
Published as a conference paper at ICLR 2022

A GENERAL ANALYSIS OF EXAMPLE-SELECTION FOR
STOCHASTIC GRADIENT DESCENT

Yucheng Lu∗, Si Yi Meng∗, Christopher De Sa
Department of Computer Science
Cornell University
Ithaca, NY 14853, USA
{yl2967,sm2833,cmd353}@cornell.edu

ABSTRACT

Training example order in SGD has long been known to affect convergence rate.
Recent results show that accelerated rates are possible in a variety of cases for
permutation-based sample orders, in which each example from the training set
is used once before any example is reused. In this paper, we develop a broad
condition on the sequence of examples used by SGD that is sufficient to prove
tight convergence rates in both strongly convex and non-convex settings. We show
that our approach suffices to recover, and in some cases improve upon, previous
state-of-the-art analyses for four known example-selection schemes: (1) shuffle
once, (2) random reshuffling, (3) random reshuffling with data echoing, and (4)
Markov Chain Gradient Descent. Motivated by our theory, we propose two new
example-selection approaches. First, using quasi-Monte-Carlo methods, we achieve
unprecedented accelerated convergence rates for learning with data augmentation.
Second, we greedily choose a fixed scan-order to minimize the metric used in our
condition and show that we can obtain more accurate solutions from the same
number of epochs of SGD. We conclude by empirically demonstrating the utility
of our approach for both convex linear-model and deep learning tasks. Our code is
available at: https://github.com/EugeneLYC/qmc-ordering.

1 INTRODUCTION

To minimize a differentiable function f : Rd → R, stochastic gradient descent (SGD) iteratively
updates a parameter vector w ∈ Rd starting at some w0 by running

wt+1 = wt − αt∇f(wt;xt), (1)

where αt is the step size at iteration t, xt is a data example (often a minibatch of data) chosen
by some process—typically by subsampling a training dataset—for SGD to use at iteration t, and
∇f(wt;xt) is an example gradient, which we hope will be a good approximation for the gradient
of the objective ∇f(wt). In the standard setup, the x’s are drawn from a dataset D of size n, and
f(w) = 1

n

∑
x∈D f(w;x), which is often referred to as Empirical Risk Minimization (ERM). The

order in which the example sequence x0, x1, . . . are chosen is known to affect the convergence of SGD.
For instance, compare so-called “random reshuffling” to with-replacement sampling: optimizing a
strongly convex objective with T total iterations, random reshuffling samples the xt from D without
replacement and achieves an accelerated convergence rate of 1/T 2, while with-replacement sampling
yields a convergence rate of 1/T (Bottou, 2012; Recht & Ré, 2012; Gürbüzbalaban et al., 2021).
Similar accelerated rates have been shown in other settings and for other example orders, such as
shuffling the dataset once (Nguyen et al., 2020; Ahn et al., 2020; Mishchenko et al., 2020). However,
these analyses have mostly focused only on specific example-selection schemes, and study only the
case of ERM-type finite-sum objectives. This does not help us understand how new example orders
(such as the data echoing method of Choi et al. (2019)) affect the convergence of SGD.

This paper develops a general condition on the example gradients themselves that is sufficient to
provide a convergence rate for SGD. Intuitively, our main result is: the convergence rate of SGD

∗Equal Contribution.

1

https://github.com/EugeneLYC/qmc-ordering

Published as a conference paper at ICLR 2022

depends on how fast the averages of consecutive example gradients∇f(w;xt) converge to the full
objective gradient∇f(w). Using with-replacement sampling, the average of m consecutive gradient
examples starting at any timestep τ , 1

m

∑τ+m−1

t=τ
∇f(w;xt), converges to∇f(w) at a rate of O(1/m)

in terms of the norm squared: we show SGD with any example sequence that fulfills this condition
will converge at the same asymptotic rate as with-replacement sampling. Alternatively, if that average
converges at the faster Õ(1/m2) rate typical of Quasi-Monte-Carlo (QMC) (Caflisch, 1998), then we
show SGD enjoys the accelerated rate that random reshuffling gets. Our contributions are as follows:

• We propose a new condition on the example gradients—average gradient error—and provide
convergence analysis using this general condition for both non-convex and strongly-convex
problems. We justify the validity of this condition on synthetic experiments (Section 3).

• We show that many commonly used example orderings—shuffle once, random reshuffling, data
echoing, Markov Chain Gradient Descent—can be analyzed as special cases under our theoretical
results, which match or improve upon their existing rates in the literature (Section 4).

• We propose two new algorithms: (1) QMC-based data augmentation that transforms examples via
a low-discrepancy sequence, improving generalization; and (2) a greedy algorithm that sorts the
examples before each epoch based on our new average gradient error metric (Section 5).

• Empirically, we evaluate our two algorithms on several image classification benchmarks including
MNIST, CIFAR10/100 and ImageNet. We show with QMC-based data augmentation, a higher
validation accuracy can be achieved without hyperparameter tuning—this suggests that QMC may
be a good default driver to use with data augmentation for deep learning in general. Meanwhile,
the greedy algorithm converges faster both in terms of iteration and wall-clock time (Section 6).

2 RELATED WORK

Example ordering in stochastic optimization. Traditional example ordering in SGD is carried
out in a with-replacement fashion, which is used to ensure unbiased estimation of the full gradient
(Robbins & Monro, 1951; Bach & Moulines, 2011; Zhang, 2004; Bottou et al., 2018; Drori & Shamir,
2020). Significant attention has been paid to importance sampling with respect to various measures,
such as Lipschitz constants (Schmidt et al., 2017; Needell et al., 2014), example gradient norms
and bounds (Zhao & Zhang, 2015; Alain et al., 2015; Papa et al., 2015; Lee et al., 2019), individual
losses (Kawaguchi & Lu, 2020; Loshchilov & Hutter, 2015), and data heterogeneity (Lu et al., 2021).
Without-replacement sampling, however, is more common in practice and empirically allows faster
convergence (Bottou, 2012). Among the most popular without-replacement approaches are shuffle
once (SO) (Bertsekas, 2011; Gürbüzbalaban et al., 2019) and random reshuffling (RR) (Ying et al.,
2017). In theory, Recht & Ré (2012) undertook the first investigation on convergence of RR via
the noncommutative arithmetic-geometric mean conjecture, to which subsequent works provide
counter examples (Yun et al., 2021; De Sa, 2020). HaoChen & Sra (2019) performed an epoch-wise
acceleration analysis on RR while Gürbüzbalaban et al. (2021) considered its convergence over
infinite epochs. Safran & Shamir (2020) analyzed the lower bounds for both SO and RR methods,
and their results are further polished by Mishchenko et al. (2020) via the Bregman divergence bound.
Aside from manual ordering, another line of research focuses on perturbed example ordering from
data echoing (Choi et al., 2019; Agarwal et al., 2020).

Quasi-Monte Carlo. Quasi-Monte Carlo (QMC) is a variant of Monte Carlo (MC) methods that
uses a low-discrepancy sequence instead of a pseudorandom sequence. QMC has been successfully
applied in a wide variety of domains including computer graphics (Keller, 1995), finance (Joy et al.,
1996), and computational biology (Cieslak et al., 2008). In machine learning, using QMC in place
of MC can significantly improve many techniques including variational inference (Buchholz et al.,
2018; Liu & Owen, 2021), feature mapping (Yang et al., 2014; Avron et al., 2016), normalizing
flows (Wenzel et al., 2018), deep learning based PDE (Chen et al., 2019), and time series analysis
(Philipson et al., 2020). For stochastic optimization, early works like Homem-de Mello (2008) and
Pennanen (2005) established the asymptotic convergence of a QMC sequence in terms of the training
set size, while Jank (2005) proposed replacing MC with QMC in computing the E-step of the EM
algorithm. Similar to our motivation, Buchholz et al. (2018) analyzed the convergence of SGD when
samples are drawn using QMC. Their approach differs significantly from ours in that their method
draws an independent unbiased length-b QMC sequence for each minibatch, while our examples
come from contiguous subsequences of a length-T QMC sequence that is used across all iterations.

2

Published as a conference paper at ICLR 2022

3 EXAMPLE-GRADIENT AVERAGES AND SGD CONVERGENCE

In this section, we describe our setup, define the average gradient error condition we are proposing,
and state our main result. Our objective is to minimize a continuously differentiable function
f : Rd → R using examples xt from some set X retrieved at each iteration t. We make the usual
assumption that both the loss gradient and the example gradients are L-Lipschitz continuous.
Assumption 1 (L-Smoothness). For some L <∞, for any u, v ∈ Rd and any example x ∈ X ,

∥∇f(u;x)−∇f(v;x)∥ ≤ L · ∥u− v∥ and ∥∇f(u)−∇f(v)∥ ≤ L · ∥u− v∥.

We propose a new condition on the average gradient error. Informally, this condition bounds how
averages of consecutive example gradients approximate the objective gradient. Formally,
Assumption 2. In the context of Equation (1), we say that the example sequence x0, x1, . . . is
(γ,C,Φ)-concentrating for γ ∈ [1, 2], C > 0, Φ ≥ 0, if for any timestep τ ≥ 0 and any m > 0,∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f(wτ ;xt)−∇f(wτ)

∥∥∥∥∥
2

≤ 1

mγ

(
C2 +Φ2∥∇f(wτ)∥2

)
, (2)

where wτ is the weight parameter vector arrived at after τ SGD update steps in Equation (1).

The constants C and Φ here may depend on the total number of iterations T : specifically, they may
absorb logarithmic factors like log(τ +m)2s typical in a QMC error bound, where s is the dimension
of the sample space. In addition, when the {xt}’s are random, we will show that this assumption
holds with high probability. Furthermore, it suffices to show that the inequality holds for any w:
our requirement that it holds only for the specific wτ arrived at by SGD is weaker. We can develop
intuition about Assumption 2 by considering familiar cases:

• For general with-replacement sampling, the sum in (2) is a sum of independent random variables;
so, a concentration argument would yield Assumption 2 with γ = 1 with high probability.

• For general without-replacement sampling from a dataset of size n, any whole-epoch subsequences
from the sum in (2) will cancel to zero, so we expect that sum to have magnitudeO(n) independent
of m, and thus Assumption 2 should hold with γ = 2 (Propositions 1 to 4).

• For low-discrepancy sampling, we would expect Assumption 2 to hold with γ = 2, along with a
multiplicative log(τ +m)2s term: this is the classic error rate for QMC (Proposition 6).

In Section 4, we will make this intuition rigorous with high probability under the bounded gradient
error assumption. This intuition illustrates both how Assumption 2 can cover previously analyzed
settings and how it can generalize to cases not previously studied, such as QMC data augmentation.
Also observe that Assumption 2 is easily adapted to minibatch SGD: if it holds for the single-example
case, it should also hold with modified constants for minibatches of size b (consisting of averages
of b consecutive example gradients) by substituting m 7→ mb.1 Since this is straightforward, for
simplicity of presentation our theory focuses on the batch-size-1 case. Our analysis is based on the
following key lemma, which bounds the evolution of SGD over an “analysis phase” of m steps.
Lemma 1. Suppose our setup satisfies Assumptions 1 and 2 and that we use a constant step size α.
For all timesteps τ ≥ 0, let m > 0 be some integer such that 3αm1−γ/2Φ ≤ αm ≤ 1

6L . Then the
objective at timestep τ +m is bounded by

f(wτ+m) ≤ f (wτ)− 1
4αm∥∇f(wτ)∥2 + 2αm1−γC2.

By applying this lemma inductively and choosing the step size appropriately, we can derive conver-
gence rates for SGD in a variety of settings. Note that while here for simplicity we state results for a
fixed step size, Lemma 1 can also be used to get essentially the same rates for diminishing step size
schemes, which we analyze in Appendices A.2 and A.3. In what follows, we let f∗ be the global
minimum of f , let ∆ := f(w0)− f∗, and use Õ to hide logarithmic terms in the problem parameters
such as C, Φ, L, ∆, and ϵ, while treating γ as a constant.
Theorem 1 (Non-convex case). Suppose that our setup satisfies Assumptions 1 and 2, and let ϵ > 0
be any target error. Using SGD (1) with a constant step size α = 1

6L

⌈
(4C/ϵ+ 3Φ)2/γ

⌉−1
, the

number of steps T needed to achieve mint=0,··· ,T−1∥∇f(wt)∥2 ≤ ϵ2 is at most

T =
⌈
48L∆
ϵ2

⌉
·
⌈(

4C
ϵ + 3Φ

)2/γ⌉
= Õ

(
C

2/γL∆
ϵ2+2/γ

+ Φ
2/γL∆
ϵ2 + C

2/γ

ϵ2/γ
+Φ2/γ

)
.

1The only technical subtlety is that the iterates wτ of SGD would vary with minibatch sizes.

3

Published as a conference paper at ICLR 2022

102 103 104 105 106 107

iterations t

10 11

10 9

10 7

10 5

10 3

10 1

w
t

w
*

2

Online

IID Uniform
Sobol
1/t
1/t2

102 103 104 105 106 107

iterations t

10 9

10 7

10 5

10 3

10 1

w
t

w
* n

2

Offline

IID Uniform
Sobol
RR
SO

(a) Distance to optimum over iterations

103 104 105 106 107

m

10 10

10 8

10 6

10 4

10 2

1 m
m

1
t=

0
R(
w

0;
x t

)
R(
w

0)
2

Online

IID Uniform
Sobol

103 104 105 106 107

m

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

1 m
m

1
t=

0
R n

(w
0;
x t

)
R n

(w
0)

2

Offline

IID Uniform
Sobol
RR
SO

(b) Average gradient error (LHS of Assumption 2)

Figure 1: Comparison of sampling schemes on a synthetic least squares problem.

Observe that when γ = 1, this gives the standard ϵ−4 rate expected for non-convex SGD, and for
γ = 2, this gives us the accelerated ϵ−3 rate of shuffling methods. We can get an even faster rate if f
satisfies the µ-Polyak-Łojasiewicz (PL) condition ∥∇f(w)∥2 ≥ 2µ(f(w)− f∗), which generalizes
strong convexity and has been applied before in the study of sample orders (Mishchenko et al., 2020;
Ahn et al., 2020): in particular the following theorem holds for µ-strongly convex functions.

Theorem 2. Suppose that f satisfies the µ-PL condition and our setup satisfies Assumptions 1 and 2.
Let ϵ > 0 be any target error, and κ = L/µ be the condition number of the problem. Using SGD
(1) with a constant step size α = 1

6L

⌈
(8C2/(µϵ2) + 9Φ2)1/γ

⌉−1, the number of steps T needed to
guarantee f(wT)− f∗ ≤ ϵ2 is at most

T =
⌈
12κ log

(
2∆
ϵ2

)⌉
·
⌈(

8C2

µϵ2 + 9Φ2
)1/γ

⌉
= Õ

(
C2/γκ

µ1/γϵ2/γ
+ κΦ2/γ + κ

)
.

Observe that when γ = 1, this recovers the ordinary T = κϵ−2 rate we usually get for strongly
convex SGD, and when γ = 2 we get a faster rate of κϵ−1. These theorems together show that our
Assumption 2 is sufficient to show the convergence of SGD, and the convergence-rate parameter γ
of the assumption translates to affect the convergence rate of SGD. This validates our intuition that
faster convergence of averages of consecutive example gradients to the full gradient∇f(w) leads to
faster convergence of SGD.

Synthetic experiments. We quickly validate these results on a synthetic 10-dimensional
strongly-convex problem. The first setting we consider is the expected risk minimization of
R(w) = E [(xTw − y)2], where x ∼ N (0, Id) and y |x ∼ N (xTw∗, 1) for some optimal value
w∗. We run SGD in an online fashion—at iteration t we draw samples (xt, yt) from the underlying
distribution to compute∇R(wt;xt) used in the update. We compare drawing these samples indepen-
dently at random against drawing using a QMC sequence (Sobol in [0, 1]d) via an inverse transform,
using for both cases the same diminishing step size scheme selected to minimize the expected risk
for the random-sampling case—the optimal step size scheme for vanilla SGD. The online plot of
Fig. 1(a) shows that the convergence rate is strictly superior with QMC, which achieves a O(1/t2) rate
compared to the O(1/t) rate of random sampling, which is what Theorem 2 predicts.

