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Abstract

Partial differential equations were developed in the 18th century to model physical sys-
tems. Its inception has led to the continued development of a beautiful mathematical theory
with an ever increasing range of applications. In 1890 Poincare observed that its encom-
passing framework can allow us see similarities in a wide range of physical applications. We
now know that the similarities extend far beyond physical applications to other fields such
as chemistry, biology, ecology and even sociology. In this article we provide a brief history
of the applications of partial differential equations and showcase some recent works with
applications in ecology and sociology.

1 Introduction

Our world is constantly changing in very complex ways and it is human nature to look for
the factors driving these changes. From trying to understand planetary motion, dating back
to 3000 BCE, to the Covid-19 pandemic that we are still living with, researchers have been
working to gain insight into the fundamental mechanisms leading to change. The invention
of Calculus in the late 17th century was an important development, as it opened up a
world of possibilities to provide mathematical frameworks for numerous dynamic complex
systems.

Reflecting on our daily lives we see that physical space, x, and time, t, are two key
independent variables which affect how things change. Moreover, it is often a challenge
to determine a physical quantity, such as heat or population density as functions of x
and t. Instead, it is easier to postulate relations between these physical quantities and
their derivatives. From these relations we then hope to be able to then determine the
physical quantity in question. This is how partial differential equations enter the picture.
A partial differential equation (PDE), which is a relation between an unknown function
u : Rn → Rm and its derivatives provides a perfect mathematical framework to understand
changing systems. A simple example has the form:

F
(
x, y, u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2

)
= 0,

where u : R2 → R. These equations can be seen as mechanistic models, that is, they use
theory to predict the real-world. These type of equations were developed in the 18th cen-
tury to model physical phenomena, such as heat and wave phenomena, by mathematicians
such as Euler, d’Alembert, Lagrange, and Laplace [7]. This mathematical framework has
since been used in other areas of physics and engineering. In fact, in 1890, Poincare re-
marked on the wide range of applications of this framework [28], emphasizing that various
physical problems “had an air of similarity” when observed from the point-of-view of par-
tial differential equations. In those days, the applications were still restricted to physical
phenomena, such as electrodynamics, magnetism, fluids, optics, and heat. Moving forward
we will use the notations ∂tu, ut and ∂u

∂t
to denote the partial derivatives interchangeably

and will consider positive time t > 0.
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In 1759, d’Alembert introduced one of the first equations, the so-called wave equation,
to model the vibration of a string, such as one in a musical instrument. Imagine you have
a taught string from location x = 0 to x = L and you pluck the string at t = 0. How do
the dynamics play out? To begin to answer this, let u(x, t) denote the displacement of the
string at position x and time t away from its equilibrium position (a straight horizontal
line). The dynamics can be modeled using Newton’s second law of motion, F = ma (the
force, F, equals mass, m, times acceleration, a) applied to an infinitesimal length of the
string. Assuming the mass is one, so m = 1, the right hand side of the equation is simply

a = ∂2u
∂t2

. Moreover, a careful analysis of the tension on the infinitesimal length of the string

gives that the force is proportional to ∂2u
∂x2

. The equation has the form:

∂2u

∂t2
=
∂2u

∂x2
x ∈ R, t > 0. (1)

To determine the unknown u we must impose an initial position of the string at time
t = 0, denoted by u(x, 0), this is the so-called initial condition and also keep in mind that
u(0, t) = u(L, t) = 0 for all t > 0, which are the so-called boundary conditions. As one
would expect, the wave equations has wave solutions, which are moving solutions at have
a fixed speed and when it moves is does not change its shape. Figure 1(a) illustrates a
cartoon solution of the wave equation. You can see the solution at time t = 0 is f(x) and
the form is traveling with velocity v. At time t the form has not changes, simply moved.

(a) Wave equation solution. (b) Heat equation solution (1).

Figure 1: (a) A cartoon illustration of a solution to the wave equation (1) (b) A solution to the
heat equation with boundary conditions f(0, t) = f(1) = 0.

(1) Credit: By Quartl - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14318045.

