Published as a conference paper at ICLR 2022

A GENERAL ANALYSIS OF EXAMPLE-SELECTION FOR
STOCHASTIC GRADIENT DESCENT

Yucheng Lu; Si Yi Meng*, Christopher De Sa
Department of Computer Science

Cornell University

Ithaca, NY 14853, USA
{y12967,sm2833,cmd353}@cornell.edu

ABSTRACT

Training example order in SGD has long been known to affect convergence rate.
Recent results show that accelerated rates are possible in a variety of cases for
permutation-based sample orders, in which each example from the training set
is used once before any example is reused. In this paper, we develop a broad
condition on the sequence of examples used by SGD that is sufficient to prove
tight convergence rates in both strongly convex and non-convex settings. We show
that our approach suffices to recover, and in some cases improve upon, previous
state-of-the-art analyses for four known example-selection schemes: (1) shuffle
once, (2) random reshuffling, (3) random reshuffling with data echoing, and (4)
Markov Chain Gradient Descent. Motivated by our theory, we propose two new
example-selection approaches. First, using quasi-Monte-Carlo methods, we achieve
unprecedented accelerated convergence rates for learning with data augmentation.
Second, we greedily choose a fixed scan-order to minimize the metric used in our
condition and show that we can obtain more accurate solutions from the same
number of epochs of SGD. We conclude by empirically demonstrating the utility
of our approach for both convex linear-model and deep learning tasks. Our code is
available at: https://github.com/EugenelLYC/gmc-ordering.

1 INTRODUCTION

To minimize a differentiable function f : R¢ — R, stochastic gradient descent (SGD) iteratively
updates a parameter vector w € R? starting at some wg by running

Wiy = wy — oV f(wy; 2), (D

where «ay is the step size at iteration ¢, x; is a data example (often a minibatch of data) chosen
by some process—typically by subsampling a training dataset—for SGD to use at iteration ¢, and
V f(wy; x¢) is an example gradient, which we hope will be a good approximation for the gradient
of the objective V f(w;). In the standard setup, the x’s are drawn from a dataset D of size n, and
f(w) = 13", . f(w; x), which is often referred to as Empirical Risk Minimization (ERM). The
order in which the example sequence zg, z1, . . . are chosen is known to affect the convergence of SGD.
For instance, compare so-called “random reshuffling” to with-replacement sampling: optimizing a
strongly convex objective with 7' total iterations, random reshuffling samples the x; from D without
replacement and achieves an accelerated convergence rate of 1/72, while with-replacement sampling
yields a convergence rate of 1/7 (Bottou, 2012; Recht & Ré, 2012; Giirbiizbalaban et al., 2021).
Similar accelerated rates have been shown in other settings and for other example orders, such as
shuffling the dataset once (Nguyen et al., 2020; Ahn et al., 2020; Mishchenko et al., 2020). However,
these analyses have mostly focused only on specific example-selection schemes, and study only the
case of ERM-type finite-sum objectives. This does not help us understand how new example orders
(such as the data echoing method of Choi et al. (2019)) affect the convergence of SGD.

This paper develops a general condition on the example gradients themselves that is sufficient to
provide a convergence rate for SGD. Intuitively, our main result is: the convergence rate of SGD

*Equal Contribution.

https://github.com/EugeneLYC/qmc-ordering

Published as a conference paper at ICLR 2022

depends on how fast the averages of consecutive example gradients V f(w; x;) converge to the full
objective gradient V f (w). Using with-replacement sampling, the average of m consecutive gradient
examples starting at any timestep 7, L > 77" V f(w; z), converges to V f(w) at a rate of O(1/m)
in terms of the norm squared: we show SGD with any example sequence that fulfills this condition
will converge at the same asymptotic rate as with-replacement sampling. Alternatively, if that average
converges at the faster O(1/m?) rate typical of Quasi-Monte-Carlo (QMC) (Caflisch, 1998), then we

show SGD enjoys the accelerated rate that random reshuffling gets. Our contributions are as follows:

* We propose a new condition on the example gradients—average gradient error—and provide
convergence analysis using this general condition for both non-convex and strongly-convex
problems. We justify the validity of this condition on synthetic experiments (Section 3).

* We show that many commonly used example orderings—shuffle once, random reshuffling, data
echoing, Markov Chain Gradient Descent—can be analyzed as special cases under our theoretical
results, which match or improve upon their existing rates in the literature (Section 4).

* We propose two new algorithms: (1) QMC-based data augmentation that transforms examples via
a low-discrepancy sequence, improving generalization; and (2) a greedy algorithm that sorts the
examples before each epoch based on our new average gradient error metric (Section 5).

* Empirically, we evaluate our two algorithms on several image classification benchmarks including
MNIST, CIFAR10/100 and ImageNet. We show with QMC-based data augmentation, a higher
validation accuracy can be achieved without hyperparameter tuning—this suggests that QMC may
be a good default driver to use with data augmentation for deep learning in general. Meanwhile,
the greedy algorithm converges faster both in terms of iteration and wall-clock time (Section 6).

2 RELATED WORK

Example ordering in stochastic optimization. Traditional example ordering in SGD is carried
out in a with-replacement fashion, which is used to ensure unbiased estimation of the full gradient
(Robbins & Monro, 1951; Bach & Moulines, 2011; Zhang, 2004; Bottou et al., 2018; Drori & Shamir,
2020). Significant attention has been paid to importance sampling with respect to various measures,
such as Lipschitz constants (Schmidt et al., 2017; Needell et al., 2014), example gradient norms
and bounds (Zhao & Zhang, 2015; Alain et al., 2015; Papa et al., 2015; Lee et al., 2019), individual
losses (Kawaguchi & Lu, 2020; Loshchilov & Hutter, 2015), and data heterogeneity (Lu et al., 2021).
Without-replacement sampling, however, is more common in practice and empirically allows faster
convergence (Bottou, 2012). Among the most popular without-replacement approaches are shuffle
once (SO) (Bertsekas, 2011; Giirbiizbalaban et al., 2019) and random reshuffling (RR) (Ying et al.,
2017). In theory, Recht & Ré (2012) undertook the first investigation on convergence of RR via
the noncommutative arithmetic-geometric mean conjecture, to which subsequent works provide
counter examples (Yun et al., 2021; De Sa, 2020). HaoChen & Sra (2019) performed an epoch-wise
acceleration analysis on RR while Giirbiizbalaban et al. (2021) considered its convergence over
infinite epochs. Safran & Shamir (2020) analyzed the lower bounds for both SO and RR methods,
and their results are further polished by Mishchenko et al. (2020) via the Bregman divergence bound.
Aside from manual ordering, another line of research focuses on perturbed example ordering from
data echoing (Choi et al., 2019; Agarwal et al., 2020).

Quasi-Monte Carlo. Quasi-Monte Carlo (QMC) is a variant of Monte Carlo (MC) methods that
uses a low-discrepancy sequence instead of a pseudorandom sequence. QMC has been successfully
applied in a wide variety of domains including computer graphics (Keller, 1995), finance (Joy et al.,
1996), and computational biology (Cieslak et al., 2008). In machine learning, using QMC in place
of MC can significantly improve many techniques including variational inference (Buchholz et al.,
2018; Liu & Owen, 2021), feature mapping (Yang et al., 2014; Avron et al., 2016), normalizing
flows (Wenzel et al., 2018), deep learning based PDE (Chen et al., 2019), and time series analysis
(Philipson et al., 2020). For stochastic optimization, early works like Homem-de Mello (2008) and
Pennanen (2005) established the asymptotic convergence of a QMC sequence in terms of the training
set size, while Jank (2005) proposed replacing MC with QMC in computing the E-step of the EM
algorithm. Similar to our motivation, Buchholz et al. (2018) analyzed the convergence of SGD when
samples are drawn using QMC. Their approach differs significantly from ours in that their method
draws an independent unbiased length-b QMC sequence for each minibatch, while our examples
come from contiguous subsequences of a length-7" QMC sequence that is used across all iterations.

Published as a conference paper at ICLR 2022

3 EXAMPLE-GRADIENT AVERAGES AND SGD CONVERGENCE

In this section, we describe our setup, define the average gradient error condition we are proposing,
and state our main result. Our objective is to minimize a continuously differentiable function
f : R? — R using examples z; from some set X’ retrieved at each iteration ¢. We make the usual
assumption that both the loss gradient and the example gradients are L-Lipschitz continuous.

Assumption 1 (L-Smoothness). For some L < oo, for any u,v € R and any example x € X,
IVf(usz) =V f(v;z)| < L-|lu—vl and |[Vf(u) =Vf@)| <L-|u—uv]

We propose a new condition on the average gradient error. Informally, this condition bounds how
averages of consecutive example gradients approximate the objective gradient. Formally,

Assumption 2. In the context of Equation (1), we say that the example sequence xg,x1,... is
(v, C, ®)-concentrating for v € [1,2], C > 0, ® > 0, if for any timestep T > 0 and any m > 0,

T+m—1 2

% t; Vf(wrsze) =V fwr) g%(cﬂ@nw(wT)H?),)

where w, is the weight parameter vector arrived at after T SGD update steps in Equation (1).

The constants C' and ® here may depend on the total number of iterations 7": specifically, they may
absorb logarithmic factors like log(7 + m)?® typical in a QMC error bound, where s is the dimension
of the sample space. In addition, when the {x;}’s are random, we will show that this assumption
holds with high probability. Furthermore, it suffices to show that the inequality holds for any w:
our requirement that it holds only for the specific w. arrived at by SGD is weaker. We can develop
intuition about Assumption 2 by considering familiar cases:

* For general with-replacement sampling, the sum in (2) is a sum of independent random variables;
0, a concentration argument would yield Assumption 2 with v = 1 with high probability.

* For general without-replacement sampling from a dataset of size n, any whole-epoch subsequences
from the sum in (2) will cancel to zero, so we expect that sum to have magnitude O(n) independent
of m, and thus Assumption 2 should hold with v = 2 (Propositions 1 to 4).

¢ For low-discrepancy sampling, we would expect Assumption 2 to hold with v = 2, along with a
multiplicative log(7 + m)?* term: this is the classic error rate for QMC (Proposition 6).

In Section 4, we will make this intuition rigorous with high probability under the bounded gradient
error assumption. This intuition illustrates both how Assumption 2 can cover previously analyzed
settings and how it can generalize to cases not previously studied, such as QMC data augmentation.
Also observe that Assumption 2 is easily adapted to minibatch SGD: if it holds for the single-example
case, it should also hold with modified constants for minibatches of size b (consisting of averages
of b consecutive example gradients) by substituting m +— mb.! Since this is straightforward, for
simplicity of presentation our theory focuses on the batch-size-1 case. Our analysis is based on the
following key lemma, which bounds the evolution of SGD over an “analysis phase” of m steps.

Lemma 1. Suppose our setup satisfies Assumptions 1 and 2 and that we use a constant step size .
For all timesteps T > 0, let m > 0 be some integer such that 3am!=2® < am < 6%. Then the
objective at timestep T + m is bounded by

f(wrim) < f (we) = jom||Vf(wr)|[* + 20m*=C2.

By applying this lemma inductively and choosing the step size appropriately, we can derive conver-
gence rates for SGD in a variety of settings. Note that while here for simplicity we state results for a
fixed step size, Lemma 1 can also be used to get essentially the same rates for diminishing step size
schemes, which we analyze in Appendices A.2 and A.3. In what follows, we let f* be the global
minimum of f,let A := f(wo) — f*, and use O to hide logarithmic terms in the problem parameters
such as C, @, L, A, and ¢, while treating -y as a constant.

Theorem 1 (Non-convex case). Suppose that our setup satisfies Assumptions 1 and 2, and let € > 0
be any target error. Using SGD (1) with a constant step size o = 6% ’7(40/6 + 3@)2/”1 ' the
number of steps T needed to achieve min,—q.... 7—1||V f(ws)||* < €* is at most
2 ~ [cY 2 2
T = [48La]. [(% 1 39) /ﬂ) (c oy 20Ls | O _|_(I>2/'Y> .

€2+2/~ €

!The only technical subtlety is that the iterates w, of SGD would vary with minibatch sizes.

Published as a conference paper at ICLR 2022

Online Offline Online Offline
- o]
10 \N\ 1o \ % 102 AN §1071
10-3 %S> 2 <1077 A\
NN 1073 AN g 10 B \
L 105 Y ~ \ 1 110
2 \ 05) X 10-6 X 10-4 T m
I 1077 N [g $ [N
H N £, z <10- T Ny
~ 10-9 — 1ID Uniform ~ =107 D uniform > 10°° E | — "D uniform &
Sobol g Sobol 4 70107 Sobol
—— 1t W 10-° RR 5 10-10] — 1D Uniform ¢ RR
1071 ~E10 w1077
- — s0 = Sobol <E — so0)
-8
107 10° 10° 105 10° 10 102 10° 10° 10° 10° 107 10° 10° 10° 10° 10 T T T T T O]
iterations t iterations t m m
(a) Distance to optimum over iterations (b) Average gradient error (LHS of Assumption 2)

Figure 1: Comparison of sampling schemes on a synthetic least squares problem.

Observe that when v = 1, this gives the standard ¢~ rate expected for non-convex SGD, and for
~ = 2, this gives us the accelerated e~ rate of shuffling methods. We can get an even faster rate if f
satisfies the -Polyak-Eojasiewicz (PL) condition ||V f(w)||> > 2u(f(w) — f*), which generalizes
strong convexity and has been applied before in the study of sample orders (Mishchenko et al., 2020;
Ahn et al., 2020): in particular the following theorem holds for p-strongly convex functions.

Theorem 2. Suppose that f satisfies the -PL condition and our setup satisfies Assumptions 1 and 2.
Let € > 0 be any target error, and k = L/u be the condition number of the problem. Using SGD
(1) with a constant step size o« = 57 [(8C?/(pe?) + 99)"7 | ", the number of steps T needed to

guarantee f(wr) — f* < € is at most

1
T = [12rlog (2)] - Rfjf +99?) /ﬂ = O (555 + r®?7 4 5.
Observe that when « = 1, this recovers the ordinary T = ke~ 2 rate we usually get for strongly
convex SGD, and when y = 2 we get a faster rate of ke~ . These theorems together show that our
Assumption 2 is sufficient to show the convergence of SGD, and the convergence-rate parameter ~y
of the assumption translates to affect the convergence rate of SGD. This validates our intuition that
faster convergence of averages of consecutive example gradients to the full gradient V f (w) leads to
faster convergence of SGD.

