Springer Nature 2021 ETEX template

AR-Extractor: Automatically Extracting
Constraints from Android Documentation
using NLP techniques

Preethi Santhanam', Padmapriya Sakthivel't and Zhiyong
Shan®"f

1School of Computing, Wichita State University, 1845 Fairmount
St, Wichita, 67220, Kansas, USA.

*Corresponding author(s). E-mail(s): zhiyong.shan@wichita.edu;
Contributing authors: pxsanthanam1@shockers.wichita.edu;
pxsakthivel@shockers.wichita.edu;

TThese authors contributed equally to this work.

Abstract

When developing Android apps, it is difficult for the program-
mers to follow all programming constraints described in Android
documents. This paper proposes a mnovel method called AR-
Extractor (Android Rules Extractor) to extract the programming
constraints automatically from Android developer documents using
natural language processing techniques. It can help programmers
to reduce bugs, improve software maintainability and reliability.

Keywords: Android Developer Guide, Constraint Extraction, Text
Dependency, Part of Speech tags

Regular Research Paper

1 Introduction

As the most popular operating system Android provides plenty of documents
for developers. Manually investigating all the textual data and extracting the

Springer Nature 2021 IATEX template

2 AR-Ezxtractor

most programming constraints is clearly a tedious process.Therefore, an auto-
mated way of extracting constraints from official Android developers guide
and presenting it in a structured manner will help developers when creating
Android applications.

In this paper, we present a novel method called AR-Extractor that
extracts programming constraints from the official Android developers guide.
Android programs often require and follow programming constraints such as,
if you want to manually handle orientation changes in your app you must
declare the orientation”, ”screenSize”, and ”screenLayout” wvalues in the
android:configChanges attributes. If the programmer violates the above rule,
then it causes the activity to not start. These kinds of constraints are important
for the Android application development.

Our AR-Extractor uses natural language processing technique for sen-
tence extraction. It focuses on extracting sentences with constraints such as
must, should, note, warning, noted, recommended, need, tip, remember, cau-
tion, warning, hint, make sure, cautious. Sentences are scraped by exploiting
the part-of-speech (POS) and dependency tags of sentences leading to a more
purposeful extraction containing constraints.

Many programming constraints are much more complicated. Some sen-
tences with constraints may be correlated or dependent on each other i.e.,
those sentences will refer to the subject of previous or next sentence. In this
case, determiners, or pronouns, e.g., they, this are used. It is important to
understand the programming constraints as well as dependencies between con-
straints to be able to implement them correctly [1]. The tool methodology is
explained in section 2.

Our results indicate that our tool can effectively identify Android program-
ming constraints.

2 Methodology

AR-Extractor consists of four steps as shown in Fig 1. The first step is to
download HTML documents using a website crawler or spider called Scream-
ing Frog to crawl and download web pages automatically. In this paper, we
automatically downloaded 500 Android developer guide web pages.

In the data extraction step, we performed web scraping on Android devel-
opers guide web pages to get necessary HTML data. Web scraping method
is automated using a python library called beautiful soup [2]. Our code is
designed to pass data scraping based on the HTML tags (e.g., p, a, span) and
using pattern based regular expression [3]. This process is carried out to filter
constraints from the annotated document.

In the data processing step, the sentences with constraints are identified
and explored for further dependencies where sentences are usually associated
to each other and one sentence might refer to the subject of previous or next
sentence. Natural language processing (NLP) library is used for analyzing
sentences and parts of speech (POS) tags to determine if the sentence gives

Springer Nature 2021 ITEX template

AR-Ezxtractor 3

Downloading HTML decuments

x{—\

Extracting the data
(Web Scraper)

L

Processing the data
(Text Processor)

i

Grouping the data

Fig. 1: Overall Method

complete information or previous or the next sentences’ information needs to
be extracted to give a meaningful information.

In the data grouping step, these set of sentences are pre-processed to obtain
their TF-IDF scores. These scores are helpful in vectorizing the sentences.
The vectors of these sentences are used as an input to the K-means machine
learning algorithm [4]. These are formed as clusters; thus, relevant sentences
are categorized for easy use and readability.