The heat equation, another classical partial differential equation, was introduced by
Fourier in his memoir “Théorie analytique de la chaleur” (1810-1822) and has the form:

∂f

∂t
=
∂2f

∂x2
x ∈ R, t > 0, (2)

where f(x, t) is the temperature at location x and time t. Imagine a rod of length L
positioned between location x = 0 and x = L. Since heat moves down gradients of the
temperature (from high temperature areas to low temperature) the rate of change of tem-
perature at location x and time t is equal to the diffusion of u. Mathematically, the term
∂f
∂t

represents the rate of change of the temperature with respect to time and ∂2f
∂x2

models
diffusion, which will be discussed in the next section. These solutions spread as time in-
creases. An example solution is illustrated in Figure 1(b): What we observe is the solution
to ft−fxx = 0 on [0, 1]× [0,∞) with initial condition f(x, 0) = 2 sin(πx) and zero boundary
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conditions f(0, t) = f(1, t) = 0. Observe that the solution diffuses to zero as time increases.
Note that these examples are one-dimensional. Higher dimensions may be relevant and will
be discussed later.

As the decades passed the applications of PDEs widened from chemistry, in the middle
of the 20th century, to the social sciences in recent decades. This work aims to provide a
brief history of the use of PDEs in the fields of chemistry, where reaction-diffusion equations
where introduced, biology, ecology, and the social sciences. Moreover, we will showcase a
few recent advances in the areas of ecology and sociology. Note also that the development
of the theory of PDEs has had a significant impact outside of applications and, in fact, it
has helped develop many areas of pure mathematics. We will not discuss the connection
between numerous pure mathematics fields and PDEs and instead refer the reader to Brezis
and Browder’s beautiful summary given in [7].

1.1 Reaction-Diffusion systems in chemistry

A subclass of PDEs with application in chemistry are Reaction-Diffusion (RD) equations
which model the dynamical process of particles reacting (chemical reactions) and spreading.
This field arose from the desire to understand pattern formation, which one can see all
around us and at all scales. Some examples are galaxies, snowflakes, and animal coat
patterns [4]. Alan Turing set out to understand the origins of pattern formation in animal
coats from the point of view of chemistry. An example of such patterns is illustrated
in Figure 2. Figure 2(a) illustrates the coat of a giraffe and Figure 2(b) illustrates the
coat of a zebra. In his paper “Chemical basis of morphogenesis” published in 1952 [35],
Turing introduced hypothetical chemical reactions and mathematically framed them in a
RD system. These reactions could break the symmetry of an initially homogeneous mixture
and create pattern formation when there was diffusion at play. Diffusion here is the process
by which the morphogens, a substance that governs the pattern of tissue development,
spread though the tissue. Reaction is the process that creates and destroys morphogens [4].

(a) Pattern formation in the coat of a
giraffe.(1)

(b) Pattern formation in the coat of a zebra.(2).

Figure 2: Illustration of patterns formed in the coats of two different animals.

(1) Credit: By c© Hans Hillewaert, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10866902.

(2) Credit: By Nojhan - https://www.flickr.com/photos/nojhan/3491519751/, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=12212558.

To understand these processes better, let us consider individual particles that are moving
around randomly, following a so-called Brownian motion [36]. Figure 3(b) illustrates a
sample path of a particle following Brownian motion. Note that seeming randomness of
the particle path. When there are a very large number of particles it becomes most cost-
effective to keep track of the dynamics of the density of particles, which we can call u,
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instead of keeping track of each individual particle. It so happens that the time evolution
of the density satisfies the heat equation, written out in three dimensional space here:

∂u

∂t
(x, y, z, t) =

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
, (x, y, z) ∈ R3 t > 0.

In short notation we write
∂u

∂t
= ∆u,

where ∆u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

, in three-dimensions, is the so-called Laplace operator and
models diffusion, e.g. spread.

If we have different types of particles which are moving about randomly and colliding,
they may react and form different substances. Let us denote our two densities of the
morphogens by u and v, the reaction can be incorporated into our evolution systems though
two production/consumption functions f and g:{

∂u
∂t

= ∆u+ f(u, v),

∂v
∂t

= ∆v + g(u, v).
(3)

The FitzHugh-Nagumo system, is a special case of (3), and models the spike generation of

an axon. Here we have that f(u, v) = u − u3

3
− v + Icurrent and g(u, v) = a(u + b − cv)

with a, b, c, Icurrent fixed constants. This is an example of an excitable system, where if the
impulse, given by Icurrent, is sufficiently large the variables u and v embark on a journey
before settling back to their relaxed states. It is this journey that allows for the existence
of spiky solutions, which represent traveling signals along an axon. The solution, u, to
first equation in two-dimensions and for a fixed time t is illustrated in Figure 3(a). This
exemplifies the patterns formed by solutions to a reaction-diffusion equation. This is the
solution at a fixed time snapshot and one can observe the pattern formation formed on the
x-y plane.