Synthetic experiments. We quickly validate these results on a synthetic 10-dimensional
strongly-convex problem. The first setting we consider is the expected risk minimization of
R(w) = E[(z"w — y)?], where ~ N(0,1;) and y |z ~ N(z"w*,1) for some optimal value
w*. We run SGD in an online fashion—at iteration ¢ we draw samples (z;, y;) from the underlying
distribution to compute V R(wy; ;) used in the update. We compare drawing these samples indepen-
dently at random against drawing using a QMC sequence (Sobol in [0, 1]¢) via an inverse transform,
using for both cases the same diminishing step size scheme selected to minimize the expected risk
for the random-sampling case—the optimal step size scheme for vanilla SGD. The online plot of
Fig. 1(a) shows that the convergence rate is strictly superior with QMC, which achieves a O(1/+) rate
compared to the O(1/:) rate of random sampling, which is what Theorem 2 predicts.

We also evaluate the offline setting, where we draw n independent examples from the same distribution
1

to form a training set, and minimize the empirical risk R,(w) = + > (xjw — y;)*. This
corresponds to a least squares problem with optimal solution w},. We run SGD epoch-wise for
K epochs, in which we compare sampling from the training set uniformly with replacement (IID
Uniform), random reshuffling (RR), shuffle once (SO), and sampling using one QMC sequence in
[0, 1] of length T = nK followed by a mapping to example indices (Sobol). In the offline plot of
Fig. 1(a), we see that the low-discrepancy methods all yield an accelerated rate compared to IID

Uniform, which again validates our theory. Additional details can be found in Appendix A.1.3.

With the same synthetic setup, we also verified our bound in Assumption 2 by measuring the average
gradient error over a sequence of examples. The fixed point w, is arbitrarily set to the origin. For the
online setting (left of Fig. 1(b)), we use the same set of examples as in the SGD experiments above
starting at ¢ = 0. Similarly, in the offline setting, we go through the examples epoch-wise. As we can
see, the sample orderings given by QMC, RR and SO (offline only) indeed give us an accelerated rate
of decrease in the average gradient error as we increase m (7 ~ 2), justifying our main assumption.

Published as a conference paper at ICLR 2022

4 ANALYSIS OF EXISTING SCAN ORDERS

In this section, we illustrate the power of our approach by proving convergence rates for example-
selection methods proposed and analyzed in previous literature. For each method, we show Assump-
tion 2 holds with high probability, and then by applying Theorems 1 and 2 to these results, we show
how existing rates for these methods can be recovered and in some ways improved upon. To the best
of our knowledge, these are the first high-probability results for shuffle once and random reshuffle for
general non-convex optimization. When using a finite training set of examples, we let n denote its
size, let the examples be indexed as @, 2™ ... z™~Y (to avoid confusion with x;, the example
used by SGD at step t), and let T' = nK denote the total number of iterations after K epochs. We
will also require the following standard assumption that bounds the error of a single example gradient.

Assumption 3. For all examples © € X and points w € RY, there exists A, B > 0 such that the
gradient errors satisfy |V f (w; z) — V f(w)||> < A% + B2V f(w)|>.

Shuffle once (SO). In the shuffle-once variant of SGD, a single permutation o of {0,...,n — 1} is
chosen uniformly at random at the start, and the examples are used repeatedly in that order: explicitly,
x; = 2@t mod n)) " Ope way to analyze shuffle-once is to prove Assumption 2 for permutation-based
methods generally.

Proposition 1. Let Assumptions I and 3 hold, and suppose that we are using a permutation-based
method of sampling, that is, any method such that Ty, Tkn+1,-- -, Tkntn—1 IS a permutation of
2@ D xCD for all epochs k > 0. Any such method satisfies Assumption 2 with v = 2,
C? =n?A? and % = n’ B>

This immediately lets us recover previous rates up to constant factors, but we can do better. In the
case where we are learning over a bounded region, we can prove a stronger result for shuffie once.

Proposition 2. Suppose that we are using the shuffle once variant of SGD to learn over a region
B € R of radius at most R, such that the iterates w, are guaranteed to remain within this region.
Assume that for all w € B and all examples x in the training set of size n, Assumption 1 (L-
Smoothness) and Assumption 3 hold. Then with probability at least 1 — p, Assumption 2 holds with
v =2, C? = O(dA?(n + B?)), and * = O(ndB?).2

In comparison to previous results and to our rate implied by Proposition 1, this improves the
dependence from n to v/nd, which is a significant improvement over the best rates for shuffle once
available in the literature when the dimension is small relative the training set size. In particular, if
we set B = 0 and consider small €, our rate in the non-convex case becomes

This rate matches that for shuffle once achieved in Nguyen et al. (2020, Corollary 1) in terms of ¢,
up to logarithmic factors. In the p-PL (or strongly convex) case for B = 0, we again obtain a rate
matching that of Nguyen et al. (2020), Ahn et al. (2020), and Mishchenko et al. (2020):

_ (kA nd : : : 2 A(£2And) _ [rA%d
T=0 <?ﬁ>, which implies €~ < O(W) = O(an)'

Random reshuffling (RR). Random reshuffling is similar to shuffle once, except that a new
ordering is chosen at each epoch: sampling the dataset without replacement. Concretely, if o}, denotes
the permutation used by random reshuffling at the kth epoch, then z; = z(7Le/n) (t mod n)),

Proposition 3. Suppose that we are using the random reshuffling variant of SGD. Assume that for all
w € R? and all examples, Assumption 1 (L-Smoothness) and Assumption 3 hold. For some p € (0,1),

set the constant step size to satisfy o < (max {1460BnL - log (4¢*T'/p) ,2nL})71. Then with
probability at least 1 — p, Assumption 2 holds with v = 2, C? = O(nA?) and ®* = O(nB?).

Setting B = 0, our rate in the non-convex case now becomes

~ ~ 2 1 -~
T=0 (ALEAg‘/E) , which implies €2 < O(Wﬁ#) = O((#)Va).

2The probability p is only present in log terms in these expressions, so it does not appear in the O.

Published as a conference paper at ICLR 2022

Here we match the best rate obtained by Mishchenko et al. (2020, Corollary 3) in the small € setting.
In the u-PL (or strongly-convex) case, we get

_ (KA n H 3 i N EA) — 242
T=0 (?\/E) , which implies €2 < (9(T) = O(,mKZ)'

As in shuffle once, here our rate for random reshuffling matches that obtained by Nguyen et al. (2020)
and Ahn et al. (2020), as well as Mishchenko et al. (2020) albeit with a slightly worse dependency
on k. It’s worth noting that for simple quadratics, RR and SO are only faster than with-replacement
SGD when K > 1/, (Safran & Shamir, 2021).

Random reshuffling with data echoing. Data echoing is a technique that can be easily imple-
mented in a machine learning training pipeline to increase throughput and improve performance.
It was first introduced and tested empirically by Choi et al. (2019) and analyzed by Agarwal et al.
(2020). The idea is to perform multiple SGD updates on each example x; (or minibatch) before
proceeding to the next. By “echoing” examples we allow more time for upstream data loading and
preprocessing, and consequently decrease downstream GPU idle time for gradient computation. For
simplicity, we also use a fixed number of echos c as in Agarwal et al. (2020). Concretely, a c-echoed
version of a sample order T is given by zy = &|4/.). Data echoing can essentially be applied to
any example-ordering scheme, and here we provide one analysis under random reshuffling. The
justification for Assumption 2 under random reshuffling with data echoing follows essentially without
modification from the ¢ = 1 version in the previous subsection.

Proposition 4. Suppose that we are using the random reshuffling variant of SGD, where each example
is echoed c times using the same step size in RR. Under the same assumptions as in Proposition 3,
with probability at least 1 — p, Assumption 2 holds with v = 2, C? = O(cnA?) and ®* = O(cnB?).

It immediately follows that data echoing should get the same convergence rates we showed in
Section 4 with A? and B2 multiplied by c. Although Agarwal et al. (2020) also provided an analysis
for data echoing, they require that the examples are sampled independently, rather than the random
reshuffling setting that is more commonly-used: as a result, their analysis did not achieve the
accelerated €~ rate that shuffled methods enjoy. Another advantage of our analysis is that the proof
follows exactly from that of vanilla random reshuffling, from which the constant c simply propagates.

Markov chain gradient descent (MCGD). To illustrate the versatility of Assumption 2, we show
how it can be satisfied by a problem where the objective is not a finite sum and where v # 2. Consider
f(w) = Eeoz[f(w;§)] with some underlying distribution =. Running SGD then requires that at
each iteration ¢, we draw V f(wy; &) where &; ~ E; however, sampling from = can be intractable.
The method of Markov Chain Gradient Descent addresses this problem by sampling the &; from the
trajectory of a single Markov chain with stationary distribution = (Sun et al., 2018). The intuition
is that although at early iterations the £’s have not converged to their true distribution, the iterates
visited by SGD are also far from the optimum, thus larger approximation error in the early £’s is
rather harmless. As we continue iterating, the Markov chain will mix as SGD converges. We show
that the convergence of MCGD can be bounded in terms of the mixing time of that Markov chain.

Proposition 5. Suppose that we use samples x; from a Markov chain with mixing time t ;.. Assume
that for all w € R and all examples x,, Assumption 3 holds. Then with probability at least 1 — p,
Assumption 2 holds withy = 1, C% = O(A%t2,), and ®* = O(B*t2

mix mix) .

It follows that for non-convex optimization in the B = 0 case, our convergence rate is given by

=0 (%) , which implies €2 < @(%T\/ﬁ).

Sun et al. (2018, Theorem 2) use a diminishing step size O(1/+*) to obtain T' = O(e~*/*~ %), where

q € (1/2,1). In contrast, our rate is faster and holds with high probability instead of in expectation.

5 NEW EXAMPLE-SELECTION METHODS FOR FASTER CONVERGENCE

The analysis in Section 4 focused on recovering the convergence rates for SGD with known example-
ordering algorithms. In this section, we propose two new example-selection approaches that allow
faster convergence: QMC-based data augmentation and greedily minimizing the metric in (2).

Published as a conference paper at ICLR 2022

Algorithm 1 Example-Ordered SGD via Greedily Minimizing Average Gradient Error

Input: step size o, number of iterations 7', random projection matrix II, buffer for gradients estima-
tion: g; + 0,Vi € {0,--- ,n — 1}, g + 0, initial weights wy, initial permutation oy.

1: fort=0,--- ,T/n—1do

2: Initialize : g; < 0,Vi € {0,--- ,n—1}; g« 0; Z < 0.

3: fori=0,--- ,n—1do

4: Update the model parameters: Wy, 4i+1 < Winti — OV f(Wipi; (@0,
5: Update the buffers: g,, ;) < II'V f(winyi; :r("t(i))); g4 g+ Go,(5)-
6: end for

7: fori=0,--- ,n—1do

2
8: o141(i) « argmin [> (g5, —g/n) }; T+ TU{ot41(9)}.
i€{0,--,n—1I\T |||jeTu{i}

9: end for
10: end for

11: return wp

QMC-based data augmentation. In many scenarios where only limited examples are given, we
want to augment the dataset for better generalization. More formally, given a transform function
A that takes example 2 and a random variable ¢ uniformly distributed in [0, 1]* as input, where s
denotes the dimension of augmentation space, the augmented objective for a dataset D of size n is
flw) = % > E<~u[o,115f(w§ A(z,Q)) = % > fu\gg f(w; A(z, €)) d¢. 3)
x€D z€D
The rationale is that by performing some reasonable random transformation on a given example, we
assume the output would be another example that is identically distributed, and the expected value
models an infinitely-large training set consisting of such transformed examples. For example, in an
image classification task, we could set s = 1 and have A(z, ¢) output the image z rotated by an angle
of 20°(2¢ — 1), modeling that a slight rotation of an image should preserve its label.

QMC can approximate this expectation with a low-discrepancy sequence of (; drawn from the
s-dimensional unit cube [0, 1]°. Examples of such sequences include the Halton and Sobol sequences
(Drmota & Tichy, 2006). QMC is especially favorable for data augmentation because s is usually
small in most data augmentation methods. We propose to use QMC for data augmentation together
with random reshuffling. Concretely, if (o, (1, . . . is our low-discrepancy sequence and o), denotes
the permutation used by random reshuffling in the kth epoch, then we propose to use the example
xy = A(x L/l G mea m). That is, when we sample example i in epoch k, we
use the (k + 7)th element of the low-discrepancy sequence. This is not the only reasonable way of
combining QMC and RR: it is just one way we found to work well. In theory we would expect the
approximation error here to decay at the rate O(1/m?), instead of the O(1/m) of the random sampling
that is standard for data augmentation. To prove this rigorously, we make two additional assumptions
which are commonly used in analyzing QMC sequences (Aistleitner & Dick, 2014).

Assumption 4 (Bounded gradient variation). There exists a constant V' > 0 such that for any fixed
w € R% and x € X, the example gradients as a function of ¢ under QMC data augmentation, F/({) =
V f(w; A(z, ()), has Hardy-Krause variation (Tezuka, 2000) at most V, that is Vg (F) < V.

Assumption 5. The QMC sequence {(;},. . has low star-discrepancy (Owen, 2003): for all m > 0,

t>0

, m—1 s log(m)®

sup % Zo]]'{Cf € [O7a)} - l_Ilaj < C'QMC : gfn : ’
t= j=

a€l0,1]®

where [0,a) = {z € [0,1)° | 0 < z; < a;, j = 1,...,d} for some constant Copc.

Proposition 6. Suppose that we are using the random reshuffling variant of SGD with QMC data
augmentation as described. Assume that for all w € R? and all examples, Assumptions 1, 3,
4 and 5 hold for Equation 3. For some p € (0,1), set the step size to be a constant such that
a < (max{14GOBnL : log(462T/p) ,2nL}) . Then with probability at least 1 — p, Assumption 2
holds with v = 2, C? = O(n?V?C3yclog(T)* + nA?) and ®* = O(nB?).