2.1 Challenges

To our knowledge, there has been no effort so far to automate the extraction
of Android programming constraints. A lot of challenges arise while extracting
the relevant and meaningful text data. Firstly, it requires a lot of time and
effort to go through the data manually for extraction from Android developers
guide web pages and then automating the approach using steps as described
in Fig 1.

Every webpage is designed in a distinct way, and it requires exploring the
Android documentation for the existence of programming constraints. Using
inspect element feature from google chrome, valuable text enclosed within tags
are identified and then these tags are used for extraction in the automatic
approach. It required testing around 100 web pages for element inspection to
identify necessary tags using inspect element feature. At times, one sentence
might refer to the subject of next or previous sentence, so separate NLP rules
were written based on POS tags [5] as shown in Table 1.

Springer Nature 2021 IATEX template

4 AR-Ezxtractor

3 Extracting Data

In this paper, it is carefully analyzed, how the programming constraints are
pulled-out from the Android documentation web pages. The steps are as
follows:

3.1 Step 1

The HTML documents, i.e., Android developer guide web pages are given as
an input to the web scraper as shown in Fig 2. The input is processed in
batches with each batch containing 50 HTML files. The downloaded Android
documentation web pages need to be cleaned before being used for further
data extraction.

3.2 Step 2

For cleaning and extracting the necessary content from Android HTML doc-
uments, we use a python library called beautiful soup. Since only annotated
document is used for the process, unnecessary information is removed as shown
in Fig 2. The web scraper script extracts three types of contents separately
from the Android HTML files and they are processed individually in the text
processing step. Following are the contents extracted from three different tags:

® Text encompassed by < strong > and its associated tags
® Text encompassed by < main > tags
® Tables enclosed within < table > tags

The above three content extractions are discussed in section 3.3, step 3.

3.3 Step 3

3.3.1 Extracting entire text from < strong > and its
associated tags

The entire text enclosed by < strong > and its associated tags are consid-
ered of high importance. The constraints considered for < strong > tag text
extraction is mote, warning, caution, tip, hint, important. These constraints
are commonly enclosed within < strong > tag and its contents are within tags
such as < p >, < li >, < aside >, < ul >, < div > as shown in Fig 4.

If multiple sentences enclosed by < strong > and its related tags are not
dependent, the text processor script will split the sentences in the tokenization
process. This is the reason to extract < strong > tags text separately.

For example, Fig 3 shows an example of constraint note. In Fig 4, after
element inspection, constraint note is enclosed within < strong > tag but its
entire associated text is surrounded by < p > tag with attribute class="note”.
This complete text related to < strong > tag is called as < strong > tag text
extraction. The constraints surrounded by < strong > tags are identified using
regular expression “note:.*, “caution:.*, “tip:.*, “warning:.*. The extracted
< strong > tag text is then written to .xlsx files.

Springer Nature 2021 ITEX template

AR-Extractor 5

HTML
Documents

e

\‘—._/
Beautiful Soup Parsing

Remove header,
footer, script, table,

Clean Data by tags style, code blocks
(XML, java, JSON,

kotlin)
Soup Preparation
Y 1. Finding by class
Pass HTML Extract <strong= tags text __names
documents to Extract text from {note, caution, warning, 2. Finding by class
pd.read_html{) <malnc- tags ip) names using regex
_ patterns

("note:.”, *caution:.”,
Annotated document “warning:.", "ip:.%)

r

Scrape tables from Create .txt files for each Pasa extracted text
HTML documents batch of HTML files Tom <Strang 1ags 1o
pandas datairame
r
xlsx files xt files xlsx files

N N

Fig. 2: Structure of Web Scraper

3.3.2 Extracting text from < main > tags

The text surrounded by < main > tag is scraped and converted into a stream
of text files for every batch of Android HTML files. The converted text files
are passed as an input to the text processor script for exploring dependencies.

The onDraw() method delivers youa Canvas upon which you can implement anything
you want: 2D graphics, other standard or custom components, styled text, or anything else
you can think of.

* Note: This does not apply to 3D graphics. If you want to use 3D graphics, you must
extend SurfaceView instead of View, and draw from a separate thread. See the

GLSurfaceViewActivity sample for details.

