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Abstract

This paper presents a new statistical analysis

aiming to explain the recent superior achieve-

ments of the pre-training techniques in natural

language processing (NLP). We prove that when

the classes of the pre-training task (e.g., different

words in the masked language model task) are

sufficiently diverse, in the sense that the least sin-

gular value of the last linear layer in pre-training

(denoted as ν̃) is large, then pre-training can

significantly improve the sample efficiency of

downstream tasks. Specially, we show the trans-

fer learning excess risk enjoys an O
(

1
ν̃
√
n

)
rate,

in contrast to the O
(

1√
m

)
rate in the standard

supervised learning. Here, n is the number of

pre-training data and m is the number of data in

the downstream task, and typically n ≫ m. Our

proof relies on a vector-form Rademacher com-

plexity chain rule for disassembling composite

function classes and a modified self-concordance

condition. These techniques can be of indepen-

dent interest.

1 INTRODUCTION

Pre-training refers to training a model on a few or many

tasks to help it learn parameters that can be used in other

tasks. For example, in natural language processing (NLP),

one first pre-trains a complex neural network model to pre-

dict masked words (masked language modeling), and then

fine-tunes the model on downstream tasks, e.g., sentiment

analysis (Devlin et al., 2019).

Recently, the pre-training technique has revolutionized the

NLP area. Models based on this technique have dramati-

cally improved the performance for numerous downstream

tasks (Devlin et al., 2019; Radford et al., 2018; Yang et al.,
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2019; Clark et al., 2020; Lan et al., 2020; Liu et al., 2020).

Despite the large body of empirical work on pre-training,

satisfactory theories are still lacking, especially theories

that can explain the success of pre-training in NLP. Ex-

isting theories often rely on strong distributional assump-

tions (Lee et al., 2021), smoothness conditions (Robinson

et al., 2020) or noise-robustness conditions (Bansal et al.,

2021) to relate the pre-training task(s) to downstream tasks.

These assumptions are often hard to verify.

A line of work studied multi-task pre-training (Caruana,

1997; Baxter, 2000; Maurer et al., 2016; Du et al., 2021;

Tripuraneni et al., 2021, 2020; Thekumparampil et al.,

2021). In particular, recently, researchers have identified

a new condition, the diversity of pre-training tasks, which

has been shown to be crucial to allowing pre-trained mod-

els to be useful for downstream tasks. See Section 2 for

more detailed discussions on related work.

Unfortunately, this line of theory cannot be used to explain

the success of pre-training in NLP. The theory of multi-task

pre-training requires a large number of diverse tasks, e.g.,

the number of tasks needs to be larger than the last layer’s

input dimension (a.k.a. embedding dimension), which is

typically 768, 1024, or 2048 (Devlin et al., 2019). How-

ever, in NLP pre-training, there are only a few, if not one,

pre-training tasks. Therefore, we need a new theory that

applies to this setting.

Since in NLP pre-training, we do not have multiple tasks,

we propose to study the blessing of multiple classes. Con-

cretely, consider the Masked Language Model (MLM) pre-

training task in NLP. In such a pre-training task, we have a

large collection of sentences (e.g. from Wikipedia). Dur-

ing the pre-training phase, we randomly mask a few words

in each sentence and predict the masked words using the

remaining words in this sentence. This pre-training task is

a multi-class classification problem where the number of

classes is about 30K when using byte-pair-encoding (BPE)

sub-word units.1 Note that this number is much larger than

the embedding dimension (768, 1024, or 2048).

1This is a standard setting in the BERT model (Devlin et al.,
2019) and is widely adopted as a common practice. By breaking
down the English words into BPE sub-word units, it could dras-
tically increase the coverage of the English language by using a
relatively small (32768) vocabulary.
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In this paper, we develop a new statistical analysis aiming

to explain the success of pre-training for NLP. The key no-

tion of our theory is the diversity of classes, which serves

a similar role as the diversity of tasks in multi-task pre-

training theory (Du et al., 2021; Tripuraneni et al., 2021).

We summarize our contributions below.

First, we define a new notion, diversity of classes, which

is the least singular value of the last linear layer in pre-

training. We prove finite-sample bounds to show that for

the cross-entropy loss, if the diversity of classes is large,

then pre-training on a single task provably improves the

statistical efficiency of the downstream tasks. We give con-

crete bounds on linear representation and deep neural net-

works to showcase our general theoretical results. To our

knowledge, this is the first set of theoretical results that

demonstrates the statistical gain of the standard practice of

NLP pre-training, without strong distributional or smooth-

ness conditions.

