + €) - al)(S, T). Thus, when we increment
weights in our batch we know that all near-lightest h-length paths have their weights incremented
and this, in turn, allows us to lower bound the rate at which dgL)(S, T') increases and therefore to
argue that our algorithm completes quickly.

Thus, in summary we repeatedly find a batch of arc-disjoint h-length paths between S and T

which have weight about dgl)(S, T); these paths satisfy the property that every h-length path from

S to T with weight at most (1 +¢) - dgl)(S, T') shares an edge with at least one of these paths; we
call such a collection an h-length (1 + €)-lightest path blocker. We then send a small amount of
flow along these paths and multiplicatively increase the weight of all incident edges, appreciably

increasing dq(f)(S, T'). We repeat this until our weights form a feasible moving cut. See Figure 1.

4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths

The above strategy relies on the computation of h-length lightest path blockers. Without the
presence of a weight constraint computing such an object easily reduces to computing an integral
blocking S-T flow on an h-layer S-T° DAG. Specifically, consider the problem of computing a
collection of paths from S to T so that every h-length S to T path shares an arc with one path
in this collection. It is easy to see that all paths of length at most i between S and T induce an
h-layer S-T' DAG. One can then consider this DAG and compute an integral blocking S-T" flow in
it—i.e. a maximal arc-disjoint collection of h-length S-T paths. By maximality of the flow, the
paths corresponding to this flow will guarantee that every h-length S to T" path shares an arc with
one path in this collection.

However, when we are working in the presence of both a length constraint and weight constraint
computing such an object becomes significantly more tricky. Indeed, lightest paths subject to length
constraints are known to be notoriously poorly behaved; not only do lightest paths subject to a
length constraint not induce a metric but they are also arbitrarily far from any metric [1, 21]. As
a consequence of this, all lightest paths subject to a length constraint from S to 7" do not induce
a DAG, much less an h-layer S to T DAG; see Figure 2 for an example.

Our solution to this issue is to observe that, if we are allowed to duplicate vertices, then we

(¢) Compute lightest path blocker. (d) Update flow and weights.

Figure 1: An illustration of the first two iterations of our multiplicative-weights-type algorithm
where h = 5, S = {s} and T = {t} and capacities are all 1. Each arc is labelled with its weight
(initialized to wp := 1 + €) then length then flow. Our h-length shortest path blockers are in blue.

can construct an S-T DAG with about h? layers that approximately captures the structure of all
h-length (1+ ¢)-lightest paths. Specifically, we discretize weights and then make a small number of
copies of each vertex to compute a DAG D"*—which we call the length-weight expanded DAG.
D) will satisfy the property that if we compute an integral blocking flow in it and then project
this back into D as a set of paths P, then P is almost a (1+ ¢)-lightest path blocker. In particular,

P will guarantee that some arc of any h-length path with weight at most (1 + ¢) - (h)(S, T) is
used by some path in P; however, the paths of P may not be arc-disjoint which is required of our
lightest path blockers. Nonetheless, by carefully choosing the capacities in DN we will be able
to argue that P is nearly arc-disjoint and these violations of arc-disjointness can be repaired with
bounded loss by a “decongesting” procedure. Summarizing, these ideas reduce computing h-length
(1 + ¢)-lightest path blockers to computing integral blocking flows in layered S-T° DAGs.

4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding

Lastly, we describe how we compute integral blocking flows in layered S-T° DAGs.

A somewhat straightforward adaptation of a randomized algorithms of Lotker et al. [30] solves
this problem in O(poly(h)) time both in parallel and in CONGEST. This algorithm samples an
integral S-T flow in D (i.e. a collection of arc-disjoint S to T paths) according to a carefully chosen
distribution based on “path counts”, deletes these paths and repeats. The returned solution is the

(a) Digraph D. (b) Lightest paths of D. (c) Lightest 5-length paths of D.

Figure 2: A digraph D with S = {s} and 7" = {t} where the 5-length lightest S-1" paths do not
induce a DAG. 2a gives D where each arc is labeled with its weight (in black) and length (in
green). 2b shows how all lightest S-7" paths have weight 2 and induce a DAG. 2¢ shows how the
two 5-length lightest S-T paths (in blue and red) have weight 6 and induce a digraph with a cycle.

flow induced by all paths that were ever deleted. Unfortunately Lotker et al. [30]’s algorithm seems
inherently randomized and our goal is to solve this problem deterministically.

We derandomize the algorithm of Lotker et al. [30] in the following way. Rather than integrally
sampling according to Lotker et al. [30]’s distribution and then deleting arcs that appear in sampled
paths, we instead calculate the probability that an arc is in a path in this distribution and then
“fractionally delete” it to this extent. We repeat this until every path between S and T has some
arc which has been fully deleted. In other words, we run a smoothed version of Lotker et al. [30]
which behaves (deterministically) like the algorithm of Lotker et al. [30] does in expectation. A
simple counting argument shows that we need only iterate this process about h times to separate
S and T'. The fractional deletion values of arcs at the end of this process induce a blocking S-T
flow but a blocking flow that may be fractional. We call this flow the “iterated path count flow.”

However, recall that our goal is to compute an integral blocking flow in an S-T° DAG. Thus, we
may naturally hope to round the iterated path count flow. Indeed, drawing on some flow rounding
techniques of Cohen [15], doing so is not too difficult in parallel. Unfortunately, it is less clear how
to do so in CONGEST. Indeed, Chang and Saranurak [12] state:

...Cohen’s algorithm that rounds a fractional flow into an integral flow does not seem
to have an efficient implementation in CONGEST...

Roughly, Cohen’s technique relies on partitioning edges in a graph into cycles and paths and then
rounding each cycle and path independently. The reason this seems infeasible in CONGEST is
that the cycles and paths that Cohen’s algorithm relies on can have unbounded diameter and so
communicating within one of these cycles or paths is prohibitively slow. To get around this, we
argue that, in fact, one may assume that these cycles and paths have low diameter if we allow
ourselves to discard some small number of arcs. This, in turn allows us to orient these cycles
and paths and use them in rounding flows. We formalize such a decomposition with the idea of a
(1 — €)-near Eulerian partition. Arguing that discarding these arcs does bounded damage to our
rounding then allows us to make use of Cohen-type rounding to deterministically round the path
count flow, ultimately allowing us to compute h-length (1 + €)-lightest path blockers.

4.4 Overview of Paper

In Section 6 we more formally define path counts. In Section 7 we describe how to use these path
counts with randomization to compute integral blocking flows in an h-layer S-T° DAG. In Section 9

10

we do the same but deterministically, employing the above flow rounding strategy and the idea of
near Eulerian partitions as introduced and constructed in Section 8. Next, in Section 10 we show
how to use these blocking flow primitives along with our length-weight expanded DAG to compute
(1 + ¢e)-lightest path blockers. In Section 11 we formalize how to use these (1 + ¢)-lightest path
blockers to compute length-constrained flows and moving cuts by applying multiplicative-weights-
types arguments, thereby showing our main result.

In Section 12 we observe that our main result solves the aforementioned problem of Chang and
Saranurak [12] by giving deterministic algorithms for many disjoint paths problems in CONGEST.
We also observe that our algorithms give essentially optimal parallel and distributed algorithms
for maximum arc-disjoint paths. In Section 13 we give more details of how our results simplify
expander decomposition constructions. In Section 14 we give our new algorithms for bipartite
b-matching based on our flow algorithms and in Section 15 we show how to compute length-
constrained cutmatches using our main theorem. Lastly, in Appendix A we observe that our
length-constrained flow algorithms generalize to the multi-commodity setting.

5 Preliminaries

Before moving on to our own technical content, we briefly review some well-known algorithmic tools
and slight variants thereof (mostly for deterministic CONGEST).

5.1 Deterministic CONGEST Maximal and Maximum Independent Set

We will rely on deterministic CONGEST primitives for maximal and maximum independent sets.
Given graph G = (V, E), a subset of vertices V' C V is independent if no two vertices in V' are
adjacent in G. A maximal independent set (MIS) is an independent set V' such that any w € V\ V'
is adjacent to at least one node in V'. If we are additionally given node weights {x, },, where 2, > 0
for every v, then a maximum independent set is an independent set V’ maximizing > i/ 2,; we
say that an independent set is a-approximate if its total weight is within « of that of the maximum
independent set.
The following summarizes the deterministic CONGEST algorithm we will use for MIS.

Theorem 5.1 (Censor-Hillel et al. [10]). There is a deterministic CONGEST algorithm which given
a graph G = (V, E) with diameter D, outputs a mazimal independent set in time O(D -log®n).

The following gives the deterministic CONGEST algorithm we will use for maximum indepen-
dent set.

Theorem 5.2 (Bar-Yehuda et al. [6]). There is a deterministic CONGEST algorithm which given
an instance of mazximum independent in a graph G = (V, E) with mazimum degree A and node
weights {xy}y, outputs a solution that is %—appmm’mate in time O(A +log* n).

5.2 Deterministic Low Diameter Decompositions

A well-studied object in metric theory is the low diameter decomposition which is usually defined as
a distribution over vertex partitions [29, 32]. For our deterministic algorithms, we will make use of a
deterministic version of these objects defined as follows where G[V;] := (V;, {{u,v} € E : u,v € V;})
gives the induced graph on V.

11

Definition 5.3 (Deterministic Low Diameter Decomposition). Given graph G = (V, E), a deter-
ministic low diameter decomposition (DLDD) with diameter d and cut fraction € is a partition of
V into sets V1, Vo, ... where:

1. Low Diameter: G[V;] has diameter at most d for every i;

2. Cut Edges: The number of cut edges is at most €|E|; i.e. |{e = (u,v) :u € V;Ave VN Ni#
I < €lE].

One can efficiently compute DLDDs deterministically in CONGEST as a consequence of many
well-known results in distributed computing. We will use a result of Chang and Ghaffari [11] to do
S0.

Theorem 5.4. Given a graph G~: (V, E) and desired diameter d, one can compute a DLDD with
diameter d and cut fraction € = O(%) in deterministic CONGEST time O(d).

Proof. Theorem 1.2 of Chang and Ghaffari [11] states that there is a deterministic CONGEST
algorithm which, given a graph G = (V, E) and desired diameter d’, computes a set V C V where
V| < 4 -|V| and G[V \ V] has connected components Cy, Ca, ..., Cy where each C; has diameter
at most O(d’) in O(d') rounds.

Given graph G = (V| E) we can compute a DLDD in G by applying the above result in a new
graph G’ = (V', E’). For each vertex v € V, G’ will have a clique of A(v)-many vertices where
A(v) is the degree of v in G. We then connect these cliques in the natural way. More formally,
to construct G’ we do the following. For each v with edges to vertices v, vo, ..., UA(v) We create a
clique of vertices v(v1),v(v2),...,v(va())- Next, for each edge e = {u,v} in F, we add the edge
{v(u),u(v)} to G’. Observe that each vertex of G’ corresponds to exactly one edge in Gj; that is,
v(u) in V' corresponds to the edge {u,v} € E.

Next, we apply the above theorem of Chang and Ghaffari [11] to G’ to get set V. Let E C E
be the set of edges to which these vertices correspond. We return as our solution E. Observe that
the size of E is

|E]

AN
=

|
1
< <V

N K|

Letting d’ = éz 0 -d for an appropriately large hidden poly-log in (:)(1) gives us that each component
in G has diameter at most d since otherwise there would be a component in Q’ after deleting v
with diameter more than d’. Likewise, the above gives us cut fraction at most O(%).

Simulating a CONGEST algorithm on G’ on G is trivial since each vertex can simulate its

corresponding clique and so the entire algorithm runs in time O(d') = O(d). O

5.3 Sparse Neighborhood Covers

A closely related notion to low diameter decompositions is that of the sparse neighborhood cover [3].
We use the following definition phrased in terms of partitions.

12

Definition 5.5 (Sparse Neighborhood Cover). Given a simple graph G = (V,E), an s-sparse
k-neighborhood cover with weak-diameter d and overlap o is a set of partitions V1,Va,..., Vs of
V' where each partition is a collection of disjoint vertex sets Vi(J) C V whose union is V, i.e.,

V= {Vi(l), VZ»(2), ...} and:

1. Weak-Diameter and Overlap: Fach Vi(j) comes with a rooted tree TV in G of diameter

i
at most d that spans all nodes in Vi(]); Any node in G is contained in at most o trees overall.

2. Neighborhood Covering: For every node v its k neighborhood By(v), containing all vertices
in G within distance k of v, is fully covered by at least one cluster, i.e., Vv 3i,j : By(v) C Vi(]).

The below summarizes the current state of the art in deterministic sparse neighborhood covers

in CONGEST.

Lemma 5.6 ([11, 18, 37]). There is a deterministic CONGEST algorithm which given any radius
r > 1, computes an s-sparse r-neighborhood cover with s,0 = O(1) and diameter at most O(r) in
O(r) time.

Furthermore, there is a deterministic CONGEST algorithm which given an O(k)-bit value x,
for every v computes x; , for every v and i in O(r + k) rounds, where x;, is the mazimum x-value
among nodes in the same cluster as v in the partition V;. That is, letting V;(v) be the one cluster
i V; containing v, we have

Tip = IMaAX Ty
u€V;(v)

5.4 Cycle Covers

Our flow rounding algorithm will make use of low diameter cycles. Thus, it will be useful for us to
make use of some recent insights into distributely and deterministically decomposing graphs into low
diameter cycles. We define the diameter of a cycle C as |C| and the diameter of a collection of cycles
C as the maximum diameter of any cycle in it. Likewise the congestion of C is max. |[{C : e € C}|.

The idea of covering a graph with low congestion cycles is well-studied [13, 24, 34] and formalized
by the idea of a cycle cover.

Definition 5.7 (Cycle Cover). Given a simple graph G = (V, E) where Eq are all non-bridge edges®
of G, a (d,c) cycle cover is a collection of (simple) cycles C in G such that:

1. Covering: Fvery e € Ey is contained in some cycle of C;
2. Low Diameter: maxcec |C| < d;
3. Low Congestion: max.cp |[{C :e € C} <c.

We now formally define the parameter poc; recall that this parameter appears in the running
time of our deterministic CONGEST algorithm in our main theorem (Theorem 3.1).

3Recall that a bridge edge of a graph is one whose removal increases the number of connected components in the
graph.

13

Definition 5.8 (pcc). Given a deterministic CONGEST algorithm that constructs a (d,c) cycle
cover in worst-case time T in graphs of diameter D, we say that the quality of this algorithm is
max{%,c, %} We let poc be the smallest quality of any deterministic CONGEST algorithm for
constructing cycle covers.

The following summarizes the current state-of-the-art in deterministic cycle cover computation
in CONGEST.

Theorem 5.9 ([24, 34]). There is a deterministic CONGEST algorithm that given a graph G
with diameter D computes a (d,c) cycle cover with d = 2°0WV1en) . D and ¢ = 20V1ogn) 4 time
20Wlogn) . D In other words, poc < 20(Vlogn)

6 Path Counts for h-Layer S-T DAGs

We begin be recounting the notion idea of path counts which we will use for our randomized
algorithm to sample flows and for our deterministic algorithms to compute the iterated path count
flow. This idea has been used in several prior works [12, 15, 30].

Suppose we are given an h-layer S-T DAG D with capacities U. We define these path counts as
follows. We define the capacity of a path as the product of its edge capacities, namely given a path
P we let U(P) := [[,cp Ua- Recall that we use P(S5,T) to stand for all paths between S and T'.
We will slightly abuse notation and let P(v,T) = P({v},T) and P(S,v) = P(S,{v}). For vertex
v we let n;” be the number of paths from v to T, weighted by U, namely n; := > pep(wr) UP).
Symmetrically, we let n, =} pep(g,) U(P). For any arc a = (u,v), we define n, as

Ng :=mny, - Uq N
Equivalently, we have that n, is the number of paths in P(S,T) that use a weighted by capacities:
na= Y UP).
PeP(S,T):acP

It may be useful to notice that if we replace each arc a with U,-many parallel arcs then n, exactly
counts the number of unique paths from S to T that use a in the resulting (multi) digraph. A
simple dynamic-programming type algorithms that does a “sweep” from S to T" and T to S shows
that one can efficiently compute the path counts.

Lemma 6.1. Let D be a capacitated h-layer S-T DAG. Then one can compute n;” and n; for
every verter v and ng for every arc a in:

1. Parallel time O(h) with m processors;
2. CONGEST time O (h?).

Proof. To compute n, it suffices to compute n;” and n, . We proceed to describe how to compute
n, ; computing n;" is symmetric.
First, notice that n, can be described by the recurrence

- 1 ifves
n, =
Z(u,y)g&*(v) Uu - n,, otherwise

14

We repeat the following for iteration ¢ = 2,...,h + 1. Let V; be all vertices in the ¢th layer of
our graph. In iteration ¢ we will compute n, for every v € V; by applying the above recurrence.