We also evaluate the offline setting, where we draw n independent examples from the same distribution
to form a training set, and minimize the empirical risk Rn(w) = 1

n

∑n
i=1(x

T
iw − yi)

2. This
corresponds to a least squares problem with optimal solution w∗

n. We run SGD epoch-wise for
K epochs, in which we compare sampling from the training set uniformly with replacement (IID
Uniform), random reshuffling (RR), shuffle once (SO), and sampling using one QMC sequence in
[0, 1] of length T = nK followed by a mapping to example indices (Sobol). In the offline plot of
Fig. 1(a), we see that the low-discrepancy methods all yield an accelerated rate compared to IID
Uniform, which again validates our theory. Additional details can be found in Appendix A.1.3.

With the same synthetic setup, we also verified our bound in Assumption 2 by measuring the average
gradient error over a sequence of examples. The fixed point wτ is arbitrarily set to the origin. For the
online setting (left of Fig. 1(b)), we use the same set of examples as in the SGD experiments above
starting at t = 0. Similarly, in the offline setting, we go through the examples epoch-wise. As we can
see, the sample orderings given by QMC, RR and SO (offline only) indeed give us an accelerated rate
of decrease in the average gradient error as we increase m (γ ≈ 2), justifying our main assumption.

4

Published as a conference paper at ICLR 2022

4 ANALYSIS OF EXISTING SCAN ORDERS

In this section, we illustrate the power of our approach by proving convergence rates for example-
selection methods proposed and analyzed in previous literature. For each method, we show Assump-
tion 2 holds with high probability, and then by applying Theorems 1 and 2 to these results, we show
how existing rates for these methods can be recovered and in some ways improved upon. To the best
of our knowledge, these are the first high-probability results for shuffle once and random reshuffle for
general non-convex optimization. When using a finite training set of examples, we let n denote its
size, let the examples be indexed as x(0), x(1), . . . , x(n−1) (to avoid confusion with xt, the example
used by SGD at step t), and let T = nK denote the total number of iterations after K epochs. We
will also require the following standard assumption that bounds the error of a single example gradient.

Assumption 3. For all examples x ∈ X and points w ∈ Rd, there exists A,B ≥ 0 such that the
gradient errors satisfy ∥∇f(w;x)−∇f(w)∥2 ≤ A2 +B2∥∇f(w)∥2.

Shuffle once (SO). In the shuffle-once variant of SGD, a single permutation σ of {0, . . . , n− 1} is
chosen uniformly at random at the start, and the examples are used repeatedly in that order: explicitly,
xt = x(σ(t mod n)). One way to analyze shuffle-once is to prove Assumption 2 for permutation-based
methods generally.
Proposition 1. Let Assumptions 1 and 3 hold, and suppose that we are using a permutation-based
method of sampling, that is, any method such that xkn, xkn+1, . . . , xkn+n−1 is a permutation of
x(0), x(1), . . . , x(n−1) for all epochs k ≥ 0. Any such method satisfies Assumption 2 with γ = 2,
C2 = n2A2 and Φ2 = n2B2.

This immediately lets us recover previous rates up to constant factors, but we can do better. In the
case where we are learning over a bounded region, we can prove a stronger result for shuffle once.
Proposition 2. Suppose that we are using the shuffle once variant of SGD to learn over a region
B ∈ Rd of radius at most R, such that the iterates wt are guaranteed to remain within this region.
Assume that for all w ∈ B and all examples x in the training set of size n, Assumption 1 (L-
Smoothness) and Assumption 3 hold. Then with probability at least 1− p, Assumption 2 holds with
γ = 2, C2 = Õ(dA2(n+B2)), and Φ2 = Õ(ndB2).2

In comparison to previous results and to our rate implied by Proposition 1, this improves the
dependence from n to

√
nd, which is a significant improvement over the best rates for shuffle once

available in the literature when the dimension is small relative the training set size. In particular, if
we set B = 0 and consider small ϵ, our rate in the non-convex case becomes

T = Õ
(

AL∆
√
nd

ϵ3

)
, which implies ϵ2 ≤ Õ

(
(AL∆)

2/3(nd)
1/3

T 2/3

)
= Õ

((
d

nK2

)1/3)
.

This rate matches that for shuffle once achieved in Nguyen et al. (2020, Corollary 1) in terms of ϵ,
up to logarithmic factors. In the µ-PL (or strongly convex) case for B = 0, we again obtain a rate
matching that of Nguyen et al. (2020), Ahn et al. (2020), and Mishchenko et al. (2020):

T = Õ
(

κA
ϵ

√
nd
µ

)
, which implies ϵ2 ≤ Õ

(
κ2A2nd
µT 2

)
= Õ

(
κ2A2d
µnK2

)
.

Random reshuffling (RR). Random reshuffling is similar to shuffle once, except that a new
ordering is chosen at each epoch: sampling the dataset without replacement. Concretely, if σk denotes
the permutation used by random reshuffling at the kth epoch, then xt = x(σ⌊t/n⌋(t mod n)).
Proposition 3. Suppose that we are using the random reshuffling variant of SGD. Assume that for all
w ∈ Rd and all examples, Assumption 1 (L-Smoothness) and Assumption 3 hold. For some p ∈ (0, 1),
set the constant step size to satisfy α ≤

(
max

{
1460BnL · log

(
4e2T/p

)
, 2nL

})−1
. Then with

probability at least 1− p, Assumption 2 holds with γ = 2, C2 = Õ(nA2) and Φ2 = Õ(nB2).

Setting B = 0, our rate in the non-convex case now becomes

T = Õ
(

AL∆
√
n

ϵ3

)
, which implies ϵ2 ≤ Õ

(
(AL∆)

2/3(n)
1/3

T 2/3

)
= Õ

((
1

nK2

)1/3)
.

2The probability p is only present in log terms in these expressions, so it does not appear in the Õ.

5

Published as a conference paper at ICLR 2022

Here we match the best rate obtained by Mishchenko et al. (2020, Corollary 3) in the small ϵ setting.
In the µ-PL (or strongly-convex) case, we get

T = Õ
(

κA
ϵ

√
n
µ

)
, which implies ϵ2 ≤ Õ

(
κ2A2n
µT 2

)
= Õ

(
κ2A2

µnK2

)
.

As in shuffle once, here our rate for random reshuffling matches that obtained by Nguyen et al. (2020)
and Ahn et al. (2020), as well as Mishchenko et al. (2020) albeit with a slightly worse dependency
on κ. It’s worth noting that for simple quadratics, RR and SO are only faster than with-replacement
SGD when K ≳ 1/µ (Safran & Shamir, 2021).

Random reshuffling with data echoing. Data echoing is a technique that can be easily imple-
mented in a machine learning training pipeline to increase throughput and improve performance.
It was first introduced and tested empirically by Choi et al. (2019) and analyzed by Agarwal et al.
(2020). The idea is to perform multiple SGD updates on each example xi (or minibatch) before
proceeding to the next. By “echoing” examples we allow more time for upstream data loading and
preprocessing, and consequently decrease downstream GPU idle time for gradient computation. For
simplicity, we also use a fixed number of echos c as in Agarwal et al. (2020). Concretely, a c-echoed
version of a sample order x̂ is given by xt = x̂⌊t/c⌋. Data echoing can essentially be applied to
any example-ordering scheme, and here we provide one analysis under random reshuffling. The
justification for Assumption 2 under random reshuffling with data echoing follows essentially without
modification from the c = 1 version in the previous subsection.

Proposition 4. Suppose that we are using the random reshuffling variant of SGD, where each example
is echoed c times using the same step size in RR. Under the same assumptions as in Proposition 3,
with probability at least 1− p, Assumption 2 holds with γ = 2, C2 = Õ(cnA2) and Φ2 = Õ(cnB2).

It immediately follows that data echoing should get the same convergence rates we showed in
Section 4 with A2 and B2 multiplied by c. Although Agarwal et al. (2020) also provided an analysis
for data echoing, they require that the examples are sampled independently, rather than the random
reshuffling setting that is more commonly-used: as a result, their analysis did not achieve the
accelerated ϵ−3 rate that shuffled methods enjoy. Another advantage of our analysis is that the proof
follows exactly from that of vanilla random reshuffling, from which the constant c simply propagates.

Markov chain gradient descent (MCGD). To illustrate the versatility of Assumption 2, we show
how it can be satisfied by a problem where the objective is not a finite sum and where γ ̸= 2. Consider
f(w) = Eξ∼Ξ[f(w; ξ)] with some underlying distribution Ξ. Running SGD then requires that at
each iteration t, we draw ∇f(wt; ξt) where ξt ∼ Ξ; however, sampling from Ξ can be intractable.
The method of Markov Chain Gradient Descent addresses this problem by sampling the ξt from the
trajectory of a single Markov chain with stationary distribution Ξ (Sun et al., 2018). The intuition
is that although at early iterations the ξ’s have not converged to their true distribution, the iterates
visited by SGD are also far from the optimum, thus larger approximation error in the early ξ’s is
rather harmless. As we continue iterating, the Markov chain will mix as SGD converges. We show
that the convergence of MCGD can be bounded in terms of the mixing time of that Markov chain.

Proposition 5. Suppose that we use samples xt from a Markov chain with mixing time tmix. Assume
that for all w ∈ R and all examples xt, Assumption 3 holds. Then with probability at least 1 − p,
Assumption 2 holds with γ = 1, C2 = Õ(A2t2mix), and Φ2 = Õ(B2t2mix).

It follows that for non-convex optimization in the B = 0 case, our convergence rate is given by

T = Õ
(

A2L∆t2mix
ϵ4

)
, which implies ϵ2 ≤ Õ

(
Atmix

√
L∆

T 1/2

)
.

Sun et al. (2018, Theorem 2) use a diminishing step size O(1/tq) to obtain T = O(ϵ−2/1−q), where
q ∈ (1/2, 1). In contrast, our rate is faster and holds with high probability instead of in expectation.

5 NEW EXAMPLE-SELECTION METHODS FOR FASTER CONVERGENCE

The analysis in Section 4 focused on recovering the convergence rates for SGD with known example-
ordering algorithms. In this section, we propose two new example-selection approaches that allow
faster convergence: QMC-based data augmentation and greedily minimizing the metric in (2).

6

Published as a conference paper at ICLR 2022

Algorithm 1 Example-Ordered SGD via Greedily Minimizing Average Gradient Error
Input: step size α, number of iterations T , random projection matrix Π, buffer for gradients estima-

tion: gi ← 0,∀i ∈ {0, · · · , n− 1}, g ← 0, initial weights w0, initial permutation σ0.
1: for t = 0, · · · , T/n− 1 do
2: Initialize : gi ← 0,∀i ∈ {0, · · · , n− 1}; g ← 0; I ← ∅.
3: for i = 0, · · · , n− 1 do
4: Update the model parameters: wtn+i+1 ← wtn+i − α∇f(wtn+i;x

(σt(i))).
5: Update the buffers: gσt(i) ← Π∇f(wtn+i;x

(σt(i))); g ← g + gσt(i).
6: end for
7: for i = 0, · · · , n− 1 do

8: σt+1(i)← argmin
i∈{0,··· ,n−1}\I

[∥∥∥∥ ∑
j∈I∪{i}

(gj − g/n)

∥∥∥∥2]
; I ← I ∪ {σt+1(i)}.

9: end for
10: end for
11: return wT

QMC-based data augmentation. In many scenarios where only limited examples are given, we
want to augment the dataset for better generalization. More formally, given a transform function
A that takes example x and a random variable ζ uniformly distributed in [0, 1]s as input, where s
denotes the dimension of augmentation space, the augmented objective for a dataset D of size n is

f(w) = 1
n

∑
x∈D

Eζ∼U[0,1]sf(w;A(x, ζ)) = 1
n

∑
x∈D

∫
Rs
f(w;A(x, ζ)) dζ. (3)

The rationale is that by performing some reasonable random transformation on a given example, we
assume the output would be another example that is identically distributed, and the expected value
models an infinitely-large training set consisting of such transformed examples. For example, in an
image classification task, we could set s = 1 and haveA(x, ζ) output the image x rotated by an angle
of 20◦(2ζ − 1), modeling that a slight rotation of an image should preserve its label.

QMC can approximate this expectation with a low-discrepancy sequence of ζt drawn from the
s-dimensional unit cube [0, 1]s. Examples of such sequences include the Halton and Sobol sequences
(Drmota & Tichy, 2006). QMC is especially favorable for data augmentation because s is usually
small in most data augmentation methods. We propose to use QMC for data augmentation together
with random reshuffling. Concretely, if ζ0, ζ1, . . . is our low-discrepancy sequence and σk denotes
the permutation used by random reshuffling in the kth epoch, then we propose to use the example
xt = A(x (σ⌊t/n⌋(t mod n)) , ζ⌊t/n⌋+σ⌊t/n⌋(t mod n)). That is, when we sample example i in epoch k, we
use the (k + i)th element of the low-discrepancy sequence. This is not the only reasonable way of
combining QMC and RR: it is just one way we found to work well. In theory we would expect the
approximation error here to decay at the rate Õ(1/m2), instead of the O(1/m) of the random sampling
that is standard for data augmentation. To prove this rigorously, we make two additional assumptions
which are commonly used in analyzing QMC sequences (Aistleitner & Dick, 2014).
Assumption 4 (Bounded gradient variation). There exists a constant V > 0 such that for any fixed
w ∈ Rd and x ∈ X , the example gradients as a function of ζ under QMC data augmentation, F (ζ) =
∇f(w;A(x, ζ)), has Hardy-Krause variation (Tezuka, 2000) at most V , that is VHK(F) ≤ V .
Assumption 5. The QMC sequence {ζt}t≥0

has low star-discrepancy (Owen, 2003): for all m > 0,

sup
a∈[0,1]s

∣∣∣∣ 1mm−1∑
t=0

1{ζt ∈ [0, a)} −
s∏

j=1

aj

∣∣∣∣ ≤ CQMC · log(m)s

m ,

where [0, a) = {x ∈ [0, 1]s | 0 ≤ xj < aj , j = 1, . . . , d} for some constant CQMC.

Proposition 6. Suppose that we are using the random reshuffling variant of SGD with QMC data
augmentation as described. Assume that for all w ∈ Rd and all examples, Assumptions 1 , 3,
4 and 5 hold for Equation 3. For some p ∈ (0, 1), set the step size to be a constant such that
α ≤

(
max{1460BnL · log(4e2T/p

)
, 2nL})−1. Then with probability at least 1− p, Assumption 2

holds with γ = 2, C2 = Õ(n2V 2C2QMC log(T)2s + nA2) and Φ2 = Õ(nB2).

Comparing it with Proposition 3, this QMC variant enjoys the same Õ(1/T 2) rate we get for vanilla
random reshuffling: to our knowledge, this is the first accelerated rate for learning with data augmen-

7

Published as a conference paper at ICLR 2022

(a) Validation of ResNet20 on CIFAR10 (b) Validation of ResNet20 on CIFAR100

Figure 2: Data augmentation with IID-uniform (standard) and QMC-based methods on CIFAR.

tation. In addition to the theoretical advance, we demonstrate in Section 6 that our QMC variant can
achieve better validation performance in practice in multiple applications.

Better example ordering via greedy selection. Taking a closer look at Assumption 2, the
magnitude of the left-hand side plays a crucial role in the convergence. In the ERM setting, this
motivates us to select a permuted example order that minimizes this expression, following which
SGD would converge with minimized average gradient error. However, naively constructing such a
sequence is tedious as iterating over all the τ,m > 0 and all permutations can be computationally
intensive. In light of this, we apply several approximation techniques into the construction and
formulate it into Algorithm 1. The first technique is to use stale gradients, i.e., using the gradients
computed at each epoch to estimate the sequence used in the next epoch (line 5 in Algorithm 1).
The intuition is that based on the smoothness of loss function (Assumption 1), we would expect
the stale gradients to approximate the current gradients with tolerant approximation error as long as
the step size is reasonably small. The second technique is random projection (line 9): we search
a lower-dimensional space, which allows faster construction and reduces memory use (see similar
strategies of using smoothness and dimension reduction techniques in (Caflisch, 1998)). Because this
is a selection-by-permutation method, under Assumption 3 our greedy selection method will trivially
satisfy Assumption 2 with γ = 2, C = nA, and Φ = nB (see Proposition 1).