Second, from a technical point of view, previous theoreti-

cal work on multi-task learning (Du et al., 2021; Tripura-

neni et al., 2020) builds on scalar output and thus could

not apply to multi-class tasks (e.g., cross-entropy loss).

We introduce a vector-form Rademacher complexity chain

rule for disassembling composite function classes based

on vector-form Rademacher contraction property (Maurer,

2016). This generalizes the scalar-form chain rule in Tripu-

raneni et al. (2020). Furthermore, we adopt the modified

self-concordance condition to show that the least singular

value of the last linear layer serves as a diversity parameter

for cross-entropy loss. We believe our techniques can be

useful in other problems.

Organization. This paper is organized as follows. In

Section 2, we review the related work. In Section 3, we

formally describe the problem setup and introduce the nec-

essary definitions. In Section 4, we state our main Theo-

rem 4.2 then instantiate it with several settings. We con-

clude and discuss some interesting future directions in Sec-

tion 5. All proofs are deferred to Appendix A. In Ap-

pendix B, we present some preliminary empirical results

on how our theory inspires new regularization techniques.

2 RELATED WORK

Here we mostly focus on the theoretical aspects of pre-

training. While there is a long list of work demonstrating

the empirical success of self-supervised learning, there are

only a few papers that study its theoretical aspects. One line

of work studied the theoretical properties of contrastive

learning (Saunshi et al., 2019; Tosh et al., 2021), which is a

different setting considered in this paper. The most relevant

one is by Lee et al. (2021) which showed that if the input

data and pre-training labels were independent (conditional

on the downstream labels), then pre-training provably im-

proved statistical efficiency. However, this conditional in-

dependence assumption rarely holds in practice. For exam-

ple, in the question-answering task, this assumption implies

that given the answer, the question sentence and the masked

word are independent. Robinson et al. (2020) assumed

the Central Condition and a smoothness condition that re-

lates the pretraining task and the downstream task. Bansal

et al. (2021) related generalization error of self-supervised

learning to the noise-stability and rationality. However, it

is difficult to verify the assumptions in these papers.

A recent line of theoretical work studied multi-task pre-

training (Du et al., 2021; Tripuraneni et al., 2021, 2020;

Thekumparampil et al., 2021) in which a notion, diversity,

has been identified to be the key that enables pre-training to

improve statistical efficiency. Experiments also supported

the idea that increasing the diversity of the training data

helps generalization (Zhang et al., 2022).

Theories on multi-task pre-training generally require a

large number of diverse tasks, and thus are not applica-

ble to NLP, as we have mentioned. In comparison, we

study single-task multi-class pre-training which is differ-

ent from theirs. Du et al. (2021) noted that their results

allowed an easy adaptation to multi-class settings (see Re-

mark 6.2 therein). However, they only focused on quadratic

loss with one-hot labels for multi-class classification. In-

stead, we study the commonly used cross-entropy loss.

While their analyses do not imply results in our setting, our

theoretical analyses are inspired by this line of work.

3 PRELIMINARIES

In this section, we introduce the necessary notations, the

problem setup, and several model-dependent quantities

used in pre-training and downstream task learning.

3.1 Notations and Setup

Notations Let [n] = {1, 2, · · · , n}. We use ‖ · ‖ or

‖ · ‖2 to denote the ℓ2 norm of a vector. Let N (µ, σ2)
be the one-dimensional Gaussian distribution. For a ma-

trix W ∈ R
m×n, let ‖W‖1,∞ = maxq(

∑
p |Wq,p|) and

‖W‖∞→2 be the induced ∞-to-2 operator norm. We use

the standard O(·),Ω(·) and Θ(·) notation to hide universal

constant factors, and use Õ(·) to hide logarithmic factors.

We also use a . b to indicate a = O(b).

Problem setup This work is in line with previous trans-

fer learning theories (Du et al., 2021; Tripuraneni et al.,

2020) that first pre-train on a large corpus to get a good

representation, which, could be future utilized by various

downstream tasks. Formally, the procedure is divided into

two stages: the pre-training stage to find a representation

function and the downstream training stage to obtain a pre-

dictor for the downstream task. In both stages, we use R̂
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to represent empirical risk and use R to represent expected

loss.

