
O n  Perrot ’s Index  Cocycles
Jonathan Block, Nigel Higson, and Jesus Sanchez Jr

A b s t r a c t .  We shall present a simplied version of a construction
due to Denis Perrot that recovers the Todd class of the complexi-ed
tangent bundle of a smooth manifold from a JLO-type cyclic
cocycle. The construction takes place within an algebraic frame-
work, rather than the customary functional-analytic framework for
the J L O  theory. The series expansion for the exponential function
is used in place of the heat kernel from the functional-analytic the-
ory; the Dirac operator chosen is far from elliptic; and a remarkable
new trace discovered by Perrot replaces the operator trace. In its
full form Perrot’s theory constitutes a wholly new approach to in-
dex theory. The account presented here covers most but not all of
his approach.

1. Introduction

The purpose of this paper is to give an exposition of some remark-
able ideas about index theory in the framework of cyclic cohomology
that Denis Perrot introduced about a decade ago [Per13b]. Despite
the originality of Perrot’s work, his ideas seem not yet to have been
studied in much detail, or at any rate not by many. Our aim is to ad-
dress this circumstance by presenting a streamlined account of many
of the main ideas to as wide an audience as possible.

In [Per13b], Perrot gives a more or less complete account of the
Atiyah-Singer index theorem using his new approach. We shall not
go that far. Our aim instead will be to present Perrot’s striking con-
struction of the Todd class within the context of cyclic cohomology
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theory. In the course of doing so we shall come into contact with many
of Perrot’s most fascinating discoveries.

In later works Perrot has applied his new approach to index theory
to new contexts|involving groupoids [Per13a, Per16] and, in joint
work with Rudy Rodsphon, foliations [PR14]. The latter work settles
in almost complete generality a longstanding open problem of Alain
Connes and Henri Moscovici [CM95, CM98]. These applications give
ample evidence of the power of the new approach. But once again our
aims will be more limited, and we shall not discuss these developments
here.

Let M be a smooth, closed manifold and let r  be a torsion-free
connection on M. The curvature of r  is a 2-form R  on M with values
in End(T M ), and the Todd form associated to R  is

Todd(R) =  det
exp(R) 1

:

This is a closed dierential form on M of mixed even degree. Although its
origins are in algebraic geometry, the Todd class is probably most
famous for the role it plays in the Atiyah-Singer index theorem. For
instance, if P  is an elliptic N N  system of pseudodierential operators on
M, then

Index(P ) = ch() Todd
 

R2i; S M

where  is the symbol of P , which is a smooth map from the cosphere
bundle S M into invertible N N  matrices, and ch() is its Chern
character, which is a closed dierential form on S M of mixed odd
degree. The (normalized) Todd form is pulled back from M to SM .

The purpose of this paper is to present, following Perrot, a new
construction of the Todd class using Dirac operators and cyclic coho-
mology.

Let us recall very briey that if A  is a complex associative algebra,
and if

C p (A) =  complex (p+1)-multilinear functionals on A  ;

then there are dierentials

b: C p (A) !  C p + 1 (A) and B :  C p (A) !  C p  1 (A)

with (b+B )2  =  0. A  periodic cyclic cocycle is a nitely supported
family of f ’p gp 0  with ’ p  2  C p (A)  and

B ’ p + 1  +  b ’p  1 =  0 8p  0:
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If A  is the algebra of smooth functions on a smooth, closed manifold,
and if C  is a de Rham current in degree p, then the formula

’C (a0; : : : ; ap ) =  
p! C  

a0da1 dap

denes an element ’ C  2  C p (A) with

b ’ C  =  0 and B ’ C  =  ’d 0 C ;
where d0 is the de Rham dierential on currents. So if C  is closed, then
’ C  is a periodic cyclic cocycle (concentrated in degree p).

It follows from the above that if we pull the Todd form back from
M to SM , as in the index theorem, and if we denote by Todd2q (R)
the degree 2q-component, then for p+2q =  2 dim(M ) 1 the formula

’p(a0; : : : ; ap) =  
1

a0da1 dap Todd2q (R) (p odd);
S M

denes a (mixed degree) periodic cyclic cocycle.
It is this cocycle that Perrot constructs in a new way. From the

point of view of the formalism of cyclic theory, Perrot’s construction is a
variation on the famous J L O  formula

STr a0 exp( s0D2)[D; a1] exp( s1D2) [D; ap] exp( spD2) ds : p

See [ JLO88,  Qui88]. What makes it noteworthy are:
(i) Perrot’s denition of the Dirac operator |  among other things it

is not an elliptic operator;
(ii) Perrot’s approach to the heat operators exp( sD 2 ) |  they are

dened algebraically, using the series expansion for the exponen-
tial function; and

(iii) Perrot’s denition of the (super)trace in the J L O  formula |  it is
not by any means an operator trace, or even a residue trace
[Wod87, Kas89], although it is related to the latter.

Our goal in this paper is to discuss each of these points in detail. But
to conclude our introduction, let us indicate the parts of Perrot’s work
that we shall not cover in the paper.

In [Per13b], Perrot works throughout with the algebra of order
zero classical pseudodierential symbols on a smooth, closed manifold
M. Our more limited goals in this paper make it possible for us to
substantially simplify matters by working instead with the commutative
associated graded algebra of polyhomogeneous smooth functions on
the cotangent bundle. We shall be able to explain Perrot’s realization
of the Todd form while working exclusively in this context, thereby
replicating a major part of [Per13a]. But to complete the proof of the
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index theorem it would be necessary to lift the entire discussion from
polyhomogeneous functions to symbols.

In the context of pseudodierential symbols, Perrot actually con-
structs two periodic cyclic cocycles. One is eectively the cocycle that we
shall construct and compute in this paper. The other is constructed in a
very similar fashion, but Perrot shows that it is precisely the so-
called Radul cocyle [Rad91], which produces the analytic index
[Nis97, Per12]. He also proves that his two cocycles are cohomol-
ogous. So, putting everything together, the computations of the two
cocycles amount to a proof of the Atiyah-Singer index theorem for
elliptic pseudodierential systems.

A  note on the text. Nearly all the arguments presented below are
adapted from Perrot’s paper [Per13b], some of them very closely. In
places, for example in Section 2 where we present a simple global con-
struction of the Dirac operator, we have been able to take advantage of
our simplied context to streamline some of Perrot’s constructions. In
other places, for example in our treatment of the coordinate indepen-
dence of Perrot’s trace in Section 4, we have chosen an approach that
deviates from [Per13b], typically because we felt it was illuminating to
do so. But overall we owe a huge debt to [Per13b].

Acknowledgement. Beyond acknowledging our indebtedness to Per-
rot, it is a pleasure to thank Rudy Rodsphon for sharing his insights
into Perrot’s work during a number of stimulating conversations.

2. Perrot ’s Dirac Operator

Throughout the paper, M will always be a smooth manifold without
boundary. We shall always denote by n the dimension of M. In various
places (where we need to integrate over M ) we shall in addition assume
that M is compact. We shall be working with vector elds, dierential
forms, etc, on M; all these will be assumed to be smooth.

2.1. Def init ion.  Throughout the paper, we shall denote by T M
the complement of the set of zero covectors in the cotangent bundle
T M:

T M =  T M n M:

In this section we shall work with a xed ane connection r  on the
tangent bundle of M (eventually we will require r  to be torsion-free).
Following Perrot (but with some variations, as explained in the
introduction) we are going to use r  to construct a Dirac operator on
the total space T M that acts on sections of the pullback to T M of the
exterior algebra bundle of M. But we should say at the outset that
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this Dirac operator will not be elliptic, and in particular it will not be
a typical Dirac operator from index theory.

The construction requires some facts about horizontal vector elds
on T M. In what follows we shall denote by : T M !  M the stan-
dard projection mapping.

2.2. Def init ion.  We shall identify vector elds on M with ber-wise
linear smooth functions on T M via the isomorphism of C 1 (M )-
modules

: vector elds on M  !  
n  berwise linear smooth o

dened by ( X ) ( ! )  =  ! ( X )  for every 1-form !  on M. In local coordi-
nates,

 
@x

i =  i ;

where 1; : : : ; n are the usual berwise (linear) coordinate functions on
T M dual to x1; : : : ; xn, dened by i ()  =  (@=@xi).

2.3. Def init ion.  Let X  be a vector eld on M. Its horizontal lift
to the total space of the cotangent bundle T M (with respect to the
connection r )  is the vector eld X H  on T M that is -related to X  and
that is characterized by the further requirement that

X H ( (Y  )) =  ( r X Y  ); for

every vector eld Y on M.

In local coordinates, if we introduce the usual Christoel symbols
by

r@ =@xi 
@xj 

=   i j  @xk

(with the usual summation convention), then

(2.4)
@x

i
 

H  
=  

@x
i
 +   i j  k  @j 

;

where 1; : : : ; n are, as above, the berwise linear coordinate functions on
T M dual to x1; : : : ; xn.