(a) Pattern formation in a reaction-
diffusion equation.(1)

(b) Sample Brownian motion particle path(2).

Figure 3: (a) An illustration of a solution to a reaction-diffusion equation in two-dimensions (b)
A sample path of a particle in Brownian motion.

(1) Credit: Reaction diffusion target by Dr. H. U. Bödeker under GNU Free Documentation License

(2) Credit: Brownian Motion Diagram by NivedRajeev 2019 under Creative Commons Attribution-Share Alike 4.0 Inter-

national.
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1.2 Reaction-Advection-Diffusion equations in ecology and
biology

The use of Reaction-Advection-Diffusion (RAD) equations to study movement in ecology
was popularized after Skellam’s 1951 paper where he related the random motion of animals
with the heat equation [34]. By and large, in a context without competition, we can model
population dynamics with the following general equation:{

ut(x, t) =M[u] + f(x, t, u), x ∈ Rn, t > 0,
u(x, 0) = u0(x), x ∈ Rn, (4)

where u(x, t) represents the population density at location x and time t and u0(x) is the
initial distribution of the population. Note that x ∈ Rn is now a vector in n-dimensional
space. For example, in spatial ecology the relevant spaces are n = 2 and n = 3. As in
earlier models presented ut(x, t) represents the rate at which a population is changing with
respect to time at location x and time t. This rate depends on the movement of species
to and from location x plus the growth death that occurs at that particular location. We
denote the movement by a general operator M and the growth pattern is denoted by f .

A classical movement strategy which is assumed for many species is that of dispersal,
or spreading of a population. In this case, the appropriate movement operator is the

Laplace operator, M[u] = µ∆u = µ
∑n
i=1

∂2

∂x2i
u, stated here with diffusivity coefficient

µ. Specifically, the process of dispersal and growth/death on the whole space has been
traditionally modeled by the now classical reaction-diffusion equation:{

ut = µ∆u+ f(u, x), x ∈ Rn, t > 0,
u(x, 0) = u0(x);

(5)

see for example [34, 9] and references within.
In the classical reaction-diffusion model for population dynamics, species does not take

the environment or population density into account when moving. However, it is known
that some animals do make use the environment to inform their movement patterns. One
movement strategy that incorporates environmental cues is taxis, which is the movement of
an organism in response to a stimulus such as a chemical, light, or a general environmental
signal. For example, in ecology the environmental signal can include the density of food
resources or the density of predators. Classically, this has been incorporated as an advection
term, the transfer of matter by a velocity field, ~v, mathematically this is represented by
∇ · (u~v). In this case, organisms determine the velocity field using an environmental signal,
~v = ∇A(x), where A represents the environmental signal. This is the taxis movement
shown in Table 1. Sometimes animals use non-local information (information about their
surrounding neighborhood), this can be incorporated using a so-called kernel function, K.
The term K ∗ u models a velocity field that helps a population use non-local information
to aggregate. One can observe the non-local nature of the velocity field from the definition
of a convolution:

K ∗ u =

∫
Rn

K(x− y)u(y) dy.

You can think of a convolution as a non-local average with function K : Rn → R taken as
a weight. The velocity then is given by ~v = ∇K ∗ u and directs the population towards
areas with a high concentration of the population. Table 1 displays a number of typical
movement strategies and their mathematical representations.
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Table 1: A sample of movement strategies and their mathematical representations

Movement Strategy Operator M
Dispersal µ∆u
Taxis along the signal A −∇ · (u∇A(x))
Non-local aggregation with kernel K −∇ · (u∇K ∗ u)
Dispersal & taxis movement d∆u−∇ · (u∇A(x))

Let us now shift to discussing the typical growth functions seen in the literature. When
the population is subject to logistic growth, that is, when a population’s per capita growth
rate gets smaller as population size approaches a the carrying capacity, K, which is imposed
by the environment, this equation us known as the Fisher-KPP equation:

ut = ∆u+ u(K − u). (6)

Note that in equation (6) u(K − u) represents the product of u with K − u. Equation (6)
was introduced by Fisher to model the spread of advantageous genetic traits in a population
[14]. That same year Kolmogorov, Petrovsky, and Piskunov published a first mathematical
analysis of the equation [21]. Since then it has been the subject of much interest and
research to this day.