Running one of the above iterations in parallel is trivial to do in O(1) parallel time with m
processors, leading to the above parallel runtime. Running one iteration of this algorithm in
CONGEST requires that every vertex in v € V; for j < ¢ broadcast its n,. Since n; < (n -

Umax)h this can be done in A (1 + %) rounds of CONGEST, leading to the stated CONGEST

logn
runtime. O

7 Randomized Blocking Integral Flows in hA-Layer DAGs

We now describe how to compute blocking integral flows in A-layer S-T° DAGs with high probability
by using the path counts of the previous section. This is the general capacities version of the problem
described in Section 4.3. More or less, the algorithm we use is one of Chang and Saranurak [12]
adapted to the general capacities case; the algorithm of Chang and Saranurak [12] is itself an
adaptation of an algorithm of Lotker et al. [30]. We mostly include these results for the sake of
completeness.

Our randomized algorithm will repeatedly sample an integral flow proportional to the path
counts of Section 6, add this to our existing flow, reduce capacities and then repeat. We will argue
that we need only iterate this process a small number of times until we get a blocking integral
flow by appealing to the fact that “high degree” paths have their capacities reduced with decent
probability.

One can see this as essentially running the randomized MIS algorithm of Luby [31] but with two
caveats: (1) the underlying graph in which we compute an MIS has a node for every path between
S and T and so has up to O(n")-many nodes; as such we cannot explicitly construct this graph but
rather can only implicitly run Luby’s algorithm on it; (2) Luby’s analysis assumes nodes attempt
to enter the MIS independently but our sampling will have some dependencies between nodes (i.e.
paths) entering the MIS which must be addressed in our analysis.

More formally, suppose we are given a capacitated S-1T' DAG D. For a given path P € P(S,T)
we let Ap be > p Haep/\P U, be the “degree” of path P where the sum over P’ ranges over all
P’ that share at least one arc with P and are in P(S,T). We let A = maxpep(s) Ap be the
maximum degree. Similarly, we let Papax := {P : Ap > %} be all paths with near-maximum
degree. The following summarizes the flow we repeatedly compute; in this lemma the constant %
is arbitrary and could be optimized to be much smaller.

Lemma 7.1. Given a h-layer S-T DAG D with capacities U and A satisfying % <A <A, one
can sample an integral S-T flow f where for each P € Pamax we have [[,cp(Ua— fa) < 2955 - U(P)
with probability at least Q(1). This can be done in:

1. Parallel time O(h) with m;
2. CONGEST time O (h?) with high probability.

Proof. The basic idea is to have each path P sample about U(P)/A copies of itself.

More formally, we do the following. Consider the (multi) digraph D’ that is created by starting
with D and replacing each arc a with U, copies. For a given path P in D’ from S to T, we let
A, be the number of distinct S to T paths in D’ which share an arc with P. Likewise, we let

15

A’ = maxp A, where this max is taken over all S to T paths in D’. We let PL, .. be all paths P
for which A, > A’/2. By how we defined the degree of paths in D, if a given path P is in PL, .
then so too is its corresponding path in D in Pamax. Lastly, we let N(P) be all paths from S to T’
in D’ which share an arc with P other than P itself and let N*(P) := N(P) U {P}.

In what follows we show how to sample a collection of arc-disjoint paths Py in D’ where each
P € Pl ax is such that with probability at least 102 1 the set P, N N*T(P) is non-empty. Before
doing so, we observe that this suffices to show our claim. In particular, we can construct a flow f
by setting its value on arc a to be |{P € Py : a € P}|. Observe that by the arc-disjointness of Py
and how we constructed D’, f is indeed a feasible S-T flow. Moreover, we claim that for a given
P € Pamax in D we have [Lep(Ua—fa) < %U(P) with probability €(1). In particular, let Xp be
the indicator of whether a given path P in D’ from S to T is such that N*(P) NPy = () so that
E[Xp] < 1923 Also, let P be all the paths in D’ that visit the same vertices as P in D. Then we

1024°
have
H U fa ZXP

a€P PeP

But, looking at the expectation of this, we have

Z x| < 1023
pl < =

‘ . 1024
PeP PePpP

1023 .

T 1024 u(p)

Thus, by Markov’s inequality we have that), 5 Xp > 383(73 E[> pep Xp] with probability at
2046 : a1 2047 2047

most 3375 and so with probability Q(1) we get that Y, 5 Xp < 3556 - E [> pep Xp] < 3555 - U(P P).

Thus, it remains to show how to sample our collectlon of arc-disjoint paths Py in D’ where

each P € PL is such that with probability at least 102 ;1 the set 732 N N (P) is non-empty. We

~max

will sample Py as follows. Imagine that s initially receives B (n) -many balls where B(n,p)

57 64A
is a binomial with n trials each with probability of success p. We let n, and n;” be as defined in

Section 6 for D' where U, = 1 for every arc a’ in D’.

When a vertex v receives a ball, it tosses it to vertex u € NT(v) with probability nj /nl. As
nd =3 N+ () ny, this induces a valid probability distribution. Let P; be the (multi) set of all
paths traced out by balls. We will let P, be all paths in P; which are arc-disjoint (in D’) from all
other paths in P;.

We first consider this process from the perspective of a single path P from S to T in D'
Specifically, notice that the probability that a ball traces out a path P = (s = vy, v2, ..., 041 = t)
where s € S and t € T is uniform over paths. In particular, the probability that a given ball traces
out path P in D’ from s to t nicely telescopes as

+ ot + +

Moy Mg Mo _ Mo

- —

ng o nd nﬂ,’h ni;
1
na

Thus, each ball that starts at s traces out a uniformly random path incident to s in P(S,T).
Applying the parameters of our binomial distribution, it follows that the expected number of times

16

Markov’s inequality then shows that a given path has

1
64-A°
some copy in P; with probability at most 647 < 32 35.5- On the other hand, P has exactly one copy

1
4A

included in P; with probability 6

nd
in P; with probability at least ——= N 28 o8k > 12; X -

We proceed to bound two simple probabilities regarding how paths are sampled. In particular,
fix a path P € PL, .. in D’ from S to T. Next, fix a P’ € NT(P). Then, let £ (P’) be the event
that some copy of P’ is in P; and no other path in N*(P) has a copy in P;. Likewise, let o(P’)
be the event that no path in N(P’) is in P;. Notice that if & (P’) and £ (P’) hold then we have

P c Ps.

nt—1
+ .1 _
—=ng (1 oF) > 128 X Thus, P has at least one copy

e Bounding Pr(&;(P’)). We will argue that Pr(&;(P’)) > 725%5&

Notice that since N*(P) \ {P’} consists of at most A-many paths, the expected number of
copies of paths in N*(P)\ {P’'} in P is at most 3% It follows by a Markov bound that with
probability at least 3 we have N*(P)\ {P'} NP = 0.

Next, imagine that we condition on the event N (P)\ {P'} NPy = (. Conditioning on this
event can only increase the probability that a ball traces out P’. Since some copy of P’
is included in P; with probability at least ﬁ when we don’t condition on this event, we
conclude that

Pr(&(P) = Pr(NT(P)\{P'} NP1 =0)-Pr(P € Py | NT(P)\ {P'} NPy = 0)
> Pr(NT(P)\ {P'} NPy =0)-Pr(P € P1)
1
= 256 A

e Bounding Pr(&(P') | £(P')). We argue that Pr(&(P') | E1(P')) > 3

)
Notice that Pr(E2(P’) | £&1(P')) is minimized when NT(P) is of size exactly A + 1. However,
in this case we have Pr(E2(P’) | E1(P')) > Pr(E2(P)). Thus we conclude by a union bound
that in general Pr(E(P') | & (P') = Pr(&(P) > 1— A« 595 >

Putting these facts together and applying the fact that P € PL, .., we have that there is path
in N*(P) included in Py with probability at least

1
> Pr(&(P) - Pr(&(P) | &(P) = Y oA
P'eNt(P) P'eNt(P)
1
> —.
— 1024

as required.

It remains to argue that we can accomplish the above sampling of P; and the construction of
our flow f in the stated times. Constructing f from P; is trivial to do in parallel and CONGEST
so we focus on sampling P;. By Lemma 6.1 we can compute n; in the stated times. Passing
balls to construct P; and then P and constructing the above flow is trivial to do in the stated
parallel time. For the CONGEST algorithm, we note that expected number of balls to cross any
one arc in D’ when constructing P; is at most 1 and so a Chernoff and union bound shows that

17

with high probability we never need to transmit more than O(logn) balls across an arc in D’
when constructing P, with high probability. It follows that we never need to transmit more than
O(Umax) balls across any one arc in D. Since it suffices to just transmit the number of balls, this
can be done in O(log Upayx) = O(1) rounds with high probability. Thus we can pass all balls from
one layer to the next in 0(1) rounds of CONGEST with high probability. Lastly, constructing Ps
from P; is trivial to do in O(h) rounds of CONGEST. O

Lemma 7.2. There is an algorithm which, given an h-layer S-T DAG D with capacities U, com-
putes an integral S-T flow that is blocking in:

1. Parallel time O(h3) with m processors with high probability;
2. CONGEST time O(h*) with high probability.

Proof. Our algorithm simply repeatedly calls Lemma 7.1. In particular we initialize our output
flow f to be 0 on all arcs and our working capacities on D to be U = U. Then for cach A =
(1 Umax)™, (0 Umax) /2, (0 - Upmax) /4, . . . we repeat the following ©(h -logn - log Upax) times. Let
f be the flow computed according to Lemma 7.1. Update U, = U, — f, for every a and update
f = f + f. Clearly f is an integral S-T flow.

We need only verify that f is blocking. Since initially A < (n - Upax)", to do so it suffices
to argue that when we fix a value of A for which % < A < A, then over the course of the
O(h -logn - log Unax) iterations where we use this value of A we have that A decreases by at least
a factor of 2 with high probability.

Consider O(h - logn - log Upax) contiguous iterations of the above with a A that satisfies % <
A < A at the beginning of these iterations. Let Py be Pamax at the beginning of these iterations.
To show that A decreases by at least a factor of 2 over the course of these O(h - logn - log Unax)
iterations it suffices to show that no path in Py is in Pyumax for all of these iterations. Suppose
for the sake of contradiction that some path P € Py is in Pamax for all of these iterations. Then,
applying the guarantees of Lemma 7.1, we get that with high probability U(P) decreases by a ggg
factor at least O(h - log Upay)) times. However, since U(P) < O((Unax)"), we get that after these
iterations we would have reduced U(P) to 0 with high probability by a union bound, i.e. A must
have reduced by at least a factor of 2.

The running time of our algorithm is immediate from the fact that we simply invoke Lemma 7.1
O(h?) times. O

8 Deterministic and Distributed Near Eulerian Partitions

In the previous section we showed how to efficiently compute blocking integral flows in h-layer
DAGs with high probability. In this section, we introduce the key idea we make use of in doing so
deterministically, a near Eulerian partition.

Informally, a near Eulerian partition will discard a small number of edges and then partition
the remaining edges into cycles and paths. Because these cycles and paths will have small diameter
in our construction, we will be able to efficiently orient them in CONGEST. In Section 9 we will
see how to use these oriented cycles and paths to efficiently round flows in a distributed fashion in
order to computer a blocking integral flow in h-layer DAGs.

We now formalize the idea of a (1 — ¢)-near Eulerian partition.

18

Definition 8.1 ((1—¢)-Near Eulerian Partition). Let G = (V, E) be an undirected graph and € > 0.
A (1 — €)-near Eulerian partition H is a collection of edge-disjoint cycles and paths in G, where

1. (1 —¢)-Near Covering: The number of edges in E[H] is at least (1 —¢) - |E|;
2. Eulerian Partition: FEach vertex is the endpoint of at most one path in H.

The following is the main result of this section and summarizes our algorithms for construction
(1 — &)-near Eulerian partitions. In what follows we say that a cycle is oriented if every edge is
directed so that every vertex in the cycle has in and out degree 1; a path P is oriented if it has some
designated source and sink sp and tp. We say that a collection of paths and cycles H is oriented if
each element of H is oriented. In CONGEST we will imagine that a cycle is oriented if each vertex
knows the orientation of its incident arcs and a path is oriented if every vertex knows which of its
neighbors are closer to sp.

Lemma 8.2. One can deterministically compute an oriented (1 — €)-near Eulerian partitions in:
1. Parallel time O(1) with m processors and € = 0;
2. CONGEST time O(E% (pcc)'?) for any e > 0.

Again, see Section 5.4 for a definition of poc.

8.1 High-Girth Cycle Decompositions

In order to compute our near Eulerian partitions we will make use of a slight variant of cycle
covers which we call high-girth cycle decompositions (as introduced in Section 5.4). The ideas
underpinning these decompositions seem to be known in the literature but there does not seem to
be a readily citable version of quite what we need; hence we give details below.

To begin, in our near-Eulerian partitions we would like for our cycles to be edge-disjoint so that
each cycle can be rounded independently. Thus, we give a subroutine for taking a collection of
cycles and computing a large edge-disjoint subset of this collection. This result comes easily from
applying a deterministic approximation algorithm for maximal independent set (MIS). Congestion
and dilation in what follows are defined in Section 5.4.

Lemma 8.3. There is a deterministic CONGEST algorithm that, given a graph G = (V, E) and
a collection of (not necessarily edge-disjoint) cycles C with congestion ¢ and diameter d, outputs a
set of edge disjoint cycles C' C C which satisfies |E[C']| > -z - |E[C]| in time O(c3d®).

d2c?

Proof. Our algorithm simply computes an approximately-maximum independent set in the conflict
graph which has a node for each cycle. In particular, we construct conflict graph G’ = (C, E’) as
follows. Our vertex set is C. We include edge {C,C"} in E' if C' € C and C’ € C overlap on an edge;
that is, if E[C] N E[C'] # 0.

Observe that since each cycle in C has at most d-many edges and since each edge is in at most
c-many cycles, we have that the maximum degree of G’ is cd. Next, we let the “node-weight” of
cycle C € C be |C|. We apply Theorem 5.2 with these node-weights to compute a é-approximate
maximum independent set C’. We return C’ as our solution.

First, observe that since C’ is an independent set in G, we have that the cycles of C’ are indeed
edge-disjoint.

19

Next, we claim that |E[C']| > 2 - |E[C]|. Since Theorem 5.2 guarantees that C’ is a -
approximate solution, to show this, it suffices to argue that |E[C*]| > = - |E[C]| where C* C C is the
set of edge-disjoint cycles of maximum edge cardinality, i.e. the maximum node-weight independent
set in G'. However, notice that since the total node weight in G is)~ . |E[C]| and the max degree
in G’ is at most cd, we have that the maximum node-weight independent set in G’ must have node-
weight at least L Y. |E[C]| > L|E[C]|. Thus, we conclude that |E[C’]| > d2102 - |E[C]].

Next, we argue that we can implement the above in the stated running times. Computing our
é—approximate maximum independent set on G’ takes deterministic CONGEST time O(cd) on G
by Theorem 5.2. Furthermore, we claim that we can simulate a CONGEST algorithm on G’ in G
with only an overhead of O(c?d?). In particular, since the maximum degree on G’ is cd, in each
CONGEST round on G’ each node (i.e. cycle in G) receives at most cd-many messages. Fix a single
round of CONGEST on G’. We will maintain the invariant that if v € V' is a node in a cycle C' € C,
then in our simulation v receives all the same messages as C' in our CONGEST algorithm on G’.
We do so by broadcasting all messages that C' receives in this one round on G’ to all nodes in C.
As a cycle in G’ receives at most cd messages in one round of CONGEST on G’ and each edge is
in at most c-many cycles, it follows that in such a broadcast the number of messages that need to
cross any one edge is at most c2d. Since the diameter of each cycle is at most d, we conclude that
this entire broadcast can be done deterministically in time O(c?d?), giving us our simulation.

Combining this O(c2d?)-overhead simulation with the O(cd) running time of our approximate

maximum independent set algorithm on G’ gives an overall running time of O(c*d?). O

Recall that the girth of a graph is the minimum length of a cycle in it. The following formalizes
the notion of high-girth cycle decompositions that we will need.

Definition 8.4 (High-Girth Cycle Decomposition). Given a graph G = (V, E) and € > 0 where Ey
are all non-bridge edges of G, a high-girth cycle decomposition with diameter d and deletion girth
k is a collection of edge-disjoint (simple) cycles C such that:

1. High Deletion Girth: The graph (V,E \ E[C]) has girth at least k.
2. Low Diameter: maxcec |C| < d;

The following theorem gives the construction of high-girth cycle decompositions that we will
use.

Theorem 8.5. There is a deterministic CONGEST algorithm that, given a graph G = (V,E) and
desired girth k > 0, computes a high-girth cycle decomposition with diameter O(k - pcc) and girth
k in time O(k® - (pcc)'?).

Proof. The basic idea is: take a sparse neighborhood cover; compute cycle covers on each part of
our neighborhood cover; combine all of these into a single cycle cover; decongest this cycle cover
into a collection of edge-disjoint cycles; delete these cycles; repeat.

More formally, our algorithm is as follows, We initialize our collection of cycles C to ().

Next, we repeat the following © (k:2 . (pco)4) times. Apply Lemma 5.6 to compute an O(1)-
sparse k-neighborhood cover of G with diameter O(k) and overlap O(1). Let Vi,Vs,... be the
partitions of this neighborhood cover. By definition of a neighborhood cover, for each V; and each
Vi(J) € Vi, we have that V;(]) comes with a tree Ti(]) where each node in the tree is in O(1) other

Vi(j). We let Hi(j) =G [Vi(j)] UTZ-(j) be the union of this tree and the graph induced on Vi(j), By the

20

guarantees of our neighborhood cover we have that the diameter of H i(j) is at most O(k). We then
compute a cycle cover Ci(]) of each H Z»(]) with diameter O(k - pcc) and congestion pcc (we may do

so by definition of poc). We let Cy = UZ j Ci(]) be the union of all of these cycle covers. Next, we
apply Lemma 8.3 to compute a large edge-disjoint subset C, C Cy of Cy. We add C, to C and delete
from G any edge that occurs in a cycle in Cj.