In the first stage, we have one pre-training task with n sam-

ples, {xp
i , y

p
i }ni=1, where xp

i ∈ X p ⊂ R
d is the input and

ypi ∈ {0, 1}k−1 is the one-hot label for k-class classifica-

tion (if ypi is all-zero then it represents the k-th class).2 For

instance, in masked language modeling, the input of each

sample is a sentence with one word masked out, and the la-

bel is the masked word.3 k in this example is the size of the

vocabulary (≈ 30K). We aim to obtain a good representa-

tion function ĥ within a function class H ⊂ {Rd → R
r}

where r is the embedding dimension (often equals to 768,

1024, 2048 in NLP pre-training). For example, one popular

choice of the representation function ĥ in NLP applications

is the Transformer model and its variants (Vaswani et al.,

2017; Devlin et al., 2019). On top of the representation, we

predict the labels using function fp within function class

Fp ⊂ {Rr → R
k−1}.

To train the representation function and predictor in pre-

training stage, we consider the Empirical Risk Minimiza-

tion (ERM) procedure

ĥ = argmin
h∈H

min
fp∈Fp

R̂p(f
p, h)

, argmin
h∈H

min
fp∈Fp

1

n

n∑

i=1

ℓ(fp ◦ h(xp
i ), y

p
i )

where ℓ is the loss function. We overload the notation for

both the pre-training task and the downstream task, i.e., for

pre-training, ℓ : Rk−1 × {0, 1}k−1 → R and for the down-

stream task, ℓ : R
k′−1 × {0, 1}k′−1 → R. e.g., cross-

entropy: ℓ(ŷ; y) = −y⊤ŷ + log (1 +
∑k−1

s=1 exp (ŷs)).

Now for the downstream task, we assume there are m sam-

ples {xd
i , y

d
i }mi=1. Note that xd

i ∈ X d ⊂ R
d is the input and

ydi ∈ {0, 1}k′−1 is the one-hot label for k′-class classifica-

tion.4 Note that in most real-world applications, we have

n ≫ m and k ≫ k′. For example, in sentiment analysis,

k′ = 2 (“positive" or “negative"). A widely studied task

SST-2 (Wang et al., 2019) has m ≈ 67K , which is also

generally much smaller than the pre-training corpus (e.g.,

n > 100M samples).

For the downstream task, we fix the representation func-

tion learned from the pre-training task and train the task-

dependent predictor within Fd ⊂ {Rr → R
k′−1}:

f̂d = argmin
fd∈Fd

R̂d(f
d, ĥ)

2We assume only one pre-training task for the ease of presen-
tation. It is straightforward to generalize our results to multiple
pre-training tasks.

3Here we say only one word being masked only for the ease
of presentation. It is straightforward to generalize our results to
the case where multiple words are masked out.

4For simplicity, we assume we only have one downstream
task. Our theoretical results still apply if we have multiple down-
stream tasks.

, argmin
fd∈Fd

1

m

m∑

i=1

ℓ(fd ◦ ĥ(xd
i ), y

d
i ).

Therefore, our predictor for the downstream task consists

a pair (f̂d, ĥ). We use the following risk to measure the

performance of predictor and representation

Transfer Learning Risk ,

Rd(f̂
d, ĥ)− E

xd,yd

[
ℓ
(
gd
(
xd
)
, yd
)]

where we define

Rd(f̂
d, ĥ) , E

xd,yd

[
ℓ
(
f̂d ◦ ĥ

(
xd
)
, yd
)]

as the expected loss (the expectation is over the distribution

of the downstream task), and

gd = argmin
g∈{Rd→Rk′−1}

Exd,yd

[
ℓ
(
g
(
xd
)
, yd
)]

is the optimal predictor for the downstream task.

In our analysis, we also need to use the following term to

characterize the quality of pre-training

Pre-training Risk , Rp(f̂
p, ĥ)− E

xp,yp
[ℓ (gp (xp) , yp)] ,

where

Rp(f̂
p, ĥ) , E

xp,yp

[
ℓ
(
f̂p ◦ ĥ (xp) , yp

)]

is the expected loss, and

gp = argmin
g∈{Rd→Rk−1}

Exp,yp [ℓ (g (xp) , yp)]

is the optimal predictor for the pre-training task.

Following the existing work on representation learn-

ing (Maurer et al., 2016; Du et al., 2021; Tripuraneni et al.,

2020), throughout the paper, we make the following realiz-

ability assumption, which is also a standard assumption in

the classical PAC learning framework (Shalev-Shwartz and

Ben-David, 2014).