Not all populations are subject to logistic growth. In 1930 Warder Clyde Allee, a
zoologist and ecologist working in the Marine Biological Laboratory at the University of
Chicago, experimentally showed that survival rate of goldfish was positively correlated
with population density. In his work [1], Allee concluded that aggregation and cooperation
are beneficial for the survival of species. The effect of decreased individual fitness at low
population densities as dubbed the Allee effect [22, 1, 24]. For population which are subject
to the Allee effect the prototypical reaction term is given by f(u) = u(1−u)(u−θ), where θ
is the Allee threshold and satisfies 0 < θ < 1. Note that at the microscopic level, individuals
are simply moving randomly here. Figures 4(a) and 4(b) illustrate prototypical logistic and
Allee growth patterns with carrying capacity one. In other words these figures illustrate
two different functions f .

(a) Monostable production pattern (b) Bistable production pattern

Figure 4: Two typical production/consumption pattern that appear in RD equations.

1.3 Social applications

Mathematical sociology aims to take sociological theories and express them in mathemat-
ical terms. Having a mathematical framework allows one to run simulations and perform
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mathematical analysis that can help us gain insight into very complex phenomena. The
use of differential equations as mathematical frameworks to study the dynamics of social
processes goes back as far as [10] and [6] who advocated for the use of differential equa-
tions to study dynamical systems. However, the subject has only recently taken off in the
beginning of the 21st century and remains an area full of opportunities.

The use of PDEs to understand socio-economic systems has has many significant ad-
vances during the last few of decade [8]. A prominent example, dates back to 1973, is the
use of stochastic (modeling randomness) differential equations to model pricing in finance
and insurance. Ideas from statistical mechanics, which studies the interactions of particles,
have also been carried over to the social sciences to model the evolution of wealth, opinion
formation and herding – see [8] and references within.

PDEs have also found applications in urban crime. While crime is ubiquitous it tends
to aggregate spatially and create spatio-temporal patterns. In [32] the authors introduced
a system of reaction-advection-diffusion equations to understand the spatio-temporal dy-
namics of urban crime. We will discuss the sociological assumptions being modeled in this
equation in section 3.1. This has led to much research including extension of the model in
[20] and [27] and interesting insight into hotspot policing [31].

2 Ecological applications

The study of movement of organisms is a key subject of spatial ecology, which investigates
the plethora of spatial patterns in nature and their ecological consequences. It is known
that the movement of organisms is key to their survival. In fact, animals move to forage
for food, run away from predators, as well as expand and establish their territory. As
our environment continues to changes more and more drastically, two questions become
very relevant. First, what are the leading factors informing the movement of animals?
Second, what are optimal movement strategies? Insight into these two key issues is vital in
wildlife management. In fact, as stated by Andrew Allen and Navinder Singh, Professors
in the Department of Wildlife, Fish and Environmental Studies, Swedish University of
Agricultural Sciences in [2] “A common challenge in species conservation and management
is how to incorporate species movements into management objectives. There often is a lack
of knowledge of where, when, and why species move.”

In the following two subsections we discuss a couple of recent work related to the issues
discussed above. We first focus on how one can use reaction-diffusion-equations and animal
location time series to gain gain knowledge about the factors that lead to animal movement.
We use meerkats as a case study. Following that, we discuss how one can analyze movement
strategies that can help species survive.

2.1 Key factors leading to movement

Partial differential equations can be used to study how species live and move in their envi-
ronment by utilizing the movement factors hypothesized by field experts. This framework
has been used to describe phenomena such as foraging [16, 17], aggregation [18], and home
ranges [23, 25]. In [19] and [26], mechanistic home range models incorporated diffusion and
attraction to a localizing center, such as a den site, to generate stable territory patterns.
In some situations, it is hypothesized that animals, such as Meerkats, use their memory
to inform movement [3]. In particular, this means that they are able to use non-local
information to inform their movement strategies.

We model the dynamics of movement for social species that live in competing groups. We
consider a non-local PDE model that incorporates the different, and sometimes competing,
factors of movement. These factors include: an intra-species (within group) long-range
attraction and short-range repulsion (an overcrowding effect); an inter-species (between
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group) repulsion; the use of an environmental signal. The model reads as follows:

∂tui(x, t) = η∆u2
i (x, t)−∇ ·

u∇
K ∗ ui − N∑

j=1,j 6=i

K ∗ uj +A(x, t)

 (7)

for x ∈ Ω ⊂ Rd, t > 0, where ui represents different competing groups, with i = 1, 2, ..., N .
In the above system the symbol ∗ represents a non-local average, specifically,

K ∗ u(x) =

∫
K(x− y)u(y) dy.