Fig. 3: An example of constraint note

3.3.3 Extracting text from < table > tags

In addition, it should be checked whether information from tables is needed
and is parsed correctly. For this process, all tables enclosed by < table > tags

Springer Nature 2021 IATEX template

6 AR-Ezxtractor

v<p>

"The "
<code translate="no" dir="1tr">onDraw()</code>
" method delivers you a "

v<code translate="no" dir="1tr">

Canvas

</code>
" upon which you can implement anything you want: 2D graphics, other standard or custom
components, styled text, or anything else you can think of."

</p>

v<p class="note"> == $0

::before
Note:
" This does not apply to 3D graphics. If you want to use 3D graphics, you must extend "

v<code translate="no" dir="1tr">

SurfaceView

</code>
" instead of View, and draw from a separate thread. See the GLSurfaceViewActivity sample for
details."

</p>

Fig. 4: Element inspection of constraint note

from the Android documentation pages are scraped using pandas read_html
function and written to .xlsx files.

The .xlsx files are passed as an input to the text processor script to be
analyzed for the presence of constraints.

4 Processing the Data

Web scraper script generates three sets of output,

e xlIsx files containing tables,
e xlsx files containing < strong > and its associated tags text.
e txt files extracted from HTML files’ < main > tags

4.1 Processing HTML Tables

The .xlsx files containing table information from the web scraper script are
passed to a pandas DataFrame for easy processing. Each excel file with the
table information contains a table index, table header and table data.

To extract constraints from these .xlsx files, table rows are iterated to look
for the presence of constraints and if constraints are present, that specific row
containing constraint is extracted, and the next step is to look for the table it
belongs, to fetch its table header. This is done by checking the previous rows
and look for the row that contains nalN value in the first column. The extracted
table rows with constraints are passed to an excel sheet.

4.2 Processing the < strong > tag text

The < strong > and its related tags are denoted in the HTML files with the
attribute class = note | caution | warning | special.

In Fig 3 and 4, the two sentences with constraint note are surrounded by
< p > tag as mentioned in section 3.3.1. But the first sentence within < p >
tag refers to its previous sentence which is indicated by the keyword this.

Springer Nature 2021 ITEX template

AR-Ezxtractor 7

In this case, it is necessary to extract its previous sentence for sentence
completeness as mentioned below.

The onDraw() method delivers you a Canvas upon which you can implement
anything you want: 2D graphics, other standard or custom components, styled
text, or anything else you can think of.

Thus, processing of < strong > tag text requires two inputs.

e The first input is the < strong > tag .xlsx file and

® The second input contains the list of text files that is extracted from the
< main > tags. Processing of text from < main > tags text is explained in
next section 4.3

The DataFrame containing the < strong > tags are iterated, and each row
is analyzed for keywords like this, these, however, therefore, hence using NLP
and if encountered, the same sentence is searched in the text file DataFrame
by looping through the rows. If the similar sentence from < strong > tag row
is found in the text file DataFrame row, text file DataFrame’s index will be
decreased by 1 to fetch its previous sentence.

4.3 Processing the text from < main > tags

The extracted text from < main > tags are converted into .txt files by web
scraper script. We created the following three lists for processing sentences.

® A befwords list with a set of keywords refers to previous sentences i.e., this,
that, these, furthermore, however, hence, otherwise etc.

® A nextcons list with a set of keywords refers to its next sentences i.e., for
example, after, following, next etc.

e A skip list that contains a set of keywords for sentences to be skipped i.e.,
following diagram, following snippet, following code, this section, this lesson.

Each text file contains a set of paragraphs that are tokenized into a list of
sentences and then passed to a DataFrame for easier and faster processing.
Firstly, the sentences are checked for the presence of constraints and if any
constraints are present in the current sentence, then the sentence is analyzed
for keywords in the skip list and if found, the current sentence is ignored or
skipped for further processing. The following is an example sentence which will
be skipped since it refers to a code snippet that explains the implementation.
Example: If you want a widget with a button that launches an activity when
clicked, you should use the following implementation of App WidgetProvider.
If the current sentence with constraint doesn’t contain keywords from skip
list, then the second step is to check the current sentence for its dependency
to the previous sentence. The current sentence is checked for the presence of
keywords from befwords list. This is done by analyzing the sentence structure
using natural language processing technique where part of speech (POS) tags
and dependency tags are used for checking dependency [6] as shown in Table 1.