6 EXPERIMENTS Table 1: Top1 validation accuracy (%) of
ResNet18 on ImageNet. The original one is the
standard benchmark provided by PyTorch.

Original Uniform (tuned) QMC (untuned)

69.76 70.19 70.48

In this section we evaluate our new algorithms
on several deep learning benchmarks. First, we
compare QMC-based data augmentation against
IID-uniform augmentation on CIFAR10/100 and
ImageNet datasets. Second, we compare greedy
ordering (Algorithm 1) with RR and SO, and show how to further accelerate it with randomly
projected sorting. Other details on the experimental setup can be found in Appendix A.1.1. Each
experiment is repeated 10 times with consistent seeds among the algorithms.

QMC-based data augmentation. We start by training ResNet20 on CIFAR10 and CIFAR100,
where discrete and continuous data augmentations are applied, respectively. Specifically, CIFAR10
uses random crop and random horizontal flip while CIFAR100 uses an additional random rotation
of 15 degrees. To apply the QMC-based data augmentation, we first generate a Sobol sequence of
appropriate dimension using the qmcpy package (Choi et al., 2020+), and then replace the pseudo-
random sequence used in the original random augmentation pipelines with that Sobol sequence.
We run the baseline IID-uniform method with finetuned hyperparameters (weight decay 10−4),
which reproduces the result from He et al. (2016) with an error rate 8.4%. Then we run QMC-base
augmentation with the same hyperparameter (untuned) and finetuned counterparts, with a grid search
over weight decay values in {r · 10−4}4r=1. From Figure 2 we observe the QMC-based augmentation
consistently outperforms the baseline methods, even without hyperparameter tuning. Comparing
Figure 2 with He et al. (2016), we observe the QMC-based augmentation allows ResNet20 to reach
comparable validation accuracy as ResNet44 while requiring only 40% as many parameters (0.27M
vs 0.66M). We run a t-test on these results (in Appendix A.1.2) to show the validation accuracy
from the two augmentation methods are different statistically significantly (p-value p = 7 · 10−7 on

8

Published as a conference paper at ICLR 2022

(a) Logistic Regression on MNIST. The greedy algorithm reuses the hyperparameters finetuned on RR.

(b) ResNet20 on CIFAR10. The greedy algorithm is able to converge faster when optimizing the same
loss function while achieving SOTA validation accuracy with mild tuning.

Figure 3: Comparison between Algorithm 1 and RR/SO on MNIST and CIFAR10.

CIFAR10 and p=0.036 on CIFAR100). Importantly, this improvement comes essentially for free, as
generating low discrepancy sequences in low dimension has very little overhead.

We also evaluate our method on fine-tuning ResNet18 on ImageNet. We apply different augmentation
methods on a pre-trained model and train for 5 additional epochs with step size 10−4. We report their
Top1 accuracies in Table 6, which shows that our QMC method improves the validation accuracy by
0.3% compared to the same number of epochs of fine-tuning using random sampling.

Better example ordering via greedy selection. In this section we evaluate Algorithm 1 on two
benchmarks: Logistic Regression on MNIST and ResNet20 on CIFAR10. As discussed, sorting the
stale gradients naively could incur substantial overhead on memory and computation. To mitigate
this, we adopt two methods: random projection and QR decomposition. The former is mainly
to reduce storage: we obtain a gradient computed at some time in an epoch and project it into a
lower-dimensional space before storing it. Classic ways of projection include Gaussian projection or
random sparsification: we adopt the latter as it does not require storing the projection matrix, which
minimizes the storage cost. After we obtain all the stale gradients, we concatenate them into a matrix
and perform QR decomposition before sorting, which allows us to sort in a low-dimensional space
while preserving the order of gradients since the inner products between any two tensors will remain
the same Gander (1980). We set the target dimension to be of 10% size of the original space. In the
spirit of evaluating the applicability of Algorithm 1, we do not perform hyperparameter tuning in this
section but reuse the ones tuned in the literature on Random Reshuffling.

We plot the results in Figure 3. In Figure 3(a) we observe greedy algorithms can consistently converge
faster than RR and SO epoch-wise with optimizing the same loss function. When QR is used without
projection, the algorithm is able to reach higher validation accuracy but converges slower with respect
to the wall-clock time. On the other hand, when we use random sparsification additionally, the
algorithm converges faster with respect to both epoch and wall-clock time without compromising
the validation accuracy. For CIFAR10, we observe the greedy method can converge faster when
optimizing the same loss as other baselines, and achieves higher validation accuracy when fine-tuned.

7 CONCLUSION

We present a unified analysis on example orderings used in SGD, which generalizes several widely-
used orderings in the literature. We propose a greedy algorithm that allows faster convergence via
constructing a better example order with approximate sorting techniques, as well as QMC-based
augmentation that achieves higher validation accuracy on multiple benchmarks. One potential future
direction is designing example orderings to more efficiently minimize the average gradient errors.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

The authors would like to thank A. Feder Cooper and anonymous reviewers from ICLR 2022 for their
valuable feedbacks on earlier versions of this paper.

REFERENCES

Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, and Cyril Zhang. Stochastic optimization
with laggard data pipelines. In Advances in Neural Information Processing Systems, 2020.

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. SGD with shuffling: optimal rates without component
convexity and large epoch requirements. In Advances in Neural Information Processing Systems,
2020.

Christoph Aistleitner and Josef Dick. Functions of bounded variation, signed measures, and a general
Koksma-Hlawka inequality. arXiv:1406.0230, 2014.

Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron C. Courville, and Yoshua Bengio. Variance
reduction in SGD by distributed importance sampling. arXiv:1511.06481, 2015.

Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W. Mahoney. Quasi-Monte Carlo Feature
Maps for Shift-Invariant Kernels. The Journal of Machine Learning Research, 17:120:1–120:38,
2016.

Francis R. Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, pp. 451–459, 2011.

Bernard Bercu, Bernard Delyon, and Emmanuel Rio. Concentration inequalities for sums and
martingales. SpringerBriefs in Mathematics. Springer, 2015.

Dimitri P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex Opti-
mization: A Survey. In Optimization for Machine Learning. The MIT Press, 2011.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421–436.
Springer, 2012.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Alexander Buchholz, Florian Wenzel, and Stephan Mandt. Quasi-Monte Carlo Variational Inference.
In Proceedings of the International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 667–676. PMLR, 2018.

Russel E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1998.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

Jingrun Chen, Rui Du, Panchi Li, and Liyao Lyu. Quasi-Monte Carlo sampling for machine-learning
partial differential equations. arXiv:1911.01612, 2019.

Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. Faster neural network
training with data echoing. arXiv:1907.05550, 2019.

S.-C. T. Choi, F. J. Hickernell, M. McCourt, and A. Sorokin. QMCPy: A quasi-Monte Carlo Python
library, 2020+. URL https://github.com/QMCSoftware/QMCSoftware.

Mikolaj Cieslak, Christiane Lemieux, Jim Hanan, and Przemyslaw Prusinkiewicz. Quasi-Monte
Carlo simulation of the light environment of plants. Functional Plant Biology, 35(10):837–849,
2008.

Christopher De Sa. Random reshuffling is not always better. In Advances in Neural Information
Processing Systems, 2020.

10

https://github.com/QMCSoftware/QMCSoftware

Published as a conference paper at ICLR 2022

Michael Drmota and Robert F/ Tichy. Sequences, discrepancies and applications. Springer, 2006.

Yoel Drori and Ohad Shamir. The complexity of finding stationary points with stochastic gradient
descent. In Proceedings of the International Conference on Machine Learning, volume 119, pp.
2658–2667. PMLR, 2020.

Walter Gander. Algorithms for the QR decomposition. Seminar für Angewandte Mathematik:
Research report, 80(02):1251–1268, 1980.

Mert Gürbüzbalaban, Asuman E. Ozdaglar, and Pablo A. Parrilo. Convergence rate of incremental
gradient and incremental Newton methods. SIAM Journal on Optimization, 29(4):2542–2565,
2019.

Mert Gürbüzbalaban, Asuman E. Ozdaglar, and Pablo A. Parrilo. Why random reshuffling beats
stochastic gradient descent. Mathematical Programming, 186(1):49–84, 2021.

Jeff Z. HaoChen and Suvrit Sra. Random shuffling beats SGD after finite epochs. In Proceedings of
the International Conference on Machine Learning, volume 97, pp. 2624–2633, 2019.

Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. Combinatorics,
Probability and Computing, 2005.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Tito Homem-de Mello. On rates of convergence for stochastic optimization problems under non–
independent and identically distributed sampling. SIAM Journal on Optimization, 19(2):524–551,
2008.

Wolfgang Jank. Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM. Compu-
tational statistics & data analysis, 48(4):685–701, 2005.

Corwin Joy, Phelim P. Boyle, and Ken Seng Tan. Quasi-Monte Carlo methods in numerical finance.
Management Science, 42(6):926–938, 1996.

Kenji Kawaguchi and Haihao Lu. Ordered SGD: A new stochastic optimization framework for
empirical risk minimization. In The 23rd International Conference on Artificial Intelligence and
Statistics, volume 108, pp. 669–679, 2020.

Alexander Keller. A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the
Radiosity Setting. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp.
239–251. Springer New York, 1995.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10657–10665, 2019.

David A. Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Society, 2017.

Sifan Liu and Art B. Owen. Quasi-Newton Quasi-Monte Carlo for variational Bayes.
arXiv:2104.02865, 2021.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv:1511.06343, 2015.

Yucheng Lu, Youngsuk Park, Lifan Chen, Yuyang Wang, Christopher De Sa, and Dean Foster.
Variance reduced training with stratified sampling for forecasting models. In Proceedings of the
International Conference on Machine Learning, pp. 7145–7155. PMLR, 2021.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
with vast improvements. In Advances in Neural Information Processing Systems, 2020.

11

Published as a conference paper at ICLR 2022

Deanna Needell, Rachel Ward, and Nathan Srebro. Stochastic Gradient Descent, Weighted Sampling,
and the Randomized Kaczmarz algorithm. In Advances in Neural Information Processing Systems,
pp. 1017–1025, 2014.

Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, and Marten van Dijk. A
unified convergence analysis for shuffling-type gradient methods. arXiv:2002.08246, 2020.

Art B. Owen. Quasi-Monte Carlo sampling. Monte Carlo Ray Tracing: SIGGRAPH, 1:69–88, 2003.

Guillaume Papa, Pascal Bianchi, and Stéphan Clémençon. Adaptive sampling for incremental
optimization using stochastic gradient descent. In Algorithmic Learning Theory, volume 9355 of
Lecture Notes in Computer Science, pp. 317–331. Springer, 2015.

Teemu Pennanen. Epi-convergent discretizations of multistage stochastic programs. Mathematics of
Operations Research, 30(1):245–256, 2005.

Pete Philipson, Graeme L. Hickey, Michael J. Crowther, and Ruwanthi Kolamunnage-Dona. Faster
Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data.
Computational Statistics & Data Analysis, 151:107010, 2020.

Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean inequality:
Conjectures, case-studies, and consequences. In Conference on Learning Theory, volume 23, pp.
11.1–11.24, 2012.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathemati-
cal Statistics, 22(3):400 – 407, 1951.

Itay Safran and Ohad Shamir. How good is SGD with random shuffling? In Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pp. 3250–3284. PMLR, 2020.

Itay Safran and Ohad Shamir. Random shuffling beats SGD only after many epochs on ill-conditioned
problems. arXiv:2106.06880, 2021.

Mark Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Tao Sun, Yuejiao Sun, and Wotao Yin. On Markov chain gradient descent. In Advances in Neural
Information Processing Systems, pp. 9918–9927, 2018.

Shu Tezuka. Discrepancy theory and its application to finance. In IFIP International Conference on
Theoretical Computer Science, pp. 243–256. Springer, 2000.

Florian Wenzel, Alexander Buchholz, and Stephan Mandt. Quasi-Monte Carlo Flows. In Proceedings
of the 3rd Workshop on Bayesian Deep Learning, 2018.

Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael W. Mahoney. Quasi-Monte Carlo Feature
Maps for Shift-Invariant Kernels. In Proceedings of the International Conference on Machine
Learning, volume 32, pp. 485–493, 2014.

Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed. On the performance of random reshuffling
in stochastic learning. In 2017 Information Theory and Applications Workshop (ITA), pp. 1–5.
IEEE, 2017.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Open problem: Can single-shuffle SGD be better than
reshuffling SGD and GD? In Conference on Learning Theory, 2021.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the International Conference on Machine Learning, volume 69, pp.
116, 2004.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pp. 1–9, 2015.

12

Published as a conference paper at ICLR 2022

A APPENDIX

TABLE OF CONTENTS

A.1 Experiment details . 14

A.1.1 Additional details for Section 6 . 14

A.1.2 t-test for data augmentation results . 14

A.1.3 Small experiments . 14

A.1.4 Optimal step size derivation . 16

A.2 Convergence analysis: diminishing step size . 18

A.2.1 Non-convex case . 18

A.2.2 Strongly-convex case . 21

A.3 Proof for Lemma 1 . 24

A.4 Convergence analysis: constant step size . 28

A.4.1 Non-convex case . 28

A.4.2 Strongly-convex case . 29

A.5 Justifications for Assumption 2 under various example orderings 30

A.5.1 Arbitrary permutation . 30

A.5.2 Shuffle once . 30

A.5.3 Random reshuffling . 33

A.5.4 Random reshuffling with data echoing . 37

A.5.5 Markov chain gradient descent . 38

A.5.6 QMC-based data augmentation with random reshuffling 40

A.6 Miscellaneous lemmas . 42

13

Published as a conference paper at ICLR 2022

A.1 EXPERIMENT DETAILS

A.1.1 ADDITIONAL DETAILS FOR SECTION 6

In Section 6, all the training scripts are implemented via PyTorch1.6 and run on a single machine
configured with an 2.6GHz 4-core Intel (R) Xeon(R) CPU, 16GB memory and NVIDIA GeForce
GTX 1080Ti with CUDA 10.1.

In the example ordering comparison, we use the same seed among different algorithms in the same
run so as to guarantee every algorithm works with the same loss function.

In the ImageNet experiment, the standard step size schedule for ImageNet training is starting at
0.1 and decaying by 10 every 30 epochs. The pre-trained model is the trained model at epoch 90.
Naturally, our learning rate should be 1e-4 by the same schedule. Other hyperparameters are adopted
by the open source implementation: https://github.com/pytorch/examples/tree/
master/imagenet.

In the data augmentation comparison, obviously other augmentation techniques can be used.
The strategies we used are taken from open source implementation https://github.com/
akamaster/pytorch_resnet_cifar10 and https://github.com/weiaicunzai/
pytorch-cifar100 that can reproduce the validation accuracy in He et al. (2016), so that our
comparison can be consistent with the correct benchmarks. Below we include the convergence plot
for the experiment on ImageNet with ResNet18, where each algorithm is repeated three times with
seeds uniformly selected from [0, 1000].

Figure 4: Data augmentation with IID-uniform (standard) and QMC-based methods on ImageNet.

A.1.2 t-TEST FOR DATA AUGMENTATION RESULTS

We now perform t-test on the validation accuracy on two data augmentation results, to show the
improvement from QMC is statistically significant. We include validation accuracy at epoch 200
for CIFAR10 and best accuracy for CIFAR100 in Table A.1.2. We compute the p-value between
IID-Uniform and tuned QMC, and found the p-value on CIFAR10 and CIFAR100 to be 7e-7 and
0.036, respectively. Since they are both smaller than 0.05, we reject the null hypothesis which
concludes they are of the same mean.

A.1.3 SMALL EXPERIMENTS

For both experiments in Section 3, we generated w∗ from a standard Normal distribution. The
minibatch size is 1, and the total number of iterations is 107, with n = 104 over 1000 epochs for the
offline setting. For all variants, we use the theoretical step size optimized for SGD with replacement
(corresponding to IID Uniform) on this particular problem, given by

αt+1 =
αt(1− αt)

1− α2
t (d+ 2)

with α0 =
∥w∗∥2

∥w∗∥2(d+ 2) + d
,

which are derived in Appendix A.1.4 below. To obtain low-discrepancy samples from the Gaussian
distribution, we use the inverse transform method. First we obtain the QMC sequences (Sobol in our

14

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100

Published as a conference paper at ICLR 2022

Table 2: Validation accuracy for different data augmentation methods on CIFAR datasets.