Comparing it with Proposition 3, this QMC variant enjoys the same O(1/r2) rate we get for vanilla
random reshuffling: to our knowledge, this is the first accelerated rate for learning with data augmen-

Published as a conference paper at ICLR 2022

0-30 —— 1ID-Uniform (tuned) 93.0 130 —— 1ID-Uniform (tuned)

M QMC (untuned) 92.5 QMC (untuned)
—— QMC (tuned)

o
©

o
©

—— QMC (tuned)

=
N
w

. Wl

—— IID-Uniform (tuned)
QMC (untuned)

Validation Loss
Validation Loss
-
Y
o

—— IID-Uniform (tuned)
90.5 QMC (untuned)
—— QMC (tuned) —— QMC (tuned)

100 125 150 175 200 %0100 125 150 175 200 120 140 160 180 200 ©° 120 140 160 180 200
Epoch Epoch Epoch Epoch

(a) Validation of ResNet20 on CIFAR10 (b) Validation of ResNet20 on CIFAR100

Validation Accuracy
©o
=
)
[=))
o

Validation Accuracy
o
<

.
A
o

Figure 2: Data augmentation with I[ID-uniform (standard) and QMC-based methods on CIFAR.

tation. In addition to the theoretical advance, we demonstrate in Section 6 that our QMC variant can
achieve better validation performance in practice in multiple applications.

Better example ordering via greedy selection. Taking a closer look at Assumption 2, the
magnitude of the left-hand side plays a crucial role in the convergence. In the ERM setting, this
motivates us to select a permuted example order that minimizes this expression, following which
SGD would converge with minimized average gradient error. However, naively constructing such a
sequence is tedious as iterating over all the 7, > 0 and all permutations can be computationally
intensive. In light of this, we apply several approximation techniques into the construction and
formulate it into Algorithm 1. The first technique is to use stale gradients, i.e., using the gradients
computed at each epoch to estimate the sequence used in the next epoch (line 5 in Algorithm 1).
The intuition is that based on the smoothness of loss function (Assumption 1), we would expect
the stale gradients to approximate the current gradients with tolerant approximation error as long as
the step size is reasonably small. The second technique is random projection (line 9): we search
a lower-dimensional space, which allows faster construction and reduces memory use (see similar
strategies of using smoothness and dimension reduction techniques in (Caflisch, 1998)). Because this
is a selection-by-permutation method, under Assumption 3 our greedy selection method will trivially
satisfy Assumption 2 with v = 2, C' = nA, and ® = nB (see Proposition 1).

6 EXPERIMENTS Table 1: Topl validation accuracy (%) of
ResNet18 on ImageNet. The original one is the

. . . standard benchmark provided by PyTorch.
In this section we evaluate our new algorithms

on several deep learning benchmarks. First, we . ;
compare QMCI?based d§ta augmentation against Original _ Uniform (tuned) QMC (untuned)
IID-uniform augmentation on CIFAR10/100 and 69.76 70.19 70.48
ImageNet datasets. Second, we compare greedy

ordering (Algorithm 1) with RR and SO, and show how to further accelerate it with randomly
projected sorting. Other details on the experimental setup can be found in Appendix A.1.1. Each
experiment is repeated 10 times with consistent seeds among the algorithms.

QMC-based data augmentation. We start by training ResNet20 on CIFAR10 and CIFAR100,
where discrete and continuous data augmentations are applied, respectively. Specifically, CIFAR10
uses random crop and random horizontal flip while CIFAR100 uses an additional random rotation
of 15 degrees. To apply the QMC-based data augmentation, we first generate a Sobol sequence of
appropriate dimension using the gmcpy package (Choi et al., 2020+), and then replace the pseudo-
random sequence used in the original random augmentation pipelines with that Sobol sequence.
We run the baseline IID-uniform method with finetuned hyperparameters (weight decay 10~%),
which reproduces the result from He et al. (2016) with an error rate 8.4%. Then we run QMC-base
augmentation with the same hyperparameter (untuned) and finetuned counterparts, with a grid search
over weight decay values in {r - 10~}2_,. From Figure 2 we observe the QMC-based augmentation
consistently outperforms the baseline methods, even without hyperparameter tuning. Comparing
Figure 2 with He et al. (2016), we observe the QMC-based augmentation allows ResNet20 to reach
comparable validation accuracy as ResNet44 while requiring only 40% as many parameters (0.27M
vs 0.66M). We run a t-test on these results (in Appendix A.1.2) to show the validation accuracy
from the two augmentation methods are different statistically significantly (p-value p = 7- 10~ on

Published as a conference paper at ICLR 2022

T— 0.260 71—
—— Shuffle Once \ —— Shuffle Once ‘
Random Reshuffling 0.255 Random Reshuffling 92.5
0.26 —— Greedy w/ QR ' —— Greedy w/ QR

©
N
=)

—— Greedy w/ sparse+QR —— Greedy w/ sparse+QR

\

—— Shuffle Once
Random Reshuffling

©
=
5

0.25

Training Loss
Training Loss
o o
N N
» w
wv o
Validation Accuracy

91.0 —— Greedy w/ QR
0.24 0.240 —— Greedy w/ sparse+QR
0 20 40 60 80 100 0 500 1000 1500 0 500 1000 1500
Epoch Time(sec) Time(sec)

(a) Logistic Regression on MNIST. The greedy algorithm reuses the hyperparameters finetuned on RR.

0.020 0.030

T 92.0 Do wd
—— Shuffle Once Y‘\ —— Shuffle Once ‘
Random Reshuffling Random Reshuffling §91.5
% 0.018 —— Greedy w/ QR £0.025 —— Greedy w/ QR 5 91 01
3 —— Greedy w/ sparse+QR 3 —— Greedy w/ sparse+QR E ' ‘ .
2 2 =905 — Shuffle Once
‘£0.016 £0.020 2 Random Reshuffling
£ = L_QBQO.O‘ —— Greedy w/ QR
0.014 0.015 889.5/ —— Greedy w/ sparse+QR
Greedy w/ sparse+QR (tuned)
150 160 170 180 190 200 2500 3000 3500 4000 E591%00 2000 2500 3000 3500 4000
Epoch Time(sec) Time(sec)

(b) ResNet20 on CIFAR10. The greedy algorithm is able to converge faster when optimizing the same
loss function while achieving SOTA validation accuracy with mild tuning.

Figure 3: Comparison between Algorithm 1 and RR/SO on MNIST and CIFARI10.

CIFAR10 and p=0.036 on CIFAR100). Importantly, this improvement comes essentially for free, as
generating low discrepancy sequences in low dimension has very little overhead.

We also evaluate our method on fine-tuning ResNet18 on ImageNet. We apply different augmentation
methods on a pre-trained model and train for 5 additional epochs with step size 10~%. We report their
Top1 accuracies in Table 6, which shows that our QMC method improves the validation accuracy by
0.3% compared to the same number of epochs of fine-tuning using random sampling.

Better example ordering via greedy selection. In this section we evaluate Algorithm 1 on two
benchmarks: Logistic Regression on MNIST and ResNet20 on CIFAR10. As discussed, sorting the
stale gradients naively could incur substantial overhead on memory and computation. To mitigate
this, we adopt two methods: random projection and QR decomposition. The former is mainly
to reduce storage: we obtain a gradient computed at some time in an epoch and project it into a
lower-dimensional space before storing it. Classic ways of projection include Gaussian projection or
random sparsification: we adopt the latter as it does not require storing the projection matrix, which
minimizes the storage cost. After we obtain all the stale gradients, we concatenate them into a matrix
and perform QR decomposition before sorting, which allows us to sort in a low-dimensional space
while preserving the order of gradients since the inner products between any two tensors will remain
the same Gander (1980). We set the target dimension to be of 10% size of the original space. In the
spirit of evaluating the applicability of Algorithm 1, we do not perform hyperparameter tuning in this
section but reuse the ones tuned in the literature on Random Reshuffling.

We plot the results in Figure 3. In Figure 3(a) we observe greedy algorithms can consistently converge
faster than RR and SO epoch-wise with optimizing the same loss function. When QR is used without
projection, the algorithm is able to reach higher validation accuracy but converges slower with respect
to the wall-clock time. On the other hand, when we use random sparsification additionally, the
algorithm converges faster with respect to both epoch and wall-clock time without compromising
the validation accuracy. For CIFAR10, we observe the greedy method can converge faster when
optimizing the same loss as other baselines, and achieves higher validation accuracy when fine-tuned.

7 CONCLUSION

We present a unified analysis on example orderings used in SGD, which generalizes several widely-
used orderings in the literature. We propose a greedy algorithm that allows faster convergence via
constructing a better example order with approximate sorting techniques, as well as QMC-based
augmentation that achieves higher validation accuracy on multiple benchmarks. One potential future
direction is designing example orderings to more efficiently minimize the average gradient errors.

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

The authors would like to thank A. Feder Cooper and anonymous reviewers from ICLR 2022 for their
valuable feedbacks on earlier versions of this paper.

REFERENCES

Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, and Cyril Zhang. Stochastic optimization
with laggard data pipelines. In Advances in Neural Information Processing Systems, 2020.

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. SGD with shuffling: optimal rates without component
convexity and large epoch requirements. In Advances in Neural Information Processing Systems,
2020.

Christoph Aistleitner and Josef Dick. Functions of bounded variation, signed measures, and a general
Koksma-Hlawka inequality. arXiv:1406.0230, 2014.

Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron C. Courville, and Yoshua Bengio. Variance
reduction in SGD by distributed importance sampling. arXiv:1511.06481, 2015.

Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W. Mahoney. Quasi-Monte Carlo Feature
Maps for Shift-Invariant Kernels. The Journal of Machine Learning Research, 17:120:1-120:38,
2016.

Francis R. Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, pp. 451-459, 2011.

Bernard Bercu, Bernard Delyon, and Emmanuel Rio. Concentration inequalities for sums and
martingales. SpringerBriefs in Mathematics. Springer, 2015.

Dimitri P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex Opti-
mization: A Survey. In Optimization for Machine Learning. The MIT Press, 2011.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421-436.
Springer, 2012.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, 2018.

Alexander Buchholz, Florian Wenzel, and Stephan Mandt. Quasi-Monte Carlo Variational Inference.
In Proceedings of the International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 667-676. PMLR, 2018.

Russel E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1-49, 1998.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

Jingrun Chen, Rui Du, Panchi Li, and Liyao Lyu. Quasi-Monte Carlo sampling for machine-learning
partial differential equations. arXiv:1911.01612, 2019.

Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. Faster neural network
training with data echoing. arXiv:1907.05550, 2019.

S.-C. T. Choi, F. J. Hickernell, M. McCourt, and A. Sorokin. QMCPy: A quasi-Monte Carlo Python
library, 2020+. URL https://github.com/QMCSoftware/QMCSoftware.

Mikolaj Cieslak, Christiane Lemieux, Jim Hanan, and Przemyslaw Prusinkiewicz. Quasi-Monte
Carlo simulation of the light environment of plants. Functional Plant Biology, 35(10):837-849,
2008.

Christopher De Sa. Random reshuffling is not always better. In Advances in Neural Information
Processing Systems, 2020.

10

https://github.com/QMCSoftware/QMCSoftware

Published as a conference paper at ICLR 2022

Michael Drmota and Robert F/ Tichy. Sequences, discrepancies and applications. Springer, 2006.

Yoel Drori and Ohad Shamir. The complexity of finding stationary points with stochastic gradient
descent. In Proceedings of the International Conference on Machine Learning, volume 119, pp.
2658-2667. PMLR, 2020.

Walter Gander. Algorithms for the QR decomposition. Seminar fiir Angewandte Mathematik:
Research report, 80(02):1251-1268, 1980.

Mert Giirbiizbalaban, Asuman E. Ozdaglar, and Pablo A. Parrilo. Convergence rate of incremental
gradient and incremental Newton methods. SIAM Journal on Optimization, 29(4):2542-2565,
2019.

Mert Giirbiizbalaban, Asuman E. Ozdaglar, and Pablo A. Parrilo. Why random reshuffling beats
stochastic gradient descent. Mathematical Programming, 186(1):49-84, 2021.

Jeff Z. HaoChen and Suvrit Sra. Random shuffling beats SGD after finite epochs. In Proceedings of
the International Conference on Machine Learning, volume 97, pp. 2624-2633, 2019.

Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. Combinatorics,
Probability and Computing, 2005.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Tito Homem-de Mello. On rates of convergence for stochastic optimization problems under non—
independent and identically distributed sampling. SIAM Journal on Optimization, 19(2):524-551,
2008.

Wolfgang Jank. Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM. Compu-
tational statistics & data analysis, 48(4):685-701, 2005.

Corwin Joy, Phelim P. Boyle, and Ken Seng Tan. Quasi-Monte Carlo methods in numerical finance.
Management Science, 42(6):926-938, 1996.

Kenji Kawaguchi and Haihao Lu. Ordered SGD: A new stochastic optimization framework for
empirical risk minimization. In The 23rd International Conference on Artificial Intelligence and
Statistics, volume 108, pp. 669-679, 2020.

Alexander Keller. A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the
Radiosity Setting. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp.
239-251. Springer New York, 1995.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10657-10665, 2019.

David A. Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Society, 2017.

Sifan Liu and Art B. Owen. Quasi-Newton Quasi-Monte Carlo for variational Bayes.
arXiv:2104.02865, 2021.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv:1511.06343, 2015.

Yucheng Lu, Youngsuk Park, Lifan Chen, Yuyang Wang, Christopher De Sa, and Dean Foster.
Variance reduced training with stratified sampling for forecasting models. In Proceedings of the
International Conference on Machine Learning, pp. 7145-7155. PMLR, 2021.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtdrik. Random reshuffling: Simple analysis
with vast improvements. In Advances in Neural Information Processing Systems, 2020.

11

Published as a conference paper at ICLR 2022

Deanna Needell, Rachel Ward, and Nathan Srebro. Stochastic Gradient Descent, Weighted Sampling,
and the Randomized Kaczmarz algorithm. In Advances in Neural Information Processing Systems,
pp- 1017-1025, 2014.

Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, and Marten van Dijk. A
unified convergence analysis for shuffling-type gradient methods. arXiv:2002.08246, 2020.

Art B. Owen. Quasi-Monte Carlo sampling. Monte Carlo Ray Tracing: SIGGRAPH, 1:69-88, 2003.