2.5. Def init ion.  We introduce the following additional identica-
tion: we dene an isomorphism of C 1 (M )-modules

n o
: End T M  ! vertical vector elds ai j  i  @=@j on T M



 

@

 

_

i j

k@ @
k

@

= =
  

= =

6 J O N AT H A N  B L O C K ,  N I G E L  HIGSON, AND  J E S U S  S A N C H E Z  J R

by the formula (A) ( (X ) )  =  (A(X ) ) .  Thus in local coordinates, if A
@=@xi      =  aij@=@xj, then

(A)  =  ai j  i  @j 
:

2.6. Lemma. If X  and Y are vector elds on M , then

[X H ; Y H ] [X; Y ]H  =   R (X ; Y  )

P r o o f .  Both sides of the identity are vertical vector elds, so it
suces to check that both sides agree on the functions ( Z )  in Deni-tion
2.2. The identity in this case is an immediate consequence of the
denitions.

2.7. Def init ion.  Form the exterior algebra bundle T M over M.
Equip it with the connection induced from r ,  and then pull the bundle
and its connection back from M to the manifold T M. For brevity, we
shall write

S  =  T M

for the bundle, and keep the notation r  for the connection.

In order to express the connection on S  in local coordinates it will
be convenient to introduce the following notation:

2.8. Def init ion.  Given local coordinates x1; : : : ; xn on an open set
U  M, dene operators i  and j  acting on sections of S  by

i  =  left exterior multiplication by dxi  on T M j  =

contraction by @=@xj on T M:

Using the above notation, along with the previously introduced
Christoel symbols  k  , the induced connection on T M is

(2.9)
r(@ =@ x i ) H  =  

@x

i +   i ‘  k  

@
‘ 

 i ‘

r@=@ j =  
@j 

:

‘
k

2.10. Def init ion.  Given local coordinates on an open set U  M,
dene operators

Dhoriz ; Dvert :   T U; T M  !    T U; T M using the

formulas

Dhoriz = i r(@ =@ x i ) H and Dvert = j  r@=@ j :
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Using the Christoel symbols for r  and the standard local frame
for S  associated to a coordinate system, we nd that

Dhoriz = i  @
x

i
 +   i j      

i
k  @j 

 i j      
i      j      

k and Dvert =
j  

@j 
:

2.11. Lemma. The operators Dhoriz and Dvert are independent of
the choice of local coordinate system used to dene them.

P r o o f .  This follows from the C 1(M )-linearity of the map .

2.12. Lemma. If the connection r  on T M is torsion-free, then

Dhoriz = i  @ k

@xi i j
i
k  @j

in any local coordinate system.

P r o o f .  This is because  k =   k  for a torsion-free connection, so
that the third term in the dening formula

Dhoriz = i  @
x

i
 +   i j      

i
k  @j 

 i j      
i      j      

k

is zero in this case.

2.13. Lemma. If the connection r  on T M is torsion-free, then
Dhoriz =  2      

i      j
 

R(@=@xi;@=@xj)
 
in

any local coordinate system.

P r o o f .  Fix a local coordinate system on U  M. Give S  the local
frame associated to these coordinates, and dene operators

@i      =  
@xi 

+   i ‘ k  @‘

on smooth sections of S  (these are not the operators r(@ =@ x i ) H  , nor do
they have any particularly special meaning; they are merely introduced
for the sake of the computation). We now calculate from Lemma 2.12
that

Dhoriz = i@i      j@j

= i      j@H@H

= i      j
 

@H@H @H@H:
i < j

But it follows from Lemma 2.6 that

@H@H @H@H =   R(@=@xi;@=@xj) ;
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and as a result 

Dhoriz =  
X  

i      j
 

R(@=@xi;@=@xj)
i < j

=  2      
i

as required.

j
 

R(@=@xi;@=@xj);

2.14. Def init ion.  We shall write

( R )  =  2      
i      j  R(@=@xi;@=@xj) :

This is a rst-order linear dierential operator acting on section of S ,
independent of the choice of coordinates. More explicitly, if we write

R  
@xi 

; 
@xj @x‘ 

=  R i j ‘  @xk 
;

then
( R )  =  

2 
i      j R i j ‘ k  @‘ 

:

In this paper, following Perrot we shall be concerned with the
\Dirac operator" D  =  Dhoriz +D vert  (or actually a small variation of
this; see Denition 3.18) and its square. Lemma 2.13 is obviously rel-
evant to the computation of the square, as is the simple formula

(2.15) Dvert =  0:

What remains is to compute the cross-term

fDhoriz ; Dvertg =  DhorizD vert +Dvert Dhoriz :

2.16. Lemma. If the connection r  on T M is torsion-free, then

fDhoriz ; Dvertg =  r @ i  
r ( @ x i ) H

(with the summation convention, as always) in any local coordinate
system.

P r o o f .  We shall use the same operators @H introduced in the proof
of Lemma 2.13. With these, we may write

(2.17)
fDhoriz ; Dvertg =  

  i@H  
j  @j 

 
+  

  
j  @j

= i      
j@H 

@j 
+  j      

i  @
j 
@H:

i      H  i

Next, we compute that

@i @j 
=

@xi 
+   i ‘ k  @‘ @j 

=  
@j 

@i      i ‘  @‘ 
;
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and as a result we nd from (2.17) that

fDhoriz ; Dvertg =  
  

i
j +  j      

i

@j 
@i 

 

 i ‘      
i      

j  @‘
(2.18) =  

@i @xi 
+   k  

k  @‘
      i ‘      

i      
j  @‘ 2

2

=  
@i@xi 

+   i ‘ k  @i@‘ 
+   i ‘  @‘ 

 i ‘
i      

j  @‘ 
:

On the other hand,
(2.19)

r @ i  
r(@ =@ x i ) H  =  

@i        
@

x
i
 +   i ‘  k  @‘ 

      i ‘       
‘       

k

2 2

=  
@i@xi 

+   i ‘  k  @i@‘ 
+   i ‘  @‘ 

 i ‘
‘

k @i 
:

Since r  is torsion-free,  k =   k  , and so we nd that (2.18) and (2.19)
are equal, as required.

If we write
r 2  =  r @ i  

r ( @ x i ) H

(this is coordinate-independent), then the computations in this section
may be summarized as follows:

(2.20) Dhoriz =  (R); Dvert =  0 and fDhoriz ; Dvertg =  r 2 :

These identities will be crucial in the sequel.

2.21. R e m a r k .  Using the connection r  we may identify the tan-
gent bundle of T M with the pullback of T MT M to T M. If we equip
the latter with its canonical symmetric bilinear form, which of course
is nondegenerate but of indenite signature, then S  carries an
irreducible representation of the associated bundle of Cliord algebras,
and the operator Dhoriz +D vert  is a Dirac operator in the usual sense,
although since the bilinear form is not denite, the operator is not
elliptic.

3. Innite-Order Polyhomogeneous Operators

In this section we shall describe the innite-order linear partial dif-
ferential operators (presented as formal series) with which we shall
work in the rest of the paper. We shall begin by considering dier-
ential operators that act on scalar functions, but then we shall turn
to dierential operators acting on spinors, which will be our principal
objects of interest.
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3.1. Def init ion.  We shall denote by E  the Euler vector eld on
T M, so that

( E f ) ( )  =  
d 

f (et )
t=0

for all smooth functions f  on T M and all  2  T M. We shall say that a
smooth function on T M is homogeneous of degree k 2  Z  if it is a k-
eigenfunction for the action of E ,  or in other words if

f (et ) =  ek t f ()

for all t 2  R  and all  2  T M. We shall say that f  is polyhomogenous if it
is a (nite) linear combination of smooth homogeneous functions of
various integer degrees. We shall write

Pk (M ) = Smooth degree-k homogeneous functions on T M

and

P(M ) =  Smooth polyhomogeneous functions on T M :

3.2. Def init ion.  A  linear partial dierential operator D  on T M,
acting on smooth functions on T M, is homogeneous of degree k 2  Z  if
adE (D ) =  kD, where E  is the Euler vector eld, and polyhomoge-neous
if it is a (nite) linear combination of homogeneous operators of various
integer degrees. We shall denote by PDO(M ) the algebra of
polyhomogeneous linear partial dierential operators on T M.

3.3. R e m a r k .  In local coordinates, the polyhomogeneous operators
are linear combinations of operators of the form

 
f

@x @ 
;

with f  a polyhomogeneous smooth function on T M.

3.4. Def init ion.  We shall denote by F  the eld of formal complex
Laurent series 1      ak"k (with only nite singular parts). We shall
denote by FPDO(M ) the algebra of formal Laurent series in " with
coecients from PDO(M ) (again, with only nite singular parts).

We turn now to one of the main constructions of the paper, which
is that of a subspace

FB(M )  FPDO(M )

on which will be dened a crucial trace functional. The subspace is not
a subalgebra, let alone an ideal, but it is for instance a bimodule under
the left and right actions of PDO(M ) on FPDO(M ) (the name is
supposed to suggest this, and Perrot calls his version, on which ours
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is very closely modelled, the bimodule of trace class operators). We
shall dene the bimodule in this section and construct the trace in the
next section.

