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—— Abstract

It is well-known that randomized communication protocols are more powerful than deterministic

protocols. In particular the Equality function requires 2(n) deterministic communication complexity
but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows
that randomized communication is strictly stronger than what can be solved by deterministic
protocols equipped with an Equality oracle. Despite this separation, we are far from understanding
the exact strength of Equality oracles in the context of communication complexity.

In this work we focus on nondeterminisic communication equipped with an Equality oracle,
which is a subclass of Merlin-Arthur communication. We show that this inclusion is strict by proving
that the previously-studied Integer Inner Product function, which can be efficiently computed
even with bounded-error randomness, cannot be computed using sublinear communication in the
nondeterministic Equality model. To prove this we give a new matrix-theoretic characterization of
the nondeterministic Equality model: specifically, there is a tight connection between this model
and a covering number based on the blocky matrices of Hambardzumyan, Hatami, and Hatami, as
well as a natural variant of the Gamma-2 factorization norm. Similar equivalences are shown for the
unambiguous nondeterministic model with Equality oracles. A bonus result arises from these proofs:
for the studied communication models, a single Equality oracle call suffices without loss of generality.

Our results allow us to prove a separation between deterministic and unambiguous nondeter-
minism in the presence of Equality oracles. This stands in contrast to the result of Yannakakis
which shows that these models are polynomially-related without oracles. We suggest a number of
intriguing open questions along this direction of inquiry, as well as others that arise from our work.
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1 Introduction

Two computationally unbounded parties each hold an n-bit string. Their goal is to compute
some function that depends on their inputs. For a given function, how many bits must they
exchange? In the paper that introduced this model, Yao proved that computing the EQUALITY
function — that is, deciding whether or not the two parties’ inputs are equal — requires Q(n)
bits of communication. This means that EQUALITY is maximally hard in an asymptotic
sense, as n + 1 bits of communication always suffices [31]. However, if a public source of
randomness is available and some bounded probability of error is tolerated, EQUALITY only
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requires O(1) bits of communication; a proof can be found in most introductory texts on the
subject [19, 29]. This means that randomized communication can be exponentially stronger
than deterministic communication. There has been recent interest in determining the power
of EQUALITY in communication. We can sum up this direction of study with the following
question:

What total functions can be efficiently computed in a communication model where the
only access to randomness is via reduction to EQUALITY ?

Many known functions where randomization is useful can be solved by an efficient
deterministic protocol with access to an EQUALITY oracle — for example, the greater-than
function [25]. On the other hand, it was recently shown that EQUALITY alone cannot simulate
all randomized protocols [9]. In both of these results, the model under study is deterministic
and the oracle access resembles Turing reductions in classical complexity: the EQUALITY
oracle may be queried many times and the results may be used however the parties want. In
this article we study what happens when these parameters are changed:

What functions can be efficiently computed when stronger models of communication

are given EQUALITY oracle access?

Does restricting to many-one reductions change the power of EQUALITY oracles?

Of specific interest to us is nondeterministic communication with access to an EQUALITY
oracle. This is a natural restriction of Merlin-Arthur communication, an intriguing model
against which no linear lower bounds for explicit functions are known (see [1, 11]). Non-
deterministic communication with EQUALITY queries has been implicitly studied before; for
example, Goos, Pitassi, and Watson showed a separation between this model and zero-error
randomized communication with access to a single nondeterministic oracle query [13]. Our
main results center around this model.

1.1 Blocky Matrices as Building Blocks

Given a two-party function F' : {0,1}" x {0,1}" — {0,1}, its communication matrix M
is a 2™ x 2™ matrix that acts as a bipartite truth table for F: each row represents some
input z, each column represents some input y, and entry M|z,y] is the value of F(z,y).
Nondeterministic flavors of communication complexity can be defined as minimization
problems for covers of M, using monochromatic rectangles as the basic building block
(a rectangle is a product set of rows and columns). For example, the nondeterministic
communication complexity of M, NP“(M), is characterized by the logarithm of Cy (M),
the minimum number of 1-monochromatic rectangles required to cover the ones of M, and
co-nondeterministic communication complexity, coNP““(M), is the logarithm of Co(M), the
minimum cover size for the zeroes of M. Similarly the unambiguous complexity of M,
UP(M), is characterized by the logarithm of x1(M), the minimum number of disjoint
rectangles needed to cover the ones of M, and coUP“(M) is the logarithm of xo(M), the
minimum number of disjoint rectangles needed to cover the zeroes of M. This point of
view was highly successful in understanding the relationships between deterministic and
nondeterministic communication. For example, Aho, Ullman, and Yannakakis showed that
P = NP“ N coNP*® and thus deterministic communication complexity is characterized by
the logarithm of x (M), the size of the minimum partition of M into disjoint monochromatic
rectangles [2]. Moreover, viewing nondeterministic communication as covering problems
brings out some equivalent formulations coming from extremal combinatorics and graph
theory. For example, the proof of superlogarithmic lower bounds on the coNP“ complexity of
problems with efficient UP® protocols refuted a polynomial version of the Alon-Saks-Seymour
conjecture in graph theory [30, 6, 12].
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1 0 0 0 O 1 1 1 1 1 1 1.1 0 0 1 01 0 1
01 0 0 O 11 1 1 1 1 1.1 0 0 01 0 1 0
00 1 00 1 1 1 1 1 00 0 1 1 01 0 1 0
00 0 1 0 1 1 1 1 1 00 0 1 1 1 01 0 1
00 0 0 1 1 1 1 1 1 00 0 1 1 01 0 1 0
(a) Identity (b) All-ones (c) Direct sums of  (d) Permutations of
matrices matrices all-ones matrices (a)-(c)

Figure 1 Some examples of blocky matrices.