Springer Nature 2021 IATEX template

8 AR-Ezxtractor

For example: An app might have a one-time setup or series of login screens.
These conditional screens should not be considered start destinations because
users see these screens only in certain cases.

In the above example, the second sentence will be extracted since it contains
the constraint should. Therefore, the second sentence structure will be analyzed
where it contains the keyword these indicating dependency to the previous
sentence about login screens. Thus, we are extracting the previous sentence
along with the current sentence.

Now, the next step is to check if the current sentence with constraint
requires its next sentence and check the next sentence for the presence of
keywords from nextcons list and analyze its POS tags and dependencies.

Ezample: The name of each package where the change’s default state (either
enabled or disabled) must have been overridden. For example, if this is a change
that is enabled by default, your app’s package name would be listed if you
toggled the change off using either the developer options or ADB.

In the above example, there are two sentences, and the first sentence will be
extracted for the constraint must. Though the first sentence provides meaning-
ful information by itself, second sentence starts by giving an example for the
context mentioned in the first sentence. Thus, extracting the second example
sentence with first sentence will be helpful for understandability. A sample sen-
tence tree structure is omitted to conserve space in this paper but sentences’
POS tags and dependencies can quickly be visualized in the browser using
displaCy. The next step is grouping the sentences using K-Means algorithm.

5 Grouping The Data Using K-means
Algorithm

We are using K-means, an unsupervised machine learning algorithm to cluster
the text data. Each data in our dataset (DataFrame) is a vector of attributes.
First, the text data is vectorized and vectors of the document are used for cal-
culating the centroids [7]. Number of clusters is determined using the elbow
method. In this way relevant text data is grouped and put into different
categories [8].

6 Implementation

A prototypical implementation of the method is described in section 2. The
prototype is written in python 3 and integrates the python libraries.

For the web scraping step, the following aspects of content extraction
are considered: beautiful soup along with Ixml parser, pattern based regular
expression.

For the text processing step, natural language processing techniques are
employed as described in the overall methodology. NLP libraries such as NLTK
and SpaCy are used. After extraction, sentence similarity is examined using
SentenceTransformer package to generate the sentence embeddings. With those

Springer Nature 2021 ITEX template

AR-Ezxtractor

9

Table 1: Summarization of POS tags of keywords and their dependency

Kevword POS Tagging- Check for commay(,) Previous sentence(s) required
4 Token Dependency in the sentence (Yes / No)
this det’/ ‘pobj’ / NA Yes
dobj
. . " If comma present- No
this nsubj Yes If comma not present — Yes
that ‘det’ NA Yes
that mark’/ ‘nsubj’/ NA No
nsubjpass
instead NA Yes If comma present- Yes
If comma not present — No
. . If comma present- Yes
them dobj Yes If comma not present — No
these ‘det’ NA No
) ‘ec’ NA No
S0 ‘advmod’ NA Yes
such ‘amod’ Yes If comma present- Yes
If comma not present — No
such ‘predet’ NA Yes

encodings, cosine similarity score between the sentences can be accurately

calculated ensuring coherence and relevance.

7 Evaluation

AR-Extractor reported a total of 4191 true constraints aka true positives
(TP). True positives are essential for identifying false positives (FP) and false

negatives (FN) to determine effectiveness as shown in Table 2

Table 2: Evaluation Results

Tags True FP FN Precision Recall F-measure

<main> 3159 0 251 3RS —100% gpEgtler = 92.6% 2% {50792% = 96.1%
 883 0 69 MBS =100% gty =92.7% 2% {oorees = 96.2%
< table > 149 0 0 %5 = 100% et = 100% 2 % 1502408 = 100%

All 4191 extracted sentences were manually checked for the presence

of

false positives. Therefore, the approach did not generate any false positives

and resulted in 100% precision.

Springer Nature 2021 IATEX template

10 AR-Ezxtractor

When AR-extractor reported 4191 constraints, it under-reported a total of
320 false negatives (sentences with constraints but missed by AR-Extractor).
For false negatives, we identified two reasons. First, NLP pattern matching
might fail to find potential sentences with constraints. Second, though few
sentences with constraints were reported by AR-Extractor, the sentences were
incomplete or not useful without code, or its previous dependency sentences.