The space FB(M ) will be dened in stages, and to begin we shall
work in a xed coordinate system on an open subset U  M. We shall use
the following operator extensively:

3.5. Def init ion.  Let U be an open subset of M and let x1; : : : ; xn

be coordinates on U. Given these coordinates, the associated Laplacian
on T U is

2
=  

@xi@i

(summation convention).

3.6. Remarks .  The operator  is not invariant under changes of
coordinates (except for linear changes of coordinates). In addition, the
operator  is not elliptic.

Following Perrot we introduce the following increasing ltration on
the algebra PDO(U ).

3.7. Propos i t ion/Def ini t ion.  Let U be an open subset of M and
let x1; : : : ; xn be coordinates on U. Dene an increasing ltration of the
algebra PDO(U ), indexed by Z ,  and an associated notion of order on
partial dierential operators on U , that we shall call bimodule order,
as follows. The bimodule ltration is constructed by considering at rst all
increasing algebra ltrations

  PDOp (U )  PDOp+1 (U )    PDO(U )

indexed by p 2  Z  and with @=@xi 2  PDO3 (U ), @=@i 2  PDO 1(U ),
and f  2  PDO2p if f  is homogeneous of degree p. Then dene the pth
bimodule ltration space to be the intersection of all PDOp (U ) over
all these ltrations. Of course we write bimodule-order(T )  p if T
belongs to this intersection. We have the following identities:

bimodule-order(@=@xi) =  3
bimodule-order(@=@j) =   1

bimodule-order(f ) =  2p

8i
8j
if degree(f ) =  p.

P r o o f .  A  straightforward computation in local coordinates.

3.8. R e m a r k .  We shall introduce a second, quite dierent ltration on
dierential operators in Section 6, and it should not be confused with the
bimodule ltration dened here.
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3.9. Def init ion.  We shall denote by FB(U )  FPDO(U ) the space of
all Laurent series

"kDk  exp(") (D k  2  PDO(U ))
k

for which there exists N  >  0 with

bimodule-order(Dk)  k +  N ;

for all k.

3.10. R e m a r k .  It is not so easy to explain at the outset the reason
for dening the bimodule ltration, and hence FB(U ), in the way that we
just have. In fact there is a certain amount of exibility in how one
might dene FB(U ), which needs to be small enough that the trace
functional to be discussed in the next section is well-dened, and large
enough that it is closed under some simple operations, most notably
conjugation by exp("). The denition given seems to be the simplest one
that meets these requirements.1

The following is another easy computation:

3.11. Lemma. If T is any operator in PDO(U ), then

bimodule-order [; T ]  bimodule-order(T ) +  1:

Now suppose that T 2  F P DO(U ) and that s 2  R.  The conjugated
operator

Adexp("s(T ) =  exp("s)T exp( "s) 2  FPDO(U ) may

be alternatively expressed as

Adexp("s) (T ) =  exp("s ad)(T ) =  
X  sk"k 

ad(T ) k = 0

(thanks to the powers "k, the sum makes sense in FPDO(U ); to use lan-
guage that will be introduced in the next section, the sum is convergent
in the adic topology). Using Lemma 3.11 we nd that:

3.12. C o r o l l a r y .  If T 2  PDO(U ), then for every s 2  R  we may
write

1

Adexp("s) (T ) = "kTk

k = 0

1One might perhaps compare this to the situation with traceable Hilbert space
operators in index theory, where one might work with smoothing operators, or
trace-class operators, or operators whose singular value sequence has rapid decay,
and so on.
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where Tk 2  PDO(U ) and order(Tk)  k +  order(T ). In particular the
subspace FB(M )  FPDO(M ) is closed under left and right multipli-
cation by elements of PDO(M ) in the algebra FPDO(U ).

3.13. C o r o l l a r y .  If X  2  FB(U ),  then Ade xp( " s ) (X ) 2  FB(U ) for
every s 2  R.

The bimodule ltration on PDO(U ) is independent of the choice
of coordinates on U; this can be checked by the usual change-of-
coordinates formulas. The following result is a bit more involved:

3.14. Lemma. Let U be an open subset of M , let x1; : : : ; xn be co-
ordinates on U , and let  and FB(U ) be the associated Laplacian and
bimodule. If 0 is the Laplacian associated to another coordinate sys-tem
on U , then

exp("0) 2  FB(U ):

P r o o f .  The Laplacian 0 in a new coordinate system has the form

0 =
 
 +  ai @i 

+  bj k ‘ j  @k@‘

in terms of the original coordinate system, where ai and bj k ‘  are smooth
functions on U, and so bimodule-order( 0)  0.

To  proceed, within FPDO(U ) there is a Duhamel-type formula
1

exp("0) exp(") =  " exp("s0)(0 ) exp("(1 s)) ds: 0
The integrand, viewed as a power series in ", is a polynomial function
of s in each degree, with values in PDO(U ). So the denition of the
integral presents no problems (and the formula may be proved in the
usual way).

By iterating the formula we obtain the perturbation series
1

exp("0) = "p exp("s0)R exp("s1)R  p=0
p

exp("sp 1)R exp("sp) ds;

in FPDO(U ), where R  =  0  and where p is the standard p-
simplex. Writing the above as

exp("0) =  
X

" p  Ade xp("s 0 ) (R) Adexp(" (s 0 +s 1 ) ) (R)  p=0

Ade x p ( " ( s 0 + s 1 + + s p      1 ) ) (R) ds  exp(") and using

Corollary 3.12 we obtain the result.
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3.15. Theorem. The subspace FB(U )  FPDO(U ) is independent of
the choice of local coordinates.

P r o o f .  First, Lemma 3.14 shows that exp("0) 2  FB(U ). Sec-ond,
because the bimodule order is obtained from an algebra ltration, FB(U )
is in fact closed under left multiplication by series "kTk with
Tk 2  PDO(U ) and bimodule-order(Tk)  k +  N  for some N  and all k.
These two observations show that the FB-bimodule dened using 0 is
included in the FB-bimodule dened using . By symmetry, the two are
in fact equal.

We can now dene a global version of the bimodule FB(U ):

3.16. Def init ion.  We denote by FB(M )  FPDO(M ) the sub-
space of all elements that restrict to elements in FB(U ) whenever U is
an open subset of M that supports a coordinate system.

We shall now make the minor changes needed to carry over all of the
results above from operators that act on scalar functions to operators
that act on sections of the bundle S . The most direct way to do proceed
is to adapt the notion of bimodule order to this context:

3.17. Def init ion.  Let U be an open subset of M and let x1; : : : ; xn

be coordinates on U. Trivialize the bundle S  over U using the asso-
ciated frame for the exterior algebra bundle over U, and dene an
increasing ltration of the algebra PDO(U; S ), indexed by Z,  and an
associated notion of bimodule order on partial dierential operators on
U, by

bimodule-order(@=@xi)  3
bimodule-order(@=@j)   1

bimodule-order(f )  2p

8i
8j

if f  is a scalar function of degree p

bimodule-order( i )   0         8i

bimodule-order( j )   0         8j

Thus the bimodule order on PDO(U; S ) does not involve the bun-
dle S  at all. It is coordinate-independent, and all of the results and
denitions given above pass over to the context of operators on S  with-
out any change at all (of course one must replace homogeneous scalar
functions on T U with homogeneous endomorphisms of S , noting that
since S  is pulled back from M, the notion of homogeneity makes sense
here, as it does for any pull-back bundle, since the operation of scalar
multiplication on the bers of T M lifts canonically to an action on
the bundle).
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To  conclude this section we shall situate the Driac operator and its
exponential within the bimodule FB(M ; S ).

3.18. Def init ion.  The Dirac operator on T M, associated to a
torsion-free connection on M, is the operator

D  =  "Dhoriz +  Dvert ;

whose summands are described in Denition 2.10.

It follows from the formulas in (2.20) that

D 2  =  " r 2  +  "2 (R);

and therefore the exponentials

exp(sD2) =  
X  sk  

" r 2  +  "2 (R)k

k = 0

are well-dened elements of FPDO(M ; S ).
We shall use the following two lemmas when we construct the pe-

riodic cyclic cocycle associated to the Dirac operator D  in Section 5.

3.19. Lemma. If T 2  PDO(U; S ), then for every s 2  R  we may
write

1

Adexp(sD 2 ) (T ) = "kTk
k = 0

where Tk 2  P DO(U; S ) and order(Tk)  k +  order(T ).

P r o o f .  This is a variation of Corollary 3.13 and it is proved the
same way, using the formula

(3.20) " D 2  =  "R1 +  "2R2;

where R 0  and R 1  have bimodule orders 0 and 1, respectively.
3.21. Lemma. If D  is the Dirac operator associated to any torsion-

free connection on M , then exp(D2) 2  FB(M ; S ).

P r o o f .  The method use to prove Lemma 3.14 applies here, in view
of (3.20).

4. Perrot ’s Trace

The most remarkable ingredient in Perrot’s work is a supertrace
functional dened on the bimodule FB(M ; S ) (this space is Z=2Z-
graded in the usual way, using the degree operator on dierential
forms). We shall construct the supertrace in this section.