CIFAR10 CIFAR100
Runs IID-Uniform QMC QMC (tuned) IID-Uniform QMC QMC (tuned)

1 91.87 92.05 92.45 67.92 68.91 68.21
2 91.67 92.13 92.53 68.01 68.92 68.12
3 91.68 92.03 92.33 68.03 68.53 68.42
4 91.88 91.9 92.35 67.82 68.03 68.71
5 92.05 92.03 92.41 68.89 68.41 67.99
6 91.79 91.93 92.15 66.99 68.66 68.51
7 91.91 92.79 92.59 68.31 68.92 68.53
8 91.53 91.73 92.44 68.14 68.09 68.53
9 91.3 91.96 92.21 68.02 67.91 68.12
10 91.82 92.21 92.16 67.73 68.31 68.53

case) ζt ∈ [0, 1]s where s is the appropriate dimension, and then use that in the inverse CDF function
of a Gaussian distribution to obtain the corresponding Gaussian sample.

In addition to using synthetic data, we also performed an offline version of the experiment Figure 1(b)
on a real dataset, a6a from the LIBSVM repository (Chang & Lin, 2011). The dataset contains
n=11220 examples with d=124 features (including bias), and all labels are binary. We use logistic
regression with ℓ2 regularization (with λ=1e-4) as the empirical risk:

Rn(w) =
1

n

n∑
i=1

log(1 + exp(−yixT

iw)) +
λ

2
∥w∥2.

To measure the left hand side of Assumption 2, we again fix wτ to be at the origin, and we take the
number of epochs to be 1000. The results are in Figure 5 for one run with an arbitrarily-set seed, and
we draw similar conclusions as observed with synthetic data (see Figure 1(b) in the main paper).

103 104 105 106 107

m

10 8

10 7

10 6

10 5

10 4

10 3

1 m
m

1
t=

0
R n

(w
0;
x t

)
R n

(w
0)

2

Offline (a6a)
IID Uniform
Sobol
RR
SO

Figure 5: Comparison of sampling schemes on ℓ2-regularized logistic regression with real data.

15

Published as a conference paper at ICLR 2022

A.1.4 OPTIMAL STEP SIZE DERIVATION

In this section, we derive the optimal step-size sequence used in our synthetic toy example from
Section 3. Recall our setup

x ∼ N (0, Id), y = xTw∗ + ϵ

where w∗ is the true model parameters that we are trying to recover, and ϵ ∼ N (0, 1) is some intrinsic
error. The goal is to minimize the expected risk

f(w) =
1

2
E
[
(xTw − y)2

]
.

By using the tower rule of expectation conditioning on x, this objective can be written as

f(w) =
1

2
(∥w − w∗∥2 + 1).

The full gradient and the example gradient given a pair (x, y) drawn from the above distribution are

∇f(w) = w − w∗,

∇f(w;x, y) = (xTw − y)x = (xT(w − w∗)− ϵ)x.

Define the gradient error to be

∆g := ∇f(w;x, y)−∇f(w) = (xxT − Id)(w − w∗)− ϵx. (4)

Let us first analyze the expected gradient error conditioned on any randomness in w that might arise
from the sampling history:

E
[
∥∆g∥2

]
= (w − w∗)TE

[
(xxT − Id)

2
]
− 2E[ϵxT(xxT − Id)](w − w∗) + E[ϵ2xTx].

The last term is simply E[ϵ2xTx] = d since ϵ is independent of x. The middle term cancels to 0 again
by independence and zero-mean of ϵ. For the first term,

E
[
(xxT − Id)

2
]
= E[xxTxxT − 2xxT + I]

= (d+ 2)Id − 2Id + Id = (d+ 1)Id.

Together, we have

E
[
∥∆g∥2

]
= (d+ 1)∥w − w∗∥2 + d. (5)

Now let us derive an suboptimality gap recursion for the SGD update step using the step size αt:

wt+1 − w∗ = wt − αt∇f(wt;x, y)− w∗

= (wt − w∗) + αt∇f(wt)− αt∇f(wt)− αt∇f(wt;x, y)

= (1− αt)(wt − w∗)− αt∆
g
t ,

where ∆g
t is the expression in Eq. (4) with wt as input. The expected suboptimality gap conditioned

on all randomness up to timestep t is then

E
[
∥wt+1 − w∗∥2

]
= (1− αt)

2E
[
∥wt − w∗∥2

]
− 2(1− αt)E[((wt − w∗)T∆g

t] + α2
tE
[
∥∆g

t ∥
2
]
.

Observe that under iid uniform sampling, E[∆g
t] = 0, and using Eq. (5) gives us

E
[
∥wt+1 − w∗∥2

]
= (1− αt)

2∥wt − w∗∥2 + α2
t (d+ 1)∥wt − w∗∥2 + α2

td.

Taking an expectation over the entire history to remove conditioning and let ρt := E
[
∥wt − w∗∥2

]
,

ρt+1 = (1− αt)
2ρt + α2

t (d+ 1)ρt + α2
td

= (1− 2αt + α2
t (d+ 2))ρt + α2

td. (6)

Note that the RHS is convex in αt, we can differentiate to minimize the expected suboptimality at
every iteration ρt+1 = E

[
∥wt+1 − w∗∥2

]
:

0 = (−2 + 2αt(d+ 2))ρt + 2αtd⇒ αt =
ρt

(d+ 2)ρt + d
.

16

Published as a conference paper at ICLR 2022

This also gives us an expression for ρt in terms of αt:

ρt =
d

α−1
t − (d+ 2)

,

which combined with Eq. (6) gives us

ρt+1 = (1− αt)ρt = (1− αt)
d

α−1
t − (d+ 2)

.

Finally, the optimal step-size sequence can be implemented via the following recursion

1

αt+1
= d+ 2 +

d

ρt+1
= d+ 2 +

α−1
t − (d+ 2)

1− αt

1

α0
= d+ 2 +

d

ρ0
= d+ 2 +

d

∥w0 − w∗∥2
.

It is easy to verify that this is indeed a decreasing sequence. If we initialize at w0 = 0, then our step
sizes are given by

αt+1 =
αt(1− αt)

1− α2
t (d+ 2)

with α0 =
∥w∗∥2

∥w∗∥2(d+ 2) + d
.

17

Published as a conference paper at ICLR 2022

A.2 CONVERGENCE ANALYSIS: DIMINISHING STEP SIZE

In the main text, our convergence results focused on the constant step size regime for simplicity of
presentation and ease of comparison to prior works, as they often lack diminishing step size results
for permutation-based SGD variants. Here we formally present the convergence rate under our main
Assumption 2 using a diminishing step size sequence. In Theorems 3 and 4 that we present below,
the rate is of the same order as what we obtained under a constant step size (Theorems 1 and 2) up to
a factor of log(T) that typically arises when using a diminishing step size.

Our analysis for the diminishing step size setting is accomplished by breaking the total number of
iterations into phases. Suppose we want to run a total of T iterations of SGD updates. We will break
the analysis into I number of phases. In each phase i = 0, . . . I − 1, we run K(i)m(i) number of
iterations with constant step size α(i). The step size is decayed at the beginning of each phase. For
this, we define the triplets (α(i),m(i),K(i)), where

{
m(i)

}
is an increasing sequence.

Recall that γ and Φ are constants in Assumption 2. In the non-convex case, the inner interval length
is chosen to be

m(i) = ⌈3(Φ + 1)
2/γ⌉2i,

where as for the strongly-convex setting it is

m(i) = ⌈3(Φ + 1)
2/γ · ei/γ⌉.

For both function classes the diminishing step-size is set to

α(i) =
1

6Lm(i)
. (7)

A.2.1 DIMINISHING STEP SIZE: NON-CONVEX CASE

Theorem 3 (Diminishing step size: non-convex case). Suppose that our setup satisfies Assumptions 1
and 2, and let ϵ > 0 be any target error. After T iterations of SGD (Eq. (1)) with a diminishing
step-size (Eq. (7)), we can obtain

min
t=0,...,T−1

∥∇f(wt)∥2 ≤ 12 log2

(
16

3(Φ + 1)
T

)
L∆+ C2(3(Φ + 1))−2

T γ/1+γ(12(Φ + 1)2)−γ/1+γ − 1
= O

(
log(T)

T γ/1+γ

)
.

This implies the number of gradient evaluations to achieve mint∥∇f(wt)∥2 ≤ ϵ2 is

T = Õ(ϵ
−2(1+γ)

γ).

Proof. To apply Lemma 1 to the iterations within a particular phase i, we need

3Φ ≤ m
γ/2 and α ≤ 1

6Lm

where we have temporarily dropped the index (i) for convenience. Lemma 1 gives us the following
bound on the objective value between any length-m number of iterations within that phase: for
τ ∈ {0,m− 1, 2m− 1, . . . , (K − 1)m− 1},

f(wτ+m) ≤ f(wτ)−
η

4
∥∇f(wτ)∥2 +

2C2

η
α2m2−γ

≤ f(wτ)−
αm

4
∥∇f(wτ)∥2 + 2C2αm1−γ ,

since the step size is constant throughout one phase. Summing over K such intervals from τ = 0
followed by a telescope,

αm

4

K−1∑
k=0

∥∇f(wmk)∥2 ≤ f(w0)− f(wmK−1) + 2C2Kαm1−γ .

18

Published as a conference paper at ICLR 2022

We now restore our phase index,

α(i)m(i)K(i)

4

1

K(i)

K(i)−1∑
k=0

∥∇f(wmk)∥2 ≤ f(w0)− f(wm(i)K(i)−1) + 2C2K(i)α(i)(m(i))1−γ

= f(w0)− f(wm(i)K(i)−1) +
C2

3L
K(i)(m(i))−γ ,

where we have chosen the largest possible α(i) = 1/6Lm(i) for all i. Summing over I phases and
letting ∆ := f(w0)− f∗,

I−1∑
i=0

α(i)m(i)K(i)

4

1

K(i)

K(i)−1∑
k=0

∥∇f(wm(i)k)∥
2 ≤ I∆+

C2

3L

I−1∑
i=0

K(i)(m(i))−γ

where the left hand side can be further lower bounded with
I−1∑
i=0

α(i)m(i)K(i)

4
min

t=0,...,T−1
∥∇f(wt)∥2 ≤ I∆+

C2

3L

I−1∑
i=0

K(i)(m(i))−γ ,

using the inclusion that
{
0,m(i) − 1, . . . ,K(i)m(i) − 1

}I−1

i=0
⊂ {0, . . . , T − 1}. Now let us choose

m(i) = ⌈(3(Φ + 1))
2/γ⌉2i

K(i) = ⌈2iγ⌉.

Here the choice of m(i) guarantees that

(m(i))
γ/2 =

(
⌈(3(Φ + 1))

2/γ⌉2i
)γ/2

= ⌈(3(Φ + 1))
2/γ⌉γ/2(2i)γ/2

≥ (3(Φ + 1))2
iγ/2 ≥ 3Φ.

Next, observe that for the last term in the previous sum,

I−1∑
i=0

K(i)(m(i))−γ =

I−1∑
i=0

⌈2iγ⌉(⌈(3(Φ + 1))
2/γ⌉2i)−γ

≤
I−1∑
i=0

(
2iγ + 1

)
((3(Φ + 1))

2/γ2i)−γ

≤
I−1∑
i=0

2(2iγ)((3(Φ + 1))
2/γ2i)−γ

=

I−1∑
i=0

2(3(Φ + 1))−22iγ2−iγ

= 2I(3(Φ + 1))−2.

Combining with the above,

I−1∑
i=0

α(i)m(i)K(i)

4
min

t=0,...,T−1
∥∇f(wt)∥2 ≤ I∆+

2C2

3L
· I(3(Φ + 1))−2. (8)

Furthermore, using our choice of α(i)

I−1∑
i=0

α(i)m(i)K(i)

4
=

1

6L

I−1∑
i=0

K(i).

19

Published as a conference paper at ICLR 2022

Re-arranging Eq. (8),

min
t=0,...,T−1

∥∇f(wt)∥2 ≤
6IL∆+ 2

3C
2 · I(3(Φ + 1))−2∑I−1
i=0 K(i)

. (9)

The total number of iterations is given by

T =

I−1∑
i=0

K(i)m(i)

=

I−1∑
i=0

⌈2iγ⌉ · ⌈(3(Φ + 1))
2/γ⌉2i

≥ (3(Φ + 1))
2/γ

I−1∑
i=0

2(γ+1)i

= (3(Φ + 1))
2/γ 2

(γ+1)I − 1

2γ+1 − 1
≥ (3(Φ + 1))

2/γ 2
(γ+1)I − 1

2γ+1
.

Solving for I and using lg to denote log2, we obtain

I ≤
(

1

γ + 1

)
lg

(
2γ+1

(3(Φ + 1))2/γ
T + 1

)
≤
(

1

γ + 1

)
lg

(
2γ+2

(3(Φ + 1))2/γ
T

)
.

Moreover, we can also upper bound T using similar arguments,

T =

I−1∑
i=0

⌈2iγ⌉ · ⌈(3(Φ + 1))
2/γ⌉2i

≤
I−1∑
i=0

2(2iγ) · 2(3(Φ + 1))
2/γ2i

= 4(3(Φ + 1))
2/γ

I−1∑
i=0

2(γ+1)i

= 4(3(Φ + 1))
2/γ 2(γ+1)I

2γ+1 − 1
,

which gives

I ≥
(

1

γ + 1

)
lg

 2γ+1 − 1

4(3(Φ + 1))2/γ︸ ︷︷ ︸
=:Γ

T


We are left to bound

I−1∑
i=0

K(i) =

I−1∑
i=0

⌈2iγ⌉ ≥
I−1∑
i=0

2iγ =
2γI − 1

2γ − 1

≥ 2γ/1+γ lg(ΓT) − 1

2γ

=
(ΓT)γ/1+γ − 1

2γ

=

(
2γ+1−1

4(3(Φ+1))2/γ
T
)γ/1+γ

− 1

2γ

20

Published as a conference paper at ICLR 2022

using our lower bound for I . Substituting this and the upper bound for I into Eq. (9),

min
t=0,...,T−1

∥∇f(wt)∥2 ≤
6IL∆+ 2

3C
2 · I(3(Φ + 1))−2∑I−1
i=0 K(i)

≤
(

1

γ + 1

)
lg

(
2γ+2

(3(Φ + 1))2/γ
T

)
6L∆+ 2

3C
2(3(Φ + 1))−2(

2γ+1−1

4(3(Φ+1))
2/γ

T

)γ/1+γ

−1

2γ

≤ 12 lg

(
16

3(Φ + 1)
T

)
L∆+ C2(3(Φ + 1))−2(

2γ+1−1
4(3(Φ+1))2/γ

T
)γ/1+γ

− 1

≤ 12 lg

(
16

3(Φ + 1)
T

)
L∆+ C2(3(Φ + 1))−2

T γ/1+γ(12(Φ + 1)2)−γ/1+γ − 1

= O
(
log(T)

T γ/1+γ

)
,

which yields our convergence rate in the nonconvex setting.

A.2.2 DIMINISHING STEP SIZE: STRONGLY-CONVEX CASE

Theorem 4 (Diminishing step size: strongly-convex case). Suppose f is µ-Polyak-Łojasiewicz (PL),
and that our setup satisfies Assumptions 1 and 2 Let ϵ > 0 be any target error, and κ = L/µ be the
condition number of the problem. After T iterations of SGD (Eq. (1)) with a diminishing step-size
(Eq. (7)), we can obtain

f(wT)− f∗ ≤
(

e1/γ − 1

2⌈12κ⌉(3(Φ + 1))2/γ

)−γ(
∆+

4C2

µ

(3(Φ + 1))−2

e(1− ρ)⌈12κ⌉

)
= O

(
1

T γ

)
.

This implies the number of gradient evaluations to achieve f(wT)− f∗ ≤ ϵ2 is

T = O(ϵ−2/γ).