In this work we focus on communication complexity classes equipped with an EQUALITY
oracle and introduce several equivalent characterizations of these classes as covering mini-
mization problems but now using EQUALITY matrices as the basic building block. The
communication matrix for EQUALITY is simply the 2" x 2" identity matrix. Therefore, the
set of inputs on which an EQUALITY oracle call yields the answer 1 has the same basic
structure as the identity matrix, potentially with some rearrangements as the players may
locally map their inputs to other values in the query to the oracle. We will use the vocabulary
of Hambardzumyan, Hatami, and Hatami [15] who call such blowups of the identity matrix
blocky matrices:

» Definition 1. A blocky matrix is an identity matriz, perhaps with some rows and columns
deleted, duplicated, or permuted, and perhaps with all-zero rows or columns added. FEquiva-
lently, a blocky matriz takes value 1 on a set R of rectangles, where any pair of rectangles in
R have disjoint row and column sets, and value 0 elsewhere.

See Figure 1 for some examples of blocky matrices.

We define the blocky cover number of M, CE (M), to be the minumum number of blocky
matrices that are needed to cover the ones of M, and the blocky partition number of M,
xP (M), to be the minimum number of blocky matrices that are needed to disjointly cover
the ones of M. (See Section 2 for formal definitions.) We note that blocky cover number and
blocky partition number are a generalization of the standard notions of cover number and
partition number, and thus understanding properties of blocky cover and partition number
is an important tool for proving lower bounds for models of computation that have access to
EQUALITY oracles.

[15] defined the blocky rank of M to be the minimum r such that M can be written
as a linear combination of r blocky matrices. Our definitions of covering and partition
minimization by blocky matrices can be seen as flavors of blocky rank, similar to the various
flavors of rank and ~2 norm (e.g., approximate rank, sign rank, approximate 7, etc.) Here
again we see that complexity measures based on blocky rank measures are robust and come up
naturally in other areas. For example, Hambardzumyan, Hatami, and Hatami [15] observed
that blocky rank arises in operator theory where it is connected to idempotents in Schur
algebras, and unambiguous blocky complexity is related to covering problems in graph theory.
Another recent result is that a blocky version of sign rank essentially characterizes the size
of depth-2 linear threshold circuits [3].
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1.2 Our Results
New Characterizations

As mentioned above, nondeterministic, co-nondeterministic and deterministic communication
complexity are characterized by 1l-cover number, 0-cover number and partition number,
respectively. We prove similar characterizations for nondeterministic communication classes
equipped with an EQUALITY oracle.

» Theorem 2 (Simplified). Let F' be a communication function on n bits. Let A be its
corresponding 2™ x 2™ Boolean communication matriz. Then

UPEQ(F) < log vB(4) < O (UPEQ“(F) log n) .
Also,
NPEQ< (1) = log CF(A) < O (NPEQ“(F) log n) .

In order to prove the above theorem, we define matrix-analytic characterizations of these
classes by variants of a new binary version of the well-studied v, norm. Recall that the v,
norm of a matrix M is at most r if M can be decomposed into the product of matrices X
and Y such that all rows of X and columns of Y have ¢s-norm at most r. This norm and
its approximate version are relaxations of the rank and approximate rank of M and have
several equivalent characterizations and many applications. (See [21] for a comprehensive
survey.) For a Boolean matrix M, we define the binary v2 of M, 2 g(M), by restricting X
and Y to be Boolean matrices. The binary generalization of the measure 5%, 157 (M), is
defined similarly. (See Section 2 for formal definitions.) En route to proving Theorem 2, we
show that v p characterizes UPEQee pEQee

As a byproduct of the above proofs we obtain the following corollary, showing that
multiple EQUALITY calls is no more powerful than a single EQUALITY call with respect
to UPEQ and NPE®. Note that in contrast this is false with respect to PEY as [28]
exhibited total functions easy for deterministic protocols with & EQUALITY calls but hard
for deterministic protocols with less than & EQUALITY calls.

complexity and 5% characterizes N complexity.

» Corollary 3. With respect to unambiguous and nondeterministic communication, Turing-
style and many-one style reductions to EQUALITY are polynomially equivalent. That is,

UPEQ — U . EQ® and NPER* = 3. EQ°°.

New Separations

In a beautiful paper, Chattopadhyay, Mande, and Sherif disproved the log approximate rank
conjecture by exhibiting a total function that has low approximate rank but requires large
BPP complexity [10]. We observe that the same function also has low UPEQ
thereby obtaining the following new separation:

complexity,

» Theorem 4. UPEA ¢ coMA

As a corollary, we show that PEY £ UPEQ and thus Yannakakis’ result [30], showing
that P = UP, breaks in the presence of EQUALITY oracles.

Our second separation concerns the strength of deterministic communication equipped
with an EQUALITY oracle versus unrestricted randomized communication. As mentioned
above, Chattopadhyay, Lovett and Vinyals [9] proved that there is a total function in BPP*
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PEQCC PEQcc . (

but with linear complexity, thus proving BPP* ¢ In fact their hard function
is in coRP*, thus proving coRP< ¢ PE?°.) The next theorem strengthens their separation
by showing that their function remains hard even for nondeterministic protocols with an

EQUALITY oracle.

» Theorem 5 (Simplified). coRP* ¢ NPE?® (and therefore BPP ¢ NPEA and MA* ¢
NPEQe),

The outline of the remainder of the paper is as follows. Section 2 contains background
information, definitions and notation. Section 3 develops basic properties of the new Boolean
~2 measure, which are used to prove our main equivalences (Theorem 2). In Section 4 we
prove our separation theorems (Theorem 4 and Theorem 5). We conclude in Section 5 with
a discussion of our results and how they fit into the communication complexity landscape,
and highlight several intriguing open questions.