Guillaume Papa, Pascal Bianchi, and Stéphan Clémencon. Adaptive sampling for incremental
optimization using stochastic gradient descent. In Algorithmic Learning Theory, volume 9355 of
Lecture Notes in Computer Science, pp. 317-331. Springer, 2015.

Teemu Pennanen. Epi-convergent discretizations of multistage stochastic programs. Mathematics of
Operations Research, 30(1):245-256, 2005.

Pete Philipson, Graeme L. Hickey, Michael J. Crowther, and Ruwanthi Kolamunnage-Dona. Faster
Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data.
Computational Statistics & Data Analysis, 151:107010, 2020.

Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean inequality:
Conjectures, case-studies, and consequences. In Conference on Learning Theory, volume 23, pp.
11.1-11.24, 2012.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathemati-
cal Statistics, 22(3):400 — 407, 1951.

Itay Safran and Ohad Shamir. How good is SGD with random shuffling? In Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pp. 3250-3284. PMLR, 2020.

Itay Safran and Ohad Shamir. Random shuffling beats SGD only after many epochs on ill-conditioned
problems. arXiv:2106.06880, 2021.

Mark Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83-112, 2017.

Tao Sun, Yuejiao Sun, and Wotao Yin. On Markov chain gradient descent. In Advances in Neural
Information Processing Systems, pp. 9918-9927, 2018.

Shu Tezuka. Discrepancy theory and its application to finance. In IFIP International Conference on
Theoretical Computer Science, pp. 243-256. Springer, 2000.

Florian Wenzel, Alexander Buchholz, and Stephan Mandt. Quasi-Monte Carlo Flows. In Proceedings
of the 3rd Workshop on Bayesian Deep Learning, 2018.

Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael W. Mahoney. Quasi-Monte Carlo Feature
Maps for Shift-Invariant Kernels. In Proceedings of the International Conference on Machine
Learning, volume 32, pp. 485493, 2014.

Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed. On the performance of random reshuffling
in stochastic learning. In 2017 Information Theory and Applications Workshop (ITA), pp. 1-5.
IEEE, 2017.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Open problem: Can single-shuffle SGD be better than
reshuffling SGD and GD? In Conference on Learning Theory, 2021.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the International Conference on Machine Learning, volume 69, pp.
116, 2004.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pp. 1-9, 2015.

12

Published as a conference paper at ICLR 2022

A APPENDIX

TABLE OF CONTENTS

A.1 Experimentdetails
A.1.1 Additional details for Section6
A.1.2 t-test for data augmentationresults,
A.1.3 Smallexperiments
A.1.4 Optimal step size derivation

A.2 Convergence analysis: diminishing stepsize
A2.1 NON-CONVEX CASE v v v v e vt e it e e e e e
A.2.2 Strongly-CcOnveXx Case v v i i e e e

A3 ProofforLemmal

A.4 Convergence analysis: constant step size
A4l NON-CONVEX CASE . . . v v v v v et e e it e e e e e e
A42 Strongly-COnveX Case v v v v it e e e

A.5 Justifications for Assumption 2 under various example orderings
A.5.1 Arbitrary permutationo Lo Lo
AS52 Shuffleonce
A.53 Randomreshuffling oL
A.5.4 Random reshuffling with dataechoing
A.5.5 Markov chain gradientdescent L.
A.5.6 QMC-based data augmentation with random reshuffling

A.6 Miscellaneous lemmas

13

Published as a conference paper at ICLR 2022

A.1 EXPERIMENT DETAILS
A.1.1 ADDITIONAL DETAILS FOR SECTION 6

In Section 6, all the training scripts are implemented via PyTorch1.6 and run on a single machine
configured with an 2.6GHz 4-core Intel (R) Xeon(R) CPU, 16GB memory and NVIDIA GeForce
GTX 1080Ti with CUDA 10.1.

In the example ordering comparison, we use the same seed among different algorithms in the same
run so as to guarantee every algorithm works with the same loss function.

In the ImageNet experiment, the standard step size schedule for ImageNet training is starting at
0.1 and decaying by 10 every 30 epochs. The pre-trained model is the trained model at epoch 90.
Naturally, our learning rate should be 1e-4 by the same schedule. Other hyperparameters are adopted
by the open source implementation: https://github.com/pytorch/examples/tree/
master/imagenet.

In the data augmentation comparison, obviously other augmentation techniques can be used.
The strategies we used are taken from open source implementation https://github.com/
akamaster/pytorch_resnet_cifarl0 and https://github.com/weiaicunzai/
pytorch-cifarl00 that can reproduce the validation accuracy in He et al. (2016), so that our
comparison can be consistent with the correct benchmarks. Below we include the convergence plot
for the experiment on ImageNet with ResNet18, where each algorithm is repeated three times with
seeds uniformly selected from [0, 1000].

—— 1ID-Uniform >
\ QMC ©70.4
n 1.24 3
(%] (9}
S <
- =70.2
©1.23 .g
= ©
© kel
2 =70.0
2122 > .
‘(‘.l‘ —— 1ID-Uniform
Q 69.8 QMC
90 91 92 93 94 95 90 91 92 93 94 95
Epoch Epoch

Figure 4: Data augmentation with IID-uniform (standard) and QMC-based methods on ImageNet.

A.1.2 t-TEST FOR DATA AUGMENTATION RESULTS

We now perform t-test on the validation accuracy on two data augmentation results, to show the
improvement from QMC is statistically significant. We include validation accuracy at epoch 200
for CIFAR10 and best accuracy for CIFAR100 in Table A.1.2. We compute the p-value between
IID-Uniform and tuned QMC, and found the p-value on CIFAR10 and CIFAR100 to be 7e-7 and
0.036, respectively. Since they are both smaller than 0.05, we reject the null hypothesis which
concludes they are of the same mean.

A.1.3 SMALL EXPERIMENTS

For both experiments in Section 3, we generated w* from a standard Normal distribution. The
minibatch size is 1, and the total number of iterations is 107, with n = 10% over 1000 epochs for the
offline setting. For all variants, we use the theoretical step size optimized for SGD with replacement
(corresponding to IID Uniform) on this particular problem, given by

[
|w*||*(d +2) +d’

which are derived in Appendix A.1.4 below. To obtain low-discrepancy samples from the Gaussian
distribution, we use the inverse transform method. First we obtain the QMC sequences (Sobol in our

a _ O[t(l — Olt)
T a2(d+ 2)

with o =

14

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100

Published as a conference paper at ICLR 2022

Table 2: Validation accuracy for different data augmentation methods on CIFAR datasets.

CIFAR10 CIFAR100
Runs IID-Uniform QMC QMC (tuned) IID-Uniform QMC QMC (tuned)
1 91.87 92.05 92.45 67.92 68.91 68.21
2 91.67 92.13 92.53 68.01 68.92 68.12
3 91.68 92.03 92.33 68.03 68.53 68.42
4 91.88 91.9 92.35 67.82 68.03 68.71
5 92.05 92.03 92.41 68.89 68.41 67.99
6 91.79 91.93 92.15 66.99 68.66 68.51
7 91.91 92.79 92.59 68.31 68.92 68.53
8 91.53 91.73 92.44 68.14 68.09 68.53
9 91.3 91.96 92.21 68.02 67.91 68.12
10 91.82 92.21 92.16 67.73 68.31 68.53

case) (¢ € [0, 1]° where s is the appropriate dimension, and then use that in the inverse CDF function
of a Gaussian distribution to obtain the corresponding Gaussian sample.

In addition to using synthetic data, we also performed an offline version of the experiment Figure 1(b)
on a real dataset, a6a from the LIBSVM repository (Chang & Lin, 2011). The dataset contains
n=11220 examples with d=124 features (including bias), and all labels are binary. We use logistic
regression with /5 regularization (with A=1e-4) as the empirical risk:

1« : A
Ry (w) = - Zlog(l + exp(—yizjw)) + §||7«UH2-

i=1

To measure the left hand side of Assumption 2, we again fix w. to be at the origin, and we take the
number of epochs to be 1000. The results are in Figure 5 for one run with an arbitrarily-set seed, and
we draw similar conclusions as observed with synthetic data (see Figure 1(b) in the main paper).

Offline (a6a)

. —— 1ID Uniform
=.n-3
g 10 —— Sobol
;E — RR
= 107 SO
|
5 10>
‘S
32
o< 107°
>
o
gl1077
N
I

10781~

103

Figure 5: Comparison of sampling schemes on ¢s-regularized logistic regression with real data.

15

Published as a conference paper at ICLR 2022

A.1.4 OPTIMAL STEP SIZE DERIVATION

In this section, we derive the optimal step-size sequence used in our synthetic toy example from
Section 3. Recall our setup

x~N0,1), y=xw" +e
where w* is the true model parameters that we are trying to recover, and € ~ A/(0, 1) is some intrinsic
error. The goal is to minimize the expected risk

Flw) = SE[(@Tw —)?).
By using the tower rule of expectation conditioning on z, this objective can be written as
1 2
flw) = 5w = w? +1).
The full gradient and the example gradient given a pair (z, y) drawn from the above distribution are
Vi(w) =w—w,
Vi(w;z,y) = (7w —y)z = (2" (w — w*) — €)x.

Define the gradient error to be

A9 =V f(w;z,y) — Vf(w) = (xz" — I)(w — w*) — ex. 4)

Let us first analyze the expected gradient error conditioned on any randomness in w that might arise
from the sampling history:

E[HN”?] = (w—w)"E[(z2" — I,)?] — 2E[ex" (22" — I)](w — w*) + E[e2a"a].

The last term is simply E[e2z"x] = d since € is independent of . The middle term cancels to 0 again
by independence and zero-mean of e. For the first term,

E[(za" — I4)*] = E[za"2a" — 222" + 1]
=(d+2)Iqg—214+ I; = (d+ 1)1,
Together, we have
E[I1a7)7) = (d+ Dljw - w*|]* + d.)
Now let us derive an suboptimality gap recursion for the SGD update step using the step size ay:

W1 — W =wy — oV f(wy; z,y) — w”

= (wy —w*) + o Vf(w) — aVf(w) — oV f(wegx,y)
= (1 — ay)(wy — w*) — a, A7,

where A is the expression in Eq. (4) with w; as input. The expected suboptimality gap conditioned
on all randomness up to timestep ¢ is then

E[lhwesr = w)?] = (1=) ?E [lwn — w|*] = 201 = a0)E[((w, —w*)"Af] + oZE [A7)?].
Observe that under iid uniform sampling, E[A{] = 0, and using Eq. (5) gives us

E[[lwir = w**] = (1 = ap)?ljwn = w*|* + a?(d + 1)y = w*||* + add.
Taking an expectation over the entire history to remove conditioning and let p; := E {Hwt —w* ||2} ,

pre1 = (1= a)?pr + i (d+ 1)p; + afd
= (1 =20y +?(d+2))ps + o2d. (6)
Note that the RHS is convex in oy, we can differentiate to minimize the expected suboptimality at
every iteration p; 11 = E[||wt+1 —w* HQ}:

Pt

t

16

Published as a conference paper at ICLR 2022

This also gives us an expression for p; in terms of oy:

B d
Pt a;l — (d + 2)7
which combined with Eq. (6) gives us
(1 - ag)pr = (1 - @) ——
=(1-« =1-0)————.
Pt+1 t)Pt t a;l—(d—|—2)
Finally, the optimal step-size sequence can be implemented via the following recursion
1 ;= (d+2
S L P i Uk
Q41 Pt+1 L=y
1 d
— =d+2+—=d+2+ ——.
q Po [|lwo — w*||

It is easy to verify that this is indeed a decreasing sequence. If we initialize at wy = 0, then our step
sizes are given by

2
]|

|w*||*(d + 2) + d

o _ Oét(l — Oét)
T a2(d+2)

with ag =

17

Published as a conference paper at ICLR 2022

A.2 CONVERGENCE ANALYSIS: DIMINISHING STEP SIZE

In the main text, our convergence results focused on the constant step size regime for simplicity of
presentation and ease of comparison to prior works, as they often lack diminishing step size results
for permutation-based SGD variants. Here we formally present the convergence rate under our main
Assumption 2 using a diminishing step size sequence. In Theorems 3 and 4 that we present below,
the rate is of the same order as what we obtained under a constant step size (Theorems 1 and 2) up to
a factor of log(T") that typically arises when using a diminishing step size.

Our analysis for the diminishing step size setting is accomplished by breaking the total number of
iterations into phases. Suppose we want to run a total of 7 iterations of SGD updates. We will break
the analysis into I number of phases. In each phase i = 0,...I — 1, we run K@m(9) number of
iterations with constant step size o(*). The step size is decayed at the beginning of each phase. For
this, we define the triplets (a9, m(, K(), where {m("} is an increasing sequence.

Recall that v and @ are constants in Assumption 2. In the non-convex case, the inner interval length
is chosen to be

m®) = [3(® +1)77]21,
where as for the strongly-convex setting it is
m® = [3(® +1)77 . /.