As we did in the previous section, we shall begin by ignoring spinors:
we shall rst construct a trace functional on the space FB(M ) (which
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is not Z=2Z-graded). The rst ingredient in the denition of the trace here
is the usual method of \integrating" homogeneous functions on T M of
degree  n, which we shall now review.

4.1. Def init ion.  If W is any smooth manifold, then we shall de-
note by Dens(W ) the C 1 (W )-module of smooth densities on W (see
[ BGV92,  pp.30-31] or [Lee03, Ch.14] for instance).

View the cotangent sphere bundle S M as the quotient of T M by the
action of positive scalar multiplication on T M (generated by the Euler
vector eld) and denote by

p: T M  !  S M
the projection mapping. In addition, denote by  the volume form on
T M that in any local coordinate system has the form

 =  dx1dx2 dxnd1d2 dn:
4.2. Def init ion.  Suppose that f  2  P  n(M ). The (2n 1)-form

f   E   is basic for the action of R  on T M, and we shall denote by f  the
unique (2n 1)-form on S M such that

pf =  f   E :
4.3. Def init ion.  Throughout the paper we shall equip S M with

the unique orientation such that f   0 (with f  as in Deni-tion
4.2) for every nonnegative f  2  P  n(M ).

We obtain from the denitions above an isomorphism of C 1 (SM )-
modules

(4.4) P  n (M )  !  Dens(SM ):
We shall use this identication throughout the rest of the paper, and
for f  2  P  n (M ) we shall write
(4.5) f  =  integral of the associated density = f :

S M                                                                                                                        S M

For general f  2  P(M ) we shall write

(4.6) f  = f [  n];
S M                   S M

where f [  n] denotes the degree  n component of f .

4.7. R e m a r k .  The above integral is a commutative version of the
noncommutative residue on pseudodierential symbols. Indeed, up to an
overall constant, the noncommutative residue of an order  n pseu-
dodierential symbol is the integral of its principal symbol function, as
dened above.
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The eld F  of formal Laurent series, the algebra FPDO(U ) and its
subspace F B (U )  all carry the usual adic topologies, in which a base
for the open neighborhoods of 0 is the collection of spaces

n  1 o
"kDk

k = ‘

for ‘  =  0; 1; 2; : : : (with D k  either a scalar, in the case of F ,  or a partial
dierential operator in the other cases).

Now denote by FBc (U ) the subspace of FB(U ) comprised of series
whose coecents are partial dierential operaotrs on T U that are
compactly supported in the U-direction, and dene Pc (U ) similarly.
The main result of this section will be as follows:

4.8. Theorem. Let U  M be an open set and with a xed sys-tem of
local coordinates. There is a unique continuous (for the adic
topologies) F -linear functional

Tr F  : FBc (U )  !  F

such that

Tr F  f   exp(")  g =  " n f g
S U

for all f ; g 2  Pc(U ). This functional has the following trace property:

Tr F  ( D X )  =  Tr F  ( X D ) 8 X  2  FBc (U ); 8D 2  PDO(U ):

The uniquess part of the theorem is easy to prove.

P r o o f  o f  uniqueness in Theorem 4.8. Since the nite sums "k Dk

exp(") are dense in FBc (U ), it suces to show that Tr F  is determined
on these by the formula in the statement of the theorem. We shall

show that each such nite sum is a nite Laurent polynomial in " with
coecients of the form f  exp(") g. This certainly suces.

To  do so, we need only note that the formulas

f  exp(") xj g f x j
 exp(") g

=  "f  
@j 

exp(") g

=  "
@

j 
f   exp(") g "@

j 
exp(") g

and

exp(") i i  exp(") =  "
@

xi
 f  exp(") g "@

xi
 exp(") g;
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show that the span of all f  exp(") g over the Laurent polynomials in "
is closed under left multiplication by operators in PDO(U ).

Although the proof of uniqueness suggests an approach to the con-
struction of the trace, it is more convenient to proceed in a dierent
direction. Recall that if A  is a positive-denite 2n2n matrix, and if p :
R2 n  !  C  is a polynomial function, then

p(w) exp
 

 1 hw; Awidw
R 2 n

n

=  p
det(A)

p(   1@w) exp  2 hw; A wi 
w =0

(see for instance [Hor83, Sec.7.6]). The following denition in eect
extends this formula to the matrix A  =  [ 0 I  ], which is not positive-
denite.

4.9. Def init ion.  Let p : R2 n  !  C  be a polynomial function We
dene

D
p

 
@=@x;@=@exp

 
"

E

=  " np
 p

 1@=@x;
p

 1@=@exp
 
" 1 xi

 x = 0 ; = 0

=  " np(@=@x;@=@)exp  " 1 xi

x = 0 ; = 0

This value lies in C[" 1; "].

4.10. R e m a r k .  A  comparison of the two integral formulas shows
that we have dropped an overall multiplicative constant of (2i)n . For
our purposes it is a little tidier to do so.

Perrot calls the construction in the denition above the contraction
of p(@=@x;@=@)exp("). It will be convenient to follow Perrot and
extend this concept of contraction to cover more cases, as follows:

4.11. Def init ion.  If D  is any operator in PDO(U ), say

 
D

=  
; 

f  @x @ 
;
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then we dene
D  exp(")

 
2  P(U )[" 1; "] by

D  exp
 
"

 
=  

; 

f   
D

@x @ 
exp

 
"

E

=  " n  
X

f  
 

@

     
@

 
exp

 
 " 1 xi  :

;
x = 0 ; = 0

Later on we shall make use of the following alternative formula for
the trace. Form the function exp(" 1 (xi    y i )( i    i ))  on the direct
product of two copies of T U, and then for an operator D  2  PDO(U )
form the function

D  exp( " 1 (xi  y i )( i  i ))

on the product, with D  acting on the rst copy (the x- and -variables)
alone. If the restriction to the diagonal of this function is regarded as a
function on T U via the projection onto the rst factor of the product,
then
(4.12) D  exp(") =  " n  D  exp( " 1 (xi  y i )(  )) :

x i = y i ;  i = i  We
are now ready to give the formula for Perrot’s trace functional.

4.13. Def init ion.  Let X  2  FB(U ). Write X  as a Laurent series
in " with nite singular part,

X  = "kDk  exp(");

as in Denition 3.9. Assuming that each D k  has compact support in the
U-direction, we dene Tr F  ( X )  in the eld of complex Laurent series with
nite singular parts by

Tr F  ( X )  =  
X

" k

D k  exp("): k               
 S M

Since an innite sum is involved, we need to check that the deni-
tion actually makes sense:

4.14. Lemma. The innite sum in Denition 4.13 converges in the adic
topology on the eld F  of formal Laurent series with nite singular parts.

P r o o f .  The bimodule order plays an important role here: we shall
use the fact that if X  2  FB(U ), and if

X  =  
X  

"k fpk @

     
@

 
exp("); ;;p;k
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then according to Denition 3.9, there is some N  for which p

+  3jj jj  k +  N
for all , , p and k for which fp k  =  0.

Recall that
fp k  =  0 ) p =   n:

S M

In addition, it follows from Denition 4.9 that D
E

@
x @ 

exp(") =  0 )  =  ;

while if  =  , then
D E

@
x @ 

exp(") =  scalar  " jj n : Of

course if  =  , then

p +  3jj jj =  p +  2jj:

and so if in addition p =   n, then

 n +  2jj  k +  N

and therefore
jj  

2 
+  m;

where m =  (N +  n)=2. We nd that the series giving the trace in
Denition 4.13 has the form

Tr F  ( X )  = ck; "k jj n : k     j j k=2+ m

Since k   jj   n  k=2 +  m   n under the indicated condition on , the sum
is certainly convergent in the adic topology, as required: the powers of
" are bounded from below each power occurs only nitely many times
in the sum.

We shall now prove that Tr F  has the trace property in Theorem 4.8.
To  do so, we shall follow the argument of Perrot closely. The proof
obviously reduces immediately to consideration of the three cases

(4.15) D  =  
@x

i ; D  =  
@j

and D  =  f :

Moreover using the continuity of the trace and its F -linearity, the proof
simultaneously reduces to the case where

X  =  g @
x @ 

exp("):
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In the rst two cases from (4.15) we have

[D ; X ]  =  
@x

i
 @x @ 

exp(") and [D ; X ]  =  
@j @x @ 

exp("):

To  handle these two cases of the proof it suces to show that

S U @xi 
=  0 and

@g 
=  0:

S U j

In the rst case we may as well assume that g has degree  n (other-
wise the integral is certainly zero, by denition), and then by Stokes’

theorem
@g 

= d@=@x g =  0;
S U                         S U

in the notation of Denition 4.2. In the second case we may as well
assume that g has degree 1 n. But then the form E@=@ g on T U is
basic, so it is the pullback of a form g on SU , and from

d(E@=@j g) =  E  @j 
;

we nd that
@g 

=  @g=@     =  dg =  0;
S U          j               S U                                 S U

again by Stokes’ theorem.
It remains to consider the case D  =  f  in (4.15). Consider rst the

cases where f  is a coordinate function: f  =  x i  or f  =  j .