The constant η in (7) represents the intra-group dispersal rate, the convolution term rep-
resents intra-group aggregation, and inter-group repulsion is governed by the function K.
Note that the long-range aggregation term moves the group ui with a nonlocal velocity
−∇K ∗ ui , which helps maintain the group coherent. Moreover, the long-range, inter-
group repulsion term moves the population ui away from other groups via the velocity field∑N
j=1,j 6=i∇K ∗ uj and serves as a segregation term.

Physical interpretation Mathematical Formulation
Rate of change of u with respect to time ∂tui(x, t)
Intra-species short-range repulsion η∆u2i (x, t)
Intra-species long-range attraction −∇ · (ui∇K ∗ ui)
Inter-species segregation ui

∑N
j=1,j 6=i∇K ∗ uj

Taxis up a signal −∇ · (ui∇A)

Figure 5 illustrates relocation data from meerkats belonging to different competing
groups. The locations where these meerkats where observed helps map the territory. One
can observe that although they do not have a home center there is coherence to their
territories.

Figure 5: Relocation data for meerkat groups, each represented by a different color.

Note that it is basically impossible to find a formula for the solution to systems such
as the one given in (7). Our goal then becomes to understand as much about the solutions
without having an exact formula. For example, one can still try to understand the long-
term behavior of the population depending on the initial distributions, properties of K and
A, and the other parameters. Another thing we can try to do is to solve the solutions
numerically. The integral term in the system becomes problematic and one has to work
hard to find ways to solve the equation in an efficient way. We provide some illustrations
of solutions to system (7), for various scenarios. Here we use a so-called spectral method,
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which moves our functions from physical space to frequency space, solves the equations
there, and then translates them back to physical space. Figure 6 illustrates the long-time
solution (t → ∞) of the system (7) with four competing groups. For illustration purposes
we use a signal A that represents an environment which is most beneficial at the center
of the territory and the benefit decays radially as one moves away from the center. We
observe that the groups segregate and form their territories around the optimal spots.

(a) Contours of the final distribution (b) Final distribution of the groups

Figure 6: Final distribution of four groups interacting with a Gaussian environment.

Figures 7 and 8 provide illustrations of solutions to the model where we have removed
some of the movement factors. This will illuminate the role that some of the terms play
in the dynamics of the solution to our model. The solutions illustrated in Figure 7 do not
incorporate any overcrowding effect (that is the short-range inter-species repulsion). In this
case, the parameter is η = 0. One can observe a few time steps in the evolution of the
population densities. Note that the population densities are blowing-up (concentrating into
a single point). The initial population densities are Gaussian like and as time increases we
begin to see that the densities become pointy and the magnitude increases. This provides
evidence that short-range repulsion is an important factor in the movement strategy of
meerkats. The population densities illustrated in Figure 8 are the solutions to the model
without the inter-species repulsion (no segregation term). In this case, we observe that all
population aggregate around the optimal environmental regions. Again, this confirm the
significance of the segregation term in order for the solution of our model to match the
dynamics observed in the data.

Finally, we want to see what happens if we incorporate a real life environmental signal
using information about sand-type and density. It is hypothesized that they prefer clay
sand over ferrous. Figure 9(a) illustrates the sand type, blue corresponding to clay sand
and yellow corresponding to ferrous sand. Figure 9(b) illustrates the final solution of our
system using the environment. You can see that the solutions do a reasonable job matching
the data.
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(a) ui(x, 0) (b) ui(x, t1), t1 > 0 (c) ui(x, t2), t2 > t1

(d) ui(x, 0) (e) ui(x, t1), t1 > 0 (f) ui(x, t2), t2 > t1

Figure 7: Dynamics of solutions without overcrowding effect and A(x) in black.

(a) ui(x, 0) (b) ui(x, t1), t1 > 0 (c) ui(x, t2), t2 > t1

Figure 8: Dynamics of the solution with no segregation function and A(x) from Figure 7.
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(a) Sand data (b) Long-time solution

Figure 9: Sand environmental function and the corresponding equilibrium solution (long term
solutions) when using the sand as an environmental function.