2 Preliminaries

A combinatorial rectangle (or simply “rectangle”) is a product set R = X X Y, where X is a
set of rows over some universe X and Y is a set of columns over some universe ). We say
that R contains a row z if z € X (or a column y if y € V).

A rectangle is often interpreted in this paper as a matrix over X x ) where the entries in
X XY are given value 1 and the other entries are given value 0. For example, if we say that
matrix A is the sum of a set of rectangles, we mean that A is the sum of the matrices based
on those rectangles.

For a matrix A, a monochromatic rectangle of A is a rectangle whose corresponding
entries in A have constant value. Often this value is specified; i.e. a combinatorial rectangle
in A that contains only ones is a I-monochromatic rectangle.

We say that a set of rectangles R covers a subset S of coordinates in a matrix A if
every coordinate (i,7) € S is contained in some R € R and no coordinates outside of S are
contained in any R € R. Such a set is called a cover of S. For example, if R contains exactly
the coordinates in A whose entries take value 1, R is a cover of the ones of A. Furthermore,
if the rectangles of R are disjoint (i.e. they do not overlap), R is a partition and is said to
partition S.

For two matrices A, A’ of the same size, A o A’ represents the entry-wise product.

Blocky cover number and blocky partition number

We define matrix measures similar to partition number and cover number, but in terms of
blocky matrices instead of combinatorial rectangles.

» Definition 6. For a {0,1}-valued matriz A, the blocky partition number of A, denoted
xB(A), is the minimal v such that A can be expressed as the sum of v blocky matrices.

» Definition 7. For a {0, 1}-valued matriz A, the blocky cover number of A, denoted CP(A),
is the minimal r such that A can be expressed as the entry-wise OR of r blocky matrices.
That is, if Ali,j] =1 then the sum of the blocky matrices is at least 1, and otherwise the sum
s 0.

An equivalent way to define these would be that x2(A) is the minimum number of blocky
matrices such that their constituent rectangles partition the ones of A, and CP(A) is the
minimum number of blocky matrices such that their constituent rectangles cover A — this
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definition justifies the names “blocky partition number” and “blocky cover number”. It also
motivates the definition of two related measures: x§(A) is the minimum number of blocky
matrices needed to partition the zeroes of A, and CP(A) is defined similarly.

2.1 Communication complexity

We assume familiarity with the basics of communication complexity [19, 29]. This paper
uses the now-common notation for communication classes and models of Babai, Frankl,
and Simon [4]. Denote the complexity of a function F' in a given communication model as
C“(F), where C is an analogous class in classical complexity theory. As a slight abuse of
notation, “C” is used both to refer to the set of functions with C*“(F") < polylog(n) and to
the communication model itself.

For most of the standard communication models we reference in this paper — P, BPP°,
RP, NP¢, and MA® — we point the reader towards Appendix B of the survey by Goos,
Pitassi, and Watson for definitions [13]. The only standard model we will need that is not
defined in that paper is UP®, the model with unambiguous nondeterminism.

» Definition 8. UP° is the unambiguous nondeterministic model, where a prover sends
the players a witness string, after which the players proceed deterministically. If the correct
output is 1, there must always be exactly one witness that leads the players to accept; if the
correct output is 0, there must never be such a witness. The cost of a protocol in the UP
model is the number of bits needed to encode the witness plus the maximum depth of the
deterministic portion.

Classes based on equality

We are interested in models of communication that are augmented with the ability to compute
the EQUALITY function. To capture this notion, we first define a model of computation that
makes a single call to EQUALITY and outputs the answer from that call.

» Definition 9 (Equality-based communication). A function F has a protocol in the model
EQ if there exist some functions fx and fy such that F(x,y) = fx(z) = fy(y). The cost
of any such protocol is 1.

This is a strange definition, as it does not assign a cost to most functions: no suitable fx
and fy exist for most F. Indeed, the only functions with a EQ® protocol are those whose
communication matrix is a blocky matrix! The restricted nature of EQ® means that it is
only truly useful when examining its composition with other models. To this end, we next
define an oracle model where EQUALITY may be queried multiple times.

» Definition 10 (Communication with equality oracle queries). Let C*° be any communication
model in which the parties can send messages deterministically. The model CEA is the same
as C¢ except that at any step where a party would send a bit deterministically, the parties
locally compute some functions fx(x,7) and fy(y,7) (where 7w is the transcript so far) and
learn whether or not fx(x,m) = fy (y, 7). The cost for computing this equality is 1, and the
cost is otherwise defined the same as in C.

The three models of most interest to us are PE®, NPE® and UPEQ. To aid in our
proofs we will give explicit definitions of these models that highlight the structure of a
protocol.
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» Definition 11. A P& protocol is a decision tree. Fach internal node v of the tree
corresponds to oracle queries to the EQUALITY function: that is, it tests whether fx(x,m) =
fy(y,m) where 7 is the transcript that leads to node v. The internal nodes each have two
children, corresponding to “yes” and “no” answers to the query. Fach leaf node w of the tree
corresponds to an output o,. The output of the protocol is computed by starting at the root
node, making the oracle query, traversing to the appropriate child, continuing this process
and halting upon reaching a leaf w, where we output o,,. The cost of the PEQ< yrotocol is the
depth of the decision tree.

» Definition 12. An NPE protocol is a collection of 2™ PE protocols with depth at most
d. The function computed by this NPE® is the OR of the functions computed by the PE
protocols. The cost of the NPE protocol is m + d.

The definition of UPER is similar to the above, and only requires the addition of the
unambiguity constraint.

» Definition 13. A UPE® protocol is a collection of 2™ PEX protocols with depth at most
d where no two of these pEQee protocols have an input on which they both return 1 (that is,
their supports are pairwise disjoint). The function computed by this UPER< s the OR of the
functions computed by the PEY protocols. The cost of the UPER protocol is m + d.