We first argue that the solution we return is indeed a high-girth cycle decomposition. Our solu-
tion consists of edge-disjoint cycles by construction. Next, consider one iteration of our algorithm.
Observe that since each Cl-(j) has congestion at most poc, it follows by the O(1) overlap and O(1)
sparsity of our neighborhood cover that Cy has congestion O(pcc). Likewise, since each H l-(]) has

diameter O(k), it follows that each C U) has diameter at most O(k - poc) and so Cy has diameter at

7
most O(k -pcc). Thus, Cy has congestion at most O(pcc) and diameter at most O(k: - pcoc). Since
C{ C Cp, it immediately follows that the solution we return has diameter at most O(k‘ - pec)-
It remains to show that the deletion of our solution induces a graph with high girth. Towards
this, observe that applying the congestion and diameter of Cyp and the guarantees of Lemma 8.3, it

follows that

E[C! ZQ(>.EC | |
| E[Coll EIPEL [E[Coll (1)
On the other hand, let Ey be all edges in cycle of diameter at most k at the beginning of this
iteration. Consider an e € Ey. Since Vi, Vs, ... is a k-neighborhood cover we know that there is

()

some C;7” which contains a cycle which contains e. Thus, we have

[E[Col| = [Eo- (2)

Combining Equation (1) and Equation (2), we conclude that

Elcy) > fz(.

1
k*(pcc)? >
However, since in this iteration we delete every edge in E[C(], it follows that we reduce the number
of edges that are in a cycle of diameter at most k by at least a 1—{ (W) multiplicative factor.
Since initially the number of such edges is at most |E|, it follows that after O(k? - (pcc)*)-many
iterations we have reduced the number of edges in a cycle of diameter at most k to 0; in other words,
our graph has girth at most k. This shows the high girth of our solution, namely that (V, E'\ E[C])

has girth at least &k after the last iteration of our algorithm.
Next, we argue that we achieve the stated running times. Fix an iteration.

e By the guarantees of Lemma 5.6, the sparse neighborhood cover that we compute takes time

O(k).

e We claim that by definition of pc ¢, the O(k‘) diameter of each part in our sparse neighborhood
cover and the O(l) overlap of our sparse neighborhood cover, we can compute every Ci(j)i
time O(k - pcc). Specifically, for a fixed ¢ we run the cycle cover algorithm simultaneously
in meta-rounds, each consisting of é(l) rounds. In each meta-round a node can send the

n

messages that it must send for the cycle cover algorithm of each of the Hi(j) to which it

21

is incident by our overlap guarantees. Since the total number of i is O(1) by our sparsity

)

guarantee, we conclude that we can compute all Ci(j in a single iteration in at most O(k: “pcc)

time.

e Lastly, by the guarantees of Lemma 8.3 and the fact that Cy has congestion at most O(pcc)
and diameter at most O(k - pcc), we can compute Cj in time O(k3 - (pcc)®).

Combining the above running times with the fact that we have © (k2 . (pcc)4)—many iterations
gives us a running time of O(k® - (pcc)'). O

8.2 Efficient Algorithms for Computing Near Eulerian Partitions

We conclude by proving the main section of this theorem, namely the following which shows how
to efficiently compute near Eulerian partitions in deterministic CONGEST by making use of our
high-girth cycle decomposition construction and DLDDs.

Lemma 8.2. One can deterministically compute an oriented (1 — €)-near Eulerian partitions in:
1. Parallel time O(1) with m processors and € = 0;
2. CONGEST time O~(Ei5 (pcc)'?) for any e > 0.

Proof. The parallel result is well-known since a 1-near Eulerian partition is just a so-called Eulerian
partition; see e.g. Karp and Ramachandran [25].

The rough idea of our CONGEST algorithm is as follows. First we compute a high-girth
cycle decomposition (Definition 8.4), orient these cycles and remove all edges covered by this
decomposition. The remaining graph has high girth by assumption. Next we compute a DLDD
(Definition 5.3) on the remaining graph; by the high girth of our graph each part of our DLDD is
a low diameter tree. Lastly, we decompose each such tree into a collection of paths.

More formally, our CONGEST algorithm to return cycles C and paths P is as follows. Apply
Theorem 8.5 to compute a high-girth cycle decomposition C with deletion girth (:)(%) and diameter
O(% - pcc). Orient each cycle in C and delete from G any edge in a cycle in C. Next, apply
Theorem 5.4 to compute a DLDD with diameter (:)(%) and cut fraction . Delete all edges cut
by this DLDD. Since C has deletion girth @(%), by appropriately setting our hidden constant and
poly-logs, it follows that no connected component in the remaining graph contains a cycle; in other
words, each connected component is a tree with diameter C:)(%)

We decompose each tree T' in the remaining forest as follows. Fix an arbitrary root r of T.
We imagine that each vertex of odd degree in T starts with a ball. Each vertex waits until it has
received a ball from each of its children. Once a vertex has received all such balls, it pairs off the
balls of its children arbitrarily, deletes these balls and adds to P the concatenation of the two paths
traced by these balls in the tree. It then passes its up to one remaining ball to its parent. Lastly,
we orient each path in P arbitrarily.

We begin by arguing that the above results in a (1 — €)-near Eulerian partition. Our paths and
cycles are edge-disjoint by construction. The only edges that are not included in some element of
CUP are those that are cut by our DLDD; by our choice of parameters this is at most an € fraction
of all edges in E. To see the Eulerian partition property, observe that every vertex of odd degree in
G[C U P] is an endpoint of exactly one path in P since each odd degree vertex starts with exactly

22

one ball. Likewise, a vertex of even degree will never be the endpoint of a path since no such vertex
starts with a ball.
It remains to argue that the above algorithm achieves the stated CONGEST running time.

e Computing C takes time at most O(ei5 - (pcc)'?) by Theorem 8.5. Furthermore, by Theo-
rem 8.5, each cycle in C has diameter O(% - pcc) and so can be oriented in time O(% - poc).

e Computing our DLDD takes time O(%) by Theorem 5.4.

e Since our DLDD has diameter O(%), we have that the above ball-passing to comptue P can
be implemented in time at most O(1).

Thus, overall our CONGEST algorithm takes time O(E% “(pcc)tO). O

9 Deterministic Blocking Integral Flows in h-Layer DAGs

In Section 7 we showed how to efficiently compute blocking integral flows in h-layer DAGs with
high probability. In this section, we show how to do so deterministically by making use of the near
Eulerian partitions of Section 8. Specifically, we show the following.

Lemma 9.1. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
computes an integral S-T flow that is blocking in:

1. Parallel time O(h®) with m processors;
2. CONGEST time O(hS - (pcc)').

The above parallel algorithm is more or less implied by the work of Cohen [15]. However,
the key technical challenge we solve in this section is a distributed implementation of the above.
Nonetheless, for the sake of completeness we will include the parallel result as well alongside our
distributed implementation.

Our strategy for showing the above lemma has two key ingredients.

Iterated Path Count Flow. First, we construct the iterated path count flow. This corresponds
to repeatedly taking the expected flow induced by the sampling of our randomized algorithm (as
given by Lemma 7.1). As the flow we compute is the expected flow of the aforementioned sampling,
this process is deterministic. The result of this is a Q(%)—blocking but not necessarily integral flow.
We argue that any such flow is also Q(%)—approximate and so the iterated path count flow is nearly
optimal but fractional.

Flow Rounding. Next, we provide a generic way of rounding a fractional flow to be in integral in
an h-layer DAG while approximately preserving its value. Here, the main challenge is implementing
such a rounding in CONGEST; the key idea we use is that of a (1 —¢)-near Eulerian partition from
Section 8 which discards a small number of edges and then partitions the remaining graph into
cycles and paths.

These partitions enables us to implement a rounding in the style of Cohen [15]. In particular,
we start with the least significant bit of our flow, compute a (1 — ¢)-near Eulerian partition of the

23

graph induced by all arcs which set this bit to 1 and then use this partition to round all these bits
to 0. Working our way from least to most significant bit results in an integral flow. The last major
hurdle to this strategy is showing that discarding a small number of edges does not damage our
resulting integral flow too much; in particular discarding edges in the above way can increase the
deficit of our flow. However, by always discarding an appropriately small number of edges we show
that this deficit is small and so after deleting all flow that originates or ends at vertices not in .S or
T, we are left with a flow of essentially the same value of the input fraction flow. The end result
of this is a rounding procedure which rounds the input fractional flow to an integral flow while
preserving the value of the flow up to a constant.

Our algorithm to compute blocking integral flows in h-layer DAGs deterministically combines
the above two tools. Specifically, we repeatedly compute the iterated path count flow, round it to
be integral and add the resulting flow to our output. As the iterated path count flow is Q(#)—
approximate, we can only repeat this about h? time (otherwise we would end up with a flow of
value greater than that of the optimal flow).

9.1 Iterated Path Count Flows

In this section we define our iterated path count flows and prove that they are Q(%)—approximate.
Specifically, the path counts of Section 6 naturally induce a flow. In particular, they induce

what we will call the path count flow where the flow on arc (u,v) is defined as:

Ng

fa:Ua'

maXgeA Na .
It is easy to see these path counts induce an S-T flow.

Lemma 9.2. For a given capacitated S-T DAG the path count flow is an S-T flow.

Proof. The above flow does not violate capacities by construction. Moreover, it obeys flow conser-
vation for all vertices other than those in S and T since it is a convex combination of paths between
S and T. More formally, for any vertex v &€ S UT we have flow conservation by the calculation:

O T > U

a=(u,v)€6~ (v) a=(u,w)€d~ (v) PEP(S,T):aEP

Us
- maXgeA Na Z Z U(P)

a=(u,v)€dt (v) PEP(S,T):acP

= > fa

a=(u,v)edt(v)

where the second line follows from the fact that every path from S to T which enters v must also
exit v. O

Path count flows were first introduced by Cohen [15]. Our notion of an iterated path count flow
is closely related to Cohen [15]’s algorithm for computing blocking flows in parallel. In particular,
in order to compute an integral blocking flow, Cohen [15] iteratively computes a path count flow,
rounds it, decrements capacities and then iterates. For us it will be more convenient to do something

24

slightly different; namely, we will compute a path count flow, decrement capacities and iterate; once
we have a single blocking fractional flow we will apply our rounding once. Nonetheless, we note
that many of the ideas of this section appear implicitly in Cohen [15].

We proceed to define the iterated path count flow which is always guaranteed to be near-optimal.
The iterated path count flow will be a sum of several path count flows. More formally, suppose we
are given an h-layer capacitated S-T' DAG D = (V, A) with capacities U. In such a DAG we have
ng < (n- Umax)h. We initialize fy to be the flow that assigns 0 to every arc and Uy = U. We then
let D; = (V, A) with capacities U; where U; = U;—1 — f;—1 and f;— is the path count flow of D;_;.
Lastly, we define the iterated path count flow as a convex combination of these path count flows
iterated k = ©(h - (logn) - log(n - Unax)) times. That is, the iterated path count flow is

We begin by observing that the iterated path count flow is reasonably blocking.
Lemma 9.3. The iterated path count flow f is a (not necessarily integral) blocking S-T flow.

Proof. Since each path count flow is an S-T flow by Lemma 9.2, by how we reduce capacities it
immediately follows that f is an S-T flow.

Thus, it remains to argue that f is blocking. Towards this, consider computing the ith path
count flow when the current path counts are {nq}, and the flow over arc a is (fi)a = (Ui)a " oz
Letting Ax~max be all arcs for which n, > % maxg ng, we get that (Uj1)q < %-(Ui)a for all a € Axmax-
It follows that after ©(logn) iterations we will reduce max, n, by at least a multiplicative factor of
2. Since initially 17, < (n-Upax)", it follows that after k = ©(h - (logn) -log(n - Unax)) iterations we
have reduced n, to 0 for every arc which is to say that for any path P between S and T we have
that there is some arc a € P it holds that) _,(f;)o = U,. Since fo= >i(fi)a, we conclude that f

is blocking. O

Next, we observe that any blocking flow is near-optimal.

a

Lemma 9.4. Any a-blocking S-T flow in an h-layer S-T DAG is (ﬁ)-appm:mmate.

Proof. Let f be our a-blocking flow and let D be the input graph. Let f* be the optimal S-T
flow in the input DAG and let), fp be it’s flow decomposition into path flows where each P is a
directed path from S to T" and (fp), is 1 if @ € P and 0 otherwise.

Since f is blocking, for each such path there is some arc, ap where f,, > a-U,p > - fy,-
Let A = {ap : P in flow decomposition of f*} be the union of all such blocked arcs. Thus,
val(f*) < > pear fa < Dear % However, since D is h-layered, by an averaging argument we
have that there must be some j such that f(67(V;)NA’) > 3,4/ fa where Vj is the jth layer of
our digraph. On the other hand, val(f) > f(67(V;)) > f(67(V;) N A") and so we conclude that

val(f) = f(07(V;) N A)

1
>0 D fo
acA’
> 5 -val(f),
showing that f is (%)—approximate as desired. O

25

We conclude that the iterated path count flow is near-optimal and efficiently computable; our
CONGEST algorithm will make use of sparse neighborhood covers to deal with potentially large
diameter graphs.

Lemma 9.5. Let D be a capacitated h-layer S-T" DAG with diameter at most O(h). Then one can
deterministically compute a (possibly non-integral) flow f:

1. In parallel that is Q (%)-approximate mn time O(hz) with m processors;

2. In CONGEST that is (%)-appmximate in time O (h4).

Proof. Combining Lemma 9.3 and Lemma 9.4 shows that the iterated path count flow is an S-T
flow that is Q(3)-approximate.

For our parallel algorithm, we simply return the iterated path count flow. The iterated path
count flow is simply a sum of £k = ©(h - (logn) - log(n - Upax)-many path count flows. Thus, it
suffices to argue that we can compute path count flows in O(h) parallel time with m processors. By
Lemma 6.1 we can compute n, for every a in these times and so to then compute the corresponding
path count flows we need only compute max, n, which is trivial to do in parallel in the stated time.

For our CONGEST algorithm we do something similar but must make use of sparse neighbor-
hood covers, because we cannot outright compute max, n, as the diameter of D might be very
large. Specifically, we do the following. Apply Lemma 5.6 to compute an s-sparse h-neighborhood
cover with diameter O(h) and partition Vi, Vs, ..., Vs for s = 0(1) Then we iterate through each
of these partitions for i = 1,2,...,s. For each part Vi(j) e Vi, we let fi(j) be the iterated path count

flow of D[V(J)} with source set S N Vi(j) and sink set T'N Vi(j). We let f; = Ej fim be the path
count flows associated with the ith partition and return as our solution the average path count flow
across partitions; namely we return

_1 N
fzs'zi:fi-

This flow is an S-T flow smce it is a convex combination of S-T flows. We now argue that this
flow is Q()-optimal. Let f be the optimal flow on D[Vl()] with source set SN V(J) and sink set

TN Vi(j). As our path count flows are Q(%)—approximate, we know that

val(f7) > 6 (2) val ()

Moreover, since every h-neighborhood is contained in one of the V[J] , it follows that Z -val(f; fl }) >
val(f*) where f* is the optimal S-T" flow on D with source set S and sink set T'. Thus, we conclude
that

Val Z f[ﬂ]

vV
o)
VR
S
_/
» | =
Shy
=

Lastly, we argue the running time of our CONGEST algorithm. We describe how to compute
f; for a fixed i. Again, f; on each part is simply a sum of k = é(h) -many path count flows. To
compute one of these path count flows we first compute the path counts {na}a on each part by
applying Lemma 6.1 which takes O(h?) time. Next, we compute max, n, in O(h) time by appealing
to Lemma 5.6 and the fact that max, n, < O(n”). Thus, computing each f; takes time O(h%) and
since there are O(h) of these, overall this takes O(h*) time. O

9.2 Deterministic Rounding of Flows in h-Layer DAGs

In the previous section we showed how to construct our iterated path count flows and that they
were near-optimal but possibly fractional. In this section, we give the flow rounding algorithm that
we will use to round our iterated path count flows to be integral. Specifically, in this section we
show the following flow rounding algorithm.

Lemma 9.6. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
€= Q(m) and (possibly fractional) flow f, computes an integral S-T flow f in:

1. Parallel time O(h) with m processors;
2. CONGEST time O(% - 1° - (pcc)™).

Furthermore, val(f) > (1 —¢) - val(f).

Parts of the above parallel result are implied by the work of Cohen [15] while the CONGEST
result is entirely new.

9.2.1 Turning Flows on (1 —¢)-Near Eulerian Partitions

As discussed earlier, our rounding will round our flow from the least to most significant bit. To
round the input flow on a particular bit we will consider the graph induced by the arcs which set
this bit to 1. We then compute an oriented near-Eulerian partition of these edges and “turn” flow
along each cycle and path consistently with its orientation. We will always turn flow so as to not
increase the deficit of our flow.