2.2 Optimal movement strategies

Populations tend to use heterogeneities in the environment and positive influence of the
presence of congeners (similar animals) to aggregate and take advantage of social structures
[30]. Thus, on the one hand, species develop movement strategies using environmental cues
in order to aggregate and potentially increase their fitness. On the other hand, dispersal, the
spreading of organisms from on location to another, has also been found to help populations
establish themselves. For example, dispersal can help populations control their size or
expand their territory. While dispersal can be beneficial to species, in some situations
it has been found to be detrimental. For example, high dispersal rates can prevent the
adaptation of a population to a new environment, which can hinder the survival of small
populations [29].

To further understand these movement strategies we consider the evolution of a popu-
lation density subject to the dynamics modeled by:

ut = µ∆u− χ∇ · (u∇m) + f(u), x ∈ [−L,L], t > 0,
(µ∇u− χu∇m) · n = 0, x ∈ {−L,L} , t > 0,
u(x, 0) = u0(x), x ∈ [−L,L].

(8)

where f(u) = u(1 − u)(u − .3). The movement strategy modeled in (8) is a combination
of dispersal (strength measured by µ) and movement up gradients of a spatially varying
environmental signal m.

We observe that if the initial population is below the Allee threshold (here θ = .3) and
the “speed”, χ, at which the population moves using the environment is too small then
in the long term the population will become extinct in the long term. This is illustrated
in Figures 10(a) and 10(c). In all cases illustrated in Figure 10 the initial population is
constant. In Figure 10(a) the initial population is 0.1 everywhere (dashed red line) and
χ = 2; thus, the population does not aggregate sufficiently fast and eventually becomes
extinct (solid blue line). On the other hand when χ is sufficiently large, this leads to the
population aggregating, and ultimately persisting. Figure 10(b) illustrates this scenario
with the same initial data as in Figure 10(a) but with χ = 3. One can observe that the
population persists and aggregates where the signal is highest (solid blue line). The smaller
the initial population the faster the population must aggregate as is illustrated in Figures
10(c) and 10(d). Here the initial population is 0.01 everywhere (dashed red line) and the
former figure illustrates the final density of the population (solid blue line) when χ = 50
when the population becomes extinct, the latter illustrates the case when χ = 150 and here
the population persists.
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(a) Initial data u0(x) ≡ .1 with χ = 2 (b) Initial data u0(x) ≡ .1 with χ = 3

(c) Initial data u0(x) ≡ .01 with χ = 50 (d) Initial data u0(x) ≡ .01 with χ = 150

Figure 10: Illustration of numerical solutions to (8) with constant initial data, u0, directed
movement parameter χ, and growth-pattern f(u) = u(1− u)(u− .2). The signal A = m.1

(1) Credit: Originally published in [11] c©2021 Society for Industrial and Applied Mathematics. Reprinted with permis-

sion. All rights reserved.

The key take away is that populations that are subject to an Allee effect can actually
survive, even if they are very small initially, provided they aggregate sufficiently fast. In-
terestingly, it is also the case that when a population is too greedy (moving up gradients
of the resources too quickly) they may be outcompeted by another population employing
a movement strategy that is balanced between aggregation and dispersal.

3 Applications in social complex systems

While it is clear that we cannot use mechanistic models to understand individual behavior,
it is also evident that when individuals act as a collective, spatio-temporal dynamics may
emerge. This can be observed in data for urban crime, protesting activity, and the Covid-
19 pandemic dynamics. If we forget about understanding individual behavior but rather
focus on understanding the macroscopic patterns that emerge, we can make headway using
partial differential equations. In the next two sections we discuss the use of PDEs in urban
crime and social outburst such as protests.

3.1 Urban crime

A relatively recent application of partial differential equations which as garnered much
interest is in the understanding of urban crime. While crime can happen everywhere, real-
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life data shows that certain regions have a disproportionate level of crime. These are the
so-called crime hotspots. In 2008 a team at UCLA developed a PDE model for urban crime
based on the sociological theories of repeat-and-near repeat victimization effects [33] and
routine activity theory [13] in [32]. The former is the effect that crime in a location leads to
an increased probability of a second crime occurring at the same, or nearby, locations. The
latter is the theory that the most important factor in a crime transpiring is opportunity. It
is important to remark that mathematical modelers only provide mathematical framework
to the theories developed by the experts. Thus, the results of this model only hold true
if the theories they model are true. We should point out that there was a recent article,
[15], criticizing the sociological assumptions in [32]. Nevertheless, this model is our starting
point: 

At = µAxx −A+Aρ+ α, x ∈ (0, L), t > 0,
ρt = (dρx − 2ρ ln(A)x)x −Aρ+ β − uρ, x ∈ (0, L), t > 0,
(A, ρ, u)(x, 0) = (A0, ρ0, u0)(x) ≥ 0, 6≡ 0, x ∈ (0, L),
Ax(x, t) = ρx(x, t) = ux(x, t) = 0, x = 0, L, t > 0.