4.16. Lemma. For any i,  and j  and any  and ,
D

xi ; 
@x @ 

exp(")
E 

=  0 and
D

j ; @x @
 
exp(")

E 
=  0:

P r o o f .  We shall present the argument for x i  (the argument for
j  is exactly the same) and we’ll describe the case of n=1 dimensions
(higher dimensions present additional notational complexities but are
otherwise identical).

We calculate that
a b a 1 b a b +1

@
x

a @b exp("); x =  a
@

x
a 1 

@
b exp(") +  "

@
x

a @b
+1

 exp(")

and therefore that the contraction is
b a 1 a

@b    
 a

@
x

a 1 +  "
@

x
a @

exp( " x)
x = 0; = 0

:
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But

a
@

x
a 1 +  "

@
x

a @
exp( " 1 x) =  ( 1)a 1" aa 1x exp( " 1x): So,

thanks to the factor of x, the contraction is 0.

4.17. R e m a r k .  The lemma can be understood more conceptually
(but at the expense of a longer argument) using the fact that the con-
traction is derived from an integral formula on R2n , and the fact that
the integral of a partial derivative in that context is zero.

P r o o f  o f  the t r a c e  p ro p e rt y  in Theorem 4.8. The calcu-
lations in the proof of Lemma 4.16 show that if p is any polynomial on
R2n , possibly with coecients that are polynomials in ", then

h i
xi ; p @

x
; 

@
exp(") =  q 

@x
; 

@
exp(")

for some other q. The same is true for commutators with j , and as a

result the lemma in fact shows that if  and  are any multi-indices, then

D  E
adx ad    

 p 
@x

; 
@

exp(") =  0:

But if f  is any polyhomogeneous function, then
h i

p 
@x

; 
@

exp("); f

       
=

;0 
!!

 
@

x@  adx ad    
 p @

x
; 

@     
exp(") ;

with the sum convergent in the adic topology. So the contraction of the
commutator is 0. We have handled the third and nal case in (4.15), and
therefore the proof is complete.

The second crucial fact about Tr F  is its coordinate independence:

4.18. Theorem. The trace functional Tr F      is independent of the
choice of coordinate system used to dene it.

P r o o f .  The theorem isn’t an immediate consequence of the unique-
ness part of Theorem 4.8 because the Laplacian  is not invariant under
coordinate changes. What we need to show is that if Tr F  and  are
constructed using a rst coordinate system, and if 0 is the Laplacian in a
second coordinate system, then

Tr F  ( f  exp(")) = f  =  Tr F  ( f  exp("0)):
S M
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As we already noted in the proof of Lemma 3.14, the second Lapla-
cian has the form

0 =   +  ai @
i 
+  bk

‘j  @
k@‘

in the rst coordinate system, where ai and bj     are smooth functions on M.
If T =  0  then we can write (using the contraction operation
associated to the rst coordinate system)

f  exp("0)
 

f  exp(")
 
=  

 1

f  exp(s")"T exp((1 s)"0)ds: 0

If we expand the operators exp(s")"T exp((1 s)"0) as power series in ",
then the coecient of "k, which is an element of PDO(U ), has dierential
order k 1 in the x-direction (because T includes no x-derivative) and
is homogeneous of degree  k in the vertical direction (since each of , 0

and T has degree  1). This means that if we write the same operators in
the standard form

exp(s")"T exp((1 s)"0) =  
X

" k D k  exp(")

and then write

then

k = 0

 
D

k

= gk;; @x @ 
;

jj  jj ) gk;; =  0:

The contraction is therefore zero and the theorem is proved.

With Theorems4.8 and 4.18 available, we can now extend the trace
beyond coordinate charts to a continuous and F -linear trace functional

Tr F  : FB(M )  !  F

in the obvious way using partitions of unity. But for the purposes of
this paper we only need a part of the trace we have just dened, which is
scalar-valued, not F -valued:

4.19. Def init ion.  Let M be a smooth, closed manifold. The Perrot
trace on FB(M ) is

Tr : FB(M )  !  C

Tr ( X )  =  Coecient of "0 in Tr F  (X ) :
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Finally, we need to pass from a (scalar) trace on FB(M ) to a su-
pertrace on FB(M ; S ). First denote by  (End(S )) the smooth poly-
homogeneous sections of the endomorphism bundle of S . This is a
Z=2Z-graded algebra over P(M ) and there is a standard P(M )-linear
supertrace

str :  (End(S ))  !  P(M )
In local coordinates: (

str(       )  =
0

jj =  jj =  n
otherwise:

Then, in any coordinate chart U  M we may use the natural (coordinate-
dependent) vector space isomorphism

FB(U; S ) =   (End(S jU ))

P(U )  FB(U ) to dene

STrF  : FB(U; S )  !  F

STrF  (A

 X )  =  Tr(str(A)X )

(strictly speaking this is dened only on elements compactly supported in
the U-direction). Thanks to Theorem 4.8, the above is a bimodule
supertrace for the left and right actions of the algebra

PDO(U; S ) =   (End(S jU ))
P(U )  PDO(U ):

Thanks to Theorems 4.8 and 4.18 it is independent of the choice of
coordinates used to dene it.

We can now use partitions of unity to dene (independently of all
choices) a supertrace

STrF  : FB(M )  !  F ;

and nally we make the following denition:

4.20. Def init ion.  Let M be a smooth, closed manifold. The Perrot
supertrace on FB(M ; S ) is

STr : FB(M ; S )  !  C

STr (X )  =  Coecient of "0 in STrF  (X ) :

5. The J L O - T y p e  Cocycle

The purpose of this section is to construct from the Dirac opera-
tor D ,  together with Perrot’s supertrace and one more ingredient, a
periodic cyclic cocycle for the algebra C 1 ( S M ) .

Smooth functions on S M can be viewed as order-one homogeneous
functions on T M. Seen this way, the algebra C 1 ( S M ) ,  together with
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bimodule F B (M ; S ),  equipped with its supertrace, and the operator
D  form something similar to one of Connes’ spectral triples [Con94,
Sec.IV.2]2: the bimodule, with its trace, plays a role similar to the role
of the Hilbert space in a spectral triple, with its associated operator
trace (or perhaps with a residue trace obtained from this operator trace;
see for instance [Hig04] for an exposition).

With this in mind we shall attempt to adapt the well-known JLO-
cocycle in periodic cyclic theory to Perrot’s context. Let p be the
standard p-simplex. If s 2  p and X 0 ; : : : ; X p 2  PDO(M; S ), then let us
write

(5.1) X 0 ; : : : ; X p 
s  =  X 0  exp(s0 D2 )X 1 exp(s1 D2 ) X p exp(spD2):

The most obvious J L O  cocycle that one might try to attach to D  is
given by the formula
(5.2) J LOD (a0; : : : ; ap ) = STr

a0; [D; a1]; : : : ; [D; ap]
 
ds: p

This is the original formula given by Jae, Lesniewski and Osterwalder
[JLO88]; see [Qui88, Sec.8] or [Con94, Sec.IV.8] for expositions.

However it follows from the supertrace property that the cocycle
(5.2) vanishes in odd degrees, whereas the Todd class that we are trying
to understand corresponds to a cyclic cocycle that vanishes in even
degrees. So the above is not the cocycle we are seeking.3

To  address this issue we need one further ingredient, as follows. Fix
a Riemannian metric on M, and hence a Euclidean structure on the
bundle T M. Dene

q : T M  !  (0 ; 1) ; q() =  kk;

and then dene a derivation

: PDO(M ; S )  !  PDO(M ; S )

by the formula
( X )  =  adlog(q ) (X )

(as usual we are adapting Perrot’s work here, although we are adapting
it to our simplied context). Note that

 
@xi

=   
@xi 

 
q

and  
@j

=   
@j 

 
q

;

2In this reference the older term K-cycle is used, rather than spectral triple.
3In fact it may be shown that (5.2) vanishes in all degrees. In the more elaborate

context of Perrot’s work on pseudodierential symbols,
 
this corresponds to the

vanishing of the noncommutative residue on pseudodierential projectors [Per13b,
Thm.6.5].
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while  vanishes on other (local) generators of PDO(M; S ). So  does
indeed map PDO(M ; S ) into itself, despite the fact that log(q) is not
a polyhomogeneous function.

Now  extends to a derivation of the algebra FPDO(M ; S ) by ap-
plying  to each coecient in a formal series. And this extension maps the
bimodule FB(M ; S ) to itself. This follows from the formula

1

(exp(")) = exp(s")"() exp((1 s)") ds 0 1

= Adexp(s") "()  exp(") ds 0
together with Lemma 3.12.

5.3. Lemma. If X  2  FB(M ; S ),  then STr( (X ))  =  0.

P r o o f .  Let X  be any linear partial dierential operator on T M
and let u 2  R.  Consider the binomial-type formula

1

adq u (X ) = adk (X )q u k ;
k = 1

which actually involves a nite sum on the right-hand side, since if h is
any smooth function on T M, then the action of adh is locally
nilpotent on partial dierential operators. Dierentiating the formula
with respect to u and then setting u =  0, we obtain

adlog(q ) (X ) =  
X  1

( 1)k 1 adq (X )q  k

k = 1

Again the right-hand side is a nite sum, and it is a combination of
commutators, since adq (X )q  k  =  adq (X q  

k) for all k.
Now we turn to FPDO(M ; S ). The above formulas involve innite

sums when X  2  FPDO(M ; S ), but they are convergent in the adic
topology and for that reason remain valid. Restricting to FB(M ; S ),
it follows that every element of the form ( X )  =  adlog(q ) (X ) is a limit of
sums of commutators, and since the trace is continuous the trace of ( X )
is zero.