Many-one reduction classes

As discussed in the introduction, the model CER represents a Turing reduction from the
model C°® to the EQUALITY function. In order to reason about many-one reductions to
EQUALITY, we use counting class notation: this notation is standard in classical complexity,
see [16].

» Definition 14. An 3-EQ (respectively U-EQ) protocol is an NPEY (respectively UPEA)
protocol where the constituent pEQee protocols have depth 1 and simply return the output of
the EQUALITY query.

2.2 The 5 norm and variants

Let A be a matrix. The 45 norm of A is defined as:

Y2 (A) = r)r(u}r/l r(X)r(Y)
Xy T=A
where r(M) is the maximum /5 norm of any row of M. This is indeed a norm, which can be
proven by examining the semidefinite program that computes it [22].

If A is {0, 1}-valued, then vy5(A) < O(y/rank(M)) — see the book of Lee and Shraibman
for more details [21]. The 72 norm turns out to be very closely related with other natural
generalizations of rank. We can write a real matrix as ), a; R;, where the a; are weights and
the R; are rank-one {0, 1}-matrices (i.e. rectangles). The p-norm of a matrix is the minimum
of Y. a;| over {a;}, {R;} where ), a; R; equals the matrix. The v-norm is defined similarly,
but where the rank-one {0, 1}-matrices are replaced with rank-one {—1, 1}-valued matrices.
By an application of norm duality and Grothendieck’s Inequality, for any real matrix A we
have y5(A4) < v(A) < u(A) < 4Kg7y2(A) where K¢ is Grothendieck’s constant [23].
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The above relationship between 75 and rank means that the 2 norm can be used to lower
bound deterministic communication complexity, as logrank(A) lower bounds deterministic
communication complexity. This is perhaps uninteresting, as rank itself is a tighter lower
bound: for example, the communication matrix of EQUALITY has constant o but exponen-
tially high rank. The power of 75 in currently-known communication lower bounds arises
when we consider its approrimate variant.

Approximate norms

Every matrix measure ® has an associated a-approximate variant. Let A be a {0, 1}-valued
matrix. We say that A’ a-approximates A if A’ is positive on entries where A is 1, is
non-positive on entries where A is 0, and differs entrywise from A by at most a. The
a-approximate ® of A, denoted ®*(A), is the minimum ®(A’) over all A’ that a-approximate
A. See the book of Lee and Shraibman [21] for more discussion on this definition.®
DY (A) = min D(A).
A’ where Va,y:
if A[z,y]=0 then A’[z,y]<0
if A[z,y]=1 then A'[z,y]>1
[A-A"[|eo<a
Let Ar be the communication matrix of some function F. For any constant «, log S (Ar)
lower bounds randomized communication complexity of F' [24]. This can be proven directly
or by using 75 (Ar) = O(rank®(Ar)) [20] and the fact that logrank®(Ap) lower bounds
randomized communication complexity [18]. This demonstrates the power of 4§ in practice:
whereas the approximate rank of a matrix is not known to be efficiently computable, 75 (Ar)
can be computed by a semidefinite program.
Motivated by taking the limit as « approaches infinity, we can also define the associated
infinity variant:
O (A) = min B(A.
A’ where Vz,y:
if A[z,y]=0 then A’[z,y]<0
if Alz,y]=1 then A'[z,y]>1
Again letting Ap be the communication matrix of some function F', there is an asympto-
tically tight connection between logv5°(Ar) and the discrepancy of combinatorial rectangles
in Ap [23], which itself is known to be a tight bound on the so-called weakly-unbounded
randomized communication complexity of F' (this model is denoted PP) [17].

Binary 5

We are interested in a variant of the 75 norm obtained by restricting the matrices X and Y
in the factorization of A to have entries in {0,1}.
r(X)r(Y)

v2,8(A) = min
( ) {0,1}-matrices X,Y

XyT=A
This variant is not a norm. In fact, 72 p(A) is only defined if the entries of A are
non-negative integers. However, some useful properties of norms still hold for v, . See
Section 3.1 for some of these.

! Lee and Shraibman define a-approximation for {—1,1}-valued matrices, and the definition ends up
being a bit simpler. However, our results overall are cleaner if we use {0, 1}-valued matrices, so we
suffer a bit of mess here.
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For our applications we will also use the infinity variant of vo . Since 72 p is only defined
for non-negative integer matrices, the constraint on the zeroes of the approximating matrix
must hold with equality. Explicitly:

o0 _ : /
Vop(A) = , min V2,8(A).
A" where Vz,y:
if Alz,y]=0 then A’[z,y]

[2,y]=0
if Alz,y]=1 then A'[z,y]>1

>

3 Characterizations

In this section we prove the matrix characterizations of nondeterministic communication
models with EQUALITY oracles.

3.1 Properties of ~, variants

First we will prove some helpful properties of v2 5. We begin by giving an alternate definition
of v2,p that will be more convenient to work with. Intuitively, optimizing v2 g is equivalent
to finding a partition of the ones of a matrix into combinatorial rectangles that minimizes
the number of rectangles containing any row or column.

» Lemma 15. Let A be a matrixz whose values are non-negative integers. Let R be a set of
combinatorial rectangles with ) R = A that minimizes \/k.k,, where k, (respectively
ky) is the mazimum number of rectangles in R that contain any row (respectively column) of

A. Then v2,5(A) = \/kzky.

Proof. We begin by rearranging the terms in the definition of v2 g to focus on the columns
of the factor matrices X and Y. Letting {u} be the columns of X and {v} be the columns
of Y, it is easy to see that v, p can be written as:

A) = min ma €y Ui )2 €y, ;)2
’7273( ) {u},{v} sets of {0, 1}-valued vectors w,yX \/;< o l> \/;< v l>

g vui'u;r:A
i

where e, is the vector that is 1 at location x and 0 elsewhere.