For both function classes the diminishing step-size is set to

; 1
@ — -
o CIm@ @)

A.2.1 DIMINISHING STEP SIZE: NON-CONVEX CASE

Theorem 3 (Diminishing step size: non-convex case). Suppose that our setup satisfies Assumptions 1
and 2, and let € > 0 be any target error. After T iterations of SGD (Eq. (1)) with a diminishing
step-size (Eq. (7)), we can obtain

16 T) LA + C2(3(® + 1)) 2 _O<1og(T)).

? <121 =
1||Vf(wzt)\| S 121089 3(D+1))T+ (12(® + 1)2) /v — 1 T/ 1+

ceeyd —

This implies the number of gradient evaluations to achieve ming ||V f(w;)||* < €2 is

~ o =2047)

T=0().
Proof. To apply Lemma 1 to the iterations within a particular phase ¢, we need

30 < m/? d g
<m an a*6Lm

where we have temporarily dropped the index (i) for convenience. Lemma 1 gives us the following
bound on the objective value between any length-m number of iterations within that phase: for
re{0O,m—1,2m—1,...,(K —1)m— 1},

2
i) < flwr) = FIV)|+ 2P

< f(wr) = “EIVF)| +2C%am! 7,

since the step size is constant throughout one phase. Summing over K such intervals from 7 = 0
followed by a telescope,

K—
- S 19)| < () — Fam 1) + 20 Kam! =
k=0

18

Published as a conference paper at ICLR 2022

We now restore our phase index,

K®_1

@Om@ G 1 N)
ar’m _
DIV Fwmi) 1 < f(wo) = f(wpn g 1) +2C° KD (m)!
k=0

4 K®

= f(wo) — f(Wpo gir_1) + o KO (m D)=

)

3L

where we have chosen the largest possible a(?) = 1/6Lm(for all i. Summing over I phases and
letting A == f(wqo) — f*,

I-1 K®_1 I-1
(2) gy (7) K(z 1 C2))
a'”m
< = (@) (1 (D)=
2 g 2 [Vl <18+ G 3RO)
where the left hand side can be further lower bounded with
71 @) () G 2 I-1

N\

2 ¢ (@) ((1))
< % i v
ISl < 18+ g7 SO,

t:o,,..,

using the inclusion that {0, m® —1,..., K®Om{) — 1}1:01 c {0,...,T — 1}. Now let us choose
m@ = [(3(® + 1))]2!
K® =27,

Here the choice of m(?) guarantees that

om0y = (1@ -+ 1)2)

= (3@ + 1))] 7(2)
> (3(8+1))27° > 30,

Next, observe that for the last term in the previous sum,

I-1
Z K@ (m)=7
i=0

N
._.

f2”1(((3(‘1> +1))72) 7

~ .
(|l
- O

(27 +1)(B(® +1))72) ™

M

~ ﬂ
|
- O

2(27)((3(® +1))772°) 7

IA
vy

2(3(® + 1)) 722279

I
™

=0
=2I(3(® +1))2
Combining with the above,
21 @) @) 202 2
27 min HVf(wt)H <IA+7 I(3(®+1)) = (8)
pard 4 =0,...,T— 3L
Furthermore, using our choice of (%)
71 @))K() 1 =
atm K -
il (@)

19

Published as a conference paper at ICLR 2022

Re-arranging Eq. (8),

61LA 202 3(P 4+ 1)) 2
IV s < HEAXEC TEOTD)
t:O, ,T Z K®

The total number of iterations is given by

T = K@@

~
=

[N
(]
[]

277 - [(3(2 + 1))7772°

I\
<

4
I—-1

> (3(® + 1))% Z o(y+1)i
i=0

=@B@+1)7" > (3(®+1))7"

o+l 1 — 27+1

Solving for I and using lg to denote log,, we obtain

1< (1) W) < (757) w(omrm

Moreover, we can also upper bound 7" using similar arguments,

~
—

T 277 - [(3(2 + 1)) 772"

~
[l
- o

2(217) - 2(3(® + 1))*/2!

IN
I
o

I-1
=4(3(® + 1))% Z 9(y+1)i
i=0
o(v+1)I

= 4(3(@ + 1))

which gives

1 AR |
1> lg T
y+1 4(3(® + 1))%

=T
We are left to bound
I-1 I-1 I—
) ol _q
(1) — i _
D KW =3 [27] Z =i
i=0 i=0 i=0
97/1+~71g(I'T) _
> 7
_(TT) -1
-
7+l _q T /14y 1
_ (4<3<¢+1>>2/~) B
= >

20

2 otv+DI _ ¢ > otv+DI _q

7).

9

Published as a conference paper at ICLR 2022

using our lower bound for I. Substituting this and the upper bound for I into Eq. (9),

2 _ OILA+ 202 1(3(2+1))2
- Yisg KO
1 o+2 6LA + 2C*(3(® + 1)) 2
lg 2/ T 1t~
v+1 (3(®+ 1)) <72~+171 T) 1
4(3(2+1)%/7
27

16) LA+ C?(3(® +1))2
3(+1) 27+1-1 s
(4<3<¢+1>>2/~ T) -1

<121 16 LA+ C?*(3(® + 1))~
=B\B@))T 20 + 1)2) e — 1

A log(T)
—o(tm)

which yields our convergence rate in the nonconvex setting. O

poomin IV F(w) [

§12lg<

A.2.2 DIMINISHING STEP SIZE: STRONGLY-CONVEX CASE
Theorem 4 (Diminishing step size: strongly-convex case). Suppose f is u-Polyak-Lojasiewicz (PL),
and that our setup satisfies Assumptions 1 and 2 Let € > 0 be any target error, and k = L/u be the

condition number of the problem. After T iterations of SGD (Eq. (1)) with a diminishing step-size
(Eq. (7)), we can obtain

flwr) = f* < (2[12H1€;;1q?i 1))2/W>W(A+4u02m) :O(:’}”)'

This implies the number of gradient evaluations to achieve f(wr) — f* < €% is

T=0(7).

Proof. We will begin with the same analysis technique as used in the non-convex case. To apply
Lemma 1 to the iterations within a particular phase 7, we need

1
30 < m'/? d <
m an a_6Lm

dropping the index (4) for convenience and will re-introduce it later when appropriate. Lemma 1
gives us the following bound on the objective value between any length-m number of iterations
within that phase: for7 € {0,m —1,...,(K — 1)m — 1},

2
Fwrsm) < fwr) = 29 f)| + %oﬂm%”

am
< flws) = SLIV S (o) +2C%am!
since the step size is constant throughout one phase. Strong-convexity (or the Polyak-f.ojasiewicz

(PL) inequality) of f implies ||V f(w)||> > 2u(f(w) — f*) for all w € R%. Using this while
subtracting f* on both sides leads to

omi

Pl i) = f < (1= FF5) (Fwr) = 1)+ 20%am! 7.

21

Published as a conference paper at ICLR 2022

Applying this recursively K times gives

amp

fwmg) — f* < (1 - T) (f(wo) = f*) + QCzaml_WKX_: (1 - T)k
k=0

ampu\ K 2 1 amyu\F
< (—T) (f(wo) = f*) +2C"am 72(1—T>
k=0
= (1=) () - 1)+ 20%amt 2
12L amp
1\X
=(1-— —) +4CPm !
(1=) lun) = £+ a7y,
where we have used
amp . p
<— = —— < —<1 < L.
= 6Lm 2 —12L< WH=
We now restore the phase index. Letting T; = Z K (i) be the total number of iterations

0
passed after i phases so that " = T}, and A, = (wt)
(

0
1\" aic?
f(sz‘Jrl) - f* < (1 19 Ii) T + 7(7’)1(1))_7,

Now let us choose

m® = [(3(@ +1)7" -]

KO = K =[12x] = (@1 > 12.

Here the choice of m(") guarantees that
. . . v/2 i /2
(m@)7 = (1@ +1)7 - e7) " = (B@+1)7) e’ > 30,

Using the constant K across all phases, our recursion can be simplified to

K
flwr,,) =1 _(11> ATHFZLSQ(m(i))v

12K
Since this holds for any ¢« = 0, ..., I — 1, applying recursion over I phases yields,
402 I—-1))
f(wT) _ f* < (1 _ p)KIAo + 72(1 _ p)Kl(m(I—l))—'Y (10)
i=0

where we defined p := 1/12s. Observe that for our choice of m() and K,

I—-1 I—-1
T=> K9m® =K [(3(2+1))7" e/
1=0 =0
I—-1
<KD 23(@+1)7 e
=0
I—-1
=2K(3(®+ 1)) e
=0

2/7 2/’Y
_ 2K(3(®+1)) (€ —1) < 2K(3(®+1)) s

e/ —1 et —1 ’
which implies

I1>~l1 —e/ L T
v 1o

22

Published as a conference paper at ICLR 2022

and so

(1 — p)X! < exp(—pKT) < exp| —pK~ - log el/W—_IT
- - 2K (3(® + 1))/~

note that
pK~ =p[
This gives us

el/w -1 - .

Substituting this into Eq. (10),

61/7—1 - 402 I—1 K (I)
o px <A s Tf'y i 1— 7 —1 77'
) 5" < 8o gy T o)
For the last term,
I-1 I—-1 ‘
(1=)M (mI=)77 = 37 (1=)R 1)) e)
=0 =0
I-1
< 3@+ 1) 3 (1 - p)Fiei=t
i=0
I-1

= (3(@+1)

(1)

12)

Substituting these into Eq. (12), and using Eq. (11) to bound (1 — p)* 7 gives us the convergence rate

for strongly-convex functions using a diminishing step size:

. Ac? L (1=p)"!
flwp) = f* <A1 - p)F + 7(3(‘13 +1)) QW
KI 4C%\ (3(2 +1))2
=(l-o) (A+ u) e(1—p)k

e —1 - AC% (3(@+ 1)\,
: <2f12f-ﬂ (3(@ + 1))%) (A T e = pen])T

-o{2)

23

Published as a conference paper at ICLR 2022

A.3 PROOF FOR LEMMA 1

We now prove the lemma that bounds the evolution of SGD over a length-m analysis phase. This
lemma is the key to our convergence analyses in both the diminishing and constant step size regimes.
Before we proceed, we first state and prove the following bound on the gradient error when scaled by
a nonincreasing sequence.

Lemma 2. Suppose Assumption 2 holds. If {p;} is a deterministic, nonincreasing, and nonnegative
sequence, then

T+m—1 2

D pe(V(wriz) = Vf(wy))

t=1

< p2-m? T (CF 4 @2V f(w)).

Proof. Let By = py — pry1 fort € {r, 7+ 1,...,7+m — 2}, and let B4 m—1 = Pr4m—1. Observe
that these are all nonnegative, and

T+m—1 2

> o (Vf(wriz) = Vf(w,))

t=1

T+m—174+m—1 2

S Y B (Viwea) — Vi(w,))

t=1 k=t
T+m—1 k 2
S S B (Vi (wrian) — Vi(w,)
k=1t t=1
T+m—1 ﬁ 2
- D SO (9 i)~ V()
k=1 T t=r
Applying Jensen’s inequality using Zk+m ! Bk = pr»
T+m—1 2
S o (Vi) - Vfw,))
t=71
T+m— 15 2
<p2 Y ZNf(wT;xt)—Vf(wT))
k=1 T lt=r
T+m— 1ﬁ k 2
= pT Z k(T+ 1 ap—— Z Vf(wr;2) — Vf(wr))
k=1 T t=T1

Applying Assumption 2 on the squared norm,
2

T+m—1
. o (Vf(wriz) = Vf(w,))
t=1
_ T4+m—1 ﬂk .) 1 02 @2 v 9
<p? kZ::T pr(-7+1) m(+ @7 f(wr)H)
T+m—1 ﬁ
=i Y0 kT)P (O @V))
T—fr_nT—l ﬂ
<p Y oEmt T (O @)
k=1 T

= p2-m* 7 (€2 4 @V (o))

which is what we wanted to show. O

24

Published as a conference paper at ICLR 2022

We now recall the statement for Lemma 1. In the main paper, we state the lemma with constant step
size. In the following proof, we prove it holds for non-decreasing step size, where constant step size
will hold naturally as a special case. For this, we define n := Tm=l

t=r1 Q.

Lemma 1. Suppose our setup satisfies Assumptions 1 and 2 and that we use a constant step size
« For all timesteps T > 0, let m > 0 be some integer such that 3a7m1*7/2<1> <n< 6% Then the
objective at timestep T + m is bounded by

flwrin) < 1 07) = FIV) + a7 C2

Proof. Letn and g denote

T+m—1 T+m—1

1
n = Z oy and g::; Z a;V f(we; x¢).
t=71

t=1

This means that w;,,, = w,; — ng. From Assumption 1 (L-Smoothness),

fwrim) = f(wr —ng)

2
< F) 0 (9 f(wr).0) + E gl

2
n 2 My w2 N 2 L, o
= 1 (we) = 191wl = 2gl> + Llg = V £wn)l” + L= gl
n 2. N 2
< 1 (we) = N9 S o)l + Llg - V#w)IP,
where the last inequality follows because we assumed nL < /6 (< 1). Next, observe that

n 2
g = V£ (wr)]

= %Hng NV f(w.)||

2

1 T+m—1
= Zj at (Vf(ws @) = Vf(w,))
1 T+m—1 2 1 T4+m—1 2
<= > @ (VH(weia) — Vi(w,)) +5 > (Vi) — V(wesay))
t=1 t=1
To bound the second term,

1 T+m—1 2 T+’I7’L71a 2
Y a(Viwsa) = Vilwrsz)|| =0 > ﬁNf(wt;xt)fo(wT;xt))
= 7'+:n:—7—10l

<n >y #II(Vf(wt;xt)—Vf(wT;xt))Il2
t=71
T+m—1

< Z o L ||lwy — wo||%.
t=1

Combining the above,

2

T+m—1 T+m—1
Sllo = Vi) lP < I 30 o (VH(wriz) = Vi) + 3 alw -l (3)
t=7 t=71

Applying Lemma 2 on the first term in Eq. (13) gives

T+m—1 2

> an(V(wriz) = Vf(w,))

t=71

1

n

—_

< 2022 (2 2 2
< odm? (€7 4 @V ()).