5.4. R e m a r k .  It is worth noting that the trace does not extend as
a trace if we adjoin log(q) to the bimodule FB(M ) (so this is not the
explanation for the lemma above). For instance, in case where M is
a circle, if q =  jj, and if s is the characteristic function of f  >  0 g
(which is a polyhomogeneous function), then

h i
@ ; s log(q) exp(") =  s 1 exp(");
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and the trace of the right-hand side is nonzero (despite it being a
commutator in the enlarged bimodule).

5.5. R e m a r k .  On a related note, although the denition of  re-
quires a choice of Riemannian metric, dierent choices yield derivations
that dier only by an inner derivation.

Using Lemma 5.3 it is not dicult to adjust the denition of the J L O
cocycle so as to incorporate . The following theorem is a gen-
eralization of the well-known fact that if  is any derivation on an
algebra, and if  is a trace with ((a)) =  0 for all a, then the formula
’(a0 ; a1 ) =  (a0(a1)) denes a cyclic cocycle. As Rodsphon explains in
[Rod15], the theorem ts very naturally into Quillen’s formalism for
the J L O  cocycle [Qui88], and this is probably the best way of
understanding it.

First a simple preliminary calculation:

5.6. Lemma. Let r  be a torsion-free connection on M and let D  be
the associated Dirac operator, as in Denition 3.18. If p  0, s 2  p+1  and
X0 ; : : : ; Xp+1 2  PDO(M; S ), then

X 0 ; : : : ; X p+1 
s  2  FB(M ; S );

to use the notation of (5.1).

P r o o f .  This is a combination of Lemmas 3.19 and 3.21.

5.7. Theorem. The formulas
p+1

J LOD;(a0; : : : ; ap) = ( 1)k STr a0; [D; a1]; : : :
k = 1

p + 1

: : : ; [D; ak 1]; (D); [D; ak ]; : : : ; [D; ap] s       ds

for p odd and a0; : : : ; ap 2  C 1 ( S M )  dene a periodic cyclic cocycle
for the algebra C 1 ( S M ).

5.8. R e m a r k .  The integrands in the dening formula for J L O D ;

are polynomial functions of s 2  p+1 , so the integrals are certainly
well-dened, and moreover these polynomial functions are identically
zero for p suciently large (this will be made clear in the next section), so
that only nitely many components of J L O D ;  are nonzero, as re-
quired in the denition of periodic cyclic cocycle. This is in contrast to
the form of the usual J L O  cocycle (involving the Levi-Civita Dirac op-
erator and the operator trace), which is rather an entire cyclic cocycle
[Con94, Ch.4, Sec.7].
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5.9. R e m a r k .  In general the Quillen formalism would produce a
formula with further terms, involving factors (aj ); see [Rod15, Sec.3].
But in the case at hand, (aj ) =  0.

We shall not prove Theorem 5.7 in this paper, rstly because it is a
general result that is encompased by the Quillen formalism and is
explained perfectly well by Rodsphon in [Rod15], and secondly be-
cause we shall not actually need the result: we shall calculate all the
components of J LO D ; ,  and it will be evident from these computations
that they constitute a periodic cyclic cocycle.

6. Perrot  Order of a Dierential Operator

The remainder of the paper will be dedicated to the computation
of the JLO-type cocycle that was dened in the previous section. We
shall introduce a new notion of order on dierential operators that
we shall call the Perrot order (it is distinct from the bimodule order
discussed earlier). The Perrot order has the property that operators of
negative order have vanishing trace. Roughly speaking, upon analyzing
the constituents of the cocycle, we shall nd that many parts have
negative order, and so they can be removed without altering the value
of the cocycle.

The Perrot order resembles somewhat the notion of order that Get-
zler uses to compute the index of the spinor Dirac operator [Get83]
(see [Roe98] or [HY19]  for surveys). Both have the property that
the curvature operator4 acquires the same order as the square of the
Dirac operator, which leads to the curvature contributing to leading
order computations. But the leading order is 2 for Getzler, while it is
0 for Perrot. An important consequence is that the formal exponential
exp(D2) also has Perrot order 0. Indeed all of the constituents of the
J L O  cocycle introduced in the previous section have Perrot order 0.

Despite its role in capturing curvature, the Perrot order does not
in fact depend on the choice of connection, whereas Getzler’s certainly
does (which is a paradox, perhaps, but not a contradiction). But to
begin with, to dene the Perrot order it is convenient to x a torsion-
free connection on M (and then later we shall show that the Perrot
order does not depend on this choice).

6.1. Def init ion.  The Perrot order of an operator in PDO(M ; S )
(which is an integer, possibly negative) is dened by the following:

4In Perrot’s case, we are referring here to the operator ( R )  that was introduced
in Denition 2.14 and appears in the formula for D2 . The actual curvature operators
R ( X ; Y  ) have order 1; see the proof of Lemma 6.6.
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(i) If f  is any degree p-homogeneous smooth function on T M, then
Perrot-order(f )  p.

(ii) If X  is any vector eld on M, with horizontal lift X H  on T M,
then Perrot-order(rX H  )   1.

(iii) If Y is any vertical vector eld on T M (that is, if Y commutes with
functions pulled back from M ), and if Y is translation-invariant
on each cotangent ber, then Perrot-order(rY )    1.

(iv) If !  is any 1-form on M, acting on sections of S  over T M by left
exterior multiplication, then Perrot-order(!)  0.

(v) If X  is any vector eld on M, and if ( X )  denotes the action on
sections of S  by contraction, then Perrot-order((X ))  1.

6.2. R e m a r k .  Compare Proposition/Denition 3.7, which explains
the way in which an increasing ltration on PDO(M ; S ) is constructed
from inequalities such as those above. As with the bimodule order
considered there, the inequalities in the denition above are actually
equalities; this will be clear from the lemma below.

An operator has Perrot order p or less if and only if its restriction
to every T U, with U  M open, has Perrot order p or less. So the
Perrot order may be computed locally. The following lemma shows that
moreover the Perrot order is easily determined in local coordinates. It
also shows that the Perrot order is independent of the choice of ane
connection r .

6.3. Lemma. Let x1; : : : ; xn be coordinates on an open set U  M and
let p 2  Z.  If the bundle S  is trivialized over T U using the standard frame
for the exterior algbra bundle associated to these coordinates, then the
linear space of all operators of Perrot order p on less on T U is precisely
the linear span of operators of the form

f
@     @

@x @

with f  a homogeneous smooth scalar function on T U and with

degree(f ) +  jj jj +  jj  p:

Here  and  are multi-indices with non-negative integer entries, while
and  are multi-indices with 0-1 entries.

P r o o f .  It follows from (2.9) that

@xi 
=

 
r(@ =@ x i ) H   i ‘  k  @‘ 

+   i ‘
‘

k :
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All three terms on the right-hand side have Perrot order 1 or less, and
therefore @=@xi has Perrot order 1 or less. In addition

@
j 

=  r@=@ j :

It follows that all the operators in the statement of the lemma have
Perrot order p or less.

In the reverse direction, if we dene PDOp (U; S ) to be the linear
span of the operators in the statement of the lemma, then we obtain an
algebra ltration for which the associated order satises the relations in
Denition 6.1. It therefore follows from the construction of the Perrot
ltration and order (c.f. Propositon/Denition 3.7) that every operator of
Perrot order p or less belongs to PDOp (U; S ).

Let us now extend the Perrot order to the algebra FPDO(M ; S )
and to the bimodule FB(M ; S ) as follows: a formal series "kTk has
Perrot order p or less if and only if each Tk has Perrot order p or less.
(With this denition, there are many elements of innite Perrot order, but
that will not be an issue for us.)

6.4. Proposi t ion.  Let M be a closed manifold. The supertrace
vanishes on every element of FB(M ; S ) of negative Perrot order.

P r o o f .  It suces to consider negative-order generating elements

f  @x @ 
exp(")

of the bimodule FB(U; S ) in a coordinate neighborhood. According
to the denition of the supertrace and the formula for the contraction
operation in Denition 4.9, if  =  , then the supertrace of this element is
zero. In addition, if jj =  n then the supertrace is zero. If  =   and if
jj =  n, then the Perrot order is equal to degree(f )   n, and if this is
negative, then by the denition of the integral f  in (4.6) the
supertrace is zero.

Our purpose in the remainder of this section is to develop a tech-
nique to compute the supertrace of order zero operators. In the lemma
below we shall use the fact that if : W !  M is any submersion with
compact bers, then there is an induced morphism of C 1 (M )-modules

 : Dens(W )  !  Dens(M )

that is characterized by the formula
() =

M                              W
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(in the context of oriented smooth manifolds this is the operator of
integration over the ber).