We now formalize how we use our (1 — ¢)-near Eulerian partitions to update our flow. Given a
path or cycle H, our flow update will carefully choose a subset of arcs of H along which to increase
flow (denoted HT) and decrease flow along all other arcs of H. Specifically, let H be an oriented
cycle or path of a graph produced by forgetting about the directions in a digraph D = (V, A). Then
HT is illustrated in Figure 3 and defined as follows:

e Suppose H is an oriented cycle. Then, we let HT be all arcs of D in this cycle that point in
the same direction as their orientation.

e Suppose H = (sg = vg,v1,v2,...) is an oriented path. We let H' be all arcs of D in this
path that point in the same direction as the one arc in D incident to sy (i.e. the designated
source of the path). That is either (vg,v1) or (v1,vg) are in D. In the former case we let HT
be all arcs in D of the form (v;,v;+1) for some 7. In the latter case we let H™ be all arcs in
D of the form (v;4+1,v;) for some i.

With our definition of HT in hand, we now define our flow updates as follows.

27

ol

e ® o
*—0—-0—-0—0 N) o 0-0-0- 0
000000 0 000060 000009

(a) Near Eulerian Partition . (b) Orientation of H. (c) HY for each H € H.

Figure 3: An illustration of a near Eulerian partition H and H* for each H € H. 3a gives H which
consists of one cycle and two paths. 3b gives the orientation of H where the source of each path is
in blue. 3c gives H' (in green) and H \ H* (in red) for each H € H.

Definition 9.7 ((1 — ¢)-Near Eulerian Partition Flow Update). Let f be a flow in a capacitated
DAG for which f, € {0,c} for everya € A for some ¢ and let H be an oriented (1—e)-near Eulerian
partition of supp(f) after forgetting about edge directions. Then if H € H, we define the flow fg

on arc a:
2¢c ifa€ HT
(fr)a = {() otherwise

Likewise, we define the flow corresponding to (f,H) as
fr=Y_ fu.

The following shows that our flow update will indeed zero out the value of each bit on each
edge while incurring a negligible deficit.

Lemma 9.8. Let f be a flow in a capacitated DAG D with specified source and sink vertices S
and T where f, € {0,c} for every a € A for some c. Let H be an oriented (1 — €)-near Eulerian
partition of supp(f) after forgetting about edge directions. Then fy (as defined in Definition 9.7)
satisfies:

1. (fr)a € {0,2¢} for every a € A;

2. deficit(fy) < deficit(f) +2¢-)", fa-

Proof. (fy)a € {0,2¢} holds by the definition of fy and the fact that the elements of H are
edge-disjoint.

We next argue that deficit(f’) < deficit(f) + 2¢-)", fo. The basic idea is that each edge in
the support of f which does not appear in A[H] contributes its value to the deficit but any way of
turning a cycle in H leaves the deficit unchanged and the way we chose to turn paths also leaves
the deficit unchanged.

We let f’ be f projected onto the arcs in A[H]. That is, on arc a the flow f’ takes value

= {fa if a € A[H]

0 otherwise

28

We have that deficit(f’) < deficit(f) + 2¢ - Y, fo since each arc a ¢ A[H] increases the deficit
of f' by at most 2f, and, from Definition 8.1, there are at most e-fraction of arcs not in A[H].
Thus, to show our claim it suffices to argue that deficit(fx) < deficit(f’). For a given vertex v, we
let n;(v) be the number of elements of H in which v has in-degree 2. Similarly, we let n,(v) be
the number of elements of H for which v has out-degree 2. Lastly, we let s(v) be the indicator of
whether v is the source of some path in H and t(v) be the indicator of whether v is the sink of a
path in H. Thus, we have

deficit(f',v) = 2¢- |ni(v) = no(v)| + ¢+ (s(v) + t(v))
and 50
deficit(f') =) 2c- ni(v) = no(v)| + ¢ - (s(v) + t(v))
= 2Z|7>| +) 2+ |ni(v) = no(v)|
On the other hand, we have U

deficit(fy, v) < 2¢-|ni — no| + 2¢ - t(v)

and so
deficit(f3) <Y 2¢- Ini(v) — no(v)| + 2¢ - (v)
= 2P|+ Y 2c- [ni(v) — no(v)
showing deficit(fy) < deficit(f’) as required. O

9.2.2 Extracting Integral S-T° Subflows

The last piece of our rounding deals with how to fix the damage that the accumulating deficit
incurs. Specifically, as we round each bit we discard some edges, increasing our deficit. This means
that after rounding all bits we are left with some (small) deficit. In this section we show how to
delete flows that originate or end at vertices not in S or T, thereby reducing the value of our flow
by the deficit but guaranteeing that we are left with a legitimate S-T" flow.

Lemma 9.9. Let f be an integral (not necessarily S-T') flow on an h-layer S-T DAG. Then one
can compute an S-T integral flow f' which is a subflow of f and satisfies val(f’) > val(f)— deficit(f)
m:

1. Parallel time O(h) with m processors;
2. CONGEST time O(h).

Proof. Our algorithm will simply delete out flow that originates not in .S or ends at vertices not in
T. More formally, we do the following. We initialize our flow f’ to f cLet S=V, Vo, .. V1 =T
be the vertices in each layer of our input S-T' DAG D = (V, A). Recall that we defined a flow f as
an arbitrary function on the arcs so that fa < U, for every a. The basic idea of our algorithm is to

29

first push all “positive” deficit from left to right and then to push all “negative” deficit from right
to left. The deficit will be non-increasing under both of these processes.

More formally, we push positive deficit as follows. For ¢ = 2,3,...h we do the following. For
each v € V;, let

deficit™ (v) := max | 0, Z - Z f

a€dt(v) a€d~(v)

be the positive deficit of v. Then, we reduce Eae5+(v) f to be equal to Zaeé_(v) f, by arbitrarily
(integrally) reducing f, for some subset of a € §+(v).

It is easy to see by induction that at this point we have deficit™ (v) = 0 for all v ¢ SUT.
Likewise, we have that Zv(;ZSuT deficit™ (v) is non-increasing each time we iterate the above. Thus,
if deficit™ is the initial value of > wgSuT deficit™ (v) then in the last iteration of the above we may

decrease the flow into T' by at most deficit(f).
Next, we do the same thing symmetrically to reduce the negative deficits. Fori =h,h—1,...,2
we do the following for each v € V;. Let

deficit™ (v) := max | 0, Z T Z f

a€d—(v) a€dt(v)

be the negative deficit of v. Then, we reduce ,c5-(,) f1 to be equal to Zaeﬁ(u) f1 by arbitrarily
(integrally) reducing f for some subset of a € 6~ (v). Notice that this does not increase deficit™ (v)
forany v ¢ SUT.

Symmetrically to the positive deficit case, it is easy to see that at the end of this process we
have reduced deficit™ (v) to 0 for every v ¢ S U T while reducing the flow out of S by at most
deficit(f).

Thus, at the end of this process we have an S-T integral flow f’ whose value is at least val(f) —
deficit(f) Implementing the above in the stated running times is trivial; the only caveat is that
updating a flow in CONGEST requires updating it for both endpoints but since the flow is integral
and we reduce it integrally, this can be done along a single arc in time O(logUpax) = O(1) by
assumption.]

9.2.3 Flow Rounding Algorithm

Having defined the flow update we use for each (1 — &)-near Eulerian partition and how to extract
a legitimate S-T' flow from the resulting rounding, we conclude with our algorithm for rounding
flows from least to most significant bit. Our algorithm is given in Algorithm 1 and illustrated in
Figure 4.

We conclude that the above rounding algorithm rounds with negligible loss in the value.

Lemma 9.6. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
€= Q(m) and (possibly fractional) flow f, computes an integral S-T flow f in:

1. Parallel time O(h) with m processors;

2. CONGEST time O(Z - h® - (pcc)'?).

30

(d) Flow update using H. (e) Flow after flow update. (f) Returned integral S-T flow.

Figure 4: An example of our flow rounding algorithm on digraph D with unit capacities. 4a gives
the input flow where arcs are labelled with their flow and vertices are labelled with their deficit.
4b gives D@ the graph induced by all arcs with flow value .5. 4c gives our oriented near Eulerian
partition of D (in blue). 4d shows how we update our flow based on the near Eulerian partition.
4e gives the result of this flow update; notice that some vertices not in S and T have non-zero
deficit. 4f gives the S-T subflow we return where only vertices in S and 7" have non-zero deficit.

Algorithm 1 Deterministic Flow Rounding

Input: h-layer DAG D, S-T flow f =>_,_, f® where (), € {0,2'98Unax)=} for every a, 1.
Output: integral S-T' flow f
f« Zf:o @ for k = O(log n + 1og(Unax))- > Truncate lower order bits of input flow
fori=k,...,10g(Unax) do
Let f =Y ; f9) be the bitwise flow decomposition of f (defined in Section 2) and let D@ be
the undirected graph induced by the support of f(@).
Compute an oriented (1 — &')-near Eulerian partition H of D (using Lemma 8.2 with ¢ = 0

for the parallel algorithm and ¢ = © (L) for the CONGEST algorithm).

h-logn
f f;_? + D < f9) (as defined in Definition 9.7). > Turn flow along H

Let f be an S-T subflow of f (compute using Lemma 9.9).
return f.

31

Furthermore, val(f) > (1 —€) - val(f).

Proof. We use Algorithm 1.

We first argue that the above algorithm returns an integral flow. Notice that by the fact that
we initialize f to Zf:o it follows that for j > k on every a we have féj) =0 just before the first
iteration of our algorithm. Thus, to argue that the returned flow is integral it suffices to argue that
if £ is the jth bit flow of f just after the ith iteration then for] < 1 we have faj) = 0 for every
a. However, notice that, by Lemma 9.8, after we update f each fa value is either doubled or set
to 0, meaning that fal) = 0 after this update.

Next, we argue that val(f) > (1 — &) - val(f). By Lemma 9.9 it suffices to argue that just
before we compute our S-T' subflow of f we have deficit(f) < e-val(f). We may set the constant
in k = O(logn + 10g(Unmax)) to be appropriately large so that when we initialize f we reduce the

flow value on each arc by at most ﬁ() It follows that at this point deficit(f) < poly Z fa-

Similarly, by Lemma 9.8 in the ¢th iteration of our algorithm we increase the deficit of f by at most

262 faZ <2 Z fa

For our parallel algorithm, since we have ¢ = 0, it immediately then follows that deficit(f) <

poly Z fa < e-val(f) by our assumption that £ = Q(m) For our CONGEST algorithm

we choose g =09 hlogn) for some appropriately small constant. Since we have ©(logn) iterations
it follows that after all of our iterations (but before we compute an S-T' subflow) it holds that
deficit(f) < 7> afa < e-val(f) where the last inequality follows from the fact that our flow is
h-length.

Lastly, we argue that the algorithm achieves the stated running times. The above algorithm
runs for k = O(logn) iterations. The computation in each iteration is dominated by computing a
(1 — &')-near Eulerian partition. For our parallel algorithm, computing each (1 — &’)-near Eulerian
partition takes time at most O(l) with m processors by Lemma 8.2. For our CONGEST algorithm
computing each (1—¢’)-near Eulerian partition takes time at most (3(%5 k- (pcc)t?) by Lemma 8.2.
Lastly, we must compute an S-1" subflow of f which by Lemma 9.9 takes O(h) parallel time with
m processors or O(h) CONGEST time. O

9.3 Deterministic Blocking Integral Flows

Having shown that the iterated path count flow is near-optimal and fractional but that we can
efficiently round fractional flows to be integral, we conclude with our algorithm to compute a
blocking integral flow by repeatedly rounding iterated path count flows.

Lemma 9.1. There is a deterministic algorithm which, given a capacitated h-layer S-T' DAG D,
computes an integral S-T flow that is blocking in:

1. Parallel time O(h®) with m processors;
2. CONGEST time O(hS - (pcc)'©).

Proof. We repeatedly compute the iterated path count flow, round it to be integral, reduce capac-
ities appropriately and repeat. We will return flow f initialized to 0 on all arcs.

Specifically, we repeat the following ©(h) times. Apply Lemma 9.5 to compute a Q(1/h)-
approximate (possibly fractional) flow f . Next, apply Lemma 9.6 with € = .5 to round this to an

32

integral flow f where val(f) > %Val(f). Next, we update f to f + f and for each arc a we reduce

Ua by fa-

After each time we iterate the above ©(h) times we must reduce the value of the optimal solution
by at least a multiplicative % since otherwise f would be a flow with value greater than the max
S-T flow in the graph at the beginning of these iterations. Since the optimal solution is at most
m - Umax, it follows that we need only iterate the above é(h) times until the value of the optimal
S-T flow is 0 which is to say that f is a blocking flow.

By Lemma 9.5 and Lemma 9.6 each of the above iterations takes parallel time O(h?) with m

processors and CONGEST time O(h° - (pcc)'?), giving the stated running times. O

10 h-Length (1 + ¢)-Lightest Path Blockers

In this section we show how to efficiently compute our main subroutine for our multiplicative-
weights-type algorithm; what we call h-length (1 + €)-lightest path blockers. We will use the
blocking integral flow primitives of Section 7 for our randomized algorithm and that of Section 9
for our deterministic algorithm.

Our (1 + €)-lightest path blockers are defined below. In what follows, \ is intuitively a guess of
dgL)(S, T). Also, in the following recall that if f is an h-length flow then f assigns flow values to
entire paths (rather than just arcs as a non-length-constrained flow does). As such the support of
f, supp(f), is a collection of paths. However, as mentioned earlier, for an h-length flow f, we will
use f(a) as shorthand for) p, fp.

Definition 10.1 (h-length (1 + ¢)-Lightest Path Blockers). Let G = (V, E) be a graph with lengths
¢, weights w and capacities U. Fiz e >0, h > 1, A < dgl)(S, T) and S,T C V. Let f be an h-length
integral S-T' flow. f is an h-length (1 + €)-lightest path blocker if:

1. Near-Lightest: P € supp(f) has weight at most (1 + 2¢) - A;

2. Near-Lightest Path Blocking: If P' € Py(S,T) has weight at most (1 + €) - X then there
is some a € P where f(a) = U,.

The main theorem of this section we show is how to compute our (1 + €)-lightest path blockers
efficiently.
Theorem 10.1. Given digraph D = (V, A) with lengths ¢, weights w, capacities U, length constraint
h>1,e>0,SSTCV and A < dz(l?)(S, T), one can compute an h-length (1+¢€)-lightest path blocker
m:

1. Deterministic parallel time O(Ei5 - h1%) with m processors
2. Randomized CONGEST time O(E% - h18) with high probability;

3. Deterministic CONGEST time O (8% -h16 ¢ 8% -h15. (pcc)lo)'

The main idea for computing these objects is to reduce finding them to computing a series of
blocking flows in a carefully constructed “length-weight expanded DAG.” In particular, by rounding
arc weights up to multiples of 7\ we can essentially discretize the space of weights. Since each
path has at most h arcs, it follows that this increases the length of a path by at most only Ae.
This discretization allows us to construct DAGs from which we may extract blocking flows which
we then project back into D and then “decongest” so as to ensure they are feasible flows.

33

(a) Digraph D with w. (b) Digraph D with .

Figure 5: An illustration of how we round weights according to &, A and h. Here h =5, A = 6 and
e = .5 and so we round to multiples of ;A = % Ha gives our input DAG where each arc is labeled
with its weight, then length then capacity and 5b gives the weights after we round them where we
color each lightest 5-length path from s to t.

10.1 Length-Weight Expanded DAG

We now formally define the length-weight-expanded DAGs on which we compute blocking integral
flows. Roughly, the length-weight expanded graph will create many copies of vertices and organize
them into a grid where moving further down in rows corresponds to increases in length and moving
further along in columns corresponds to increases in weight.

Let D = (V, A) be a digraph with specified source and sink vertices S and 7', lengths ¢, weights
w, capacities U and a parameter A < dgl)(S, T). We let w be w but rounded up to the nearest
multiple of £ - A\. That is, for each a € A we have

Gy = 2w,
‘" h e

See Figure 5 for an illustration of .
Next, we define the length-weight expanded DAG D" = (V' A’) with capacities U’. See
Figure 6 for an illustration of D).

e Vertices: We construct the vertices V' as follows. For each each vertex v € V we make
k= h- (% 4 2h) copies of v, where we let v(z, 1) be one of these vertices; here z ranges over
all multiples of £ - X up to (14 2¢) - A (of which there are % + 2h) and B’ < h. Intuitively,
there will be a path from a copy of a vertex s € S to a vertex v(x, h') iff there is a path with
exactly = weight (according to w) and h'-length from s to v in D.

e Arcs: We construct the arcs A’ as follows. For each each vertex v ¢ T and each a = (v,u) €
6t (v) we do the following. For each copy v(x,h') of v we add an arc to A’ from v(z,h’) to
u(z + Wq, M + £,) provided u(z + Wy, K + £,) is actually a vertex in V’. That is, provided
x4+ w, < (1+42e)-Xand b/ + 4, < h. We say that the arc v(x,h’) to u(x + wq, h' + £,) in A’
is a copy of arc a. For a given a € A, we let A’(a) give all copies of arc a that are in A’.

e Capacities: We construct the capacities U’ as follows. For low capacity arcs we set the
capacity of all copies to 1; for high capacity arcs we evenly distribute the capacity across all

34

Weight

Figure 6: An illustration of D" where D and the parameters we use are given by Figure 5,

k=100, S = {s} and T = {t}. Copy v(x, h’) of vertex v is in the (z,h')th grid cell and each arc is
labelled with its capacity. We only illustrate the subgraph between s(0,0) and t(%, 5). Each path
is colored according to the path in Figure 5b of which it is a copy. Notice that the graph induced
by all 5-length lightest paths in Figure 5b is not a DAG but DV is.

copies. Specifically, suppose arc a’ € A’ is a copy of arc a € A. Then if 0 < Uy, < Kk we let
U!, = 1. Otherwise, we let U/, have capacity |U,/x|. As we will see later in our proofs, this
rebalancing of flows will guarantee that when we “project” a flow from D" to D, the only
arcs that end up overcapacitated in D are arcs with capacity at most x. This, in turn, will
allow us to argue that the conflict graph on which we compute an MIS is small.