We can now verify that the characterization in the statement of the lemma is correct.
Since all vectors in {u} and {v} are {0, 1}-valued, the outer products u;v; are combinatorial
rectangles. The sum of these rectangles is A. The expressions Y, {e,, u;)? and >_,(e,, v;)?
are exactly k, and k,, respectively.? Therefore, finding an optimal R as stated is exactly the
same as finding an optimal factorization of A. <

The alternate definition given in Lemma 15 allows for particularly simple proofs of the
following properties.

» Lemma 16. The measure 2, does not increase if a matriz has its rows or columns
deleted, duplicated, or rearranged, or if all-zeros rows or columns are added.

Proof. All of these operations allow us to keep the same structure of decomposition into
rectangles. |

2 Note that the exponents here are unnecessary, as the value of the inner products are always zero or one.
We include these only to highlight the equivalence with the ¢2-norm in the definition of 2 5.
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» Lemma 17. Any blocky matriz B has y2 g(B) = 1.

Proof. The identity matrix has a v2 g of 1 (the factor matrices are both the identity matrix).
Apply Lemma 16. <

» Lemma 18. Let Ay and Ay be two {0, 1}-valued matrices of the same dimensions. Then

v2,8(A1 0 A2) < 72 B(A1)72,B(A2).

Proof. For i = 1,2, let R; be a partition of the ones of A; into 1-monochromatic rectangles
achieving the minimum for v, g(A;). Then {Ro R’ : R € Rq,R’ € Ry} is a partition of the
ones of A; o Ay into 1-monochromatic rectangles. If a row or column intersect R o R’ then it
intersects both R and R'. <

» Lemma 19. Let A; and As be two {0,1}-valued matrices of the same dimensions whose
sets of 1-entries are disjoint. Then

v2,8(A1 + A2) < v2,8(A1) + 72,8(A2).

Proof. For i = 1,2, let R, be a partition of A; achieving the minimum for v, 5(A;). Then
R1UTRs is a partition of the ones of A; + As into 1-monochromatic rectangles. Every row
and column intersect at most v (A1) + v2,5(A2) rectangles in this partition. <

Note that Lemma 19 does not give us subadditivity in situations where the ones of A,
and A, are not disjoint. In fact, such a property does not hold.

We finish this subsection by proving tight bounds for the 2 p of matrices of a specific
form.

» Lemma 20. v, g(J, — I,,) = ©(logn), where J,, is the n X n all-ones matriz.

Proof. Let F,, = J, — I,. Then the following recursive structure exists:

E, Jn
It follows that v, g(E2,) < v2.5(En) + 1, and therefore v2 p(E,) < O(logn).
The lower bound follows from Claim 7 in [27], which relies of a bound from [5]. The claim
says that if x1,...,x, and y1,...,y, are Boolean vectors satisfying that xlyﬁ = 0 if and only

if i« = j, then there is some i € [n] for which the number of ones in z; plus the number of
ones in y; is at least Q(logn). <

Combining Lemma 16 and Lemma 20 gives us the following useful corollary.
» Corollary 21. ~, g(J, — B) = O(logn), where J,, is the n X n all-ones matriz and B is
any blocky matrix.
3.2 Connections between blocky measures and ~, variants

Here we prove that blocky partition has a polynomial relationship with 7, p and blocky cover
has a polynomial relationship with 75%. Again, Lemma 15 helps us keep things simple.

» Lemma 22. Let A be a {0,1}-valued matriz. Then:

12.5(A) XT(A) < (12,5(4))°  and  25%5(A4) < CP(A) < (155(4))%
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Proof. In the following, let A’ be the matrix that co-approximates A in the definition of
Y555 (A): that is, v2,5(A") = 75°5(A) and A’ is a matrix with non-negative integer values and
the same non-zero coordinates as A.

For a matrix M whose entries are non-negative integers let B be a set of blocky matrices
such that s B = M. Then at most a single rectangle from each of these blocky matrices
can contain any given row or column of M, as the rectangles of each blocky matrix have
pairwise disjoint row and column sets. By Lemma 15, this means that the constituent
rectangles of B give an upper bound of vy, g(M) < +/|B| - |B| = |B|. If M = A, then B is a
partition of the ones of A into blocky matrices, and so we can set B such that |B| = x(A).
If M = A’, then B is a cover of the ones of A into blocky matrices, and so we can set B such
that |B| = CE(A).

We now prove the other direction. Again, let M be a matrix whose entries are non-
negative integers. Let R be the optimal decomposition of M into combinatorial rectangles
as in the statement of Lemma 15 and let k,/k, be the associated row/column counts. Fix
some order on R. Define a set of k;k, blocky matrices B as follows: for integers 0 < i <k,
and 0 < j <k, blocky matrix B; ; € B is the set of row-column pairs (z,y) that are in the
1th rectangle that contains row = and the jth rectangle that contains column y (according to
the order that we fixed previously).

One can see that this definition of B; ; does indeed yield a blocky matrix. Each entry in
the support of B; ; is also in the support of some rectangle in R, and for any R € R, it is
easy to see that the portion of R included in B; ; is a product set — inclusion in B; ; relies
only on fulfilling the ordering property on both the row and column — and that its rows and
columns are not shared with any other rectangle in B; ; — only one rectangle R can be the
ith rectangle containing a row or the jth rectangle containing a column. Furthermore, each
entry in the support of R € R is covered by some blocky matrix in B. Given this, we can see
that the sum of the matrices in B is M.

The size of B is kyky = (y2,5(M))?. If M = A, B is a blocky partition of the ones of M
because R was a partition, and so B witnesses X (A) < (y2,5(A))%. If M = A’, then B is a
blocky covering of A and so CP(A) < (75°3(4))%. <

3.3 Characterizations of equality-based protocols

We can now move on to proving the characterizations of EQUALITY-based communication
classes. The proof techniques are essentially the same between the two theorems. Therefore,
we will state the intermediate lemmas in terms of both nondeterminism and unambiguous
nondeterminism.