8 Discussions and Limitations

Our AR-Extractor has three limitations. First, it cannot process links (i.e.,
hyperlink or weblink) within the extracted Android HTML documentation.
i.e., links enclosed by href attribute: < ahref ="URL” >

Second, since we do not focus on processing code blocks and extract only
the annotated document, AR-Extractor cannot extract constrained sentences
within the code blocks i.e., such as code comments with constraints.

Third, sentences with keywords such as all of this, each of the these, neither
of these, indicate uncertainty (i.e., dependence to previous or next sentence)
and will be difficult to process efficiently.

The above-mentioned limitations can be solved by writing separate regex
and NLP rules for exceptional cases and sentences.

9 Related Works

Detecting constraints and their relations from regulatory documents using
NLP techniques [1]: Investigated an approach for detecting constraints and
their relations from regulatory documents. Their work denoted that it required
manual inspection for the integration of external information for deriving the
list of constraint related subjects.

PR-Miner [9] uses data mining technique called as frequent itemset min-
ing to extract implicit programming constraints from large software code
effectively. [10] implemented two techniques for generating programming
constraints by using the association rule mining algorithm.

10 Conclusion

In this paper, a novel approach for extracting sentences containing constraints
and solving dependencies between them was presented. NLP framework as well
as common data mining algorithms were used for implementing the method.
Python libraries beautiful soup, spaCy for implementing NLP methodology
were very effective in performing the POS tagging and obtaining dependency
tags, which formed the base to extract relevant and meaningful information.

Declarations

This material is based upon work supported by the National Science Founda-
tion under Grant No 2154483.

Springer Nature 2021 ITEX template

AR-Extractor 11

References

1]

Winter, K., Rinderle-Ma, S.: Detecting constraints and their relations
from regulatory documents using nlp techniques. In: OTM Confederated
International Conferences” On the Move to Meaningful Internet Systems”,
pp. 261-278 (2018). Springer

Richardson, L.: Beautiful soup documentation. Dosegljivo: https://www.
crummy. com/software/BeautifulSoup/bs4/doc/.[Dostopano: 7. 7. 2018]
(2007)

Hunt, J.: Regular expressions in python. In: Advanced Guide to Python
3 Programming, pp. 257-271. Springer, 7?7 (2019)

Sinaga, K.P., Yang, M.-S.: Unsupervised k-means clustering algorithm.
IEEE access 8, 80716-80727 (2020)

Li, H., Mao, H., Wang, J.: Part-of-speech tagging with rule-based data
preprocessing and transformer. Electronics 11(1), 56 (2021)

Deshmukh, R.D., Kiwelekar, A.: Deep learning techniques for part of
speech tagging by natural language processing. In: 2020 2nd Interna-
tional Conference on Innovative Mechanisms for Industry Applications
(ICIMIA), pp. 76-81 (2020). IEEE

Kharazmi, M.A., Kharazmi, M.Z.: Text coherence new method using
word2vec sentence vectors and most likely n-grams. In: 2017 3rd Iranian
Conference on Intelligent Systems and Signal Processing (ICSPIS), pp.
105-109 (2017). IEEE

Rinartha, K., Kartika, L..G.S.: Rapid automatic keyword extraction and
word frequency in scientific article keywords extraction. In: 2021 3rd Inter-
national Conference on Cybernetics and Intelligent System (ICORIS), pp.
1-4 (2021). IEEE

Z.Li, Y.Zhou.: Pr-miner. ACM SIGSOFT Software Engineering Notes
30(5), 306-315 (2005)

Zaman, T.S., Yu, T.: Extracting implicit programming rules: comparing
static and dynamic approaches. SoftwareMining 2018: Proceedings of the
7th International Workshop on Software Mining, 1-7 (2018)

	Introduction
	Methodology
	Challenges

	Extracting Data
	Step 1
	Step 2
	Step 3
	Extracting entire text from and its associated tags
	Extracting text from <main> tags
	Extracting text from <table> tags

	Processing the Data
	Processing HTML Tables
	Processing the tag text
	Processing the text from <main> tags

	Grouping The Data Using K-means Algorithm
	Implementation
	Evaluation
	Discussions and Limitations
	Related Works
	Conclusion