25

Published as a conference paper at ICLR 2022

For the second term in Eq. (13),

2

T+m—1 T+m—1
Z atL2||wt - wT||2 = Z O‘tL Z a,Vf wwxu)
t=1
T+m—1 2
<3 Z atL2 Z au vf wu, l'u) Vf(w'r§ xu))
t=1 u=T
T+m—1 t—1 2
+3 Z o L? Z ay (Vf(weszy) — Vf(wr))
T+m—1 2

+3 Z Oth2 Zauvf w‘r
T+m—1

<3 (zau) Sl — P
t=71

U=T

T+m—1
+3) al?atm? (2 + 82V f(w,)|?)
t=1

T+m—1

+3 Z aL? (Zau> IV f(wT)||,

where the second term in the last inequality follows from Lemma 2. Continuing,

T+m—1 T+m—1 t—1
Z oy L2 |lwy — w,|* <3 Z atL4nZau||wu —w,|?
t=T1 t=1 U=T
T+m—1

+3 Y alladmt (CF 4 @2V f(w))
t=1

+ 307 L2 ||V £ (w,)|*
T+m—1

=3°L% Y oL |wy — w,|?

t=1
+3L%a2m? 7 (€2 + 0%V f(w,))
+ 3P L2V £ (w.) %
This implies that

T+m—1
(1—3n*L?) Z o L?||wy — w,||> < 3L2C?na?m?

t=1

(3L + BLPnaZm? 192 ||V £ (w,) 2

2
And because by our assumption, aZm?~7®? < L it follows that

T+m—1
1
(1=37°L%) > athnwtfanQs3L2c2na3m2*”+§0n3L2||Vf<wT>||2.

t=1

Since we also assumed 7 < £, it follows that 3n*L? < L, and so

6L’

T+m—1
1
(1‘12) S2 o —w | < BLACHa2m Y + Sl ()|

t=71

26

Published as a conference paper at ICLR 2022

which gives

T+m—1

12 _ 12 5
> aulfun = wrl® < g7 320 el 4 17 il
36

_ 10
= T LACHnalm® T+ o[V f (w1

So, putting this all together,

1 _
Fwrim) < f (wy) — gHVf(wT)H2 + Ho[ﬁm2 g (02 - <I>2||Vf(w7)||2)
36 50 o 9., 10 2
+ 11L Cnazm + 9977‘|Vf(w7')H
. 7ﬂ 2 l 2, 2—v 2
= [(wr) = IV fwr)ll + e c
1
+ o adm Y f(w)|
36 50 o 9., 10 2
+ 11L Cnazm + 9977‘|Vf(w‘r)H
1 _
< f(wr) = 2V Fw,)|* + e

1
+ 5l V£ ()l
22, 22— 10 2
+ALPCalm® ™ + o[V f (w,)|

1
= [(wr) = IV S ()P + L cdm?C?

21)
S5nllV ()]

1 -
< S (wr) = IV S) [+ e3P C?

+4L2C*nam*~7 +
v L erazm 4 L v w2
4n T 4 T

2 -
< S () = IV S)| + Zadm?C2,

This is what we wanted to show.

27

Published as a conference paper at ICLR 2022

A.4 CONVERGENCE ANALYSIS: CONSTANT STEP SIZE

A.4.1 CONSTANT STEP SIZE: NON-CONVEX CASE

Theorem 1 (Non-convex case). Suppose that our setup satisfies Assumptions 1 and 2, and let € > 0
be any target error. Using SGD (1) with a constant step size o = 6% ’7(40/6 + 3@)2/”1 ' the

number of steps T needed to achieve min,—q.... 7—1||V f(w;)||* < €* is at most
_ [48LA ac M _p(cLa | e La | c 2
T - ’7 €2 —| : ’V(T + 3@) —‘ - O (62+2/'Y + €2 + 62/,Y + @ /—Y .

Proof. To satisfy the requirements of Lemma 1 in the constant step size, constant m case, we need
1
3am!~"2® < ma < —.
- ~ 6L
This breaks apart into first a constraint on only m:

30 <m"?, (14)

and then a constraint on « in terms of m:

< —.
“=6Im
In the nonconvex setting, we invoke Lemma 1 followed by summing up over K phases and telescop-
ing,

am =1 2K
4 Z ”Vf(wmk)”2 < flwo) = f* + %QQWLQ_WCQ
k=0

= f(wo) — f* + 2Kam!'~7C?,

which gives a rate of

(f(wo) — f*)

1= 4
2 —
= Y IV |P < =R s,
k=0

If we want to minimize the right side, observe that we will always want to set « as large as possible,
i.e. set & = !/6Lm. This gives

K—-1 N
NI P < P T
k=0

Now, for this to all be less than €2, it suffices for

24L(f(wo) = f*) _ € €
<5

The former occurs when

while the latter happens when
(15)

If we let A = f(wp) — f*, using Egs. (14) and (15) and taking the minimum m and K required, we
can bound the number of iterations as

2/,Y
T =mK > {48?} : wa@) w .
€ €

So,
C*"LA LAY C*
— 2/,Y
T_(’)(EH% 2 —1—6% +o),
where we suppose that y acts as a constant. O

28

Published as a conference paper at ICLR 2022

A.4.2 CONSTANT STEP SIZE: STRONGLY-CONVEX CASE

Theorem 2. Suppose that f satisfies the j-PL condition and our setup satisfies Assumptions 1 and 2.
Let € > 0 be any target error, and k = L/u be the condition number of the problem. Using SGD
(1) with a constant step size a« = 5 [(8C?/(ue?) + 992)/7 | ™", the number of steps T needed to
guarantee f(wr) — f* < € is at most
1/~ -
T = [12xl0g (22)] - {(802 +90?)] = O (2 4 k0?7 4 1)

ne? pl/ve2/~

Proof. The strongly convex setting has the same constraints on m and « as the non-convex setting.

Recall that p-strong convexity or u-PL of f implies that for all z, ||V f(x)|* > 2u(f(z) — f*).
Applying this to the result of Lemma 1 gives
amj . -
f(w'rer) < f (w'r) - T (f(wr) - f) + 2am1 7027
which is equivalent to
amii

fwrim) — 5 < (1 - T) (f(w:) = f*) + 2am! 7 C2.

Applying this recursively over K intervals of length m starting from 7 = 0,

K—1
* amy) K * — amp*
f(wmr) = 7 < (1_7'“) (f(wo) — f*) + 2am'~7C? Z (1—%)
k=0
< oxp (=25 () - 1) + 20mi 03 (1 2
B 2 i k=0 2
= exp (=B (o) - 1) + 20m' 0 (- (- %))71
2 0 5
= exp (- amMK) (f(wo) — f*) + 2am*~7C? . 2
2 ami
ampK 402
=ex (— >) (F(wo) = f*) + ——m™"
As in the non-convex case, it best advantages us to set « as large as possible. Setting &« = 1/6Lm gives
. K o, 4c?
Fwmi) = f7 < exp <_{L2L) (f (wo) = f7) + - v,

For this to be less than €2, it suffices for each of these two terms to be less than 62/2. In the latter case,
we would need

—<m. (16)
L€

The former case holds when
121 2A 2A
K>—log|—) =12xclog | — |,
I €2 €2

where k = L/u. Applying a ceiling, using the minimum requirement on K and m from Eq. (16)
above and Eq. (14) required in Lemma 1, we can lower bound the total number of iterations as

2 Y~
T =mK > {12;@10;?; (%ﬂ ' Kicz+9<1>2> w
€ €

Ignoring logarithmic terms gives

2\ Y~
T=0 (n (C;) +/$<I>2/V> .
L€

29

Published as a conference paper at ICLR 2022

A.5 JUSTIFICATIONS FOR ASSUMPTION 2 UNDER VARIOUS EXAMPLE ORDERINGS
A.5.1 PROOF FOR PROPOSITION 1 (ARBITRARY PERMUTATION)

Proposition 1. Let Assumptions 1 and 3 hold, and suppose that we are using a permutation-based
method of sampling, that is, any method such that Ty, Tkn+1,- -, Tkntn—1 IS @ permutation of
@ ax® 2™ for all epochs k > 0. Any such method satisfies Assumption 2 with v = 2,
C? = n2A? and 2 = n? B>

Proof. This result follows trivially from Assumption 3. Consider an arbitrary sum of gradient errors
going from 7 toT +m — 1:

T+m—1

Z vf(wT;xO'(t)) - vf(wT)a

where o (t) is the index into the training set given by the permutation o used at time step ¢. Since the
interval {7,7 + 1,...,7 4+ m — 1} is arbitrary, this m can potentially be greater than n, the epoch
size. We can split this interval up as follows. Let 71 be the first epoch boundary in the interval, such
that all ¢ going from 7 to 7; — 1 are within the same epoch as w,, or else 71 = 7 4+ m if there is no
epoch boundary in the interval. Let 75 be the last epoch boundary in the interval, such that all ¢ going
from 75 to 7 +m — 1 are within a later epoch than w, (it may be the case that 7y = 75). Then the sum

7271

> V(Wi zew) — V(T)

t=71

must be zero, since this interval goes over full epochs. This leaves us with

T+m—1
Z V f(wr; xo(t)) - Vf(ws)
t=T1
T1—1 T4+m—1
< Z Vf('LUT; xa(t)) - vf(u]‘r) + Z vf(w‘r; mo(t)) - Vf(w-,—)
t=71 t=72
1/2
< (A4 BV (w)]*)
where we have used the fact that the intervals {7,..., 71} and {79, 7 + m — 1} are of length at

most |n/2] (if such interval is of length greater than [n/2], then bounding its norm is equivalent to
bounding the sums of the remaining terms, for which there are at most |n /2] of them). Therefore

T+m—1 2

1 1
— 3 Vi (wriaew) — Viw)| < —n?(42+ BV (w,))).
t=1

and so Assumption 2 is satisfied with v = 2, C? =n2A2 and ®2 = n?2B2. O

A.5.2 PROOF FOR PROPOSITION 2 (SHUFFLE ONCE)

Proposition 2. Suppose that we are using the shuffle once variant of SGD to learn over a region
B € R? of radius at most R, such that the iterates w; are guaranteed to remain within this region.
Assume that for all w € B and all examples x in the training set of size n, Assumption 1 (L-
Smoothness) and Assumption 3 hold. Then with probability at least 1 — p, Assumption 2 holds with

v =2, C? = O(dA%(n + B?)), and ®*> = O(ndB?).?
Proof. We begin by invoking Lemma 6 (Permuted vector Hoeffding inequality) with
Vi(w;z;;) — V(w)
o\ 1/2
(42 + B2V f(w)|*)

(A

3The probability p is only present in log terms in these expressions, so it does not appear in the O.

30

Published as a conference paper at ICLR 2022

where we use z; ; to denote the j-th example after time step 4, forall i € {1,...m}, j € {1,...,n},
with n > m > 0. Note that here we are using a fixed w € B that does not depend on the permutation
o used in shuffle once. Clearly, Z};l X;,; = 0 for all 7 due to the periodicity in shuffle once, and

[IX: ;1| <1 by our assumption. Therefore the requirements of Lemma 6 are satisfied, which gives
the following high probability bound for some € > 0 on any sequence drawn without replacement:

m 2

Z (w; Toy) — Vf(w)

2 2 2 2 2 62
A + B Vf < X —_ .

Using the periodicity property of shuffle once, i.e. if ¢ is the drawn permutation at the beginning of
training then o (t + n) = o(t), which allows us to arbitrarily shift the starting time step in the above:

T+m—1 2

> VHwizew) - V(w)

t=r1

2
2 (42 2 2 < 902 €
¢ (A + B2V f(w)]|) < 2 exp< 32m>.

Consider an arbitrary interval of length m out of the permutation. As all of the »(»—1)/2 intervals are
equivalent to an interval of size at most |?/2], by the sum to 0 property, we only need to consider
intervals with m < n/2. This gives us

T4+m—1 2

> Vitwa) ~Viw)| 2 (42 B <otep (1),

16n

By a union bound across all intervals we have

T+m—1 2

P|3rmeZ, Z Vf(w;zo)) — Vf(w)

e (A% + B2V (w)|*)

<62n2exp —i .
- 16n

Unfortunately, we cannot take a union bound over R™ or B (or even just over {wy, ..., wr}), since
the set may contain iterates visited by shuffle once that depend on o, and thus Lemma 6 may not hold.
Instead, suppose that we cover the whole region B with balls of radius . We will be able to do this

with (1 4 2R/5)* balls by Lemma 7 (e-net lemma). So, if the centers of the balls form a set W, then

T+m—1 2

> VI ae) — V()

t=1

P(3rmez wew, > & (A2 + BY|Vf()|?)

d 2
2R €
<en? (14 = —-—.
_en(+5)exp(1671)
Note that the centers we use to cover the region is completely independent of the running algorithm,

therefore the union bound over Lemma 6 can be applied. Next, consider some w, that is not
necessarily the center of a ball. The function

T+m—1

Z vf(w'r;ma(t)) - Vf(w'r)

t=1

is Ln-Lipschitz continuous, because each of the components is L-Lipschitz, and we can sum up only
at most 7/2 of them. Let &> € W be such that ||w, — w|| < §. Adding and subtracting V f (w; 0 (;))
and V f(w), applying triangle inequality followed by Lipschitz continuity, we have

T4+m—1 T+m—1
Z Vf(wr; Tow) — Vf(wr)|| < 2Lnd + Z V(05 241)) — V()
t=T1
< 2Lns+ e\/A2 + BV L) (whp.)

31

Published as a conference paper at ICLR 2022

Adding and subtracting V f(w,) from V f (i) and bound using ¢ and Lipschitz continuity again,

T4+m—1

Z vf(w‘r;xa(t)) - vf(w‘r)

< 2Lnd + e\ A2 + B2V f (i — Vf(w,) + VF(w,))|

< 2Lnd + €\ A2 + 2B 126 + 287V f(w,))

and consequently

T+m—1 2

> Vi(wrizow) — VF(w,)

t=1

< ALn%5% 4 2¢2 (A2 +2B%L6° + 2BZIIVf(wT)HQ) :

Note that this inequality will fail to hold with probability at most

2R\ ¢ €2
2,2 _
n <1 + 5) exp (16n> .

If we want this to fail with probability less than some p, it suffices to set

2,,2 2
€2 = 16n <log (61:) + dlog (1—&-?))

This gives
T+m—1 2
> Vi(wrzow) — Vi(w,)|| <4Ln?6
t=1
e2n? 2R 2
+32n - <log () + dlog <1 + 6)) : (A2 +2B2?L?6% 4 2B?||V f (w,)]||) :
p

If we set 6 such that L2nd? = A2, then we can bound this with

T+m—1 2

Z vf(wT; xo(t)) - vf(wT)

*n? 2RL 24°B?
+ 32n - (log <e;z) + dlog (1—&-RA\/H>) : <A2 S 1 2B?|Vf(w,)|)

which gives

< 4nA?

T+m—1

Z Vf Wr; Ty t)) Vf(’U)T)

3 9 22
< 327@ tog (1) 4 dtog (1+ 2FEVRNY (42 4 2B om0 p) P
m?2 P A "

Hiding logarithmic terms involving n, p, R, L, A, the shuffle once setup satisfies the requirement of
Assumption 2 that with probability at least 1 — p,

- d 2A2B2
0] (”2 <A2 T T 2BQ||Vf(wT)||2)>
m n

0 (45 (nas? + 20428 1 20|V ()))

1

T+m—1

2
y > Vi(wriaow) - Viw,)|| =
t=1

~ (1
O (mQ (dA2(n +2B?) + 2ndB2||Vf(wT)2)> ,
and so the parameters are v = 2, C? = O(dA?(n + B?)), and 2 = O(ndB?). O

32

Published as a conference paper at ICLR 2022

A.5.3 PROOF FOR PROPOSITION 3 (RANDOM RESHUFFLING)
We first introduce a lemma that bounds the distance between iterates obtained from SGD with random
permutation and that obtained from deterministic gradient descent, over one epoch.