» Lemma 23. Let F be a communication function on n bits. Let A be its corresponding
2™ x 2™ Boolean communication matriz. Then

logvy2,5(A) <O (UPEQCC(F) -log n) and log155(A) <O (NPEQCC(F) -log n) .

Proof. Let II be either a UPER or NPEQ® protocol for F' with 2 constituent P protocol
trees T; of depth at most d. We can associate any node v of T; with a Boolean matrix whose
set of l-entries characterizes the subset of entries (x,y) on which the protocol reaches v.
Denote this matrix by M,. As a simple example, for the root of the tree r, the matrix is
M, = Jan.

Let v be any node in T}, and let uy, and ug be its children. Recall that uy, will be reached
if the EQUALITY query at v returned 0, and ug will be reached if that query returned 1.
Then there is some blocky matrix B such that:

My, =M,oB.

M, = M, o (Jan — B).
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Therefore, if v has depth d’ in T}, M, can be expressed as the entrywise product of d’
matrices that are either blocky or Ja» minus a blocky matrix. By Lemma 17, Lemma 18,
and Corollary 21, this implies that for every node v in T, yo, 5(M,) < (n)*.3

Now we can prove the desired bounds. Let £ be the set of all leaves £ of the trees T;

pEQee protocol would output 1. There are at most 292" such leaves.

where the corresponding

If IT is a UPEQ protocol, then for ¢ € £ the corresponding matrices M, have disjoint
l-entries: leaves of a given tree will have disjoint 1-entries, and the inputs on which the
trees output 1 are disjoint. Therefore, A = 3 ,.. M, and so by Lemma 19 we have
Yo.5(A) < (2n)4*+™. Rearranging, we get logye, 5(A) < O ((d +m) - logn).

If IT is an NPEQ* protocol, a similar analysis holds, but we no longer have the property
that the inputs on which the trees output 1 are disjoint. Instead, we have that there is some
matrix A" =), ~ M, which is non-zero exactly when A is non-zero. As above, by Lemma 19
we have 7, 5(A’) < (2n)?*™. By the definition of V5, this means that 75%(A4) < (2n)d+m,
Again, we can rearrange to yield log 3% (A) < O ((d +m) - logn). <

» Lemma 24. Let F be a communication function on n bits. Let A be its corresponding
2™ x 2™ Boolean communication matriz. Then

U-EQ“(F) =logxP(A)  and 3 -EQ“(F)=1logCP(A).

Proof. If B is a partition (respectively cover) of the ones of A then in a U-EQ® (respectively
3- EQ®) protocol the nondeterministic witness can simply specify which blocky matrix in B
has the input in its support, and the parties can determine whether this is correct using a
single EQUALITY call.

If I is a U - EQ® (respectively 3 - EQ®) protocol, then the associated matrices of the
constituent PEA trees are blocky and form a size 2F partition (respectively covering) of the

ones of A, where k is the cost of II. |

» Theorem 2. Let F' be a communication function on n bits. Let A be its corresponding
2™ x 2™ Boolean communication matriz. Then

UPEQCC(F) < U-EQ™(F) =logxP(4A) = O(logv2,8(A4)) <O (UPEQCC(F) ~logn) .
Also,
NPF(F) < 3+ EQ(F) = log CP(A) = O(log75%3(A)) < O (NPEQ“(F) -log n) :

Proof. The theorem follows from Lemma 22, Lemma 23, Lemma 24, and the facts that
U-EQ*(F) > UPE(F) and 3-EQ*(F) > NPEX(F) which follow easily from the definitions.
D |

4 Lower bounds and separations for equality protocols

In this section we prove our two separation results, both concerning the nondeterministic
communication classes UPE? and NPEQ“®. The first separation, Theorem 4, establishes that
there is a total function in UPE? (and thus also in NPER) that is not in coMA®. The
second separation, Theorem 5, shows that there is a total function in coRP (and thus also
in BPP and MA) that is not in NPEQ<,

3 Corollary 21 is stated in terms of n X n matrices, whereas the matrices here are of dimension 2" x 2.
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4.1 Proof of Theorem 4
In this section we prove Theorem 4, restated below.
» Theorem 4. UPEC ¢ coMA™.

The log rank conjecture is a long-standing open problem that asks whether the deter-
ministic communication complexity of a function and the rank of its communication matrix
are polylogarithmically related. Similarly, the log approzimate rank conjecture asks a similar
question about the connection between randomized communication complexity and the
approzimate rank of its communication matrix. Chattopadhyay, Mande, and Sherif give a
counterexample showing that the log approximate rank conjecture is false [10]. The function
that they use in their separation is called SINKoXOR.

» Definition 25. The function SINK : {0, 1}(7;) — {0, 1} interprets its inputs as assigning
directions to edges of the complete graph on m wvertices and outputs 1 if that directed graph
has a sink.

The function SINKoXOR : {0, 1}(7;) x {0, 1}(7;) — {0,1} outputs the value of SINK(z),
where z = x @ y is the entry-wise XOR, of the inputs of SINKOXOR.

The main result of Chattopadhyay, Mande, and Sherif is that SINKoXOR has logarithmic
approximate rank but (y/n) randomized communication complexity — here, n is the length
of the inputs, so n = (7}'). Indeed, they show the stronger result that coMA“(SINKoXOR) =
Q(nl /4)_4

» Lemma 26. U EQ“(SINkoXOR) = O(logn).