(9)

Here µ, d, α, and β are constants. We discuss the model in one-dimension for simplicity.
The criminal density is denoted by ρ and A represents a field that measures the propensity
towards crime. This field is changing spatially and temporally and incorporates the repeat-
near-repeat victimization effect. Notice the similarities of system (9) and equation (8). In
particular, the movement strategy of criminals has similarities to the movement strategy
modeled in (8). Indeed, criminals have a strategy composed of dispersal and taxis up
gradients of a signal 2 ln(A), which means that their speed is dependent on A, slowing
down as A increases. The assumption that crime leads to more crime is evident in the term
Aρ seen in the first equations, which models the expected number of crimes.

Later Jones and collaborators in [20] and Pitcher in [27] added the dynamics of police
movement. The generalized model reads as follows:

At = µAxx −A+Aρ+ α, x ∈ (0, L), t > 0,
ρt = (dρx − 2ρAx/A)x −Aρ+ β − uρ, x ∈ (0, L), t > 0,
ut = (Duux − χuAx/A)x, x ∈ (0, L), t > 0,
(A, ρ, u)(x, 0) = (A0, ρ0, u0)(x) ≥ 0, 6≡ 0, x ∈ (0, L),
Ax(x, t) = ρx(x, t) = ux(x, t) = 0, x = 0, L, t > 0,

(10)

where we have added the dynamics of the police density, u, who are simply following a
movement strategy. In a recent work [12] we set out to understand the possible long-term
behavior of solutions to system (9). We found that the possibilities are rich and can be
nicely summarized using illustrations. You may find the mathematics behind these pictures
in a joint work with Wang and Zhang in [12]. Note that the dynamic of the solutions are
determined by the parameters of the model. In a certain parameters the solutions do form
spatial crime hotspots as seen in Figure 3.1. The top row illustrates a time snapshot of the
solutions (A, ρ, u). The bottom row illustrates the density of the solution using a colormap
(red means high and blue low) with space on the horizontal axis and time on the vertical
axis.

In another parameter regime the solutions are time periodic, that is, we observe temporal
crime waves. These solutions are illustrated in Figure 12 and are better observed in the first
row of figures. Indeed, on the horizontal axis you have time and the vertical axis illustrates
the value of the solutions for the specific locations of 0, π

4
, π
2
, and 3π

4
. Observe that it takes

a while for the time-periodic solutions to form, but by time t = 150 the temporal crime
waves are well-formed.
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Figure 11: Formation of crime hotspots.1

(1) Credit: Originally published in [12] c©2021 Society for Industrial and Applied Mathematics. Reprinted with permission.

All rights reserved.

Figure 12: Formation of time-periodic hotspots.1

(1) Credit: Originally published in [12] c©2021 Society for Industrial and Applied Mathematics. Reprinted with permission.

All rights reserved. A final parameter regime leads to chaotic solutions. In this situation the
crime levels, in all locations, vary in a seemingly random manner. Moreover, if the system
is fed two distinct initial conditions which are infinitesimally close (as close as you would
like them to be) the corresponding solutions diverge. This observation is quite important
as it allows us to conclude that this model cannot be used with data, for the reason that
given the error in the data one cannot trust the results in data fitting processes.
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Figure 13: Chaotic dynamics.1

(1) Credit: Originally published in [12] c©2021 Society for Industrial and Applied Mathematics. Reprinted with permission.

All rights reserved.

3.2 Traveling waves of social outbursts of activity

Civil unrest, protests, and rioting are tools that populations use to express objection or
dissent towards an idea or action, typically political. These outbursts of social activity have
been ubiquitous in time and space and, in many cases, have changed the course of history.
From the religious protest in the early sixteenth century to the Euromaidan in 2014, the
activity amplifies in time and sometime spread in geographical space. Moreover, there is
an underlying “tension” that helps drive the activity.