6.5. Lemma. There is a unique morphism of C 1(M )-modules

str : FB(M )  !  Dens(M )

such that
STr (X )  = str(X )

M

for every X  2  FB0 (M ).

P r o o f .  The trace was constructed (locally, at rst) as the integral
of a density on SM , and pushing this density forward along the pro-
jection S M !  M we obtain from a partition of unity argument the
existence of a map as in the statement of the lemma.

To prove uniqueness, if str and str0 are two morphisms of modules
as in the statement of the lemma, then from the identities

f   str(X ) =
M

we conclude that

str(f  X )  =  STr (X )
M

= str0(f  X )  = f   str0(X )
M                                           M

f   
 

str(X ) str0(X )
 
=  0

M

for all f  2  C 1 (M ) ,  and hence str(X ) str0(X ) =  0.

We shall now evaluate the density str(X ) 2  Dens(M ) dened above
at a single point m 2  M under the assumption that X  2  FB(M ; S )
has order zero.

Form the associated graded algebra
gr PDO(M; S ) = PDOp (M; S )PDOp 1(M; S)

p

for the ltration by Perrot order. Notice that since smooth functions on M
(viewed as operators on sections of S  by pointwise multiplication) have
Perrot order zero, the associated graded algebra is in fact an algebra
over C 1 (M ) .  We can therefore speak of the ber

gr PDO(M; S)m

at a given point m 2  M, which is an algebra in its own right. Our rst
aim is to compute this ber.
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6.6. Lemma. If X  and Y are vector elds on M , then the degree 1
classes of r X H      and r Y  H      commute with one another in the associated
graded algebra.

P r o o f .  Let  2  T M and let m =  (). Because the connec-tion we
are using on T M is a pullback, the curvature operator R ( X H ; Y  H )j  is
the curvature operator R (X ; Y  )jm for the original con-nection:

(6.7) r X H  r Y  H  r Y  H  r X H  =  r [ X H ;Y  H ]  +  R (X ; Y  )

(this is an identity of operators acting on the sections of S  =  T M ). If we
introduce local coordinates on M and write the curvature

operator on T M as

R  
@xi 

; 
@xj @x‘ 

=  R i j ‘  @xk 
;

as in Denition 2.14, then the curvature operator as it appears in (6.7)
is

R  
@xi 

; 
@xj

= ‘      
k R i j ‘ ;

and in particular the operator R (X ; Y  ) in (6.7) has Perrot order 1.
In addition, according to Lemma 2.6,

[X H ; Y H ] =  [X; Y ]H  +  
 

R (X ; Y  ):

The covariant derivatives attached to the two terms on the right have
Perrot-orders 1 and 0, respectively. So we nd from (6.7) that

Perrot-order
 
r X H  r Y  H  r Y  H  r X H

 1

<  Perrot-order r X H         +  Perrot-order r Y  H       ;

which proves the lemma.

6.8. R e m a r k .  The lemma stands in contrast to the situation with
the Getzler’s order, in which the commutator covariant derivatives is a
curvature operator.

Other, more easily derived, relations in the associated graded alge-
bra are as follows:

(i) The degree  1 classes of the operators r Y  associated to vertical
vector elds that are berwise translation invariant (that is, scalar
combinations of the r@=@ ) commute with one another and the
classes of the r X H  .
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(ii) The degree 0 and 1 (respectively) classes of the exterior multipli-
cation and contraction operators anticommute with one another
and commute with all the classes of covariant derivatives already
mentioned.

(iii) The degree p classes of scalar degree p functions commute with
one another and with all the classes mentioned above, except that

[r@=@ j ][f ] [f ][r@=@ j ] =  [@f=@j]

as in PDO(M; S ).

6.9. Def init ion.  For m 2  M, denote by Am the tensor product of
the symmetric algebra of TmM (whose elements we shall write as con-
stant coecient dierential operators on TmM), the algebra of poly-
homogeneous partial dierential operators on T  M and the exterior
algebra (TmM  T  M ) (which, given local coordinates on M near m, we
shall regard as generated by dxi  2  T  M and dj 2  TmM).

We shall suppress tensor product signs when describing elements of
Am, such as for example

(6.10) dxi  @
x

i
 +  dj @j 

2  Am

We equip Am with an integer grading by assigning degree 1 to each
vector in TmM, the usual degree to each homogeneous operator on
T  M, degree 0 to each dxi  and degree 1 to each dj . For instance, the
terms in (6.10) have degrees 1 and 0, respectively.

6.11. Lemma. Let r  be a torsion-free connection on M and let
m 2  M. There is a unique isomorphism of complex Z-graded algebras

Symbm : gr PDO(M; S)m  !  Am

such that for all local coordinates near m,
(i) [r(@ =@ xi )H  ] !  @=@xi and [r@=@ j ] !  @=@j.

(ii) If f  is any polyhomogeneous function on T M , then f  !  f jT  M .
(iii) [ i ] !  dxi  and [ j ] !  dj .

P r o o f .  The reversed correspondences dene a morphism of graded
algebras in the reverse direction by the universal property inherent in
the denition of Am as a tensor product. It follows from the local coor-
dinate description of the Perrot order in Lemma 6.3 that this morphism
is an isomorphism.

6.12. R e m a r k .  Even though the Perrot order and therefore the as-
sociated graded algebra gr PDO(M; S), are independent of the choice of
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connection used in their denitions, the homomorphism in Lemma 6.11
does depend on the choice of connection.

We shall now extend the symbol morphism Symbr from polyhomo-
geneous dierential operators to elements of the bimodule FB(M ; S ). To
do so we shall rst look to Denition 3.9 to nd a suitable target for the
symbol homomorphism.

6.13. Def init ion.  Dene the bimodule order of an element in Am

by

bimodule-order 
@x

i =  3; bimodule-order 
@j

=   1

bimodule-order i       =  0; bimodule-order j       =  0

and bimodule-order(f ) =  2 degree(f ) for a homogeneous function f .
Denote by FA m  the space of formal Laurent series

"kDk  exp(") 2  Am[" 1; "]]

with nite singular parts for each of which there exists N  with

bimodule-order(Dk)  k +  N

for all k.
The space FA m  is a bimodule over Am, and applying the symbol

homomorphism termwise to a Laurent series, we obtain a morphism

Symbm : gr FB(M; S )jm  !  FA m

that is compatible with bimodule structures. We are going to factor
Perrot’s supertrace on order zero elements through this symbol mor-
phism, as follows: we shall dene a supertrace morphism

strm : FA m   !  Dens(M )jm

and show that
str(X )jm =  strm(Symbm(X ))

for every X  2  FB(M ; S ) of Perrot order 0.
To  begin the denition of strm, suppose we are given an order  n

homogeneous smooth function f  on T  M, and let  2  nTmM. Think of
as a (translation-invariant) top-degree form on T  M. If E  is the Euler
vector eld, as usual, then the contracted form E ( f   )  is basic for the
action of the positive real numbers on T  M by scalar multiplication,
and it is therefore the pullback of a form f ;  on the sphere SmM .
Consider next the integral

(6.14) f ;;
S m M
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formed using the orientation on the sphere for which the integral is
positive when f  is positive. This orientation depends on , and so the
integral is not bilinear in f  and , but rather

f;t =  jtj f ; 8t 2  R:
S m M                                   S  M

The map  !  S
 M f ;  therefore denes a density at m (see [ BGV92,

pp.30-31] or [Lee03, Ch.14] again), which we shall write as

(6.15) f  2  Dens(M )jm
S m M

(and as before we extend this to polyhomogeneous f  by selecting the
degree  n component). This construction has the property that if f  is
a smooth, degree  n function on T M that is compactly supported in the
M-direction, then

(6.16) f j  _ = f :
M         S  M                                    S M

To dene a trace5 functional on FAm , we use the integral above and
essentially the same contraction operation that we used for Perrot’s
trace: namely for D  2  Am we dene

D  exp(")
 
=  " n

 
D  exp( " 1 (xi  y i )(  )) :

x i = y i = 0 ;  i = i

This is a polyhomogeneous function on T  M with values in the exterior
algebra (TmM  T  M ). Then we dene
(6.17) strm;F 

 
D  exp(")

 
=  coecient of
dx1 dxnd1 dn in

D  exp("); S m M

and then extend termwise to the Laurent series in FAm . The result is
a Laurent series in " and, just as we did when we constructed Perrot’s
trace, we then dene strm by taking the coecient of "0.

Thanks to our direct mimicry of the constructions in Section 4, and
thanks to (6.16), the following result is clear:

6.18. Lemma. Let x1; : : : ; xn be local coordinates on M , dened near
a point m 2  M. If r  is the canonical at connection on T M

5The functional is indeed a trace, although we shall not prove this fact because
we shall not need it.
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associated to these coordinates (in which all the Christoel symbols  i j
are identically zero), then

str(X )m =  strm(Symbm(X ))

for every X  2  FB(M ; S ) of Perrot order 0.