Proof. The witness indicates which vertex is the sink. As the graph defined in the problem
is complete, there is always at most one sink, which means this witness is unambiguous. The
parties then confirm that the vertex is a sink using a single EQUALITY call as follows. For
a vertex v, let z[v] and y[v] be the inputs x and y restricted to the bits whose XOR will
determine the directions of the edges incident to v. Let w be the unique value such that v is
a sink if and only if z[v] ® y[v] = w. The player that knows z can compute z[v]  w, and
then an EQUALITY call can be used to determine if z[v] ® w = y[v], which is the case if and
only if v is a sink. |

Lemma 26, combined with the main result of [10] that coMA“(SINKoOXOR) = Q(n'/4),
implies UPE ¢ coMA, thus proving Theorem 4. Of course, this also separates UPE?
from subsets of coMASS; of particular interest is PE?°. Theorem 4 shows that the result
of Yannakakis that P = UP“ [30] does not hold when these classes are augmented with
EQUALITY oracles. Theorem 4 also shows that UPE® is not closed under complement: the
negation of SINKoXOR is in coUPE® but is not in MA, which is a superset of UPEQ<,

4.2 Proof of Theorem 5

Our main aim in this section is to prove Theorem 5 (restated below), giving a separation
between NPEQ and MA,

4 Actually, their result is even stronger than this: coSBP“(SINkoXOR) = Q(v/n). The class coSBP
represents the small bounded-error model, which tightly characterizes the (0-sided) corruption bound.
It is known that coMA“(F)? > coSBP“(F) for all F [14].
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» Theorem 5. There is a function F such that coRP“(F) = O(log n), but with NPEY(F) =
Q(n/logn) and 3- EQ(F) = Q(n). Therefore coRP* ¢ NPEY and thus MA ¢ NPEQ,

Chattopadhyay, Lovett, and Vinyals defined a lower bound technique that compares the
size of the largest 1-monochromatic rectangle of a function’s communication matrix with the
number of ones of that function [9]. We call the matrix measure used in their proof max-rect.

» Definition 27. Let A be a {0, 1}-valued mxn matriz, where a(A) is the number of ones in A
and B(A) is the size of the largest 1-monochromatic rectangle in A. The maximum-rectangle
bound A, denoted max-rect(A), is defined as:

a(A) .
B(A) (m37)

Actually, this formulation of max-rect appeared in a preprint version of the aforementioned

max-rect(A) =

paper [8] — in the full version [9], a more complicated expression is given. This latter measure
is used to give a tight (linear) lower bound on the PEQ
Using max-rect as defined here and in the preprint, the known techniques only give Q2 (n/logn)
bounds.

» Theorem 28 ([8, 9]). There is a function F : {0,1}"™ x {0,1}™ — {0,1} such that
coRP*“(F') = O(logn) and whose corresponding 2™ x 2™ Boolean communication matriz A
has max-rect(A) = Q(2").

complexity of a function in coRP*.

It turns out that max-rect is stronger than observed by Chattopadhyay, Lovett, and
Vinyals, and can be shown to lower bound NPE with just a few tweaks of the proof
technique in the preprint [8]. This means that the function from Theorem 28 will work for
our separation.

» Theorem 29. Let A be a {0,1}-valued m x n matriz. Then CB(A) > Q(max-rect(A)).

Proof of Theorem 29. Let B be a cover of the ones of A with |B| = C£(A) and let R be the
set of combinatorial rectangles in the blocky matrices of B. For a rectangle R; € R, we will
use the notation F, (i) (respectively E,(i)) for the event that x (respectively y) is contained
in R;. Because the matrices of B are blocky, each row or column can only be contained in at
most |B| of these rectangles, i.e. Y, F, (i) < [B| and >, Ey (i) < |B.

Then we have the following relationship between |B| and these R; € R:

(m+m)lBl =D 0> E(0)+ DD Ey(i) =3 (Z B, (i) + ZEN‘))

7

223 (ZEN')) (ZEW)) =23 2 (BB (D))

:22@.

The second inequality above follows from the AM-GM inequality. Let «(A) and S(A)
be as in the definition of max-rect. Then, since the rectangles of R are 1-monochromatic
rectangles that cover the ones of A, we have ), |R;| > «(A) and, for all i, |R;| < B(A).
Together these constraints lower bound ), m by the minimum of an optimization
problem. This minimum is achieved if «(A)/B(A) of the R; have area 5(A), which gives

> VIRi| > a(A)/+/B(A). Combining everything, we get

a(A)
CBA)>Q| ————

) = Q(max-rect(A)). <
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Proof of Theorem 5. Combining Theorem 29 with our characterizations from Theorem 2:
3-EQ*(F) =log CE(A) and

logCP(A) <O (NPEQCC(F) -log n) )
we get our desired bounds. |

We remark that for NPE we get the same logn term in the denominator as [8], but for
3. EQ®® we get the optimal linear lower bound.

5 Conclusion and open questions

Hambardzumyan, Hatami, and Hatami [15] initiated the study of blocky matrices and
blocky rank. They showed that it is a robust notion that is not only relevant to the study
of communication complexity, but also connected to central questions in operator theory.
Avraham and Yehudayoff [3] prove additional connections to circuit complexity, combinatorics,
and learning theory. Taken together, it seems clear that rank-like measures for blocky matrices
are a fundamental and robust notion, and deserving of further study.

In this paper, we continued this investigation by studying restrictions of blocky rank, and
show that they are equivalent to natural nondeterministic communication models equipped
with EQUALITY, and moreover, have a dual characterization in terms of a variant of the
well-studied 5 norm. Our new characterizations of these communication classes in turn led
to further understanding and new separation results.

This new line of inquiry has opened up several exciting new questions/directions, and
could potentially shed new light on key open problems in the area, such as the log rank
conjecture, and developing more tools and intuition for the poorly understood communication
classes MA“ and AM®. Below we briefly discuss how these communication classes (and
blocky rank measures) are related to the communication landscape, and mention a few
specific open problems.