We let V'(S) and V/(T) be all copies of S and T in D and we delete any vertex from D)
that does not lie on a V'(S) to V'(T) path. This will guarantee that the resulting digraph is indeed
an V'(S)-V/(T) DAG.

Lastly, we clarify what it means for a path to have its copy in D). Suppose P = (a1,az,...)
is a path in D that visits vertices s = vy,vo,...,vx = t in D and let w; and ¢; be the weight
(according to w) and length of P summed up to the ith vertex it visits. Then we let a; be the arc
from v;(w;, £;) to viy1(W; + Wa,, b + Lq;). If @} is in DY) for every i then we call P’ = (a},dh,...)
the copy of P in D" Observe that a path in D has at most one copy in D) but every path
in D" is the copy of some path in D.

The following summarizes the key properties of our length-weight expanded digraphs.

Lemma 10.2. Let D = (V, A) be a digraph with weights w, S, T CV and some A < dgl)(S, T). Let
DW"A) = (V'] A) be the length-weight expanded digraph of D. Then D" is an h-layer V'(S)-V'(T)
DAG which satisfies

1. Few Arc Copies: |A'(a)] < O(hé)
2. Forward Path Projection: For each path P in D from S to T of weight at most \- (1 +¢)
according to w, there is a copy of P in DU from V'(S) to V'(T).

35

3. Backward Path Projection: If P' is a V'(S) to V'(T) path in D" then it is a copy of
a path with weight at most (1 + 2¢€) - X\ according to w.

4. Optimal Flow Preserving: the mazimum S-T flow on D) has value at least Q(5=) times
that of the maximum flow on D.

Proof. First, we argue that DY) is indeed a DAG. To see this, observe that if o’ is an arc in A’
from v(x1,h1) to v(xa, hy) then by construction it must be the case that hy < hy. It follows that
DA has no cycles and has at most h layers. Next, observe that D"V is a V/(S)-V'(T) DAG by
construction since we deleted any any vertices that do not lie on a path between V’(S) and V/(T).
Additionally, we have |A'(a)| < O(h;) for every a since each vertex has at most O(h;)—many copies.

Next, consider an arc a with weight w, according to w and weight @, according to w. Observe
that since we are rounding arc weights up we have w, < w,. Combining this with the fact that we
are rounding to multiples of 7 - A we have that

wagwagwa"i'%')\ (3)

We next argue our forward path projection property. That is, for each h-length path P in D
from S to T of weight at most X - (1 + €) according to w, there is a copy of P in D) from V’(S)
to V/(T). First, observe that P consists of at most h-many edges and so applying Equation (3),
its weight according to @ is at most A - (1 4+¢€) +h- 5 - A = A- (14 2¢). Next, observe that since
P has weight at most A - (1 4 2¢) according to w, it must have a copy in D™N) - In particular,
suppose P = (ay,aq,...) visits vertices s = vy, v2,...,vr =t in D and let w; and ¢; be the weight
(according to w) and length of P up to the ith vertex it visits. Then D) always includes the arc
from v; (s, €;) t0 Vi41(W; + Wa,, b + Lq;) since w; < (14 2¢€)A and ¢; < h for every i.

We argue our backward path projection property. That is, if P’ is a V/(S) to V'(T) path in
DY) then it is a copy of a path with weight at most (142¢)-Ain D according to w. Since each arc
in DY) is a copy of some arc in D, we know that P’ is a copy of some path in D. Moreover, since
we let v(z, ') only range over x € % + 2h, it follows that the weight of this path according to w is
at most (14 2¢) - A. However, since weights according to w are only larger than those according to
w by Equation (3), it follows that P’ is a copy of a path with weight at most (1 + 2¢) - A according
to w.

Lastly, to see the optimal flow preserving property notice that if f* is the optimal flow on D
then by how chose the capacities of D) we have that the flow that gives path P’ in D" value
O(z) - fp where P’ is the copy of P is indeed a feasible flow in D), O

10.2 Decongesting Flows

Part of what makes using our length-weight expanded digraph non-trivial is that when we compute
a flow in it and then project this flow back into D, the projected flow might not respect capacities.
However, this flow will only violate capacities to a bounded extent and so in this section we show
how to resolve such flows at a bounded loss in the value of the flow. In the below we say that an
h-length flow f is a-congested if any arc a where f (a) > U, satisfies f (a) < a.

Lemma 10.3. There is a deterministic algorithm that, given a digraph D = (V, A) with capacities
U, a length constraint h > 1, S, T CV and an h-length a-congested S-T' integral flow f, computes

N

an S-T h-length integral flow f where val(f) > ﬁ ~val(f) in:

36

1. Parallel time O(a? - h) with m processors;
2. CONGEST time O(a® - h?).

Proof. The basic idea is to consider the conflict graph induced by our flow paths and then to
compute a approximate maximum-weighted independent set among these flow paths where flow
paths are weighted according to their flow value.

Specifically, construct our conflict graph G/ = (V/, E) of supp(f) as follows. V' = supp(f) has
a vertex for each path in the support of f . We say that P; and P» in supp(f) conflict if there is
some arc a in both P; and P such that f(a) > U,. Then we add edge {Py, P>} to E’ iff P, and P,
conflict.

Observe that since each path in supp(f) consists of at most h arcs and since f is a-congested,
we know that the maximum degree in G’ is at most h - a.

We then apply Theorem 5.2 to G’ to compute a h—la—approximate maximum independent set in

G’ in deterministic CONGEST time O(ha) with the node weight of P € supp(f) as fp. Let Z be
this independent set and let f =) 5.7 fp be the flow corresponding to this set. We return f.

We first argue that val(f) > %(hf; Since the total node weight in G’ is val(f) and the maximum
degree in G’ is « - h, it follows that the maximum independent set in G’ has node weight at least
Val(f)

ah

. Since 7 is ﬁ—approximate, we conclude that f has val(f) > \Sé(hé)

Lastly, we argue that we achieve the claimed running times. Notice that the total number of
vertices in G’ is at most m - o because each congested arc a where U, < f (a) < av is contained in at
most « integral flow paths. Hence, we can simulate any CONGEST algorithm in G’ with at most
o overhead. Theorem 5.2 tells us that we can compute Z in time at most O(a - k) in G, giving our
parallel running time.

It remains to describe how to simulate G’ in D in CONGEST. We keep the following invariant:
if a node P; in G’ receives a message, we make sure that all vertices v € P; in G receive the same
message too. Because of this, any vertex v € Py in G can determine what P; as a node in G’ will do
next. Let us assume that each message in G’ from P; to P, is of the form (msg, P, P2). To simulate
sending (msg, P1, P») in G, a vertex vy € P; first forwards (msg, P1, P») through P; to make sure
that every node in P; gets this message. Let v € P N P» be a common vertex in both P; and Ps.
Then, vy forwards (msg, Pi, P;) through P,. After we are done simulating all messages sent in G’,

our invariant is maintained.

Now, we analyze the overhead of simulating one round of G’ in G. The dilation for simulating
sending each message in G’ is clearly O(h). Next, we analyze the congestion. Each arc a is contained
in at most max{U,, a} < aU, paths. For each such path P, there are at most ah messages needed
to sent through a because the maximum degree in G’ at most ah. Therefore, the congestion is at
most %ﬂah = a?h. Note that, here (and nowhere else in this work) we rely on the fact that we
may send O(U,) messages over an arc a with capacity U, in one round of CONGEST.

To conclude, the deterministic simulation overhead is at most dilation times congestion which
is at most O(h) - a’h = O(ah?). Combining this simulation with the O(a - h) running time of our
approximate maximal independent set algorithm gives our CONGEST running time. 0

10.3 Computing h-Length (1 + ¢)-Lightest Path Blockers

Having described our length-weight expanded DAGs, their properties and how to decongest flows
that we compute using them, we now use these primitives to build our h-length (1+ ¢)-lightest path

37

blockers. Again, the basic idea is to compute the length-weight expanded DAG D) compute

blocking flows in D), project these back into D, decongest the resulting flows and then repeat.
Algorithm 2 gives our algorithm. We prove its properties below.

Algorithm 2 (1 + ¢)-Lightest Path Blocker

Input: D = (V, A) with weights w, lengths ¢, capacities U, h > 1, S, T CV, A >0 and £ > 0.
Output: h-length (1 + ¢)-lightest path blocker f.
Initialize solution f to be 0 on all arcs.
Let DY) = (V' A") be the length-weight expanded digraph of D with capacities U=U
for (:)(2—27) repetitions do
Blocking Flows: Let f’ be a blocking integral flow in DY) with capacities U (compute
using Lemma 7.2 with randomness or Lemma 9.1 deterministically).
Project Into D: Let f be the h-length flow that gives path P value f, where P’ is the
copy of P in D).
Decongest Flow: Let f be the result of decongesting f with Lemma 10.3.
For each copy o’ € A’ of a € A update capacities as Uy = U, — f(a).
Update f = f + f.
return f.

Theorem 10.1. Given digraph D = (V, A) with lengths ¢, weights w, capacities U, length constraint
h>1,e>0,85TCVand < dgL)(S, T), one can compute an h-length (1+¢€)-lightest path blocker
m:

1. Deterministic parallel time O(Ei5 - h18) with m processors
2. Randomized CONGEST time O([}5 - h16) with high probability;

3. Deterministic CONGEST time O (6% h16 + 6% R (pee)'?).

Proof. We first argue that f is a h-length (1 + ¢)-lightest path blocker (Definition 10.1). f is an
integral h-length S-T flow by construction. Moreover, the support of f is near-lightest by the
backward path projection property of D"V as stated in Lemma 10.2.

Thus, it remains to argue the near-lightest path blocking property of f and, in particular that
if P € Py(S,T) is a path in D and P has weight at most (1 + ¢) - A according to w then there is
some a € P where f(a) = U,. Towards this, observe that by the forward path projection property
as stated in Lemma 10.2, such a path P has copy in D" . By how we construct f, it follows that
to show f(a) = U, for some a, it suffices to show that U, = 0 by the end of our algorithm. To show
that such an a exists, it suffices to show that the maximum flow in D) under the capacities U
is 0 by the end of our algorithm.

We do so now. Our strategy will be to show that we have implicitly computed a flow on D)
of near-optimal value and so after just a few iterations it must be the case that the optimal flow
on D) g reduced to 0.

Consider a fixed iteration of our algorithm and let OPT"* be the value of the maximum
V'(S)-V/(T) flow on DY, Since f’ is a blocking flow in D**) and D"V is an h-layer DAG by
Lemma 10.2, it follows from Lemma 9.4 that

val(f') > — - OPT"A), (4)

SR

38

Continuing, we claim that f is an O(h;)—congested flow. In particular, any arc a with capacity

(:2) is at most Ua.

in D greater than O(%2) is such that the sum of its capacities across copies in D
. r3 . . h2\ - /

Thus, SQuch an arc is never overcongested by f. Any arc with capacity less than O(*-) in D" has up

to O(h?) copies in D) each of which has capacity 1; thus, such an arc may have flow value up

to O(h;) in f. Thus, by val(f) = val(f’) and this bound on the congestedness of f, we have from
Lemma 10.3 that

8 ~

-val(f)
= —val(f). ()

Combining Equation (4) and Equation (5), we get

82

val(f) > = - OPT"N) (6)

I

Lastly, let f” be f projected back into D) That is, if arc a' is a copy of arc a then f" assigns
to a’ the flow value)~ p_, fp. Observe that by construction of f, we know that f” is a V'(S)-V'(T)

flow in DA of value val(f”) = val(f). Thus, applying this and Equation (6) we get

[\

9

val(f") > — - OPT"A),

>

Since we decrement the value of U, by f” in each iteration, it follows that after O(Z—;) many
repetitions of Algorithm 2, we must decrease the value of the optimal flow in D) by at least a
constant fraction since otherwise we would have computed a flow with value greater than that of
the optimal flow. Since initially OPT("" < poly(n), we get that after O(g—;)—many repetitions we
have reduced the value of the optimal flow to 0 on DY)
near-lightest path blocking property.

It remains to show our running times. The computation in each of our iterations is dominated
by constructing the length-expanded digraph D) computing our maximal integral low f* in

D) and decongesting our flow.

, therefore showing that f satisfies the

e We can construct D) by e.g. Bellman-Ford for O(h) rounds for a total running time of
O(h) in either CONGEST or parallel. Likewise projecting flows back from D"V is trivial.

o It is is easy to simulate D) in either CONGEST or in parallel with an overhead of O(h;)
since this is a bound on the number copies of each vertex.
With randomization, by Lemma 7.2 computing f’ takes time O(h?) in parallel with m pro-
cessors or O(h*) in CONGEST on D" and so O(h?s) in parallel or O(%ﬁ) in CONGEST on
D.

For our deterministic algorithm, by Lemma 9.1 doing so takes O:(h?’) in parallel with m
processors and CONGEST time O(h® - (pcc)'®) on DM and so O(L - %) parallel time on
D or O(% - 1% (pcc)'®) CONGEST time on D.

39

e Lastly, decongesting our flow by Lemma 10.3 and the fact that f is O(h;)—congested takes
9

deterministic parallel time O(’;—S) and deterministic CONGEST time O(’;—S)

Combining these running times with our O(g—;)—many repetitions gives the stated running times. [

11 Computing Length-Constrained Flows and Moving Cuts

Having shown how to compute an h-length (1 + €)-lightest path blocker, we now use a series of
these as batches to which we apply multiplicative-weights-type updates. The result is our algorithm
which returns both a length-constrained flow and a (nearly) certifying moving cut.

Algorithm 3 Length-Constrained Flows and Moving Cuts
Input: digraph D = (V, A) with lengths ¢, capacities U, h > 1, S,7 C V and ¢ € (0,1).
Output: (1 + e)-approximate h-length flow f and moving cut w.

Leteozg,letgz%‘f'landletn:(p:—foo).('loglm'

Initialize w, < (%)C for all a € A.
Tnitialize < (L)°.

Initialize fp « 0 for all P € P (S, T).
while A < 1 do:

hlog ny . .
for © (%) iterations: do

Compute h-length (1 + €)-lightest path blocker f (using Theorem 10.1 with current A).
Length-Constrained Flow (Primal) Update: f « f+7n- f.
Moving Cut (Dual) Update: w, < (1+ eo)f(“)/Ua - wq for every a € A.

A (1 + 60) - A

return (f,w).

As a reminder for an h-length flow f, we let f(a) := > p5, fp. Throughout our analysis we
will refer to the innermost loop of Algorithm 3 as one “iteration.” We begin by observing that A
always lower bounds dh)(S, T) in our algorithm.

Lemma 11.1. At the beginning of each iteration of Algorithm 3 we have A < d&?)(s, T)

Proof. Our proof is by induction. The statement trivially holds at the beginning of our algorithm.
Let A\; be the value of \ at the beginning of the ith iteration. We argue that if dgl)(S, T)=X\
then after © (%%M) additional iterations we must have d\")(S, T) > (14¢€p) - A. Let X =

(1+¢€p) - A be X after these iterations. Let fj be our lightest path blocker in the jth iteration.
hl
Assume for the sake of contradiction that dy)(S, T) < X, after i + © (M

) iterations.
€0

h1
It follows that there is some path P € Pp(S,T) with weight at most A, after ¢ + © <M>

€0

many iterations. However, notice that by definition of an h-length (1 4 €g)-lightest path blocker
Rl
(Definition 10.1), we know that for every j € [i, i+ 0 (M)} there is some a € P for which

€0

fj(a) = U,. By averaging, it follows that there is some single arc a € P for which fj(a) = U, for

1 h1 . .
at least © (%Oeon) of these j € [i,i+© (%)] Since every such arc starts with dual value

40

(%)C and multiplicatively increases by a (1 + ¢y) factor in each of these updates, such an arc after
10g1+€0 n)
many iterations must have w, value at least ()¢ - (14 €) (0 > n? for

o) h logel0+€O n
an appropriately large hidden constant in our ©. However, by assumption, the weight of P is at

hl
most \, after i + © (%
algorithm would have halted. But 2 < n? and so we have arrived at a contradiction.
Repeatedly applying the fact that X, = (1 + €p)A; gives that A is always a lower bound on
(h)
dy’ (S, T). O

1+

) iterations and this is at most 2 since A\; < 1 since otherwise our

We next prove the feasibility of our solution.