Lemma 3. Consider a single epoch of SGD with constant step size o > 0, where the examples come
from a random permutation over the training set. Let Assumption 1 (L-Smoothness) and the bounded
gradient error Assumption 3 be satisfied. Without loss of generality, assume that the epoch starts at
time t = 0 at wy. Let the sequence u; be defined by uy = wo and

Ut41 = Ut — avf(ut)v
while
w1 = wy — oV f(wyg;)

Sfor some x; chosen from the permutation. With probability at least (1 — ¢) it will hold that for all
T e{1,...,n}, if we set

1 1
o < min , ,
B {646(e2 +1)BnLlog (252) " 2nL }

then
2

lwr — up|? < 128a2n(e? + 1)2 - log (26 ") (A2 + B2e2||Vf(wT)H2) .

Proof. Given our setup, observe that we can write the difference between these sequences as

Wil — U1 = Wy — up — o (V f(wgs) — Vf(uy))
=w —up — o (Vf(wiae) = V(ugae)) — a(Vf(us) — V()

such that summing this up and using wy = ug gives

T-1 T—1
wr —up = —a Y (Vf(wiz) = Vf(uiz)) —ay (Vf(usw) = Vi),
t=0 t=0
and so
T-1 T—1
|lwr —ur|| <o ZHVf(wt;mt) Vfugze)| + Z V f(ug;) Vf(ut))H-
t_Toil - t=0
<aL) flw —wl|+ o> (Vf(usw) - Vf(ut))H-

t=0 t=0

Recall the update rule of u;, with Assumption 1 (L-Smoothness), we obtain

IV (uerr) = V()| < L[V f (ur)]]

By the reverse triangle inequality, this implies

IVF ()l <(1 = aL) "IV £ (urs)|
IV F(urr) || <+ aL)|[V f(u)l],
which further implies forany 7' € {1,--- ,n}and ¢t € {0,--- , T — 1},

IV (un)ll <= aL)™" |V f(ur)]|

— (14 125) 19 s

<o (1227) 19)]

<exp (2aLn) ||V f(ur)|
<e|Vf(ur)ll,

33

Published as a conference paper at ICLR 2022

while forany t € {T'+1,--- ,n},
IV F(un) || <1+ aL)" [V f(ur)]
<el|Vf(ur)l,
where we apply the condition that o« < 1/(2nL). For a given T', consider the following vector set
Vf(U],ZCj)—Vf(U]) 7 E{O,"',’I’L},
VA2 + B2e2||V f(ur)]|
it can be easily verified that they sum to zero.

j =

Now we apply Lemma 6 (Permuted vector Hoeffding inequality) , for any v > 0,
T—1

p (D (VH(ussze) = Vf(ur))

as T' < n. Now, this holds for just one 7'. By a union bound,

t=0
T-1

2
> /A2 + B2e2|Vf(uT)||2> < 2¢% exp <_7>

< 262 exp <—;;n>
2
> (Vi) = Vfw)| > wQT> <2y (~11).

where Q1 = /A2 + B2e2||V f(ur)||2. Now, if we set v such that

2 2

vy 9 2e n
2¢2) = =32n1 -
enexp(32n> 6 = 7 3nog(5),

P (EITG{l,...,n}7

then we get that

T-1
P <3T e{loonb | D (Vf(usz) = V(w))|| > ’YQT) <94
t=0
In this case, we will have that with probability at least (1 — ¢),
T-1
lwr —url < aL 3w, — uell + a1Qr-
t=0
If we let pg = 0 and
T-1
pr = al Z pi + ayQr,
t=0

then ||wr — ur|| < pr. Here, if T > 0,

pr+1 — pr = aLpr + ay(Qr+1 — Q1),
on the other hand, obviously p; = ayQ1,
T—1

pr =0y Z(l +aL) T F Qi1 — Q)

k=0

T T-1
—ary (Z(l +al)TFQu =Y (1 + aL)T"“—le)

k=1 k=0
T-1 T-1
Sa’y(l—kaLz (1+aLl)" Qi - Z (1+aL)™* 1Qk+QT>
k=0 k=0
<ay (aLe“2 > Qi+t QT>
k=0
<ay(e? +1)Qr

oy (e + 1)y A2 + B2e2|V f(wr) |
<ay(¢? + 1)(A+ Be|[V f(wr)])):

34

Published as a conference paper at ICLR 2022

Put it back we obtain
lwr — url|l <ay(e® +1) (A + Be||V f(ur)|)
<ay(e? +1) (A + BeLllwr — ur|l + Be|[V f(wr)l]),
which gives
(1= ay(e* + 1)BeL)|lwr — ur|| < ay(e® +1) (A + Be||Vf(wr)l]).
If we require

1

a < 02
64e(e? + 1)BnLlog (25™)

Squaring and substituting the value of y gives

2en
0

with probability at least (1 — 0). O

lwr — uT||2 < 1280z2n(e2 + 1)2 -log () (A2 + BQeQHVf(wT)HZ)

We now provide justifications to Assumption 2 for the random reshuffling scheme.

Proposition 3. Suppose that we are using the random reshuffling variant of SGD. Assume that for all
w € R? and all examples, Assumption 1 (L-Smoothness) and Assumption 3 hold. For some p € (0,1),

set the constant step size to satisfy o < (max {1460BnL -log (462T/p) ,2nL})71. Then with

probability at least 1 — p, Assumption 2 holds with v = 2, C?> = O(nA?) and ®* = O(nB?).

Proof. For some v > 0 (but different from the v of Lemma 3, consider the event that for some
specific epoch k, for some w, € {wo, w1, ..., Wyp—1)} U {uo,u1,...,u,}, where the u; are the
from Lemma 3 for epoch k, and for some 7 and my, such that n(k — 1) < 7 < 7+ my, < nk,

T+mp—1

Z Vf(wﬂ'? xa(t)) - vf(wT)

t=1

< /42 + B2V f(w,).

Since all the ;) are from the k-th epoch, but w; is independent of any randomness in the k-th
epoch (as it is either a point visited in a previous epoch, or a value from the u sequence which
depends only on the position at the start of the k-th epoch and not on any k-th epoch randomness), it
follows that we can apply Lemma 6 (Permuted vector Hoeffding inequality) on either this sum or,
alternatively, the terms from epoch & but not in the sum (the terms left out) to get that

d

As my, < n, it follows that
P (> 7/ 42 4 lelvf(wT)HQ)
2
Y
< 2¢2 - .
_—e

Now, by a union bound the probability that there exists some 7, w,, and my such that the average
gradient error is large is bounded by

p<a

T4+my—1

> Viwrizew) = V(w:)
t=1

> /42 + BQHVf(wT)IIQ)

2

v
< 2¢? - :
= exp(32min(mk,nmk))

T4+mi—1

Z Vf(UJT, xa(t)) - Vf(w‘r)

t=1

T+m—1

Z Vf(wr; Tow) — Vf(w)

> M/AQ + BQIIVf(wr)IIQ)

2
< 2e*nT? _),
< 2e“n exp(T6n

35

Published as a conference paper at ICLR 2022

where T is the total number of iterations across all epochs (and we assume that we finish all epochs
so n divides T"). This follows from the fact that there are at most 7" such 7 that we could take on, at
most 7" values of w, that can be adopted for each, and at most n values my, can take on. If we set ~y
such that

2 4 2 T2
2e2nT? exp (—7> 2 = *yz = 16nlog (en) , (17
16n 2 p

then with probability at least (1 — »/2), it will hold that for all epochs, w., 7, and my,

T4+my—1

Z Vf(w'r; xo(t)) - Vf(wv')

t=1

< 9y 42 1 B2V f(w,) ()

Additionally, set the ¢ in Lemma 3 to be P7/27. By a union bound on the result of Lemma 3, across
all 7/n epochs, with probability at least (1 — »/2), it must follow that

42T
wp — ur|® < 12802n(e? +1)2 - log (e) (A2 + 3262||Vf(wT)||2>) (19)

for the corresponding u; sequence for all epochs. Therefore, both of these inequalities Eqgs. (18)
and (19) hold together with probability at least (1 — p).

Now, consider an arbitrary sum of gradient errors going from 7 to 7 + m — 1. Note since the interval
here is arbitrary, this m can be different from mj and potentially greater than n. We can split this
interval up as follows. Let 7 be the first epoch boundary in the interval, such that all ¢ going from 7
to 71 — 1 are within the same epoch as w,, or else 71 = 7 + m if there is no epoch boundary in the
interval. Let 7 be the last epoch boundary in the interval, such that all ¢ going from 75 to 7 +m — 1
are within a later epoch than w, (it may be the case that 7y = 79). It follows that

T4+m—1
Z V f(wr; CEo(t)) - Vf(wr)
t=1
T1—1
< Z vf(wT;xa(t)) - Vf(wT)
t_‘r‘;fl T+m—1
=+ Z vf(w‘r;xa(t)) - Vf('LUT) + Z v.f(w‘f';xa(t)) - Vf(wT) :
t=71 t=To

Observe that since the second of these sums must go over some number of full epochs, its value must
be 0. Therefore,

T+m—1

D VH(weizow) — VE(w,)

-1 T+m—1
<D0 VH(wrsagw) = V)| + || D Vi wriagw) = Viw,)|.

Observe that the term in the first sum must be »L/2-Lipschitz continuous in w, because it can be
written as the sum of at most | /2] terms each of which is L-Lipschitz (either as the actual terms of
the sum, or else the terms left out of the sum). So, add and subtract V f(u,; 2,(+)) and V f(u,),

T+m—1

Z vf(wT; xo’(t)) - vf(wT)

t=1

< nlLfjw; — ur||

T1—1 T+m—1
+ Z vf(u7-§xo(t)) = Vf(ur)|| + Z vf(wﬂxo(t)) = Vf(w)|-

36

Published as a conference paper at ICLR 2022

Now applying Eq. (19) on the first term and Eq. (18) on the last two terms gives

T+m—1

Z vf(w7'§ xo(t)) - Vf(UJ-,—)

t=r1

2
<nL- \/128a2n(62 +1)2-log (46T> (A2 + BQeQHVf(wT)HQ)
b

294/ 42 + B2V f(w,)|”

Squaring both sides for simplicity, we can bound this with

T+m—1 2

Z vf(wﬂ xa(t)) - vf(w‘f')

t=1

42T
< 2300 122 4 17 log (1) (42 4 B2V 1w,

+ 892 (A% + B[V f(w,)|),
where we have also used Eq. (17) for . If we apply our requirement that aLn < 1/2, we get

T+m—1

S i))| <6tn 17 g (2T (4 B2 e
) = VA lwr)| < 6an(e 417 dog (=) (424 B2V f(w,)|?)
t=1

4e2nT?
+128n(A% + B?|V f(w,)|?) - log (<z) .
It follows that for random reshuffling with probability 1 — p, if we set

1 1
64(e2 + 1)BenLlog (%> "2nL

2 —1
= {max {1460BnL log <4€ T) ,2nLH ,
p

random reshuffling satisfies the requirement of Assumption 2 with v = 2, C? = @(nAz), and
®2 = O(nB?), where O(+) hides logarithmic terms in n, T, p. O

o <min

A.5.4 PROOF FOR PROPOSITION 4 (RANDOM RESHUFFLING WITH DATA ECHOING)

The proof for Proposition 4 is nearly a repeat of the random reshuffling proof in Proposition 3. The
trick is to re-define an epoch when data echoing is used. Instead of referring to an epoch as a random
permutation of the n examples in the training set as in vanilla random reshuffling, here we define the
cn samples as an epoch, where each example o (i) is repeated ¢ times. For instance, let ¢ = 3, then
the k-th epoch with permutation oy, is given by the sequence

o Top (1) Lo (1)) Lo (1)) Tog(2)s -+ -y Lok (n—1)) Lop(n)s Lok (n)) Log(n)s -+ - -

examples used in epoch k
As aresult of this redefinition, Lemma 3 needs to be modified such that wherever n appears, we now

need cn. We omit the proof for the following lemma as it is a trivial adaptation from that of Lemma 3.

Lemma 4. Consider a single epoch of SGD with constant step size o > 0, where the examples come
from a random permutation over the training set, each echoed c times. Without loss of generality,
assume that the epoch starts at time t = 0 at wq. Let the sequence u; be defined by vy = wg and

U1 = up — aVf(ug),

37

Published as a conference paper at ICLR 2022

while
wt+1 = Wt — OéVf(’LUt, .'Ift)

for some xy chosen from the permutation. Under the same assumptions as Lemma 3, with probability
at least (1 — &) it will hold that for all T € {1,...,cn},

2¢?cn

|lwr — uT||2 < 128a%cn(e? 4 1)% - log () (A2 + BQeQHVf(wT)Hz))

The justifications for Assumption 2 for the random reshuffling with data echoing scheme can also be
obtained from Appendix A.5.3 similarly. At appropriate places one should invoke Lemma 4 instead
of Lemma 3, and replace n with cn. We omit the proof as it is again a trivial modification.

A.5.5 PROOF FOR PROPOSITION 5 (MARKOV CHAIN GRADIENT DESCENT (MCGD))

To justify Assumption 2 for MCGD, we will first need the following lemma.