Figure 2 shows known relationships between the matrix measures and communication
classes that are under study in this paper. A box containing a matrix measure in this
diagram should be interpreted as the set of functions for which the value of that measure
is polylogarithmic on their communication matrices. For example, the box with “log rank”
includes all problems whose communication matrix has rank 2(1°g mo®,

All of the relationships in Figure 2 are discussed in previous sections or follow straightfor-
wardly from the definitions. In the remainder of this section, we will talk about a few of the
gaps in this diagram, as well as some other intriguing open questions that naturally follow
from our work.

BPP< vs. PRPce

Two-sided randomness can simulate a deterministic protocol oracle calls to one-sided ran-
domized protocols, but is the other way true? This question has received some interest in
recent years, and separations are known between BPP and certain subsets of PRF: the
paper of Chattopadhyay, Lovett, and Vinyals discussed earlier shows that BPP<® ¢ PEQ [9]
and Pitassi, Shirley, and Watson show that limiting the number of RP calls allowed in PRP<
to a constant gives a weaker complexity class [28]. The ultimate goal of such research would
be not only to resolve BPP® vs. PRP_ but also understand BPP vs. PNP<¢. This latter
question was explicitly raised by Goos, Pitassi and Watson [13]. Recall that we focus on total
functions here — the relationship is already known when partial functions are allowed [26].
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log rank®

= log %'
A

Figure 2 Relationships between the communication complexity measures. We consider total
functions only. A — B with a normal arrow represents A C B. The arrow is bold if that inclusion
is known to be strict (A € B). The arrow is dashed if a separation is known (A ¢ B). Some

=

relationships are omitted if they can be derived from the others shown here.

Our work finds tight matrix-analytic characterizations of some EQUALITY-oracle-based
communication models. If our understanding of RP® oracles was similarly developed it would
represent tremendous progress towards resolving BPP vs. PRPe.

» Open Question 1. Find a matriz-analytic technique that characterizes RP oracles in
communication complexity.

This problem seems difficult — one-sided randomness is hardly understood at all! For
example, we know that coRP™ ¢ UPEQ. However, the max-rect technique is itself one-sided,
and so is silent on RP® vs UPE®, Resolving this seems like a concrete first step towards
understanding RP.

» Open Question 2. Is RP ¢ UPEQ«?

We remark that the reverse is false (SINKoXOR ¢ RP“) and that the situation is easily
resolved without the unambiguity in the nondeterminism (RP ¢ NP ¢ NPEQ<),

How strong is v in communication?

In the paper where it was introduced, SINKoXOR was shown to have polynomial approxi-
mate rank by analyzing the Fourier decomposition of SINK and lifting these properties to
communication complexity [10]. The results in this paper give another way to show this
upper bound on approximate rank. From Lemma 26, the U - EQ® complexity of SINKoXOR
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is logarithmic; Theorem 2 then gives us that its communication matrix has polynomial 72 g,
and for any matrix A, 2 g(A4) > 12(A) > v5(A). As mentioned in Section 2, approximate
v2 and approximate rank are essentially equivalent [20].

This chain of inequalities highlights a huge gap in our understanding of the strength of
approximate rank in communication complexity: a very weak variant of approximate rank is
sufficient to upper bound SINKoXOR! A better understanding of the power of ~» and its
variants in communication complexity may lead us to a richer landscape of functions that
refute the log approximate rank conjecture. (For another paper about the search for stronger
counterexample that takes a different approach, see [7].) Here are a couple of concrete
questions in this direction:

» Open Question 3. Is there a function whose communication matriz would be lower bounded
by log 2 but not log s ¢

Separations between these measures are known outside the realm of communication
complexity. However, we are specifically searching for a function with quasipolynomial (or
better) approximate 5 but exponential 72, which appears to still be an unsolved problem.

Another inequality in the chain above is v2 g(A) > v2(A). In a communication complexity
sense, these measures are exponentially separated because vz, g is not closed under complement
but 7, is. However, we find this argument somewhat unsatisfying, as it does not capture
many of the differences between 7, g and 2. We would like to consider a closure of 2, g — a
minimal set that is lower bounded by 72 p and is closed under complement and other simple
operations.

» Open Question 4. Is there a reasonable closure of yo g that is equivalent to v2 in terms
of its ability to bound functions in communication complexity?

Perhaps the blocky rank measure of Hambardzumyan, Hatami, and Hatami is the right
place to look for such a closure. See their paper for a discussion about how blocky rank
relates to communication complexity [15].

PEQcc s, NPEQ A coNPEQCC

As mentioned in Section 4, P< = UP [30] but PE £ UPEQ There is another known
collapse of limited nondeterminism to determinism in communication complexity: P =
NP N coNP [2]. Does this hold with EQUALITY oracles present?

» Open Question 5. Is PEc = NPEQc q coNPEQ 2
This is still open even if we restrict to unambiguous nondeterminism.
» Open Question 6. s PER = YPEQ« N coupERec?

Our results provide tools that may be helpful for solving this problem. To illustrate, let
us observe a couple of properties of these intersection classes. Theorem 2 and Lemma 15
imply that any function in UPER° N coUPER has a communication matrix that can be fully
partitioned into monochromatic rectangles where any row or column is contained in only a

few of these rectangles (in the case of NPE N coNPEQ“, replace the partition with a cover).

PEQ 4 zero-sided version of max-rect (which

Furthermore, since max-rect lower bounds N
compares the number of zeroes with the largest 0-monochromatic rectangle) lower bounds
coNPEQ. We can use the contrapositives of these lower bounds to show that any function
in NPEQ° 1 coNPEQ* has a large monochromatic rectangle: either it has many ones and
therefore has a large 1-monochromatic rectangle or it has many zeroes and therefore has a

large 0-monochromatic rectangle.
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