Lemma 11.2. The pair (f,w) returned by Algorithm 3 are feasible for Length-Constrained Flow
LP and Moving Cut LP respectively.

Proof. First, observe that by Lemma 11.1 we know that X is always a lower bound on dgl)(S, T)
and so since we only return once A > 1, the w we return is always feasible.

To see that f is feasible it suffices to argue that for each arc a, the number of times a path
containing @ has its primal value increased is at most % Notice that each time we increase
the primal value on a path containing arc a by 7 we increase the dual value of this edge by a
multiplicative (1 + €)Y, Since the weight of our arcs according to w start at (1)S, it follows
that if we increase the primal value of k paths incident to arc a then w, = (1 + €)*/Ue . (1)¢. On
the other hand, by assumption when we increase the dual value of an arc a it must be the case that
wg < 1 since otherwise dgb)(S, T) > 1, contradicting the fact that \ always lower bounds dgl)(S, T).
It follows that (1 + €)*/Us - (1)¢ < 1 and so applying the fact that In(1 + eo) > 52 for e > —1

1+¢g
and our definition of ¢ and n we get
(1
€0
_Ua
n
as desired.]

We next prove the near-optimality of our solution.

Lemma 11.3. The pair (f,w) returned by Algorithm 3 satisfies (1 —€) >, wa < > p fp.

Proof. Fix an iteration 7 of the above while loop and let f be our lightest path blocker in this

A~

iteration. Let k; be val(f), let A; be X at the start of this iteration and let D; :=) w, be our
total dual value at the start of this iteration. Notice that /\i -w is dual feasible and has cost % by
Lemma 11.1. If 8 is the optimal dual value then by optimality it follows that 8 < %’, giving us

the upper bound on \; of %. By how we update our dual, our bound on \; and (14)" <1+ ar
for any > 0 and r € (0,1) we have that

D’L+1 = Z(l + eo)f(a)/Uﬂ . wd . Ua
(o)

41

=D; + ¢ Z f(a)wa

<D,;+ 60(1 + 280) ki

S Di (1 i (1 + 26/;)80 .]ﬁ)
< D; -exp <(1 ki 26;)50 : kl))

Let T'— 1 be the index of the last iteration of our algorithm; notice that D is the value of w in
our returned solution. Let K :=) k;. Then, repeatedly applying this recurrence gives us

1+2 K
Dy < Dy - exp <(+€E)EO)

I

On the other hand, we know that w is dual feasible when we return it, so it must be the case that
Dy > 1. Combining this with the above upper bound on Dy gives us 1 < (%)C exp (%)
Solving for K and using our definition of { gives us

(-1
| L <K
flogm (1+2eg)-€0 —

1
Blogm - - < K.
€0
However, notice that K7 is the primal value of our solution so using our choice of 7 and rewriting
this inequality in terms of K7 by multiplying by n = (lJrefoo)-C . @ and applying our definition of
¢ = 7142?0 + 1 gives us

p
50-(1+60)~C§K77

B
(0T e 1 3eg) = 27 (")

Moreover, by our choice of 9 = ¢ and the fact that

1

P —
~14+e+¢2
1

S i
(]. + 58)2
1

< -
- (1 + 360)2
1

< .
~ (1 +e0)(1+ 3e0)
Combining Equation (7) and Equation (8) we conclude that

(1—¢)-8< Kn.

ﬁzl—a:forxe(o,l) we get

1—¢

42

We conclude with our main theorem by proving that we need only iterate our algorithm O (6%)
times.

Theorem 3.1. Given a digraph D = (V, A) with capacities U, lengths ¢, length constraint h > 1,
e > 0 and source and sink vertices S, T C V', one can compute a feasible h-length flow, moving cut
pair (f,w) that is (1 & €)-approzimate in:

1. Deterministic parallel time O(e% - hAT) with m processors
2. Randomized CONGEST time O(E% - W) with high probability;
3. Deterministic CONGEST time O (& -7+ & B (poe)?).
Also, f=mn- Z§:1 fj where n = (:)(62), k=0 (E%) and each f; is an integral h-length S-T' flow.

Proof. We use Algorithm 3. By Lemma 11.2 and Lemma 11.3 we know that our solution is feasible
and (1 + €)-optimal so it only remains to argue the runtime of our algorithm and that the returned
flow decomposes in the stated way.

2
We argue that we must only run for O (%#) total iterations. Since A increases by a mul-

()6(1/50)

tiplicative (1 + ¢y) after every © (@#) iterations and starts at at least % , it follows
0

by Lemma 11.1 that after y - © (hlc’#) total iterations the h-length distance between S and T
€0
1
is at least (1 + €)Y - (%)@(1/80). Thus, for y > Q <w) =0 (106#) we have that S and

€0 3
T are at least 1 apart in h-length distance. Consequently, our algorithm must run for at most

2 2
0 (hlo#> -0 (hli#) many iterations.

€0
2
Our running time is immediate from the the bound of O (MZ#) on the number of iterations

of the while loop and the running times given in Theorem 10.1 for computing our h-length (1 + ¢p)-
lightest path blocker.

2
Lastly, the flow decomposes in the stated way because we have at most O (hloe#) iterations

and each f; is an integral S-T' flow by Theorem 10.1. Thus, our final solution is 7 - Z§:1 fj and
k=0 (%). O

12 Application: Maximal and Maximum Disjoint Paths

In this section we show that our main theorem (Theorem 3.1) almost immediately gives deter-
ministic CONGEST algorithms for many varieties of maximal disjoint path problems as well as
essentially-optimal algorithms for many maximum disjoint path problems. In Section 12.1 we give
the variants we study. In Section 12.2 we observe that it suffices to solve the arc-disjoint directed
variants of these problems. Lastly, we give our results for maximal and maximum disjoint path
problems in Section 12.3 and Section 12.4 respectively where we observe in Section 12.5 that our
algorithms for the latter are essentially optimal.

12.1 Maximal and Maximum Disjoint Path Variants

We consider the following maximal disjoint path variants.

43

Maximal Vertex-Disjoint Paths: Given graph G = (V, E), length constraint h > 1
and two disjoint sets S, T C V, find a collection of h-length vertex-disjoint S to T paths
P such that any h-length S to T path shares a vertex with at least one path in P.

Maximal Edge-Disjoint Paths: Given graph G = (V| E), length constraint h > 1
and two disjoint sets S, T C V, find a collection of h-length edge-disjoint S to T paths
P such that any h-length S to T path shares an edge with at least one path in P.

Maximal Vertex-Disjoint Directed Paths: Given digraph D = (V, A), length con-
straint h > 1 and two disjoint sets S, T C V, find a collection of h-length vertex-disjoint
S to T paths P such that any h-length S to T path shares a vertex with at least one
path in P.

Maximal Arc-Disjoint Directed Paths: Given digraph D = (V, A), length con-
straint h > 1 and two disjoint sets 5,7 C V, find a collection of h-length arc-disjoint S
to T paths P such that any h-length S to T path shares an arc with at least one path
in P.

As discussed in Section 1.1, the existence of efficient deterministic algorithms for the above
problems (specifically the maximal vertex-disjoint paths problem) in CONGEST was stated as an
open question by Chang and Saranurak [12] and the lack of these algorithms is a major barrier to
simple deterministic constructions of expander decompositions.

We consider the following maximum disjoint path variants.

Maximum Vertex-Disjoint Paths: Given graph G = (V, E), length constraint A > 1
and disjoint sets S, T C V, find a max cardinality collection of h-length vertex-disjoint
S to T paths.

Maximum Edge-Disjoint Paths: Given graph G = (V, E), length constraint A > 1
and disjoint sets S,T" C V, find a max cardinality collection of h-length edge-disjoint S
to T paths.

Maximum Vertex-Disjoint Directed Paths: Given digraph D = (V| A), length
constraint A > 1 and disjoint sets S, T C V, find a max cardinality collection of h-
length vertex-disjoint S to 1" paths.

Maximum Arc-Disjoint Directed Paths: Given digraph D = (V, A), length con-
straint h > 1 and disjoint sets 5,7 C V, find a max cardinality collection of h-length
arc-disjoint S to T paths.

12.2 Reducing Among Variants

We begin by observing that the arc-disjoint directed paths problem is the hardest of the above
variants and so it will suffice to solve this problem. The reductions we use are illustrated in
Figure 7.

44

o—o+z><: H»“\I)a_.g»z/v:

(a) Vertex-disjoint paths. (b) Edge-disjoint paths. (c) Vertex-disjoint directed paths.

Figure 7: Illustration of our reduction on a single edge or arc between w and v for reducing
maximal or maximum vertex-disjoint paths, edge-disjoint paths or vertex-disjoint directed paths to
arc-disjoint directed paths.

Lemma 12.1. If there is a deterministic algorithm for mazimal arc-disjoint directed paths in
CONGEST running in time T then there are deterministic CONGEST algorithms for mazimal
vertex-disjoint paths, edge-disjoint paths and vertez-disjoint directed paths all running in time O(T).

Likewise, if there is a deterministic (resp. randomized) parallel with m processors or CONGEST
algorithm for maximum arc-disjoint directed paths in CONGEST running in time T with approxi-
mation ratio O(h) then there are deterministic (resp. randomized) parallel with m processors and
CONGEST algorithms for maximum vertex-disjoint paths, edge-disjoint paths and vertex-disjoint
directed paths all running in time O(T) with approzimation ratio O(h).

Proof. We reduce each of maximal vertex-disjoint paths, maximal edge-disjoint paths and maximal
vertex-disjoint directed paths to maximal arc-disjoint directed paths and do the same for the
maximum variants of these problems.

Reducing from maximal/maximum vertex-disjoint paths. Consider an instance of max-
imal or maximum vertex-disjoint paths on graph G = (V, E) with length constraint i and vertex
sets S and T. We create a digraph D = (V' A) as follows:

e Vertices: V' is constructed as follows: for each v € V we add to V' vertex v(¥ and v(9).

e Arcs: For each v € V we add an arc from v to v(°). Furthermore, for each e = {u,v} € F
we add to A the arcs (u(®,v®) and (v, u®).

A collection of arc-disjoint paths in D from S’ = {s() : s € S} to T = {t{®) : t € T'} with length
constraint 2h — 1 uniquely corresponds to an equal cardinality collection of S-T' vertex-disjoint
paths in G with length constraint h. Thus, an O(h) approximation on D for the maximum S’-7"
arc-disjoint directed paths problem gives an O(h) approximation for the maximum vertex-disjoint
paths problem on G. Likewise, a maximal collection of arc-disjoint S’-T” paths on D with length
constraint 2h — 1 corresponds to a maximal collection of vertex-disjoint S-T paths with length
constraint h. Lastly, a T-time CONGEST algorithm on D can be simulated on G in time O(T)
since each v € V can simulate v(® and v(®.

Reducing from maximal/maximum edge-disjoint paths. Consider an instance of maximal
or maximum edge-disjoint paths on graph G = (V| F) with length constraint h and vertex sets S
and T. We create a digraph D = (V’/, A) as follows:
e Vertices: V' consists of V' along with two vertices for each edge e, namely a:g) and Uéo) for
each e € F.

45

(%) (0)

e Arcs: For each e € {u,v} € E we add to A an arc from z.’ to x¢~ as well as an arc from u

and v to xg) and an arc from :rg % to u and v.

A collection of arc-disjoint S-T" paths in D with length constraint 3A uniquely corresponds to an
equal cardinality collection of S-T" edge-disjoint paths in G with length constraint h. Thus, an
O(h) approximation on D for the maximum S-T" arc-disjoint directed paths problem gives an O(h)
approximation for the maximum edge-disjoint paths problem on G. Likewise, a maximal collection
of arc-disjoint S-T" paths on D with length constraint 3h corresponds to a maximal collection of
edge-disjoint S-T" paths with length constraint h on G. Lastly, a T-time CONGEST algorithm on
D can be simulated on G in time O(T') since the endpoints of e € E can simulate x,(f) and :cé") with
constant overhead.

Reducing from maximal/maximum vertex-disjoint directed paths. Consider an instance
of maximal or maximum vertex-disjoint directed paths on graph D = (V, A) with length constraint
h and vertex sets S and T. We create a digraph D’ = (V' A’) as follows:

e Vertices: V' consists of vertices v(©) and v for each v € V.

e Arcs: For each v € V we add to A’ the arc (v(),v(°)). For each arc a = (u,v) € A we add
to A’ the arc (u(®,v®).

A collection of arc-disjoint paths in D’ from §' = {s®) : s € S} to T" = {t{®) : t € T'} with length
constraint 2h — 1 uniquely corresponds to an equal cardinality collection of S-T' vertex-disjoint
paths in D with length constraint h. Thus, an O(h) approximation on D’ for the maximum S’-1”
arc-disjoint directed paths problem gives an O(h) approximation for the maximum S-T vertex-
disjoint directed paths problem on D. Likewise, a maximal collection of arc-disjoint S’-T” paths on
D’ with length constraint 2h — 1 corresponds to a maximal collection of vertex-disjoint S-T paths
with length constraint h on D. Lastly, a T-time CONGEST algorithm on D’ can be simulated on
D in time T each v € V can simulate v(? and v(©). O

12.3 Maximal Disjoint Path Algorithms

We now observe that our length-constrained flow algorithms allow us to solve maximal arc-disjoint
directed paths and therefore all of the above variants efficiently.

Theorem 12.2. There are deterministic CONGEST algorithms for mazimal vertex-disjoint paths,
edge-disjoint paths, vertex-disjoint directed paths and arc-disjoint directed paths running in time

O (h18 +RlT. (PC(J)w)-

Proof. By Lemma 12.1, it suffices to show that maximal arc-disjoint directed paths can be solved
in time O (h18 + hl7. (pcc)lo). We proceed to do so on digraph D with length constraint h and
vertex sets S and T for the rest of this proof.

Specifically, we repeat the following until no path between S and T consists of h or fewer edges.
Apply Theorem 3.1 to compute a (1 — €)-approximate h-length S-T flow f in D for e = .5 (any
constant would sufﬁce) with unit capacities. By the properties of f as guaranteed by Theorem 3.1,
we have that f = 77 ZJ L fj forn = ©(1) and k = O (h) where each f; is an integral flow. For each

vertex v we let fj be f; restricted to its flow paths out of v and let f](f) = argmax () Val(fj@)).
J

46

Then, we let fj= = >, f;f) (notice that we cannot simply define f;+ as arg max, val(f;) since
we cannot compute val(f;) effiicently in CONGEST because D may have diameter much larger
than h). Observe that since f; is integral and h-length, it exactly corresponds to an arc-disjoint
collection of S-T paths P’ in D each of which consists of at most h edges. We add P’ to P, delete
from D any arc incident to a path of P’ and continue to the next iteration.

As the above algorithm removes at least one path from S to T each time, it clearly terminates
with a feasible solution for the maximal arc-disjoint directed paths problem.

Stronger, though, we claim that we need only iterate the above é(h)-many times until S and T
are disconnected. Specifically, fix one iteration and let P* be the collection of vertex-disjoint paths
from S to T of maximum cardinality at the beginning of this iteration. By the (1 — €)-optimality
of our flow and an averaging argument we have that val(f;«) > Q (%) - |P*| which is to say that
Pl > Q (+) - |P*|. However, it follows that after O(h)-many iterations for a large hidden constant
we must at least halve | P*| since otherwise we would have computed a collection of vertex-disjoint
S-T paths whose cardinality is larger than the largest cardinality of any set of vertex-disjoint S-T°
paths. Since initially |P*| < n, it follows that after iterating the above O(h)-many times we have
reduced |P*| to 0 which is to say we have solved the maximal arc-disjoint directed paths problem.

Our running time is immediate from Theorem 3.1 and the above bound we provide on the
number of required iterations of O(h) as well as the fact that each vertex can easily compute f](f)

and P deterministically in parallel or CONGEST time O(h) since our flows are h-length. O]

Applying the fact that it is known that pcc < ?O(Vlog”) (see Section 5.4), the above gives
deterministic CONGEST algorithms running in time O(poly(h) .20(V1ogn)) " If pio where improved
to be poly-log in n then we would get a O(poly(h)) running time.

12.4 Maximum Disjoint Path Algorithms

Lastly, we observe that our length-constrained flow algorithms allow us to O(h)—approximate max-
imum arc-disjoint directed paths and therefore all of the above variants efficiently.

Theorem 12.3. There are O(h)-approximation algorithms for mazximum vertex-disjoint paths,
edge-disjoint paths, vertex-disjoint directed paths and arc-disjoint directed paths running in:

e Deterministic parallel time é(h”) with m processors;
e Randomized CONGEST time O(h'7) with high probability;

e Deterministic CONGEST time O (h17 + hl6. (pcc)lo).

Proof. By Lemma 12.1, it suffices to provide a O(h)-approximate algorithm for maximum arc-
disjoint directed paths with the stated running times. We do so for the rest of this proof. Let the
input be digraph D = (V, A) with length constraint A > 1 and disjoint sets S,T C V.