Proof. We will begin with the same analysis technique as used in the non-convex case. To apply
Lemma 1 to the iterations within a particular phase i, we need

3Φ ≤ m
γ/2 and α ≤ 1

6Lm

dropping the index (i) for convenience and will re-introduce it later when appropriate. Lemma 1
gives us the following bound on the objective value between any length-m number of iterations
within that phase: for τ ∈ {0,m− 1, . . . , (K − 1)m− 1},

f(wτ+m) ≤ f(wτ)−
η

4
∥∇f(wτ)∥2 +

2C2

η
α2m2−γ

≤ f(wτ)−
αm

4
∥∇f(wτ)∥2 + 2C2αm1−γ ,

since the step size is constant throughout one phase. Strong-convexity (or the Polyak-Łojasiewicz
(PL) inequality) of f implies ∥∇f(w)∥2 ≥ 2µ(f(w) − f∗) for all w ∈ Rd. Using this while
subtracting f∗ on both sides leads to

f(wτ+m)− f∗ ≤
(
1− αmµ

2

)
(f(wτ)− f∗) + 2C2αm1−γ .

21

Published as a conference paper at ICLR 2022

Applying this recursively K times gives

f(wmK)− f∗ ≤
(
1− αmµ

2

)K
(f(w0)− f∗) + 2C2αm1−γ

K−1∑
k=0

(
1− αmµ

2

)k
≤
(
1− αmµ

2

)K
(f(w0)− f∗) + 2C2αm1−γ

∞∑
k=0

(
1− αmµ

2

)k
=
(
1− µ

12L

)K
(f(w0)− f∗) + 2C2αm1−γ 2

αmµ

=

(
1− 1

12κ

)K

(f(w0)− f∗) + 4C2m−γµ−1,

where we have used

α ≤ 1

6Lm
=⇒ αmµ

2
≤ µ

12L
< 1 as µ ≤ L.

We now restore the phase index. Letting Ti :=
∑i−1

i′=0 m
(i′)K(i′) be the total number of iterations

passed after i phases so that T = TI , and ∆t := f(wt)− f∗,

f(wTi+1
)− f∗ ≤

(
1− 1

12κ

)K(i)

∆Ti
+

4C2

µ
(m(i))−γ .

Now let us choose

m(i) = ⌈(3(Φ + 1))
2/γ · ei/γ⌉

K(i) = K = ⌈12κ⌉ = ⌈ −1
log(1− 1/12κ)

⌉ ≥ 12.

Here the choice of m(i) guarantees that

(m(i))
γ/2 =

(
⌈(3(Φ + 1))

2/γ · ei/γ⌉
)γ/2

≥
(
(3(Φ + 1))

2/γ
)γ/2

e
i/2 ≥ 3Φ.

Using the constant K across all phases, our recursion can be simplified to

f(wTi+1)− f∗ ≤
(
1− 1

12κ

)K

∆Ti +
4C2

µ
(m(i))−γ .

Since this holds for any i = 0, . . . , I − 1, applying recursion over I phases yields,

f(wT)− f∗ ≤ (1− ρ)KI∆0 +
4C2

µ

I−1∑
i=0

(1− ρ)Ki(m(I−i))−γ (10)

where we defined ρ := 1/12κ. Observe that for our choice of m(i) and K,

T =

I−1∑
i=0

K(i)m(i) = K

I−1∑
i=0

⌈(3(Φ + 1))
2/γ · ei/γ⌉

≤ K

I−1∑
i=0

2(3(Φ + 1))
2/γ · ei/γ

= 2K(3(Φ + 1))
2/γ

I−1∑
i=0

e
i/γ

=
2K(3(Φ + 1))2/γ

e1/γ − 1
(e

I/γ − 1) ≤ 2K(3(Φ + 1))2/γ

e1/γ − 1
e
I/γ ,

which implies

I ≥ γ log

(
e1/γ − 1

2K(3(Φ + 1))2/γ
T

)
,

22

Published as a conference paper at ICLR 2022

and so

(1− ρ)KI ≤ exp(−ρKI) ≤ exp

(
−ρKγ · log

(
e1/γ − 1

2K(3(Φ + 1))2/γ
T

))

note that

ρKγ = γρ⌈ −1
log(1− ρ)

⌉ ≥ γ.

This gives us

(1− ρ)KI ≤
(

e1/γ − 1

2K(3(Φ + 1))2/γ

)−γ

T−γ . (11)

Substituting this into Eq. (10),

f(wT)− f∗ ≤ ∆0

(
e1/γ − 1

2K(3(Φ + 1))2/γ

)−γ

T−γ +
4C2

µ

I−1∑
i=0

(1− ρ)Ki(m(I−i))−γ . (12)

For the last term,

I−1∑
i=0

(1− ρ)Ki(m(I−i))−γ =

I−1∑
i=0

(1− ρ)Ki⌈(3(Φ + 1))
2/γ · eI−i/γ⌉−γ

≤ (3(Φ + 1))−2
I−1∑
i=0

(1− ρ)Kiei−I

= (3(Φ + 1))−2e−I
I−1∑
i=0

(e(1− ρ)K)i

= (3(Φ + 1))−2e−I (e(1− ρ)K)I

e(1− ρ)K

= (3(Φ + 1))−2 (1− ρ)KI

e(1− ρ)K
.

Substituting these into Eq. (12), and using Eq. (11) to bound (1− ρ)KI gives us the convergence rate
for strongly-convex functions using a diminishing step size:

f(wT)− f∗ ≤ ∆(1− ρ)KI +
4C2

µ
(3(Φ + 1))−2 (1− ρ)KI

e(1− ρ)K

≤ (1− ρ)KI

(
∆+

4C2

µ

)
(3(Φ + 1))−2

e(1− ρ)K

≤
(

e1/γ − 1

2⌈12κ⌉(3(Φ + 1))2/γ

)−γ(
∆+

4C2

µ

(3(Φ + 1))−2

e(1− ρ)⌈12κ⌉

)
T−γ

= O
(

1

T γ

)
.

23

Published as a conference paper at ICLR 2022

A.3 PROOF FOR LEMMA 1

We now prove the lemma that bounds the evolution of SGD over a length-m analysis phase. This
lemma is the key to our convergence analyses in both the diminishing and constant step size regimes.
Before we proceed, we first state and prove the following bound on the gradient error when scaled by
a nonincreasing sequence.
Lemma 2. Suppose Assumption 2 holds. If {ρt} is a deterministic, nonincreasing, and nonnegative
sequence, then∥∥∥∥∥

τ+m−1∑
t=τ

ρt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

≤ ρ2τ ·m2−γ ·
(
C2 +Φ2∥∇f(wτ)∥2

)
.

Proof. Let βt = ρt − ρt+1 for t ∈ {τ, τ + 1, . . . , τ +m− 2}, and let βτ+m−1 = ρt+m−1. Observe
that these are all nonnegative, and∥∥∥∥∥

τ+m−1∑
t=τ

ρt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

=

∥∥∥∥∥
τ+m−1∑

t=τ

τ+m−1∑
k=t

βk (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

=

∥∥∥∥∥
τ+m−1∑
k=τ

k∑
t=τ

βk (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

= ρ2τ

∥∥∥∥∥
τ+m−1∑
k=τ

βk

ρτ

k∑
t=τ

(∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

.

Applying Jensen’s inequality using
∑τ+m−1

k=τ βk = ρτ ,∥∥∥∥∥
τ+m−1∑

t=τ

ρt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

≤ ρ2τ

τ+m−1∑
k=τ

βk

ρτ

∥∥∥∥∥
k∑

t=τ

(∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

= ρ2τ

τ+m−1∑
k=τ

βk

ρτ
(k − τ + 1)2

∥∥∥∥∥ 1

k − τ + 1

k∑
t=τ

(∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

.

Applying Assumption 2 on the squared norm,∥∥∥∥∥
τ+m−1∑

t=τ

ρt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

≤ ρ2τ

τ+m−1∑
k=τ

βk

ρτ
(k − τ + 1)2 · 1

(k − τ + 1)γ

(
C2 +Φ2∥∇f(wτ)∥2

)
= ρ2τ

τ+m−1∑
k=τ

βk

ρτ
· (k − τ + 1)2−γ ·

(
C2 +Φ2∥∇f(wτ)∥2

)
≤ ρ2τ

τ+m−1∑
k=τ

βk

ρτ
·m2−γ ·

(
C2 +Φ2∥∇f(wτ)∥2

)
= ρ2τ ·m2−γ ·

(
C2 +Φ2∥∇f(wτ)∥2

)
,

which is what we wanted to show.

24

Published as a conference paper at ICLR 2022

We now recall the statement for Lemma 1. In the main paper, we state the lemma with constant step
size. In the following proof, we prove it holds for non-decreasing step size, where constant step size
will hold naturally as a special case. For this, we define η :=

∑τ+m−1
t=τ αt.

Lemma 1. Suppose our setup satisfies Assumptions 1 and 2 and that we use a constant step size
α For all timesteps τ ≥ 0, let m > 0 be some integer such that 3ατm

1−γ/2Φ ≤ η ≤ 1
6L . Then the

objective at timestep τ +m is bounded by

f(wτ+m) ≤ f (wτ)−
η

4
∥∇f(wτ)∥2 +

2

η
α2
τm

2−γC2.

Proof. Let η and g denote

η :=

τ+m−1∑
t=τ

αt and g :=
1

η

τ+m−1∑
t=τ

αt∇f(wt;xt).

This means that wτ+m = wτ − ηg. From Assumption 1 (L-Smoothness),

f(wτ+m) = f (wτ − ηg)

≤ f (wτ)− η ⟨∇f(wτ), g⟩+
η2L

2
∥g∥2

= f (wτ)−
η

2
∥∇f(wτ)∥2 −

η

2
∥g∥2 + η

2
∥g −∇f(wτ)∥2 +

η2L

2
∥g∥2

≤ f (wτ)−
η

2
∥∇f(wτ)∥2 +

η

2
∥g −∇f(wτ)∥2,

where the last inequality follows because we assumed ηL ≤ 1/6 (< 1). Next, observe that
η

2
∥g −∇f(wτ)∥2

=
1

2η
∥ηg − η∇f(wτ)∥2

=
1

2η

∥∥∥∥∥
τ+m−1∑

t=τ

αt (∇f(wt;xt)−∇f(wτ))

∥∥∥∥∥
2

≤ 1

η

∥∥∥∥∥
τ+m−1∑

t=τ

αt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

+
1

η

∥∥∥∥∥
τ+m−1∑

t=τ

αt (∇f(wt;xt)−∇f(wτ ;xt))

∥∥∥∥∥
2

.

To bound the second term,

1

η

∥∥∥∥∥
τ+m−1∑

t=τ

αt (∇f(wt;xt)−∇f(wτ ;xt))

∥∥∥∥∥
2

= η

∥∥∥∥∥
τ+m−1∑

t=τ

αt

η
(∇f(wt;xt)−∇f(wτ ;xt))

∥∥∥∥∥
2

≤ η

τ+m−1∑
t=τ

αt

η
∥(∇f(wt;xt)−∇f(wτ ;xt))∥2

≤
τ+m−1∑

t=τ

αtL
2∥wt − wτ∥2.

Combining the above,

η

2
∥g −∇f(wτ)∥2 ≤

1

η

∥∥∥∥∥
τ+m−1∑

t=τ

αt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

+

τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2. (13)

Applying Lemma 2 on the first term in Eq. (13) gives

1

η

∥∥∥∥∥
τ+m−1∑

t=τ

αt (∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

≤ 1

η
α2
τm

2−γ
(
C2 +Φ2∥∇f(wτ)∥2

)
.

25

Published as a conference paper at ICLR 2022

For the second term in Eq. (13),

τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2 =

τ+m−1∑
t=τ

αtL
2

∥∥∥∥∥
t−1∑
u=τ

αu∇f(wu;xu)

∥∥∥∥∥
2

≤ 3

τ+m−1∑
t=τ

αtL
2

∥∥∥∥∥
t−1∑
u=τ

αu (∇f(wu;xu)−∇f(wτ ;xu))

∥∥∥∥∥
2

+ 3

τ+m−1∑
t=τ

αtL
2

∥∥∥∥∥
t−1∑
u=τ

αu (∇f(wτ ;xu)−∇f(wτ))

∥∥∥∥∥
2

+ 3

τ+m−1∑
t=τ

αtL
2

∥∥∥∥∥
t−1∑
u=τ

αu∇f(wτ)

∥∥∥∥∥
2

≤ 3

τ+m−1∑
t=τ

αtL
4

(
t−1∑
u=τ

αu

)
t−1∑
u=τ

αu∥wu − wτ∥2

+ 3

τ+m−1∑
t=τ

αtL
2 · α2

τm
2−γ

(
C2 +Φ2∥∇f(wτ)∥2

)

+ 3

τ+m−1∑
t=τ

αtL
2

(
t−1∑
u=τ

αu

)2

∥∇f(wτ)∥2,

where the second term in the last inequality follows from Lemma 2. Continuing,

τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2 ≤ 3

τ+m−1∑
t=τ

αtL
4η

t−1∑
u=τ

αu∥wu − wτ∥2

+ 3

τ+m−1∑
t=τ

αtL
2α2

τm
2−γ

(
C2 +Φ2∥∇f(wτ)∥2

)
+ 3η3L2∥∇f(wτ)∥2

= 3η2L2
τ+m−1∑

t=τ

αtL
2∥wt − wτ∥2

+ 3L2ηα2
τm

2−γ
(
C2 +Φ2∥∇f(wτ)∥2

)
+ 3η3L2∥∇f(wτ)∥2.

This implies that

(1− 3η2L2)

τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2 ≤ 3L2C2ηα2

τm
2−γ

+
(
3η3L2 + 3L2ηα2

τm
2−γΦ2

)
∥∇f(wτ)∥2.

And because by our assumption, α2
τm

2−γΦ2 ≤ η2

9 , it follows that

(1− 3η2L2)

τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2 ≤ 3L2C2ηα2

τm
2−γ +

10

3
η3L2∥∇f(wτ)∥2.

Since we also assumed η ≤ 1
6L , it follows that 3η2L2 ≤ 1

12 , and so(
1− 1

12

) τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2 ≤ 3L2C2ηα2

τm
2−γ +

5

54
η∥∇f(wτ)∥2,

26

Published as a conference paper at ICLR 2022

which gives

τ+m−1∑
t=τ

αtL
2∥wt − wτ∥2 ≤

12

11
· 3L2C2ηα2

τm
2−γ +

12

11
· 5
54

η∥∇f(wτ)∥2

=
36

11
L2C2ηα2

τm
2−γ +

10

99
η∥∇f(wτ)∥2.

So, putting this all together,

f(wτ+m) ≤ f (wτ)−
η

2
∥∇f(wτ)∥2 +

1

η
α2
τm

2−γ
(
C2 +Φ2∥∇f(wτ)∥2

)
+

36

11
L2C2ηα2

τm
2−γ +

10

99
η∥∇f(wτ)∥2

= f (wτ)−
η

2
∥∇f(wτ)∥2 +

1

η
α2
τm

2−γC2

+
1

η
α2
τm

2−γΦ2∥∇f(wτ)∥2

+
36

11
L2C2ηα2

τm
2−γ +

10

99
η∥∇f(wτ)∥2

≤ f (wτ)−
η

2
∥∇f(wτ)∥2 +

1

η
α2
τm

2−γC2

+
1

9
η∥∇f(wτ)∥2

+ 4L2C2ηα2
τm

2−γ +
10

99
η∥∇f(wτ)∥2

= f (wτ)−
η

2
∥∇f(wτ)∥2 +

1

η
α2
τm

2−γC2

+ 4L2C2ηα2
τm

2−γ +
21

99
η∥∇f(wτ)∥2

≤ f (wτ)−
η

2
∥∇f(wτ)∥2 +

1

η
α2
τm

2−γC2

+
1

4η
C2α2

τm
2−γ +

1

4
η∥∇f(wτ)∥2

≤ f (wτ)−
η

4
∥∇f(wτ)∥2 +

2

η
α2
τm

2−γC2.

This is what we wanted to show.

27

Published as a conference paper at ICLR 2022

A.4 CONVERGENCE ANALYSIS: CONSTANT STEP SIZE

A.4.1 CONSTANT STEP SIZE: NON-CONVEX CASE

Theorem 1 (Non-convex case). Suppose that our setup satisfies Assumptions 1 and 2, and let ϵ > 0
be any target error. Using SGD (1) with a constant step size α = 1

6L

⌈
(4C/ϵ+ 3Φ)2/γ

⌉−1
, the

number of steps T needed to achieve mint=0,··· ,T−1∥∇f(wt)∥2 ≤ ϵ2 is at most

T =
⌈
48L∆
ϵ2

⌉
·
⌈(

4C
ϵ + 3Φ

)2/γ⌉
= Õ

(
C

2/γL∆
ϵ2+2/γ

+ Φ
2/γL∆
ϵ2 + C

2/γ

ϵ2/γ
+Φ2/γ

)
.