In fact, the same result holds for any connection:

6.19. Theorem. If r  is any torsion-free connection on T M , if
m 2  M , and if

Symbm : FB0 (M )  !  FA m

is the symbol map at m dened by r  and acting on Perrot order zero
operators, then

str(X )m =  strm(Symbm(X ))

for every X  2  FB0 (M ).

P r o o f .  Given r  and m, choose local coordinates near m for which
all the Christoel symbols for r  vanish at m. Then dene r 0  to be the
canonical at connection for these coordinates. By examining the two
morphisms Symbr and Symbr 0  

in this given coordinate system, we see
that these two symbol morphisms are in fact equal. So the theorem
follows from the previous lemma.

6.20. R e m a r k .  Needless to say, the theorem relies heavily on the
coordinate independence of Perrot’s trace (and in particular the theo-
rem is far from trivial).

7. Computation of the J L O  cocycle

In this nal section we shall use Theorem 6.19 and one nal ad-
ditional computation to identify the cocycle J L O D ;  from Section 5
with the cocycle associated with the Todd class that was described in
Section 1. The starting point is the following computation:

7.1. Lemma. If r  is any torsion-free connection on M , then
Perrot-order

 
Dvert

 
 0 and Perrot-order

 
fDhoriz ; Dvertg

 
 0:

In addition if a is any smooth, degree zero function on T M , then
Perrot-order

 
[D; a]

 
 0:

P r o o f .  This evident from the formulas in Denition 2.10 and in
Lemmas 2.13 and 2.16.
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It follows that the argument of the supertrace in the formula for
J LOD;(a0; : : : ; ap) has Perrot order 0, and therefore we may use the
techniques of Section 6 to compute the supertrace.

With this in mind, we now x a point m 2  M. As explained in the
Section 6, the quantity J LOD;(a0; : : : ; ap) is the integral of a density on
M; we shall denote by

J LOD;(a0; : : : ; ap)jm 2  Dens(M )jm

the value of this density at m.
If we write

R  
@xi 

; 
@xj @xk 

=  R i j ‘  @x‘ 
;

as we did earlier, and then dene
R k  =  2 R k  

‘dxi dxj
m 2  2T  M;

then

(7.2) Symbm(exp(sD2)) =  exp s("+"2
k R ‘  @=@‘))

Now choose coordinates x1; : : : ; xn near m for which the Christoel
symbols  i j  vanish at m. Then

(7.3)
Symbr ([D; a]) =  "

@xi
 

dxi  +  
@j 

dj

Symbr ((D)) =   "q 1 @
xi

 dxi  q 1 @
j 
dj

where as in Section 5, q : T M !  ( 0 ; 1 )  is the norm-function associ-
ated to a metric on T M.

For brevity, we shall write

Symbm([D; a]) =  d"a =  "dhoriza +  dverta

Symbm((D)) =   q 1d"q =   "q 1dhorizq q 1dvertq:

In addition, to streamline some of the formulas that follow, we shall
write

R  =  + " k R ‘  @=@‘ =  + "   R   @=@:
Then according to the formulas (7.2) and (7.3) above and the formula
in Theorem 5.7, the density J LOD;(a0; : : : ; ap)jm is the sum from k =  1

to k =  p+1 of the following integrals:

(7.4) ( 1)k 1 strm a0 exp(s0"R)d"a1 exp(s1"R)  p + 1

: : : d"ak 1 exp(sk 1"R )q  1dq exp(sk"R)d"ak

exp(sp 1"R)d"ap 1 exp(sp"R) ds:



k0 k1
R R

( 1)k  1

=

X ( 1)k  1  

X 1  

1
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Using the formula

exp(s"R )X exp( s"R ) =  exp(s" adR )(X )

we can write the argument of strm in (7.4) as an innite linear combi-
nation (convergent in the adic topology) of terms

(7.5) "k X0  ad
R
(X1 ) ad

R
(X2 ) adk p      2 (X p  1) adkp     1 (Xp ) exp("R );

where each X j  is one of the d"ai or q 1d"q.
Next, as long as any X  2  Am includes no -derivatives

ad R (X )  =  @=@xj +  " i R i j  [@=@j; X];

and we note that in this case the result on the right-hand side also
includes no -derivatives. Now we appeal to the following result, whose
proof we shall defer for a moment:

7.6. Proposi t ion.  If an element X  2  Am includes no -derivatives,
then

strm "r(@xj +  " i R i j ) X  exp("R) =  0

for all r  and all j .

It follows from the lemma that all the terms (7.4) have vanishing
trace, except when all kj are zero, and hence that (7.4) is equal to

( 1)k 1 strm
 
a0d"a1 d"ak 1q 1d"q d"ap exp("R)ds: p + 1

The integrand now no longer depends on s, and so the integral is simply

(p+1)! 
strm

 
a0d"a1 d"ak 1q 1d"q d"ap exp("R):

In summary, then:

(7.7) J LOD;(a0; : : : ; ap)jm

p+1

=  
k = 1      

(p+1)! 
strm a0d"a1 d"ak 1q 1d"q d"ap exp("R) p+1

=  
k = 1  

(p+1)! 
strm q 1d"q a0d"a1 d"ap exp("R) 

=  
p!

strm
 

q 1d"q a0d"a1 d"ap exp("R):

Now we quote another result, whose proof, like that of Proposition 7.6,
we shall defer for a short time:



m

m

m

1

_
m
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7.8. Proposi t ion.  If X  2  A has no x- or -derivatives, then

X  exp("R)
 
=  " n X  Todd("2 R):

To  continue the computation, let us now write

q 1d"q a0d"a1 d"ap Todd("2 R)top

=  top exterior form-degree part of

q 1d"q a0d"a1 d"ap Todd("2 R):

The Todd class is a polynomial in ", for which the coecient of "k lies in
kT M (with only even k appearing). Each of the d"-dierentials lies in
"1T  M + 1TmM . It therefore follows from an examination of degree in T
M that

q 1d"q a0d"a1 d"ap Todd("2 R)top

=  "n     q 1dq a0da1 dap Todd(R) top :

As a result, it follows from (7.7) and Proposition 7.8, and the denition
of strm in (6.17) that

(7.9)
p! 

strm
 

q 1d"q a0d"a1 d"ap exp("R)

=  coecient of dx1 dxnd1 dn

in
1
p!

[q 1dq a0da1 dap Todd(R)]top:
S m M

In this formula [q 1dq a0da1 dap Todd(R)]top is to be regarded as a
polyhomogeneous, exterior algebra-valued function on T  M and then
written as a scalar function times dx1 dxnd1 dn; the integral
is applied to this scalar function as in (6.15).

The right-hand side in (7.9) involves a contraction by the Euler
vector eld, so let us now note that

E
 

q 1dq a0da1 dap Todd(R)
 
=  E

 
q 1dqa0da1 dap Todd(R)
=  a0da1 dap Todd(R);

since E
 

q 1dq
 
=  1 while E

 
a0da1 dap Todd(R)

 
=  0. It follows that

strm
 

q 1d"q a0d"a1 d"ap exp("R)
=   [a0da1 dap Todd(R)]top 

m;



=

=

p!

m m

i i
 

 

_

dH

m
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where : S M !  M and where the dierential form is treated as a density
using the orientation of S M given in Denition 4.3. We have arrived at
our goal:

7.10. Theorem. Let M be a smooth, closed manifold, let r  be
a torsion-free connection on T M with curvature R ,  and let D  be the
associated Dirac operator, as in Denition 3.18. If S M is equipped
with the orientation in Denition 4.3, then

J LOD;(a0; : : : ; ap) =  
1

a0da1 dap Todd(R) S M

for all p >  0 and all a0; : : : ; ap 2  C 1 ( S M ).  It

remains to prove Propositions 7.6 and 7.8.

P r o o f  o f  Proposit ions 7.6 and 7.8. The following beautiful
argument (along with everything else in this section) is due to Perrot
[Per13b, Lem.4.4], to which we refer for full details. It is reminiscent
of approaches to the Baker-Campbell-Hausdor formula going back to
Schur [Sch89].

For t 2  R  form the element

Y (t) =  exp(" +  t"2  R   @=@)exp( ")

in Am["]; it is a polynomial function of t and " thanks to the nilpotence
of the subspace

2(TmM  T  M )  (TmM  T  M ):
If X  2  Am["], then according to (4.12),

X  exp(" +  t"2  R   @=@)
=  " n      X   Y (t) exp  " 1 (xi  y i )(  )

x i = y i ;  i = i

Consider now the (form-valued) function

H (t)  =  " nY (t) exp  " 1 (xi  y i )( i  i )

on the product of TTmM with itself. A  direct computation shows that
it satises a dierential equation of the type

dt
 
(t) =  L(t)H (t);

where L(t )  is a polynomial in t and " with coecients in the algebra
A  , and that the function

Todd("2 tR)  exp    "R  (x  y) ( )  
1 exp( t"2R) 

 (x  y)
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satises the same dierential equation, with the same initial condi-tion
at t =  0. The two solutions are necessarily equal, and the two
propositions follow by setting t =  1 in the explicit solution, applying
respectively (@=@xj +  " i R i j )X ,  as in the rst proposition, or X  alone as
in the second, and restricting to the diagonal to obtain an explicit
formula for the contractions.
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