In [5], in collaboration with Beresticky and Nadal, we introduce a reaction-diffusion
model for the dynamics of rioting activity (or unrest) and social tension, motivated by
the 2005 French riots. The model assumes a self-excitation effect on the level of unrest
that turns on when the social tension is above a certain value. It further assumes spatial
contagion is local and modeled by the classical diffusion operator. The levels of unrest and
social tension at location x and time t are represented by u(x, t) and v(x, t), respectively,
and they satisfy the system:{

ut = d1∆u+ r(v)G(u)− ωu,
vt = d2∆v + 1− h(u)v,

(11)

satisfied for t > 0 and x ∈ Rn and with non-negative initial data. Some robust features
observed in these social outbursts are the temporal up-and-down dynamics and, in cases
like the 2005 French riots, the spatial spread of the activity. These features have been
observed in the data and can be expressed mathematically as the existence of traveling
wave solutions. Our model (11) does indeed allow for the existence of traveling wave
solutions, which vary in qualitative behavior. Figure 14 illustrates the different type of
traveling waves (which represents moving activity). Depending on the parameters used in
the model, we can see waves that are either pulled by the front of the activity, Figure 14(a),
pushed by the activity behind, Figure 14(b), a traveling pulse of activity, Figure 14(c), or
a non-monotone wave, Figure 14(d). What these waves represent are high levels of activity
invading zero or low-levels of activity. For example, Figure 14(c) illustrates a solution whose
activity is concentrated in a small region, called the front, in this illustration the high level

15



of activity is occurring at approximately the locations x ∈ [150, 200]. Once this front passes
a certain region, it leaves behind a small number of activity.
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(a) Monostable monotone wave
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(d) Non-monotone wave

Figure 14: Zoology of traveling wave solutions admitted by system (11).

4 Discussion

Partial differential equations provide a mathematical framework to understand changing
systems, which are ubiquitous. If one is willing to give up following the dynamics of a single
particle, animal, or individuals, this framework is mathematically much more efficient. Of
course, there is no such thing as a free lunch and we pay the price of having approximated
our system with an infinite number of particles (which is clearly not the case in reality).
We thus have to do additional work to make sure that our “approximated” system is in
fact telling us things that are relevant to our real-world system. Since its inception, this
framework has been used to shed light into many complex systems from fluid dynamics
to opinion formation. A fun application that we did not discussed was that of animation.
Two recent hits where mathematics played a big role were Frozen and Moana. In fact,
there is a lot of physics, mathematical models of the physical laws, and computer science
behind making things like snow and water look realistic. Specifically, the dynamics of
snow and water are modeled by famous partial differential equations, the so-called Navier-
Stokes equation and its relatives. The macroscopic nature of these equations also make
computations quite efficient. The reason behind why these models work so well is still a
mystery. Somehow, the language of nature and life is written in Calculus. In a conversation
between the influential physicist Richard Feynman and Herman Wouk, Feynman asked
Wouk if he know calculus. Wouk confessed that he did not, to which Feynman replied
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“You had better learn it...It is the language that God speaks.” We hope that next time you
hear the radio, observe nature, or experience awe, you can think of ways to try to provide
a mathematical framework to what you observe or hear. Surely, there is a mathematical
model behind what you are observing!
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[17] D. Grünbaum. “Using Spatially Explicit Models to Characterize Foraging Per-
formance in Heterogeneous Landscapes”. In: The American Naturalist 151.2
(1998), pp. 97–113.

[18] S. Gueron and S. Levin. “The dynamics of group formation”. In: Mathematical
Biosciences 128.1 (1995), pp. 243–264. issn: 0025-5564.

[19] P Holgate. “Random walk models for animal behavior”. In: International Sym-
posium on Stat Ecol New Haven 1969. 1971.

[20] P. A. Jones, P. J. Brantingham, and L. R. Chayes. “Statistical models of crim-
inal behavior: the effects of law enforcement actions”. In: Mathematical Models
& Methods in Applied Sciences 20.1 (2010), pp. 1397–1423. issn: 0218-2025.
doi: 10.1142/S0218202510004647.

[21] A. M. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov. “A study of the dif-
fusion equation with increase in the amount of substance, and its application
to a biological problem”. In: Selected works of AN Kolmogorov 6.1937 (1991),
pp. 1–26. url: http://link.springer.com/chapter/10.1007/978-94-011-
3030-1{\_}38.
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