Proof. To satisfy the requirements of Lemma 1 in the constant step size, constant m case, we need

3αm1−γ/2Φ ≤ mα ≤ 1

6L
.

This breaks apart into first a constraint on only m:

3Φ ≤ m
γ/2, (14)

and then a constraint on α in terms of m:

α ≤ 1

6Lm
.

In the nonconvex setting, we invoke Lemma 1 followed by summing up over K phases and telescop-
ing,

αm

4

K−1∑
k=0

∥∇f(wmk)∥2 ≤ f(w0)− f∗ +
2K

αm
α2m2−γC2

= f(w0)− f∗ + 2Kαm1−γC2,

which gives a rate of

1

K

K−1∑
k=0

∥∇f(wmk)∥2 ≤
4(f(w0)− f∗)

αmK
+ 8m−γC2.

If we want to minimize the right side, observe that we will always want to set α as large as possible,
i.e. set α = 1/6Lm. This gives

1

K

K−1∑
k=0

∥∇f(wmk)∥2 ≤
24L(f(w0)− f∗)

K
+ 8m−γC2.

Now, for this to all be less than ϵ2, it suffices for

24L(f(w0)− f∗)

K
≤ ϵ2

2
and 8m−γC2 ≤ ϵ2

2
.

The former occurs when

K ≥ 48L(f(w0)− f∗)

ϵ2
,

while the latter happens when

4C

ϵ
≤ m

γ/2. (15)

If we let ∆ = f(w0)− f∗, using Eqs. (14) and (15) and taking the minimum m and K required, we
can bound the number of iterations as

T = mK ≥
⌈
48L∆

ϵ2

⌉
·

⌈(
4C

ϵ
+ 3Φ

)2/γ
⌉
.

So,

T = O
(
C2/γL∆

ϵ2+2/γ
+

L∆Φ2/γ

ϵ2
+

C2/γ

ϵ2/γ
+Φ

2/γ

)
,

where we suppose that γ acts as a constant.

28

Published as a conference paper at ICLR 2022

A.4.2 CONSTANT STEP SIZE: STRONGLY-CONVEX CASE

Theorem 2. Suppose that f satisfies the µ-PL condition and our setup satisfies Assumptions 1 and 2.
Let ϵ > 0 be any target error, and κ = L/µ be the condition number of the problem. Using SGD
(1) with a constant step size α = 1

6L

⌈
(8C2/(µϵ2) + 9Φ2)1/γ

⌉−1, the number of steps T needed to
guarantee f(wT)− f∗ ≤ ϵ2 is at most

T =
⌈
12κ log

(
2∆
ϵ2

)⌉
·
⌈(

8C2

µϵ2 + 9Φ2
)1/γ

⌉
= Õ

(
C2/γκ

µ1/γϵ2/γ
+ κΦ2/γ + κ

)
.

Proof. The strongly convex setting has the same constraints on m and α as the non-convex setting.
Recall that µ-strong convexity or µ-PL of f implies that for all x, ∥∇f(x)∥2 ≥ 2µ(f(x) − f∗).
Applying this to the result of Lemma 1 gives

f(wτ+m) ≤ f (wτ)−
αmµ

2
(f(wτ)− f∗) + 2αm1−γC2,

which is equivalent to

f(wτ+m)− f∗ ≤
(
1− αmµ

2

)
(f(wτ)− f∗) + 2αm1−γC2.

Applying this recursively over K intervals of length m starting from τ = 0,

f(wmK)− f∗ ≤
(
1− αmµ

2

)K
(f(w0)− f∗) + 2αm1−γC2

K−1∑
k=0

(
1− αmµ

2

)k
≤ exp

(
−αmµK

2

)
(f(w0)− f∗) + 2αm1−γC2

∞∑
k=0

(
1− αmµ

2

)k
= exp

(
−αmµK

2

)
(f(w0)− f∗) + 2αm1−γC2

(
1−

(
1− αmµ

2

))−1

= exp

(
−αmµK

2

)
(f(w0)− f∗) + 2αm1−γC2 · 2

αmµ

= exp

(
−αmµK

2

)
(f(w0)− f∗) +

4C2

µ
m−γ .

As in the non-convex case, it best advantages us to set α as large as possible. Setting α = 1/6Lm gives

f(wmK)− f∗ ≤ exp

(
− µK

12L

)
(f(w0)− f∗) +

4C2

µ
m−γ .

For this to be less than ϵ2, it suffices for each of these two terms to be less than ϵ2/2. In the latter case,
we would need

8C2

µϵ2
≤ mγ . (16)

The former case holds when

K ≥ 12L

µ
log

(
2∆

ϵ2

)
= 12κ log

(
2∆

ϵ2

)
,

where κ = L/µ. Applying a ceiling, using the minimum requirement on K and m from Eq. (16)
above and Eq. (14) required in Lemma 1, we can lower bound the total number of iterations as

T = mK ≥
⌈
12κ log

(
2∆

ϵ2

)⌉
·

⌈(
8C2

µϵ2
+ 9Φ2

)1/γ
⌉
.

Ignoring logarithmic terms gives

T = Õ

(
κ

(
C2

µϵ2

)1/γ

+ κΦ
2/γ

)
.

29

Published as a conference paper at ICLR 2022

A.5 JUSTIFICATIONS FOR ASSUMPTION 2 UNDER VARIOUS EXAMPLE ORDERINGS

A.5.1 PROOF FOR PROPOSITION 1 (ARBITRARY PERMUTATION)

Proposition 1. Let Assumptions 1 and 3 hold, and suppose that we are using a permutation-based
method of sampling, that is, any method such that xkn, xkn+1, . . . , xkn+n−1 is a permutation of
x(0), x(1), . . . , x(n−1) for all epochs k ≥ 0. Any such method satisfies Assumption 2 with γ = 2,
C2 = n2A2 and Φ2 = n2B2.

Proof. This result follows trivially from Assumption 3. Consider an arbitrary sum of gradient errors
going from τ to τ +m− 1:

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ),

where σ(t) is the index into the training set given by the permutation σ used at time step t. Since the
interval {τ, τ + 1, . . . , τ +m− 1} is arbitrary, this m can potentially be greater than n, the epoch
size. We can split this interval up as follows. Let τ1 be the first epoch boundary in the interval, such
that all t going from τ to τ1 − 1 are within the same epoch as wτ , or else τ1 = τ +m if there is no
epoch boundary in the interval. Let τ2 be the last epoch boundary in the interval, such that all t going
from τ2 to τ +m−1 are within a later epoch than wτ (it may be the case that τ1 = τ2). Then the sum

τ2−1∑
t=τ1

∇f(wτ ;xσ(t))−∇f(τ)

must be zero, since this interval goes over full epochs. This leaves us with∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
≤

∥∥∥∥∥
τ1−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥+
∥∥∥∥∥
τ+m−1∑
t=τ2

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
≤ n

(
A2 +B2∥∇f(wτ)∥2

)1/2
.

where we have used the fact that the intervals {τ, . . . , τ1} and {τ2, τ +m− 1} are of length at
most ⌊n/2⌋ (if such interval is of length greater than ⌊n/2⌋, then bounding its norm is equivalent to
bounding the sums of the remaining terms, for which there are at most ⌊n/2⌋ of them). Therefore∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 1

m2
n2
(
A2 +B2∥∇f(wτ)∥2

)
,

and so Assumption 2 is satisfied with γ = 2, C2 = n2A2, and Φ2 = n2B2.

A.5.2 PROOF FOR PROPOSITION 2 (SHUFFLE ONCE)

Proposition 2. Suppose that we are using the shuffle once variant of SGD to learn over a region
B ∈ Rd of radius at most R, such that the iterates wt are guaranteed to remain within this region.
Assume that for all w ∈ B and all examples x in the training set of size n, Assumption 1 (L-
Smoothness) and Assumption 3 hold. Then with probability at least 1− p, Assumption 2 holds with
γ = 2, C2 = Õ(dA2(n+B2)), and Φ2 = Õ(ndB2).3

Proof. We begin by invoking Lemma 6 (Permuted vector Hoeffding inequality) with

Xi,j =
∇f(w;xi,j)−∇f(w)(
A2 +B2∥∇f(w)∥2

)1/2
3The probability p is only present in log terms in these expressions, so it does not appear in the Õ.

30

Published as a conference paper at ICLR 2022

where we use xi,j to denote the j-th example after time step i, for all i ∈ {1, . . .m}, j ∈ {1, . . . , n},
with n ≥ m > 0. Note that here we are using a fixed w ∈ B that does not depend on the permutation
σ used in shuffle once. Clearly,

∑n
j=1 Xi,j = 0 for all i due to the periodicity in shuffle once, and

∥Xi,j∥ ≤ 1 by our assumption. Therefore the requirements of Lemma 6 are satisfied, which gives
the following high probability bound for some ϵ > 0 on any sequence drawn without replacement:

P

∥∥∥∥∥
m∑
t=1

∇f(w;xσ(t))−∇f(w)

∥∥∥∥∥
2

≥ ϵ2
(
A2 +B2∥∇f(w)∥2

) ≤ 2e2 exp

(
− ϵ2

32m

)
.

Using the periodicity property of shuffle once, i.e. if σ is the drawn permutation at the beginning of
training then σ(t+ n) = σ(t), which allows us to arbitrarily shift the starting time step in the above:

P

∥∥∥∥∥
τ+m−1∑

t=τ

∇f(w;xσ(t))−∇f(w)

∥∥∥∥∥
2

≥ ϵ2
(
A2 +B2∥∇f(w)∥2

) ≤ 2e2 exp

(
− ϵ2

32m

)
.

Consider an arbitrary interval of length m out of the permutation. As all of the n(n−1)/2 intervals are
equivalent to an interval of size at most ⌊n/2⌋, by the sum to 0 property, we only need to consider
intervals with m ≤ n/2. This gives us

P

∥∥∥∥∥
τ+m−1∑

t=τ

∇f(w;xσ(t))−∇f(w)

∥∥∥∥∥
2

≥ ϵ2
(
A2 +B2∥∇f(w)∥2

) ≤ 2e2 exp

(
− ϵ2

16n

)
.

By a union bound across all intervals we have

P

∃τ,m ∈ Z,

∥∥∥∥∥
τ+m−1∑

t=τ

∇f(w;xσ(t))−∇f(w)

∥∥∥∥∥
2

≥ ϵ2
(
A2 +B2∥∇f(w)∥2

)
≤ e2n2 exp

(
− ϵ2

16n

)
.

Unfortunately, we cannot take a union bound over Rn or B (or even just over {w0, . . . , wT }), since
the set may contain iterates visited by shuffle once that depend on σ, and thus Lemma 6 may not hold.
Instead, suppose that we cover the whole region B with balls of radius δ. We will be able to do this
with (1 + 2R/δ)

d balls by Lemma 7 (ϵ-net lemma). So, if the centers of the balls form a setW , then

P

∃τ,m ∈ Z, ŵ ∈ W,

∥∥∥∥∥
τ+m−1∑

t=τ

∇f(ŵ;xσ(t))−∇f(ŵ)

∥∥∥∥∥
2

≥ ϵ2
(
A2 +B2∥∇f(ŵ)∥2

)
≤ e2n2

(
1 +

2R

δ

)d

exp

(
− ϵ2

16n

)
.

Note that the centers we use to cover the region is completely independent of the running algorithm,
therefore the union bound over Lemma 6 can be applied. Next, consider some wτ that is not
necessarily the center of a ball. The function

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

is Ln-Lipschitz continuous, because each of the components is L-Lipschitz, and we can sum up only
at most n/2 of them. Let ŵ ∈ W be such that ∥wτ − ŵ∥ ≤ δ. Adding and subtracting ∇f(ŵ;σ(i))
and ∇f(ŵ), applying triangle inequality followed by Lipschitz continuity, we have∥∥∥∥∥

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥ ≤ 2Lnδ +

∥∥∥∥∥
τ+m−1∑

t=τ

∇f(ŵ;xσ(t))−∇f(ŵ)

∥∥∥∥∥
≤ 2Lnδ + ϵ

√
A2 +B2∥∇f(ŵ)∥2. (w.h.p.)

31

Published as a conference paper at ICLR 2022

Adding and subtracting∇f(wτ) from ∇f(ŵ) and bound using δ and Lipschitz continuity again,∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥ ≤ 2Lnδ + ϵ

√
A2 +B2∥∇f(ŵ −∇f(wτ) +∇f(wτ))∥2

≤ 2Lnδ + ϵ

√
A2 + 2B2L2δ2 + 2B2∥∇f(wτ)∥2,

and consequently∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 4L2n2δ2 + 2ϵ2
(
A2 + 2B2L2δ2 + 2B2∥∇f(wτ)∥2

)
.

Note that this inequality will fail to hold with probability at most

e2n2

(
1 +

2R

δ

)d

exp

(
− ϵ2

16n

)
.

If we want this to fail with probability less than some p, it suffices to set

ϵ2 = 16n

(
log

(
e2n2

p

)
+ d log

(
1 +

2R

δ

))
.

This gives∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 4L2n2δ2

+ 32n ·
(
log

(
e2n2

p

)
+ d log

(
1 +

2R

δ

))
·
(
A2 + 2B2L2δ2 + 2B2∥∇f(wτ)∥2

)
.

If we set δ such that L2nδ2 = A2, then we can bound this with∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 4nA2

+ 32n ·
(
log

(
e2n2

p

)
+ d log

(
1 +

2RL
√
n

A

))
·
(
A2 +

2A2B2

n
+ 2B2∥∇f(wτ)∥2

)
,

which gives∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 32n

m2
·
(
log

(
e3n2

p

)
+ d log

(
1 +

2RL
√
n

A

))
·
(
A2 +

2A2B2

n
+ 2B2∥∇f(wτ)∥2

)
.

Hiding logarithmic terms involving n, p,R, L,A, the shuffle once setup satisfies the requirement of
Assumption 2 that with probability at least 1− p,∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

= Õ
(
nd

m2

(
A2 +

2A2B2

n
+ 2B2∥∇f(wτ)∥2

))
= Õ

(
1

m2

(
ndA2 + 2dA2B2 + 2ndB2∥∇f(wτ)∥2

))
= Õ

(
1

m2

(
dA2(n+ 2B2) + 2ndB2∥∇f(wτ)∥2

))
,

and so the parameters are γ = 2, C2 = Õ(dA2(n+B2)), and Φ2 = Õ(ndB2).

32

Published as a conference paper at ICLR 2022

A.5.3 PROOF FOR PROPOSITION 3 (RANDOM RESHUFFLING)

We first introduce a lemma that bounds the distance between iterates obtained from SGD with random
permutation and that obtained from deterministic gradient descent, over one epoch.
Lemma 3. Consider a single epoch of SGD with constant step size α > 0, where the examples come
from a random permutation over the training set. Let Assumption 1 (L-Smoothness) and the bounded
gradient error Assumption 3 be satisfied. Without loss of generality, assume that the epoch starts at
time t = 0 at w0. Let the sequence ut be defined by u0 = w0 and

ut+1 = ut − α∇f(ut),

while

wt+1 = wt − α∇f(wt;xt)

for some xt chosen from the permutation. With probability at least (1− δ) it will hold that for all
T ∈ {1, . . . , n}, if we set

α ≤ min

{
1

64e(e2 + 1)BnL log
(
2e2n
δ

) , 1

2nL

}
,

then

∥wT − uT ∥2 ≤ 128α2n(e2 + 1)2 · log
(
2e2n

δ

)(
A2 +B2e2∥∇f(wT)∥2

)
.