We apply Theorem 3.1 to compute an e-approximate h-length constrained flow f in D for e = .5
(any constant would suffice) and capacities U, = 1 for every a. By the properties of f as guaranteed
by Theorem 3.1, we have that f = 7 - Z?Zl fj for n = ©(1) and k = O (h) where each f; is an

integral flow. For each vertex v we let f]@ be f; restricted to its flow paths out of v and let

f](f) = arg max () Val(f;v)). Then, we let fj« == >, f;f). Observe that since f;« is integral and
j

47

h-length, it exactly corresponds to an arc-disjoint collection of paths P in D each of which consists
of at most h edges. We return P as our solution.

Letting P* be the optimal solution to the input problem we have by k = O(h) and an averaging
argument that

Pl=vallfy) 2 @ () 17

and so our solution is Q(%)—approximate.
For our running time, observe that each vertex can easily compute f;f) and P deterministically

in parallel or CONGEST time O(h) since our flows are h-length. Thus, our running time is
dominated by Theorem 3.1. O

12.5 On the Hardness of Maximum Disjoint Paths

Guruswami et al. [19] give hardness results for a variety of length-constrained maximum disjoint
path problems. In their work they state hardness of approximation result in terms of m, the
number of edges in the graph. In the following we restate these results but in terms of h, the
length-constraint.

Theorem 12.4 (Adaptation of Theorem 1 of Guruswami et al. [19]). Assume the strong exponential
time hypothesis (SETH). Then there does not exist a polynomial-time O(h)-approzimation algorithm
solving the mazimum arc-disjoint directed paths problem for instances where h = Q(logn).

Observe that it follows that assuming SETH, the parallel algorithm in Theorem 12.3 is optimal up
to poly-logs.

13 Application: Simple Distributed Expander Decompositions

In this section, we explain how our maximal disjoint path algorithm can significantly simplify the
distributed deterministic expander decomposition of Chang and Saranurak [12].

The key algorithmic primitive of [12] in their distributed deterministic expander decomposition
is their Lemma D.8. Instead of computing maximal bounded-hop disjoint paths, they were only be
able to compute a set of paths that are “nearly maximal”. The formal statement is as follows:

Lemma 13.1 (Nearly maximal disjoint paths (Lemma D.8 of [12]). Consider a graph G = (V, E)
of mazimum degree A. Let S CV and T CV be two subsets. There is an O(d®B3~ " log? Alogn)-
round deterministic algorithm that finds a set P of S — T vertex-disjoint paths of length at most d,
together with a vertex set B of size at most S|V \T| < |V, such that any S — T path of length at
most d that is vertex-disjoint to all paths in P must contain a vertex in B.

The set P from the lemma is nearly maximal in the sense that if B is deleted from G, then
P would be maximal. However, we can see that there might possibly be many additional disjoint
paths that go through B. This set B complicates all of their later algorithmic steps.

The high-level summary of the issue is that all their flow primitives that are based on Lemma
D.8 must work with source/sink sets that are very big only. Otherwise, the guarantee becomes
meaningless or the running time becomes very slow.

48

Now, we explain in more details. Given two sets S and 7" where |S| < |T'|, normally if the
matching player from the cut-matching game does not return a sparse cut, then it returns an
embedding of a matching where every vertex in S is matched to some vertex in T. However, in
Lemma D.9 of [12], the matching player based on Lemma D.8 may return an embedding that leaves
as many as ~ (|V \ T| vertices in S unmatched. This is called the “left-over” set. We think of
g>1 /no(l) as the round complexity of Lemma D.8 is proportional to 37'. Therefore, it is only
when |S|],|T| > 28|V| > |V|/n°®) that Lemma D.9 in [12] may give some meaningful guarantee,
yet this is still weaker than normal.

The same issue holds for their multi-commodity version of the matching player (i.e. Lemma
D.11 of [12]). For the same reasoning, the lemma is meaningful only when the total number of
source and sink is at least Q(3|V]). The issue propagates to their important subroutine (Theorem
4.1 of [12]) for computing most balanced sparse cut. The guarantee holds when only the returned
cut C' is such that |C] > Q(B|V]). At the end, they managed to obtain an deterministic expander
decomposition (just treat the edges incident to the left-over part as inter-cluster edges at the end).
However, they need to keep track of this left-over parameter from the first basic primitive until the
end result.

In contrast, in their randomized algorithm for computing expander decomposition, this issues
does not appear anyway because of the randomized maximal disjoint path algorithm. Therefore,
by plugging in our deterministic maximal disjoint path algorithm into the expander decomposition
of [12], all these issue will be resolved immediately.

14 Application: (1—e¢)-Approximate Distributed Bipartite b-Matching

In this section we give the first efficient (1—e)-approximate CONGEST algorithms for maximum car-
dinality bipartite b-matching. In fact, our results are for the slightly more general edge-capacitated
maximum bipartite b-matching problem, defined as follow.

Edge-Capacitated Maximum Bipartite b-Matching: Given bipartite graph G =
(V, E), edge capacities U and function b: V — Z-o compute an integer z. € [0, U] for
each e € E maximizing)z, so that for each v € V' we have 3 5,y Ze < b(v).

Notice that the case where b(v) = 1 for every v is just the classic maximum cardinality matching
problem. “b-matching” seems to refer to two different problems in the literature depending on
whether edges can be chosen with multiplicity: either it is the above problem where U, = 1 for
every e € F or it is the above problem where U, = max, b, for each e € E. Our algorithms will
work for both of these variants since they solve the above problem which generalizes both of these
problems.

The following theorem summarizes our main result for bipartite b-matching in CONGEST.
Again, recall that pcco is defined in Definition 5.8 and is known to be at most 20(Vlogn)

Theorem 14.1. There is a deterministic (1 — e)—approacimation for edge-capacitated mazximum
bipartite b-matching running in CONGEST time O (E% + 5% : (pcc)lo).

Proof. Our algorithm works in two steps. First, we reduce edge-capacitated b-matching to length-
constrained flow and use our length constrained flow algorithm to efficiently compute a fractional
flow. Then, we apply the flow rounding technology we developed in Section 9.2 to round this flow
to an integral flow which, in turn, corresponds to an integral b-matching.

49

More formally our algorithm is as follows. Suppose we are given an instance of edge-capacitated
b-matching on bipartite graph G = (V, E). Let L and R be the corresponding bipartition of vertices
of G. We construct the following instance of length-constrained flow on digraph D = (V’, A) with
h = 3 as follows. Each v € V has two copies v(? and v(®) in V. We add arc (v, v(?) to A with
capacity b(v). If {u,v} € E where v € L and v € R then we add arc (u(?,v®)) with capacity U,
to A. Lastly, we let $ = {u® :u € L}, T = {v\® : v € R} and the length of each arc in D be 1.
Next, we apply Theorem 3.1 to compute a (1 — £1)-approximate maximum 3-length S-T" flow f on
D for some small €1 to be chosen later. Since D is a 3-layer S-T' DAG we may interpret this as a
(non-length-constrained) flow where the flow value on arc a is f(a).

We then apply Lemma 9.6 to this non-length-constrained flow to get integral S-T flow f’
satisfying val(f") > (1 —e2) - val(f) for some small £2 to be chosen later. We return as our solution
the b-matching which naturally corresponds to f’. Namely, if e = {u,v} then since f’ is integral it
assigns arc (u(®,v®) a value in {0,1,...,U.}. We let z, be this value for e = {u, v} and we return
as our b-matching solution {z.}..

f"is a (1 —e1)(1 — eg)-approximate maximum S-7 flow. Letting OPT be the value of the
optimal b-matching solution, it is easy to see that the maximum S-T" flow has value OPT and so
the solution we return has value at least (1 —e1)(1 — e2) - OPT. Letting 1 = €3 = O(¢) for an
appropriately small hidden constant we get that (1 —e1)(1 —e2) - OPT > (1 —¢) - OPT.

Lastly, we argue our running time. Our running time is dominated by one call to Theorem 3.1
with e = O(e) which takes O (6% + 6% - (pcc)'?) and one call to Lemma 9.6 with e = O(e)
which takes O(E% - (pcc)t?). Combining these running times gives the overall running time of our
algorithm. O

15 Application: Length-Constrained Cutmatches

As it captures low-latency communication subject to bandwidth constraints, the problem of com-
puting low-congestion h-length paths between two set of nodes S and 1" occurs often in network
optimization.

In this section we give algorithms that either finds a low-congestion h-length collection of paths
between two sets of nodes or, if this is not possible, finds as large of such a collection of paths as
possible together with a moving cut that (approximately) certifies that there is no low-congestion
way of extending the current collection of paths. Such a construction is called a length-constrained
cutmatch.

A recent work [23] uses the algorithms we give for cutmatches to give the first efficient con-
structions of a length-constrained version of expander decompositions. These constructions were
then used to give the first distributed CONGEST algorithms for many problems including MST,
(1 + €)-min-cut and (1 + €)-lightest paths that are guaranteed to run in sub-linear rounds as long
as such algorithms exist on the input network.

In what follows, for a vertex subset W C V we let UT(W) =Y o > acot(v) Ua and U™ (W) =

Y vew Zaea—(v) U,. We also let 6%(S,T) := Upes 07 (0) UUyer 0~ (T)

Definition 15.1 (h-Length Cutmatch). Given digraph D = (V, A) with capacities U and lengths ¢,
an h-length ¢-sparse cutmatch of congestion y between two node sets S, T CV with Ut (S) < U (T)
consists of:

e An integral h-length S-T' flow f in D with capacities {Ua}qcst(s,1) YA - Uatagst(s,m);

50

e A moving cut w of S and T in D with capacities {Ua — fa}aecs+(s,1) U {Uatags*(s,r) of value
> Wa < ¢ (UT(S) — val(f)).

We proceed to show how to efficiently compute a cutmatch using our previous algorithm. As a
reminder poc¢ is defined in Section 5.4 and is known to be at most 20(Vlogn)

Theorem 15.2. Suppose we are given a digraph D = (V, A) with capacities U and lengths £. There
is an algorithm that, given two node sets S, T C V with U*(S) < U~ (T) and two integer parameters
h > 1 and ¢ <1, outputs an h-length ¢-sparse cutmatch of congestion v between S and T, where
v = O(é) This algorithm runs in:

1. Deterministic parallel time O(v - h'®) with m processors
2. Randomized CONGEST time O(7y - h'®) with high probability;
3. Deterministic CONGEST time O (v - h'® + v - b7 - (pcc)'?).

Proof. We initialize the flow we return f to be 0 on all arcs. We set our working capacities to be
U = U initially. The algorithm runs for at most O(h - y) iterations for a small hidden constant. In
each iteration ¢ € [1,0(v)] we use Theorem 3.1 with e = .5 (any constant would suﬁﬁce) to find a
length-constrained flow, moving cut pair, (f, @) where § = ©(1), k=0 (h), f =0 - Z] 1 [j and f;
is an integral h-length flow from S to T using capacities U. By averaging there must be some fi
such that val(f;) > val(f)/k. We let f be this f;.

If val(f) > Q (M) then we update our solution as f = f 4 f and decrement U, by f(a)
for every a € (S, T). Otherwise, we return the pair (f,) as our solution.

In each iteration i in which val(f) > Q (M), we have that U (S) decreases multiplica-

tively by at least a 1 — 21;;%" factor. Such a shrinking can happen at most O(h - v) times until

U*(S) is reduced to 0. Thus, our algorithm requires at most O(h -) iterations until terminating.
Furthermore, notice when we return a moving cut @ we have

> g < 2-val(f)
< h-val(f)

o)
Y

5 (U*(S);val(f))

IN

as desired. Also, observe that f is indeed an integral S-T" flow in D with the stated capacities since
we always have f(a) < U,.

The running time is exactly that of running at most O(h - 7) invocations of Theorem 3.1 with
€=.5. 0

o1

16 Conclusion and Future Work

In this work we gave the first efficient randomized and deterministic algorithms for computing (1—e)-
approximate length-constrained flows both in parallel and in the CONGEST model of distributed
computation. We used these algorithms to give new results in maximal and maximum disjoint path
problems, expander decompositions, bipartite b-matching and length-constrained cutmatches. We
conclude with several open questions and directions for future work.

1. Our length-constrained flow algorithms have a dependence of poly(h) which when plugged
into the techniques of Haeupler et al. [23] give CONGEST algorithms for many distributed
problems, e.g. MST, whose running time is poly(OPT) (up to sub-linear factors) where OPT
is the optimal CONGEST running time for the input problem. It would be exciting to improve
the dependence on h of our algorithms to, say, O(h) as this result when combined with those
of Haeupler et al. [23] would give CONGEST algorithms running in time O(OPT) (up to
sub-linear factors).

2. The running time of many of our algorithms depends on pc ¢, the best quality of a CONGEST
algorithm for cycle cover (as defined in Definition 5.8). It is known that pcco < 20(VIogn)
but it would be extremely interesting to show that pcc < O(l) Such an improvement
would immediately improve the dependency on n from n°) to O(1) for our CONGEST
algorithms for deterministic length-constrained flows, deterministic maximal and maximum
disjoint paths, (1 — €)-approximate b-matching and length-constrained cutmatches. Such a
result does not seem to be known even for the randomized case.

3. Lastly, many classic problems can be efficiently solved by reducing to flows but, in particular,
by reducing to length-constrained flows with a length-constraint A = O(1). Indeed this is
how we were able to give new algorithms for b-matching in this work. It would be interesting
to understand which additional classic problems our length-constrained flow algorithms give
new algorithms for in CONGEST.

A Generalizing Our Results to Multi-Commodity

In this section we generalize our main result for computing length-constrained flows and moving
cuts to the setting where have many source sink pairs and we are trying to maximize the total flow
between corresponding pairs subject to congestion constraints.

A.1 Multi-Commodity Definitions and Our Multi-Commodity Results

We now more formally define a multi-commodity length-constrained flow and moving cut. Suppose
we are given a digraph D = (V, A) with arc capacities U, lengths ¢ and k source set, sink set pairs

{(S;, T;)}i. Then, we have the following LP with a variable fl{f} for each ¢ and path P € Py (S;, T;).
We let f{1} gives the entire flow for commodity i.

max Z Z f}f} s.t. (Multi Length-Constrained Flow LP)
i PePL(S;,T;)

SN <. vaea

i P>a

92

0< 5 Vielw],PePuS,T)

For a multi-commodity length-constrained flow f, we will use the shorthand f(a) = >, > 55, I{Di}.
Likewise we let val(f) = 3, val(f{"}) be the total flow we send. An h-length multi-commodity flow,
then, is simply a feasible solution to this LP.

Definition A.1 (h-Length Multi-Commodity Flow). Given digraph D = (V, A) with lengths ¢,
capacities U and source, sink pairs {(S;,T;)}i, an h-length {(S;,T;)}i flow is any feasible solution
to Multi Length-Constrained Flow LP.

With the above definition of multi-commodity length-constrained flows we can now define mov-
ing cuts as the dual of length-constrained flows. In particular, taking the dual of the above LP we
get the multi-commodity moving cut LP with a variable w, for each a € A and a variable y; for
every i € [k].

min Z Ug - w, s.t. (Multi Moving Cut LP)
acA
Zwa >1 Vi € [k], P € Pr(Si, T;)
acP
0 < w, Va € A,i € [K]

A multi-commodity h-length moving cut is simply a feasible solution to this LP.

Definition A.2 (h-Length Moving Cut). Given digraph D = (V, A) with lengths £, capacities U
and source, sink pairs {(S;,T;)}i, a multi-commodity h-length moving cut is any feasible solution
to Multi Moving Cut LP.

We will use f and w to stand for solutions to Multi Length-Constrained Flow LP and Multi
Moving Cut LP respectively. We say that (f,w) is a feasible pair if both f and w are feasible for
their respective LPs and that (f,w) is (1 & €)-approximate for e > 0 if the moving cut certifies the
value of the length-constrained flow up to a (1 — e); i.e. if (1 — €)Y, Uy - w, < min; val(f1i}).

When we are working in CONGEST we will say that f is computed if each vertex v stores the
value f(gh/’l) = ZPGPh,hr(s,a,t) f]{f}. Here, we let P p(s,a,t) be all paths in P (s,t) of the form
P’ = (ay,as9,...a,b1,by,...) where the path (a,by,be,...) has length exactly h’ according to I. We
say multi-commodity moving cut w is computed in CONGEST if each vertex v knows the value of
w, for every arc incident to v. Likewise, we imagine that each node in the first round knows the
capacities and lengths of its incident edges.

With the above notions, we can now state our main result for multi-commodity length-constrained
flows and moving cuts which say that one can compute a feasible pair (f,w) in parallel and dis-

tributedly. In the following we say that length-constrained flow f is integral if fg}

every path in Pp(S;, T;) for every 1.
More generally than x commodities, we solve the problem provided our commodoties can be
grouped into k batches that are far apart.

is an integer for

Definition A.3 (k-Batchable). Given digraph D with lengths { and source, sink set pairs {S;, T;}i
we say that a {S;, T; }; is k-batchable if the pairs of {S;, T;}i can be partitioned into batches {S;,T;};
if

53

1. For each i there some j such that S; € S; and T; € T;;
2. For eachi and i, ifv € S;UT; and v’ € SyUTy and S;, Sy € S; for some j then dg(v,v") > 2h.

Observe that if the number of commodities is x then the set of source, sink pairs is trivially
k-batchable.

The following summarizes our main result for computing multi-commodity length-constrained
flows and moving cuts.