Lemma 5. Let F' be any vector-valued measurable function, and let xg,x1, ... be a sequence of
samples from a Markov chain with mixing time t,,;; and stationary distribution 7 starting from an
arbitrary initial distribution. If the function is constrained such that ||F(x)| < 1 for all z, and if we
also have Ex . [F(X)] = 0, then for any ¢ € (0,1),

2
P < > Btixt [2m log (2§>> <4,

Proof. Consider the Doob martingale

m—1

> F(x)

=0

m—1
Wi=E|> F(z) |]-"k] :
i=0
where Fj, contains all randomness up to timestep k, i.e. zg, 1, . . ., Tk, and so (as usual for a Doob

martingale) the martingale property is trivially satisfied using repeated conditioning:

=0

m—1

> F(xi) | Frp

=0

E[Wit1 | Frra] =E |E | Fr

Observe that the sum we want is W,,, = E [Zl _0 F(z;) |]-"m} = Z:’;’Bl F(z;), and that this sum

has increments

3

Wig1 — Wy =E

m—1
Y F(@) | Frp

Z_: F(z;) | fk]

1=0 =0
k41 m—1
=E|> F(i)| Fepa| +E| > F(xi)|]-“k+1]
1=0 i=k+2
k m—1
~E|) F(i) | Fx| ~E| > F(x) |]-"k]
=0 i=k+1
k+1 k m—1 m—1
=Y F(z) =Y Fla)+ Y E[F(z:)| Faral— Y E[F(z:) | Fi]
=0 =0 i=k+2 i=k+1
m—1
= F(z)41) + E[F(x;) | Frya] — Z E[F(z;) | Fi]-
i=k+2 i=k+1

Now, observe that since the mixing time of the Markov chain is ¢y, for any ¢ > k, if i denotes the
distribution of z; conditioned on Fj, then using results from Levin & Peres (2017, Section 4.5)

= 7|y < 27 LR /tmin]

38

Published as a conference paper at ICLR 2022

It follows from this and the fact that F' is bounded that
IE[F(z:) | Fill] < 27070/l

Therefore,
m—1 m—1
S BIF@) | Fonl| < Y IEF@) | Fell
i=k+2 i=k+2
m—1
< Z 9= L(i=k—1)/tmi]
i=k+2
o R R
i=k+2

and similarly for the last term. It follows that
[Wit1 — Wil < 4tmix.

Therefore, by the vector Azuma’s inequality of Hayes (2005, Theorem 1.8), for any a > 0,
2

P (|W,, — Wol| > 4tmixa) < 2€2 exp (_a))
2m

On the other hand, by the same reasoning as before,

m—1
Woll = |[B | > Fa:) | Fo ‘
1=0
m—1
< |[[F(zo)| + || E Z F(z;) | fo] |
=1

S 14 2tmix — 1 = 2tmix-
So,
a2
P (”W’m” > 2tmix + 4tmixa) < 262 exp <_> .
2m

Now, setting a such that

2 2 2
2¢% exp G) = a®>=2mlog il ,
2m 1)
and noting that this makes a > 2, we get
262
P (> Btmixt [2mlog <§>> <4,

which is what we wanted to show. O

m—1

> F(x)

=0

The justification for Assumption 2 then follows straightforwardly.
Proposition 5. Suppose that we use samples x, from a Markov chain with mixing time t,,;,. Assume
that for all w € R and all examples x, Assumption 3 holds. Then with probability at least 1 — p,
Assumption 2 holds withy = 1, C% = O(A%t2,), and ®* = O(B*t2

mix mix)'

Proof. Observe that we need Lemma 5 to hold for all subintervals of examples, of which there are
only at most 72. So, setting ¢ to be »/72 in Lemma 5, we can show that for all 7, m, the probability

2
20272
> 25 (A2 4 B2V £ ()) £2,,2m log (-)

T+m—1

S (Vi(wrsa) = Vi(w,)

t=1

39

Published as a conference paper at ICLR 2022

is at least 1 — p. Equivalently,
2

T+m—1 22
w2 (TS Vst < Tk (48 + BVSI) g (2.

It follows that MCGD satisfies the requirements of Assumption 2 with v = 1,

2e2T? 2e2T?
C? = 50422, log (c) and ®* = 50822, log (c) .
p p

The big—@ expressions in the proposition statement immediately follow. [

A.5.6 JUSTIFICATION FOR QMC-BASED DATA AUGMENTATION WITH RANDOM RESHUFFLING

Before we begin with the proof, let us first present the introductory material necessary on quasi-Monte
Carlo methods. Similar to Monte Carlo integration, QMC is also used for numerical integration
but using low-discrepancy sequences instead of pseudorandom number sequences. Concretely, the
problem is to approximate the integral of a function f over some s-dimensional hypercube [0, 1]°,

1= [fla)da
[0,1]°
using the average of the function evaluated at a sequence of points x1, . .., Ty,
1 m
In(f) = — > f(@i).
i=1

The approximation error rate is defined as ¢ = |I(f) — I,,(f)|, and it is well-known that in the case
of Monte Carlo integration where the x;’s are drawn uniformly at random from [0, 1]*, the error rate
is €2 = O(1/m). If the sequence of x;’s has low star-discrepancy, which is defined as

1 m
D: =sup|— Y 1{z; € U} — Volume(U
m sgpmz {zi € U} — Volume(U)

i=1

where U = []_, [0, b;] for b; € [0, 1), and the volume is measured using the s-dimensional Lebesgue
measure. Intuitively, the smaller this quantity is the more evenly the sequence of points covers the
space. Some popular low-discrepancy sequences include the Halton sequence, Sobol sequence, van
der Corput sequence, etc., which are essentially deterministic sequences that are cleverly constructed
to mimic random numbers but in fact have low star-discrepancy. For instance, the Halton sequence
satisfies D}, = O((ogm)*/m).

To ensure fast convergence of I,,, to I as we increase m, in addition to using low discrepency
sequences we also need f to be relatively well-behaved. For this, the Hardy-Krause variation Vi is
often used, for which we refer the reader to Drmota & Tichy (2006, Definition 1.13) for its detailed
characterization. Most importantly, if f has finite Vik on [0, 1], then the Koksma-Hlawka inequality
guarantees that

€ S VHKD;kn .

This implies that using quasi-Monte Carlo with, for instance, the Halton sequence, to integrate
a function f with bounded Hardy-Krause variation, the error rate would be €2 = O((logm)**/2),
In comparison to the Monte Carlo error rate, the QMC error rate can be much faster when the
dimensionality s is relatively small. For an in-depth exposition of the related materials we recommend
Owen (2003) and Drmota & Tichy (2006).

We are now ready to restate our proposition from Section 5, in which we describe our QMC data
augmentation setup.

Proposition 6. Suppose that we are using the random reshuffling variant of SGD with QMC data
augmentation as described. Assume that for all w € R® and all examples, Assumptions 1 , 3,
4 and 5 hold for Equation 3. For some p € (0,1), set the step size to be a constant such that
a < (max{14GOBnL . 10g(462T/p) ,2nL})~'. Then with probability at least 1 — p, Assumption 2
holds with v = 2, C* = O(n?V?C3clog(T)* + nA?) and * = O(nB?).

40

Published as a conference paper at ICLR 2022

Proof. Recall that the example used in the ¢-th iteration is being transformed as
Ty = A(.’E(U“/”J (t mod n))’ CLt/nJ +0(¢/n) (t mod n))

We start from the average gradient error term, that is,

T+m—1 2

Z Vf 'LUT, xtvct)) 7vf(w7')

T+m—1 2

1 & ,
Z Vi lwri Ao @) = o0 B Vil A(e5¢))
i=1 '
T+m—1 1 T+m—1 2
Z vf wT7 xt7<t) E Z o E]Vf(w-,—, (%:C))
t=71
rm—1 n 2
4oL S B Vf(wiAwC 12 E Vf(w;A (Wg))
m = o] ' ' n = ¢~0.1)° ' ’

where the first step follows from the definition of f in the data augmentation setup (Eq. (3)). In the
second step, the first norm relates to the QMC approximation error while the second norm relates
to the RR analysis. From the analysis in Section A.5.3 we know the second norm can be bounded
asymptotically (and probabilistically) by O(n.A2) + O(nB2)||V f(w,)||* /m?. Now we analyze the
first term. Since we use a contiguous QMC subsequence on each individual example, for the period
of [7, 7 +m — 1], we define 7; and m; as the starting point and length of example 2\ being chosen
during this period, such that Z;.l:l m; = m. With this notation, we can now rewrite the first norm as

T4+m—1 2

Z Vf(wrs Az, ¢) — E - Vf(wr Aze;Q))

~[0,1]¢

n Tjtm;—

L3S (e (9.6) - B, 5 (w4 (90)

~[0,1]°

2

IA
SM‘ s
™

<

-
/N
jS

™
R

o
N—
SN—

|

B 51 (4 (00)

j=1 t=r;
n Tj+m;—1 9
QTL(TJW:;mj)Q ; - +1mj ; Vf (wT;A (x<j)7<t)) - CN[];)Jl] Vf((<j>;<))
n Ti—1 9
2:;]'2 ; TlJ ; Vf (wT, (() g‘t)) - <~[]31]sz (wT;A(x(ﬁ;g))

Now we can use the Koksma—Hlawka inequality (Aistleitner & Dick, 2014) to bound these norms,
which gives us

T+m—1 2
Z Vi (wriA@n6)) = B VF(wriAes Q)
nC3eV?2 & n2C2ycV?log(T)?s
<O | =75 (log(; +m;)* +log(7;)*) <(9< s :
j=1

Putting it together, we have shown that random reshuffling with QMC data augmentation satisfies
Assumption 2 with y = 2, C? = O (n?CycV?log(T)** +nA?), and ®* = O (nB?). O

41

Published as a conference paper at ICLR 2022

A.6 MISCELLANEOUS LEMMAS

We now collect some technical lemmas used in our analyses.

The following lemma is a Hoeffding-type concentration bound on the sums of random permutations
of vectors. This lemma is particularly useful for simplifying the logic of the proofs of our shuffling
propositions above, as it frees us from having to use Doob-martingale-type arguments throughout.

Lemma 6 (Permuted vector Hoeffding inequality). Let n > m > 0 be some integers, and let X;; ;

forie {1,...,m}and j € {1,...,n} be vectors in R%. We also require for all i, j, | X; ;|| < 1,
and that for all 1,
n
> X =0
=1
Then, ifo : {1,...,n} — {1,...,n} is a random permutation and that the individual X; ;’s do not

depend on o,

m

ZXi,a(i)

i=1

2
P(>a> §2626Xp <—362Lm>.

Note that this lemma trivially also applies to random subsamples of vector sums, by just letting
X;,; = Y; for the desired vector sequence Y.

Proof. This proof is adapted from the proof of Theorem 4.3 in Bercu et al. (2015). Their approach
is more sophisticated and tends to a Bernstein-type inequality, but is specialized to only scalars.
Consider sampling the elements of the permutation one at a time, and let F; be the filtration containing
the random variables o(1),0(2),...,0(j) butnot o(j + 1), ..., 0,. For k < n, define the process

Wi =E

i=1

ZXZ;U(Z—) |]:k] :

Observe that this must be a (vector) martingale process, as it is a Doob martingale. Explicitly, we can
write it as

W,=E

k 1 m
> Xiow + po— > > X]:k‘|
i=1

i=k+1j¢{o(1),...,0(k)}

k 1 m k
=E > Xio0)— p— SN Xiogy | Frl
i=1

i=k+1j=1

42

Published as a conference paper at ICLR 2022

where here we used the fact that the X; ;’s sum to 0 over j = [n]. Thus, the increments of this process
will have

Wiy —Wi1=E ZXM() Z ZXW(J) | Fi

i=k+1 j=1
k—1 m k—1
B | K g 300 Kot | P
i=1 i=k j=1
m k
= Xio(k) — —kE D> Xioy | Fi
i=k+1 j=1
m k—1
+n—chrlE 22 Xiow | Ficr
i=k j=1
1 m
= Xk,o(k) - Xio (k)
i=k+1
1 1 - 1 -
— — Xza X o(g)

where we have repeatedly applied the martingale property. Now to bound all of these, first by our
assumption

[Xk o < 1.
Also,
¢ —k
> Xiow]| < !
, ’ n—k
i=k-+1
Next, again using the sum to 0 assumption, we have
1| 1 u n—k+1
e X il = ——— || — X, o< —2T= 9
n—k+1 j; koo () n—k+1 Z kol = "k +1 ’

and finally, by a combination of these bounds,

1 1 -
(n—kn—k+1) 2 ZX“’(” B n—k) —kt1) Z ZX“’

i=k+1 j=1

It follows that the increment satisfies
[Wi = Wi <4

with probability 1. We can now apply the vector Azuma’s inequality of Hayes (2005, Theorem 1.8).
Applying this to W,,, gives the result that, for any a,

(12
P ([|[Wpl > a) < 26 -— .
(Wl 2 @) < 26 exp (-2)

This proves the lemma. O

The next lemma we state is a standard result showing that we can cover a region of radius R with a
bounded number of balls of radius e.

43

Published as a conference paper at ICLR 2022

Lemma 7 (e-net lemma). For any region D of radius R in d-dimensional space, and any € > 0, there
exists a subset S C D such that S is of size at most

2 d
IS] < (HR) ,
€

and for every point x € D, there exists a & € S such that ||z — z|| < e.

Proof. Consider the following procedure. As long as there are points in D that are not within a
distance € of an existing point in .S, choose one such point arbitrarily and add it to S. Observe that
with this construction, any two points in S must be at a distance greater than e from each other. This
means that if we center a ball with radius €/2 at each of the points in S, these balls will be disjoint.

The total volume of these balls will be |S| - Vi - (¢/2)“, where V; is the volume of the unit ball
in d-dimensional space. However, the centers of all these balls must lie in D, and so the balls
themselves must all lie within a slightly larger region of radius R + €/2. This region will have volume
Vi - (R + €/2)". This shows that our process must eventually stop, implying that S must exist, and
gives us a bound on the size of S as

d d

and the proof is complete. O

44

	Introduction
	Related work
	Example-gradient averages and SGD convergence
	Analysis of existing scan orders
	New example-selection methods for faster convergence
	Experiments
	Conclusion
	Appendix
	Experiment details
	Additional details for Section 6
	t-test for data augmentation results
	Small experiments
	Optimal step size derivation

	Convergence analysis: diminishing step size
	Non-convex case
	Strongly-convex case

	Proof for lemmaGenStep
	Convergence analysis: constant step size
	Non-convex case
	Strongly-convex case

	Justifications for assumGeneral under various example orderings
	Arbitrary permutation
	Shuffle once
	Random reshuffling
	Random reshuffling with data echoing
	Markov chain gradient descent
	QMC-based data augmentation with random reshuffling

	Miscellaneous lemmas