Proof. Given our setup, observe that we can write the difference between these sequences as

wt+1 − ut+1 = wt − ut − α (∇f(wt;xt)−∇f(ut))

= wt − ut − α (∇f(wt;xt)−∇f(ut;xt))− α (∇f(ut;xt)−∇f(ut)) ,

such that summing this up and using w0 = u0 gives

wT − uT = −α
T−1∑
t=0

(∇f(wt;xt)−∇f(ut;xt))− α

T−1∑
t=0

(∇f(ut;xt)−∇f(ut)) ,

and so

∥wT − uT ∥ ≤ α

T−1∑
t=0

∥∇f(wt;xt)−∇f(ut;xt)∥+ α

∥∥∥∥∥
T−1∑
t=0

(∇f(ut;xt)−∇f(ut))

∥∥∥∥∥.
≤ αL

T−1∑
t=0

∥wt − ut∥+ α

∥∥∥∥∥
T−1∑
t=0

(∇f(ut;xt)−∇f(ut))

∥∥∥∥∥.
Recall the update rule of ut, with Assumption 1 (L-Smoothness), we obtain

∥∇f(ut+1)−∇f(ut)∥ ≤ αL∥∇f(ut)∥.

By the reverse triangle inequality, this implies

∥∇f(ut)∥ ≤(1− αL)−1∥∇f(ut+1)∥
∥∇f(ut+1)∥ ≤(1 + αL)∥∇f(ut)∥,

which further implies for any T ∈ {1, · · · , n} and t ∈ {0, · · · , T − 1},

∥∇f(ut)∥ ≤(1− αL)−n∥∇f(uT)∥

=

(
1 +

αL

1− αL

)n

∥∇f(uT)∥

≤ exp

(
αLn

1− αL

)
∥∇f(uT)∥

≤ exp (2αLn) ∥∇f(uT)∥
≤e∥∇f(uT)∥,

33

Published as a conference paper at ICLR 2022

while for any t ∈ {T + 1, · · · , n},
∥∇f(ut)∥ ≤(1 + αL)n∥∇f(uT)∥

≤e∥∇f(uT)∥,
where we apply the condition that α ≤ 1/(2nL). For a given T , consider the following vector set

Xj =
∇f(uj ;xj)−∇f(uj)√
A2 +B2e2∥∇f(uT)∥

,∃j ∈ {0, · · · , n},

it can be easily verified that they sum to zero.

Now we apply Lemma 6 (Permuted vector Hoeffding inequality) , for any γ ≥ 0,

P

(∥∥∥∥∥
T−1∑
t=0

(∇f(ut;xt)−∇f(ut))

∥∥∥∥∥ ≥ γ
√
A2 +B2e2∥∇f(uT)∥2

)
≤ 2e2 exp

(
− γ2

32T

)
≤ 2e2 exp

(
− γ2

32n

)
as T ≤ n. Now, this holds for just one T . By a union bound,

P

(
∃T ∈ {1, . . . , n},

∥∥∥∥∥
T−1∑
t=0

(∇f(ut;xt)−∇f(ut))

∥∥∥∥∥ ≥ γQT

)
≤ 2e2n exp

(
− γ2

32n

)
.

where QT =
√
A2 +B2e2∥∇f(uT)∥2. Now, if we set γ such that

2e2n exp

(
− γ2

32n

)
= δ ⇒ γ2 = 32n log

(
2e2n

δ

)
,

then we get that

P

(
∃T ∈ {1, . . . , n},

∥∥∥∥∥
T−1∑
t=0

(∇f(ut;xt)−∇f(ut))

∥∥∥∥∥ ≥ γQT

)
≤ δ.

In this case, we will have that with probability at least (1− δ),

∥wT − uT ∥ ≤ αL

T−1∑
t=0

∥wt − ut∥+ αγQT .

If we let ρ0 = 0 and

ρT = αL

T−1∑
t=0

ρt + αγQT ,

then ∥wT − uT ∥ ≤ ρT . Here, if T > 0,
ρT+1 − ρT = αLρT + αγ(QT+1 −QT),

on the other hand, obviously ρ1 = αγQ1,

ρT =αγ

T−1∑
k=0

(1 + αL)T−k−1(Qk+1 −Qk)

=αγ

(
T∑

k=1

(1 + αL)T−kQk −
T−1∑
k=0

(1 + αL)T−k−1Qk

)

≤αγ

(
(1 + αL)

T−1∑
k=0

(1 + αL)T−k−1Qk −
T−1∑
k=0

(1 + αL)T−k−1Qk +QT

)

≤αγ

(
αLe1/2

T−1∑
k=0

Qk +QT

)
≤αγ(e2 + 1)QT

=αγ(e2 + 1)

√
A2 +B2e2∥∇f(wT)∥2

≤αγ(e2 + 1)(A+Be∥∇f(wT)∥).

34

Published as a conference paper at ICLR 2022

Put it back we obtain

∥wT − uT ∥ ≤αγ(e2 + 1) (A+Be∥∇f(uT)∥)
≤αγ(e2 + 1) (A+BeL∥wT − uT ∥+Be∥∇f(wT)∥) ,

which gives

(1− αγ(e2 + 1)BeL)∥wT − uT ∥ ≤ αγ(e2 + 1) (A+Be∥∇f(wT)∥) .
If we require

α ≤ 1

64e(e2 + 1)BnL log
(
2e2n
δ

)
Squaring and substituting the value of γ gives

∥wT − uT ∥2 ≤ 128α2n(e2 + 1)2 · log
(
2e2n

δ

)(
A2 +B2e2∥∇f(wT)∥2

)
with probability at least (1− δ).

We now provide justifications to Assumption 2 for the random reshuffling scheme.
Proposition 3. Suppose that we are using the random reshuffling variant of SGD. Assume that for all
w ∈ Rd and all examples, Assumption 1 (L-Smoothness) and Assumption 3 hold. For some p ∈ (0, 1),
set the constant step size to satisfy α ≤

(
max

{
1460BnL · log

(
4e2T/p

)
, 2nL

})−1
. Then with

probability at least 1− p, Assumption 2 holds with γ = 2, C2 = Õ(nA2) and Φ2 = Õ(nB2).

Proof. For some γ > 0 (but different from the γ of Lemma 3, consider the event that for some
specific epoch k, for some wτ ∈ {w0, w1, . . . , wn(k−1)} ∪ {u0, u1, . . . , un}, where the ui are the u
from Lemma 3 for epoch k, and for some τ and mk such that n(k − 1) ≤ τ < τ +mk ≤ nk,∥∥∥∥∥

τ+mk−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥ ≤ γ

√
A2 +B2∥∇f(wτ)∥2.

Since all the xσ(t) are from the k-th epoch, but wτ is independent of any randomness in the k-th
epoch (as it is either a point visited in a previous epoch, or a value from the u sequence which
depends only on the position at the start of the k-th epoch and not on any k-th epoch randomness), it
follows that we can apply Lemma 6 (Permuted vector Hoeffding inequality) on either this sum or,
alternatively, the terms from epoch k but not in the sum (the terms left out) to get that

P

(∥∥∥∥∥
τ+mk−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥ ≥ γ

√
A2 +B2∥∇f(wτ)∥2

)

≤ 2e2 exp

(
− γ2

32min(mk, n−mk)

)
.

As mk ≤ n, it follows that

P

(∥∥∥∥∥
τ+mk−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥ ≥ γ

√
A2 +B2∥∇f(wτ)∥2

)

≤ 2e2 exp

(
− γ2

16n

)
.

Now, by a union bound the probability that there exists some τ , wτ , and mk such that the average
gradient error is large is bounded by

P

(
∃

∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(w)

∥∥∥∥∥ ≥ γ

√
A2 +B2∥∇f(wτ)∥2

)

≤ 2e2nT 2 exp

(
− γ2

16n

)
,

35

Published as a conference paper at ICLR 2022

where T is the total number of iterations across all epochs (and we assume that we finish all epochs
so n divides T). This follows from the fact that there are at most T such τ that we could take on, at
most T values of wτ that can be adopted for each, and at most n values mk can take on. If we set γ
such that

2e2nT 2 exp

(
− γ2

16n

)
=

p

2
⇒ γ2 = 16n log

(
4e2nT 2

p

)
, (17)

then with probability at least (1− p/2), it will hold that for all epochs, wτ , τ , and mk,∥∥∥∥∥
τ+mk−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥ ≤ γ

√
A2 +B2∥∇f(wτ)∥2. (18)

Additionally, set the δ in Lemma 3 to be pn/2T . By a union bound on the result of Lemma 3, across
all T/n epochs, with probability at least (1− p/2), it must follow that

∥wT − uT ∥2 ≤ 128α2n(e2 + 1)2 · log
(
4e2T

p

)(
A2 +B2e2∥∇f(wT)∥2

)
, (19)

for the corresponding ut sequence for all epochs. Therefore, both of these inequalities Eqs. (18)
and (19) hold together with probability at least (1− p).

Now, consider an arbitrary sum of gradient errors going from τ to τ +m− 1. Note since the interval
here is arbitrary, this m can be different from mk and potentially greater than n. We can split this
interval up as follows. Let τ1 be the first epoch boundary in the interval, such that all t going from τ
to τ1 − 1 are within the same epoch as wτ , or else τ1 = τ +m if there is no epoch boundary in the
interval. Let τ2 be the last epoch boundary in the interval, such that all t going from τ2 to τ +m− 1
are within a later epoch than wτ (it may be the case that τ1 = τ2). It follows that∥∥∥∥∥

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
≤

∥∥∥∥∥
τ1−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
+

∥∥∥∥∥
τ2−1∑
t=τ1

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥+
∥∥∥∥∥
τ+m−1∑
t=τ2

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥.
Observe that since the second of these sums must go over some number of full epochs, its value must
be 0. Therefore,∥∥∥∥∥

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
≤

∥∥∥∥∥
τ1−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥+
∥∥∥∥∥
τ+m−1∑
t=τ2

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥.
Observe that the term in the first sum must be nL/2-Lipschitz continuous in w, because it can be
written as the sum of at most ⌊n/2⌋ terms each of which is L-Lipschitz (either as the actual terms of
the sum, or else the terms left out of the sum). So, add and subtract∇f(uτ ;xσ(t)) and ∇f(uτ),∥∥∥∥∥

τ+m−1∑
t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
≤ nL∥wτ − uτ∥

+

∥∥∥∥∥
τ1−1∑
t=τ

∇f(uτ ;xσ(t))−∇f(uτ)

∥∥∥∥∥+
∥∥∥∥∥
τ+m−1∑
t=τ2

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥.
36

Published as a conference paper at ICLR 2022

Now applying Eq. (19) on the first term and Eq. (18) on the last two terms gives∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
≤ nL ·

√
128α2n(e2 + 1)2 · log

(
4e2T

p

)(
A2 +B2e2∥∇f(wτ)∥2

)
+ 2γ

√
A2 +B2∥∇f(wτ)∥2.

Squaring both sides for simplicity, we can bound this with∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 256α2n3L2(e2 + 1)2 · log
(
4e2T

p

)(
A2 +B2e2∥∇f(wτ)∥2

)
+ 8γ2(A2 +B2∥∇f(wτ)∥2),

where we have also used Eq. (17) for γ. If we apply our requirement that αLn ≤ 1/2, we get∥∥∥∥∥
τ+m−1∑

t=τ

∇f(wτ ;xσ(t))−∇f(wτ)

∥∥∥∥∥
2

≤ 64n(e2 + 1)2 · log
(
4e2T

p

)(
A2 +B2e2∥∇f(wτ)∥2

)
+ 128n(A2 +B2∥∇f(wτ)∥2) · log

(
4e2nT 2

p

)
.

It follows that for random reshuffling with probability 1− p, if we set

α ≤min

 1

64(e2 + 1)BenL log
(

4e2T
p

) , 1

2nL


=

[
max

{
1460BnL log

(
4e2T

p

)
, 2nL

}]−1

,

random reshuffling satisfies the requirement of Assumption 2 with γ = 2, C2 = Õ(nA2), and
Φ2 = Õ(nB2), where Õ(·) hides logarithmic terms in n, T, p.

A.5.4 PROOF FOR PROPOSITION 4 (RANDOM RESHUFFLING WITH DATA ECHOING)

The proof for Proposition 4 is nearly a repeat of the random reshuffling proof in Proposition 3. The
trick is to re-define an epoch when data echoing is used. Instead of referring to an epoch as a random
permutation of the n examples in the training set as in vanilla random reshuffling, here we define the
cn samples as an epoch, where each example σ(i) is repeated c times. For instance, let c = 3, then
the k-th epoch with permutation σk is given by the sequence

. . . , xσk(1), xσk(1), xσk(1), xσk(2), . . . , xσk(n−1), xσk(n), xσk(n), xσk(n)︸ ︷︷ ︸
examples used in epoch k

,

As a result of this redefinition, Lemma 3 needs to be modified such that wherever n appears, we now
need cn. We omit the proof for the following lemma as it is a trivial adaptation from that of Lemma 3.

Lemma 4. Consider a single epoch of SGD with constant step size α > 0, where the examples come
from a random permutation over the training set, each echoed c times. Without loss of generality,
assume that the epoch starts at time t = 0 at w0. Let the sequence ut be defined by u0 = w0 and

ut+1 = ut − α∇f(ut),

37

Published as a conference paper at ICLR 2022

while

wt+1 = wt − α∇f(wt;xt)

for some xt chosen from the permutation. Under the same assumptions as Lemma 3, with probability
at least (1− δ) it will hold that for all T ∈ {1, . . . , cn},

∥wT − uT ∥2 ≤ 128α2cn(e2 + 1)2 · log
(
2e2cn

δ

)(
A2 +B2e2∥∇f(wT)∥2

)
.

The justifications for Assumption 2 for the random reshuffling with data echoing scheme can also be
obtained from Appendix A.5.3 similarly. At appropriate places one should invoke Lemma 4 instead
of Lemma 3, and replace n with cn. We omit the proof as it is again a trivial modification.

A.5.5 PROOF FOR PROPOSITION 5 (MARKOV CHAIN GRADIENT DESCENT (MCGD))

To justify Assumption 2 for MCGD, we will first need the following lemma.
Lemma 5. Let F be any vector-valued measurable function, and let x0, x1, . . . be a sequence of
samples from a Markov chain with mixing time tmix and stationary distribution π starting from an
arbitrary initial distribution. If the function is constrained such that ∥F (x)∥ ≤ 1 for all x, and if we
also have EX∼π[F (X)] = 0, then for any δ ∈ (0, 1),

P

(∥∥∥∥∥
m−1∑
i=0

F (xi)

∥∥∥∥∥ ≥ 5tmix

√
2m log

(
2e2

δ

))
≤ δ,

Proof. Consider the Doob martingale

Wk = E

[
m−1∑
i=0

F (xi) | Fk

]
,

where Fk contains all randomness up to timestep k, i.e. x0, x1, . . . , xk, and so (as usual for a Doob
martingale) the martingale property is trivially satisfied using repeated conditioning:

E [Wk+1 | Fk+1] = E

[
E

[
m−1∑
i=0

F (xi) | Fk+1

]
| Fk

]
= E

[
m−1∑
i=0

F (xi) | Fk

]
= Wk.

Observe that the sum we want is Wm = E
[∑m−1

i=0 F (xi) | Fm

]
=
∑m−1

i=0 F (xi), and that this sum
has increments

Wk+1 −Wk = E

[
m−1∑
i=0

F (xi) | Fk+1

]
−E

[
m−1∑
i=0

F (xi) | Fk

]

= E

[
k+1∑
i=0

F (xi) | Fk+1

]
+E

[
m−1∑
i=k+2

F (xi) | Fk+1

]

−E

[
k∑

i=0

F (xi) | Fk

]
−E

[
m−1∑
i=k+1

F (xi) | Fk

]

=

k+1∑
i=0

F (xi)−
k∑

i=0

F (xi) +

m−1∑
i=k+2

E [F (xi) | Fk+1]−
m−1∑
i=k+1

E [F (xi) | Fk]

= F (xk+1) +

m−1∑
i=k+2

E [F (xi) | Fk+1]−
m−1∑
i=k+1

E [F (xi) | Fk] .

Now, observe that since the mixing time of the Markov chain is tmix, for any i ≥ k, if µ denotes the
distribution of xi conditioned on Fk, then using results from Levin & Peres (2017, Section 4.5)

∥µ− π∥TV ≤ 2−⌊(i−k)/tmix⌋.

38

Published as a conference paper at ICLR 2022

It follows from this and the fact that F is bounded that

∥E [F (xi) | Fk]∥ ≤ 2−⌊(i−k)/tmix⌋.