Theorem A.1. Given a digraph D = (V, A) with capacities U, lengths ¢, length constraint h > 1,
0 < e < 1 and source and sink vertices S,T C V, and k-batchable source, sink pairs {S;,T;};,
one can compute a feasible multi-commodity h-length flow, moving cut pair (f,w) that is (1 + €)-
approrimate in:

1. Deterministic parallel time O(- E% - hAT) with m processors
2. Randomized CONGEST time O(- 5% - h'7) with high probability;
3. Deterministic CONGEST time O (K . E% Tk 6% - h16. (p(;c)lo).

Furthermore, f =n - Z?Zl fj where n = é(62), k=0 (n : 6%) and f; is an integral h-length S;-T;
flow for some i.

A.2 Computing Multi-Commodity Length-Constrained Flows and Moving Cuts

We proceed to use our (1 + €)-lightest path blockers and multiplicative weights to compute multi-
commodity length-constrained flows and moving cuts. Our strategy is more or less that of Section 11
but now we iterate through our batches of commodities; our analysis is mostly unchanged but we
include it here for completeness.

Formally, our algorithm is given in Algorithm 4. Throughout our analysis we will refer to the
innermost loop of Algorithm 4 as one “iteration.”

We begin by observing that A always lower bounds dgl)(Si, T;) for every i.

Lemma A.4. It always holds that A < dgl)(Sw, T,) for every x in Algorithm /.

Proof. Fix an x and a value of A and let S = S, and T' = T,. Our proof is by induction. The
statement trivially holds at the beginning of our algorithm.
Let A; be the value of A at the beginning of the ith iteration. We argue that if dgb)(S, T)=M\

Al
then after © (%) additional iterations we must have d\')(S, T) > (14¢€p) - Ai. Let X, =

(1+€p) - A be X after these iterations. Let fj be our lightest path blocker in the jth iteration for
(Sz, Ty).
Assume for the sake of contradiction that d)(S, T) < X, after i + © (

hlog ., n

) iterations.
€0

hl
It follows that there is some path P € Py (S,T) with weight at most X, after i + © (%)
many iterations. However, notice that by definition of an h-length (1 + €p)-lightest path blocker fj

h1
(Definition 10.1), we know that for every j € [i,i +06 (M)} there is some a € P for which

€0

fj(a) = U,. By averaging, it follows that there is some single arc a € P for which fj(a) = U, for

54

Algorithm 4 Multi-Commodity Length-Constrained Flows and Moving Cuts

Input: digraph D = (V, A) with lengths ¢, capacities U, length constraint h and k-batchable
source, sink pairs {S;, T;}; where S;, T; C V for every i and an ¢ € (0,1).
Output: (1 + e)-approximate h-length multi-commodity flow f and moving cut w.

Leteozg,let§:%+landletn:(lffoo)(-loglm.
¢

% for all a € A.
Initialize A « (L)
Initialize f]{f} < 0 for all i and P € Pp(S;, T).
while A < 1 do:
for j € [k] and each batch (S;,S;) do
for each (S;,T;) with S; € S; and T; € 7; in parallel do

for © (hlog;i;’son) repetitions do
Compute an h-length (1 + ¢o)-lightest path blocker f (using Theorem 10.1 with A).
Length-Constrained Flow (Primal) Update: it g f
Moving Cut (Dual) Update: w, < (1 + ¢)/(@/Ve ., for every a € A.
A (1 + 60) “A

return (f,w).

Initialize w, + ()

1 h1 . .
at least © (og%oeon) of these j € [i,i+ © (%)] Since every such arc starts with dual value

()¢ and multiplicatively increases by a (1 + €g) factor in each of these updates, such an arc after
1081+60 ")

. h1 e . . (c

i+0 <M many iterations must have w, value at least ()¢ - (1 + €) 0 > n? for

€0
an appropriately large hidden constant in our ©. However, by assumption, the weight of P is at

hl
most \; after ¢ + © (M

€0
algorithm would have halted. But 2 < n? and so we have arrived at a contradiction.
Repeatedly applying the fact that A, = (1 + €p)\; gives that A is always a lower bound on

dM (s, 7). O

) iterations and this is at most 2 since \; < 1 since otherwise our

We next prove the feasibility of our solution.

Lemma A.5. The pair (f,w) returned by Algorithm /j are feasible for Multi Length-Constrained
Flow LP and Multi Moving Cut LP respectively.

Proof. First, observe that by Lemma A.4 we know that A is always a lower bound on dgL)(Si, T;)
for every ¢ and so since we only return once A > 1, the w we return is always feasible.

To see that f is feasible it suffices to argue that for each arc a, the number of times a path
containing @ has its primal value increased is at most Y2. Notice that each time we increase
the primal value on a path containing arc a by 1 we increase the dual value of this edge by a
multiplicative (1 + ¢p)*/Y=. Since the weight of our arcs according to w start at (%)C, it follows
that if we increase the primal value of k paths incident to arc a then w, = (1 + ¢)*/Ua . (%)C On
the other hand, by assumption when we increase the dual value of an arc a it must be the case that

wa < 1 since otherwise d")(S, T) > 1, contradicting the fact that A always lower bounds d)(S, T).

95

It follows that (1 4 €g)*/Ue - (1)¢ <1 and so applying the fact that In(1 + €) > i for g > —1

and our definition of ¢ and n we get

C- (1 —I—E())
€0

k< -Uglogm

_Ua
0

as desired.]

We next prove the near-optimality of our solution.
Lemma A.6. The pair (f,w) returned by Algorithm 4 satisfies (1—€) >, wa < >, ZPEPh(Sini) fp.

Proof. Fix an iteration ¢ which is an iteration for the jth batch and let f be the sum of all lightest
path blockers that we compute in parallel for each (S;,T;) € (S;,7;) in this iteration. Let k; be

N

val(f), let A; be X at the start of this iteration and let D; := _w, be our total dual value at the
start of this iteration. Notice that /\% -w is dual feasible and has cost % by Lemma A.4. If 5 is

the optimal dual value then by optimality it follows that § < %, giving us the upper bound on

A; of %. By how we update our dual, our bound on A; and (1 + z)" < 1+ xr for any z > 0 and
r € (0,1) we have that

Di+1 = Z(l + 60)f(a)/Ua s Wq * Ua

<> (” Eoszia)> wy - Uy
=Di+eo Y fla)wa

<D;+ 60(1 + 280) ki

(12 0B
< Dj - exp ((1—'_220)80']{1))

Let T'— 1 be the index of the last iteration of our algorithm; notice that D is the value of w in
our returned solution. Let K :=) k;. Then, repeatedly applying this recurrence gives us
(14 2¢e0)eo - K)
B

)

On the other hand, we know that w is dual feasible when we return it, so it must be the case that
D7 > 1. Combining this with the above upper bound on D gives us 1 < (%)C exp (%)
Solving for K and using our definition of { gives us

(-1
] R T
Blogm (1—{—250)'80 -

DTSDO'GXP<

56

Blogm - - < K.

Q)
ow‘ =

However, notice that K7 is the primal value of our solution so using our choice of 7 and rewriting
this inequality in terms of K7 by multiplying by n = (lJrefoo)-C . @ and applying our definition of
CZ%—Flgivesus

8
0 (Lteg)-¢ = H0

B
et =

1

Moreover, by our choice of g9 = § and the fact that TFara?

>1—x for x € (0,1) we get

loe< —
5_1+5+52
1

<— 3
(]. + 55)
< 1
- (1 + 360)2
1
< .
(1+€0)(1+ 3¢0)

(10)

Combining Equation (9) and Equation (10) we conclude that
(1—¢)-B < Kn.
O

We conclude with our main theorem by proving that we need only iterate our algorithm
(@) (H : E%) times.

Theorem A.1. Given a digraph D = (V, A) with capacities U, lengths ¢, length constraint h > 1,
0 < & < 1 and source and sink vertices S,T C V, and k-batchable source, sink pairs {S;,T;},
one can compute a feasible multi-commodity h-length flow, moving cut pair (f,w) that is (1 + €)-
approximate in:

1. Deterministic parallel time O(m . 6% - hAT) with m processors
2. Randomized CONGEST time O(- 6% - h'7) with high probability;
3. Deterministic CONGEST time O (k- E% R+ k- E% -8 (pee)™).

Furthermore, f =1 - 2?21 fj where n = O(e?), k=0 (k- e%) and f; is an integral h-length S;-T;
flow for some i.

Proof. By Lemma A.5 and Lemma A.6 we know that our solution is feasible and (1 + €)-optimal
so it only remains to argue the runtime of our algorithm and that the returned flow decomposes in
the stated way.

57

2
We argue that we must only run for O (Iﬁ? . MZ#) total iterations. Since A increases by a

1
multiplicative (1 + €g) after every © (H' h ISQg") iterations and starts at least (%)6(50)
0
hl

, it follows

by Lemma A.4 that after y - © (n : OQg”) total iterations the h-length distance between every S;

€

0
and T; is at least (1 + €)Y - (%)9(1/50). Thus, for y > Q (lnlt%m) =0 (i‘—f) we have that every
0
S; and T; are at least 1 apart in h-length distance. Consequently, our algorithm must run for at

most O (/@ . MZ#) =0 (/{ . hli#) many iterations.
0
Our running time is immediate from the the bound of O (/{ : hli#) on the number of iterations
of the while loop, the fact that commodities in the same batch can be updated in parallel and the
running times given in Theorem 10.1 for computing our h-length (1 + €y)-lightest path blocker.

2
Lastly, the low decomposes in the stated way because we have at most O <I€ . hlz#) iterations

and each f; is an integral S-T" flow by Theorem 10.1. Thus, our final solution is 7 - 2?21 fj and
k=0 (%). O

58

References

1]

Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest
paths via low hop emulators. In Annual ACM Symposium on Theory of Computing (STOC),
pages 322-335, 2020. 1, 8

Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. Journal of the ACM (JACM), 62(5):1-25, 2015. 3

Baruch Awerbuch and David Peleg. Sparse partitions. In Symposium on Foundations of
Computer Science (FOCS), pages 503-513. IEEE, 1990. 12

Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Kohler, Petr Kolman, Ondfej
Pangrac, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM Trans-
actions on Algorithms (TALG), 7(1):1-27, 2010. 1, 7

Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaél Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. Journal of the
ACM (JACM), 68(5):1-30, 2021. 3

Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman. Dis-
tributed approximation of maximum independent set and maximum matching. In ACM Sym-
posium on Principles of Distributed Computing (PODC), pages 165-174, 2017. 11

Alok Baveja and Aravind Srinivasan. Approximation algorithms for disjoint paths and related
routing and packing problems. Mathematics of Operations Research, 25(2):255-280, 2000. 1

Sebastian Brandt and Dennis Olivetti. Truly tight-in-§ bounds for bipartite maximal matching
and variants. In ACM Symposium on Principles of Distributed Computing (PODC), pages 69—
78, 2020. 3

Andrei Z Broder, Alan M Frieze, and Eli Upfal. Existence and construction of edge-disjoint
paths on expander graphs. SIAM Journal on Computing, 23(5):976-989, 1994. 1

Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local dis-
tributed algorithms under bandwidth restrictions. Distributed Computing, 33(3):349-366, 2020.
11

Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In ACM Sym-
posium on Principles of Distributed Computing (PODC), pages 273-281, 2021. 12, 13

Yi-Jun Chang and Thatchaphol Saranurak. Deterministic distributed expander decomposition
and routing with applications in distributed derandomization. In Symposium on Foundations
of Computer Science (FOCS), pages 377-388. IEEE, 2020. 1, 3, 10, 11, 14, 15, 44, 48, 49

Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph sparsification, spectral sketches, and faster resistance computation via short cycle de-
compositions. In Symposium on Foundations of Computer Science (FOCS). SIAM, 202. 13

59

[14]

[21]

[22]

23]

[24]

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. In Symposium on Foundations of Computer Science (FOCS), pages 1158
1167. IEEE, 2020. 1

Edith Cohen. Approximate max-flow on small depth networks. SIAM Journal on Computing,
24(3):579-597, 1995. 10, 14, 23, 24, 25, 27

Manuela Fischer. Improved deterministic distributed matching via rounding. Distributed
Computing, 33(3):279-291, 2020. 3

Manuela Fischer. Local Algorithms for Classic Graph Problems. PhD thesis, ETH Zurich,
2021. 3

Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small mes-
sages: Spanners and dominating set. In International Symposium on Distributed Computing
(DISC). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 13

Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd, and Mihalis
Yannakakis. Near-optimal hardness results and approximation algorithms for edge-disjoint
paths and related problems. Journal of Computer and System Sciences, 67(3):473-496, 2003.
1,7, 48

Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion times
of multiple unicasts. In Symposium on Foundations of Computer Science (FOCS), pages 494—
505. IEEE, 2020. 1

Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-
constrained network design. In Annual ACM Symposium on Theory of Computing (STOC),
pages 356-369, 2021. 1, 8

Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In Annual ACM Symposium on Theory of Computing (STOC), pages
1166-1179, 2021. 2

Bernhard Haeupler, Harald Raecke, and Mohsen Ghaffari. Hop-constrained expander decom-
positions; oblivious routing, and distributed universal optimality. In Annual ACM Symposium
on Theory of Computing (STOC), 2022. 4, 50, 52

Yael Hitron and Merav Parter. General congest compilers against adversarial edges. In In-
ternational Symposium on Distributed Computing (DISC). Schloss Dagstuhl-Leibniz-Zentrum
fir Informatik, 2021. 7, 13, 14

Richard M Karp and Vijaya Ramachandran. A survey of parallel algorithms for shared-memory
machines. 1989. 5, 22

Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. Journal of the ACM (JACM), 66(1):1-50, 2018. 3

Jon M Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1996. 1

60

28]

[29]

[30]

Christos Koufogiannakis and Neal E Young. Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In International Symposium on Distributed
Computing, pages 221-238. Springer, 2009. 3

Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica, 13(4):
441-454, 1993. 11

Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 129-136,
2008. 1, 9, 10, 14, 15

Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
journal on computing, 15(4):1036-1053, 1986. 15

Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
196-203, 2013. 11

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Symposium on Foundations of
Computer Science (FOCS), pages 950-961. IEEE, 2017. 3

Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost linear time.
In International Colloguium on Automata, Languages and Programming (ICALP). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. 7, 13, 14

David Peleg. Distributed computing: a locality-sensitive approach. STAM, 2000. 5

Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Annual ACM Symposium on Theory of Computing (STOC), pages 755-764, 2010. 3

Vaclav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Annual ACM Symposium on Theory of Computing
(STOC), pages 350-363, 2020. 13

Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger,
and simpler. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2616—
2635. SIAM, 2019. 1

Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Annual ACM Symposium on Theory of
Computing (STOC), pages 81-90, 2004. 3

Luca Trevisan. Approximation algorithms for unique games. In Symposium on Foundations
of Computer Science (FOCS), pages 197-205. IEEE, 2005. 3

61

	1 Introduction
	1.1 Our Contributions
	1.1.1 Algorithms for Length-Constrained Flows
	1.1.2 Applications of our Length-Constrained Flow Algorithms

	2 Notation and Conventions
	3 Length-Constrained Flows, Moving Cuts and Main Result
	4 Intuition and Overview of Approach
	4.1 Using Lightest Path Blockers for Multiplicative Weights
	4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths
	4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding
	4.4 Overview of Paper

	5 Preliminaries
	5.1 Deterministic CONGEST Maximal and Maximum Independent Set
	5.2 Deterministic Low Diameter Decompositions
	5.3 Sparse Neighborhood Covers
	5.4 Cycle Covers

	6 Path Counts for h-Layer S-T DAGs
	7 Randomized Blocking Integral Flows in h-Layer DAGs
	8 Deterministic and Distributed Near Eulerian Partitions
	8.1 High-Girth Cycle Decompositions
	8.2 Efficient Algorithms for Computing Near Eulerian Partitions

	9 Deterministic Blocking Integral Flows in h-Layer DAGs
	9.1 Iterated Path Count Flows
	9.2 Deterministic Rounding of Flows in h-Layer DAGs
	9.2.1 Turning Flows on (1-)-Near Eulerian Partitions
	9.2.2 Extracting Integral S-T Subflows
	9.2.3 Flow Rounding Algorithm

	9.3 Deterministic Blocking Integral Flows

	10 h-Length (1+)-Lightest Path Blockers
	10.1 Length-Weight Expanded DAG
	10.2 Decongesting Flows
	10.3 Computing h-Length (1+)-Lightest Path Blockers

	11 Computing Length-Constrained Flows and Moving Cuts
	12 Application: Maximal and Maximum Disjoint Paths
	12.1 Maximal and Maximum Disjoint Path Variants
	12.2 Reducing Among Variants
	12.3 Maximal Disjoint Path Algorithms
	12.4 Maximum Disjoint Path Algorithms
	12.5 On the Hardness of Maximum Disjoint Paths

	13 Application: Simple Distributed Expander Decompositions
	14 Application: (1-)-Approximate Distributed Bipartite b-Matching
	15 Application: Length-Constrained Cutmatches
	16 Conclusion and Future Work
	A Generalizing Our Results to Multi-Commodity
	A.1 Multi-Commodity Definitions and Our Multi-Commodity Results
	A.2 Computing Multi-Commodity Length-Constrained Flows and Moving Cuts