Therefore, ∥∥∥∥∥
m−1∑
i=k+2

E [F (xi) | Fk+1]

∥∥∥∥∥ ≤
m−1∑
i=k+2

∥E [F (xi) | Fk+1]∥

≤
m−1∑
i=k+2

2−⌊(i−k−1)/tmix⌋

≤
∞∑

i=k+2

2−⌊(i−k−1)/tmix⌋ = 2tmix − 1,

and similarly for the last term. It follows that

∥Wk+1 −Wk∥ ≤ 4tmix.

Therefore, by the vector Azuma’s inequality of Hayes (2005, Theorem 1.8), for any a > 0,

P (∥Wm −W0∥ ≥ 4tmixa) ≤ 2e2 exp

(
− a2

2m

)
.

On the other hand, by the same reasoning as before,

∥W0∥ =

∥∥∥∥∥E
[
m−1∑
i=0

F (xi) | F0

]∥∥∥∥∥
≤ ∥F (x0)∥+

∥∥∥∥∥E
[
m−1∑
i=1

F (xi) | F0

]∥∥∥∥∥
≤ 1 + 2tmix − 1 = 2tmix.

So,

P (∥Wm∥ ≥ 2tmix + 4tmixa) ≤ 2e2 exp

(
− a2

2m

)
.

Now, setting a such that

2e2 exp

(
− a2

2m

)
= δ ⇒ a2 = 2m log

(
2e2

δ

)
,

and noting that this makes a ≥ 2, we get

P

(∥∥∥∥∥
m−1∑
i=0

F (xi)

∥∥∥∥∥ ≥ 5tmix

√
2m log

(
2e2

δ

))
≤ δ,

which is what we wanted to show.

The justification for Assumption 2 then follows straightforwardly.
Proposition 5. Suppose that we use samples xt from a Markov chain with mixing time tmix. Assume
that for all w ∈ R and all examples xt, Assumption 3 holds. Then with probability at least 1 − p,
Assumption 2 holds with γ = 1, C2 = Õ(A2t2mix), and Φ2 = Õ(B2t2mix).

Proof. Observe that we need Lemma 5 to hold for all subintervals of examples, of which there are
only at most T 2. So, setting δ to be p/T 2 in Lemma 5, we can show that for all τ,m, the probability∥∥∥∥∥

τ+m−1∑
t=τ

(∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

≥ 25
(
A2 +B2∥∇f(wτ)∥2

)
t2mix2m log

(
2e2T 2

p

)

39

Published as a conference paper at ICLR 2022

is at least 1− p. Equivalently,∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

(∇f(wτ ;xt)−∇f(wτ))

∥∥∥∥∥
2

≤ 50

m
t2mix

(
A2 +B2∥∇f(wτ)∥2

)
· log

(
2e2T 2

p

)
.

It follows that MCGD satisfies the requirements of Assumption 2 with γ = 1,

C2 = 50A2t2mix log

(
2e2T 2

p

)
and Φ2 = 50B2t2mix log

(
2e2T 2

p

)
.

The big-Õ expressions in the proposition statement immediately follow.

A.5.6 JUSTIFICATION FOR QMC-BASED DATA AUGMENTATION WITH RANDOM RESHUFFLING

Before we begin with the proof, let us first present the introductory material necessary on quasi-Monte
Carlo methods. Similar to Monte Carlo integration, QMC is also used for numerical integration
but using low-discrepancy sequences instead of pseudorandom number sequences. Concretely, the
problem is to approximate the integral of a function f over some s-dimensional hypercube [0, 1]s,

I(f) :=

∫
[0,1]s

f(x)dx

using the average of the function evaluated at a sequence of points x1, . . . , xm,

Im(f) :=
1

m

m∑
i=1

f(xi).

The approximation error rate is defined as ϵ = |I(f)− Im(f)|, and it is well-known that in the case
of Monte Carlo integration where the xi’s are drawn uniformly at random from [0, 1]s, the error rate
is ϵ2 = O(1/m). If the sequence of xi’s has low star-discrepancy, which is defined as

D∗
m := sup

U

∣∣∣∣∣ 1m
m∑
i=1

1{xi ∈ U} − Volume(U)

∣∣∣∣∣
where U =

∏s
j=1[0, bi] for bi ∈ [0, 1), and the volume is measured using the s-dimensional Lebesgue

measure. Intuitively, the smaller this quantity is the more evenly the sequence of points covers the
space. Some popular low-discrepancy sequences include the Halton sequence, Sobol sequence, van
der Corput sequence, etc., which are essentially deterministic sequences that are cleverly constructed
to mimic random numbers but in fact have low star-discrepancy. For instance, the Halton sequence
satisfies D∗

m = O((logm)s/m).

To ensure fast convergence of Im to I as we increase m, in addition to using low discrepency
sequences we also need f to be relatively well-behaved. For this, the Hardy-Krause variation VHK is
often used, for which we refer the reader to Drmota & Tichy (2006, Definition 1.13) for its detailed
characterization. Most importantly, if f has finite VHK on [0, 1]s, then the Koksma-Hlawka inequality
guarantees that

ϵ ≤ VHKD
∗
m.

This implies that using quasi-Monte Carlo with, for instance, the Halton sequence, to integrate
a function f with bounded Hardy-Krause variation, the error rate would be ϵ2 = O((logm)2s/m2).
In comparison to the Monte Carlo error rate, the QMC error rate can be much faster when the
dimensionality s is relatively small. For an in-depth exposition of the related materials we recommend
Owen (2003) and Drmota & Tichy (2006).

We are now ready to restate our proposition from Section 5, in which we describe our QMC data
augmentation setup.
Proposition 6. Suppose that we are using the random reshuffling variant of SGD with QMC data
augmentation as described. Assume that for all w ∈ Rd and all examples, Assumptions 1 , 3,
4 and 5 hold for Equation 3. For some p ∈ (0, 1), set the step size to be a constant such that
α ≤

(
max{1460BnL · log(4e2T/p

)
, 2nL})−1. Then with probability at least 1− p, Assumption 2

holds with γ = 2, C2 = Õ(n2V 2C2QMC log(T)2s + nA2) and Φ2 = Õ(nB2).

40

Published as a conference paper at ICLR 2022

Proof. Recall that the example used in the t-th iteration is being transformed as

xt = A(x(σ⌊t/n⌋(t mod n)), ζ⌊t/n⌋+σ⌊t/n⌋(t mod n)).

We start from the average gradient error term, that is,∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f (wτ ;A (xt, ζt))−∇f(wτ)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f (wτ ;A (xt, ζt))−
1

n

n∑
i=1

E
ζ∼[0,1]s

∇f(wτ ;A
(
x(i); ζ

)
)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f (wτ ;A (xt, ζt))−
1

m

τ+m−1∑
t=τ

E
ζ∼[0,1]s

∇f(wτ ;A (xt; ζ))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

E
ζ∼[0,1]s

∇f(wτ ;A (xt; ζ))−
1

n

n∑
i=1

E
ζ∼[0,1]s

∇f(wτ ;A
(
x(i); ζ

)
)

∥∥∥∥∥
2

,

where the first step follows from the definition of f in the data augmentation setup (Eq. (3)). In the
second step, the first norm relates to the QMC approximation error while the second norm relates
to the RR analysis. From the analysis in Section A.5.3 we know the second norm can be bounded
asymptotically (and probabilistically) by Õ(nA2) + Õ(nB2)∥∇f(wτ)∥2/m2. Now we analyze the
first term. Since we use a contiguous QMC subsequence on each individual example, for the period
of [τ, τ +m− 1], we define τj and mj as the starting point and length of example x(j) being chosen
during this period, such that

∑n
j=1 mj = m. With this notation, we can now rewrite the first norm as∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f (wτ ;A (xt, ζt))− E
ζ∼[0,1]s

∇f(wτ ;A (xt; ζ))

∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

m

n∑
j=1

τj+mj−1∑
t=τj

∇f
(
wτ ;A

(
x(j), ζt

))
− E

ζ∼[0,1]s
∇f

(
wτ ;A

(
x(j); ζ

))∥∥∥∥∥∥
2

≤ n

m2

n∑
j=1

∥∥∥∥∥∥
τj+mj−1∑

t=τj

∇f
(
wτ ;A

(
x(j), ζt

))
− E

ζ∼[0,1]s
∇f

(
wτ ;A

(
x(j); ζ

))∥∥∥∥∥∥
2

≤ 2n(τj +mj)
2

m2

n∑
j=1

∥∥∥∥∥ 1

τj +mj

τj+mj−1∑
t=0

∇f
(
wτ ;A

(
x(j), ζt

))
− E

ζ∼[0,1]s
∇f

(
wτ ;A

(
x(j); ζ

))∥∥∥∥∥
2

+
2nτ2j
m2

n∑
j=1

∥∥∥∥∥ 1

τj

τj−1∑
t=0

∇f
(
wτ ;A

(
x(j), ζt

))
− E

ζ∼[0,1]s
∇f

(
wτ ;A

(
x(j); ζ

))∥∥∥∥∥
2

.

Now we can use the Koksma–Hlawka inequality (Aistleitner & Dick, 2014) to bound these norms,
which gives us∥∥∥∥∥ 1

m

τ+m−1∑
t=τ

∇f (wτ ;A (xt, ζt))− E
ζ∼[0,1]s

∇f(wτ ;A (xt; ζ))

∥∥∥∥∥
2

≤ O

nC2QMCV
2

m2

n∑
j=1

·
(
log(τj +mj)

2s + log(τj)
2s
) ≤ O(n2C2QMCV

2 log(T)2s

m2

)
.

Putting it together, we have shown that random reshuffling with QMC data augmentation satisfies
Assumption 2 with γ = 2, C2 = Õ

(
n2C2QMCV

2 log(T)2s + nA2
)
, and Φ2 = Õ

(
nB2

)
.

41

Published as a conference paper at ICLR 2022

A.6 MISCELLANEOUS LEMMAS

We now collect some technical lemmas used in our analyses.

The following lemma is a Hoeffding-type concentration bound on the sums of random permutations
of vectors. This lemma is particularly useful for simplifying the logic of the proofs of our shuffling
propositions above, as it frees us from having to use Doob-martingale-type arguments throughout.

Lemma 6 (Permuted vector Hoeffding inequality). Let n ≥ m > 0 be some integers, and let Xi,j

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} be vectors in Rd. We also require for all i, j, ∥Xi,j∥ ≤ 1,
and that for all i,

n∑
j=1

Xi,j = 0.

Then, if σ : {1, . . . , n} → {1, . . . , n} is a random permutation and that the individual Xi,j’s do not
depend on σ,

P

(∥∥∥∥∥
m∑
i=1

Xi,σ(i)

∥∥∥∥∥ ≥ a

)
≤ 2e2 exp

(
− a2

32m

)
.

Note that this lemma trivially also applies to random subsamples of vector sums, by just letting
Xi,j = Yj for the desired vector sequence Yj .

Proof. This proof is adapted from the proof of Theorem 4.3 in Bercu et al. (2015). Their approach
is more sophisticated and tends to a Bernstein-type inequality, but is specialized to only scalars.
Consider sampling the elements of the permutation one at a time, and letFj be the filtration containing
the random variables σ(1), σ(2), . . . , σ(j) but not σ(j + 1), . . . , σn. For k ≤ n, define the process

Wk = E

[
m∑
i=1

Xi,σ(i) | Fk

]
.

Observe that this must be a (vector) martingale process, as it is a Doob martingale. Explicitly, we can
write it as

Wk = E

[
k∑

i=1

Xi,σ(i) +
1

n− k

m∑
i=k+1

∑
j /∈{σ(1),...,σ(k)}

Xi,j | Fk

]

= E

 k∑
i=1

Xi,σ(i) −
1

n− k

m∑
i=k+1

k∑
j=1

Xi,σ(j) | Fk

 ,

42

Published as a conference paper at ICLR 2022

where here we used the fact that the Xi,j’s sum to 0 over j = [n]. Thus, the increments of this process
will have

Wk −Wk−1 = E

 k∑
i=1

Xi,σ(i) −
1

n− k

m∑
i=k+1

k∑
j=1

Xi,σ(j) | Fk


−E

k−1∑
i=1

Xi,σ(i) −
1

n− k + 1

m∑
i=k

k−1∑
j=1

Xi,σ(j) | Fk−1


= Xk,σ(k) −

1

n− k
E

 m∑
i=k+1

k∑
j=1

Xi,σ(j) | Fk


+

1

n− k + 1
E

 m∑
i=k

k−1∑
j=1

Xi,σ(j) | Fk−1


= Xk,σ(k) −

1

n− k

m∑
i=k+1

Xi,σ(k)

−
(

1

n− k
− 1

n− k + 1

) m∑
i=k+1

k−1∑
j=1

Xi,σ(j) +
1

n− k + 1

k−1∑
j=1

Xk,σ(j),

where we have repeatedly applied the martingale property. Now to bound all of these, first by our
assumption ∥∥Xk,σ(k)

∥∥ ≤ 1.

Also,
1

n− k

∥∥∥∥∥
m∑

i=k+1

Xi,σ(k)

∥∥∥∥∥ ≤ m− k

n− k
≤ 1.

Next, again using the sum to 0 assumption, we have

1

n− k + 1

∥∥∥∥∥∥
k−1∑
j=1

Xk,σ(j)

∥∥∥∥∥∥ =
1

n− k + 1

∥∥∥∥∥∥−
n∑

j=k

Xk,σ(j)

∥∥∥∥∥∥ ≤ n− k + 1

n− k + 1
= 1,

and finally, by a combination of these bounds,(
1

n− k
− 1

n− k + 1

)∥∥∥∥∥∥
m∑

i=k+1

k−1∑
j=1

Xi,σ(j)

∥∥∥∥∥∥ =
1

(n− k)(n− k + 1)

∥∥∥∥∥∥
m∑

i=k+1

k−1∑
j=1

Xi,σ(j)

∥∥∥∥∥∥
≤ 1

(n− k)(n− k + 1)
· (m− k) · (n− k + 1)

≤ 1.

It follows that the increment satisfies

∥Wk −Wk−1∥ ≤ 4

with probability 1. We can now apply the vector Azuma’s inequality of Hayes (2005, Theorem 1.8).
Applying this to Wm gives the result that, for any a,

P (∥Wm∥ ≥ a) ≤ 2e2 exp

(
− a2

32m

)
.

This proves the lemma.

The next lemma we state is a standard result showing that we can cover a region of radius R with a
bounded number of balls of radius ϵ.

43

Published as a conference paper at ICLR 2022

Lemma 7 (ϵ-net lemma). For any region D of radius R in d-dimensional space, and any ϵ > 0, there
exists a subset S ⊆ D such that S is of size at most

|S| ≤
(
1 +

2R

ϵ

)d

,

and for every point x ∈ D, there exists a x̂ ∈ S such that ∥x− x̂∥ ≤ ϵ.

Proof. Consider the following procedure. As long as there are points in D that are not within a
distance ϵ of an existing point in S, choose one such point arbitrarily and add it to S. Observe that
with this construction, any two points in S must be at a distance greater than ϵ from each other. This
means that if we center a ball with radius ϵ/2 at each of the points in S, these balls will be disjoint.

The total volume of these balls will be |S| · V1 · (ϵ/2)d, where V1 is the volume of the unit ball
in d-dimensional space. However, the centers of all these balls must lie in D, and so the balls
themselves must all lie within a slightly larger region of radius R+ ϵ/2. This region will have volume
V1 · (R+ ϵ/2)

d. This shows that our process must eventually stop, implying that S must exist, and
gives us a bound on the size of S as

|S| ≤ (R+ ϵ/2)
d

(ϵ/2)
d

=

(
1 +

2R

ϵ

)d

,

and the proof is complete.

44

	Introduction
	Related work
	Example-gradient averages and SGD convergence
	Analysis of existing scan orders
	New example-selection methods for faster convergence
	Experiments
	Conclusion
	Appendix
	Experiment details
	Additional details for Section 6
	t-test for data augmentation results
	Small experiments
	Optimal step size derivation

	Convergence analysis: diminishing step size
	Non-convex case
	Strongly-convex case

	Proof for lemmaGenStep
	Convergence analysis: constant step size
	Non-convex case
	Strongly-convex case

	Justifications for assumGeneral under various example orderings
	Arbitrary permutation
	Shuffle once
	Random reshuffling
	Random reshuffling with data echoing
	Markov chain gradient descent
	QMC-based data augmentation with random reshuffling

	Miscellaneous lemmas