Assumption 3.1 (Realizability). There exist h ∈ H, fp ∈
Fp, fd ∈ Fd such that gp = fp ◦ h and gd = fd ◦ h.

This assumption posits that the representation class and

the task-dependent prediction classes are sufficiently ex-

pressive to contain the optimal functions. Importantly, the

pre-training and downstream tasks share a common optimal

representation function h. This assumption formalizes the

intuition that pre-training learns a good representation that

is also useful for downstream tasks.

As for the setting that is of most interest to NLP pre-

training, where the loss function ‘ is cross-entropy, Fp and

Fd are sets of linear functions, we make the following as-

sumption on both pre-training and downstream tasks to de-

scribe how the underlying data are generated.
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Assumption 3.2 (Multinomial Logistic Data). For a K-

class classification task with q samples, {xi, yi}qi=1, where

xi ∈ X is the input and yi ∈ {0, 1}K−1 is the one-

hot label. Let f and h be the true underlying predic-

tor layer and representation function. Then the output is

f ◦ h(x) ∈ R
K−1. Assume each label {y}i is generated

from a conditional distribution of a multinomial logistic re-

gression model: y ∼ P(·|f ◦ h(x)),

P(y|f ◦ h(x)) = ey
⊤f◦h(x)−Φ(f◦h(x))

where Φ(x) = log (1 +
∑K−1

s=1 exs), x ∈ R
K−1 and y is

an one-hot label.

Remark 3.3. It is straight forward to see that P(y|f ◦h(x))
is normalized to 1.

Intuitively, the assumption states that the data used for clas-

sification follow a multinomial logistic regression struc-

ture.

3.2 Task-Relatedness and Diversity

We shall use the following definitions, which are natural

analogies of those in Tripuraneni et al. (2020) for multi-task

transfer learning. Being in the same framework of devel-

oping the diversity of the pre-training phase, Tripuraneni

et al. (2020) aimed at improving correlations between K
separate and easy tasks, while we show the diversity across

various classes in a single but comprehensive pre-training

task has prominent effects.

To measure the “closeness” between the learned represen-

tation and true underlying feature representation, we use

the following metric, following Tripuraneni et al. (2020)

Definition 3.4. Let h ∈ H be the optimal representation

function and h′ ∈ H be any representation function. Let

fp ∈ Fp be the optimal pre-training predictor on top of h.

The pre-training representation difference is defined as:

dFp,fp(h′;h) =

inf
f ′∈Fp

E
xp,yp

[ℓ(f ′ ◦ h′(xp), yp)− ℓ(fp ◦ h(xp), yp)]

where the expectation is over the pre-training data distribu-

tion.

Intuitively, this measures the performance difference be-

tween the optimal predictor and the best possible predictor

given a representation h′.

For transfer learning, we also need to introduce a similar

concept on the downstream task.

Definition 3.5. Let h ∈ H be the optimal representation

function and h′ ∈ H be any representation function. For

the downstream task, for a function class Fd, let fd ∈ Fd

be the optimal pre-training predictor on top of a specific h.

We define the worst-case representation difference between

h and h′ ∈ H as:

dFd(h′;h) =

sup
fd∈Fd

inf
f ′∈Fd

E
xd,yd

[
ℓ(f ′ ◦ h′(xd), yd)− ℓ(fd ◦ h(xd), yd)

]

where the expectation is over the data distribution of the

downstream task. Here, the supremum is taken over

{fd|fd ∈ Fd, fd is the optimal predictor on h ∈ H}.

We now introduce the key notion of diversity, which mea-

sures how well a learned representation, say h′, from the

pre-training task can be transferred to the downstream task.

Definition 3.6. Let h ∈ H be the optimal representation

function. Let fp ∈ Fp be the optimal pre-training predic-

tor on top of h. The diversity parameter ν > 0 is the

largest constant that satisfies

dFd(h′;h) ≤ dFp,fp(h′;h)
ν

, ∀h′ ∈ H. (1)

The interpretation of ν is that it serves as a task-relatedness

parameter. While Definition 3.4- 3.6 are naturally defined

from inspecting the pre-training procedure, it is not trivial

to use these definitions to derive statistical guarantees. In

particular, one of our key technical challenge is to show

the least singular value of the last linear layer serves as a

lower bound of the diversity parameter when Fp and Fd

are linear function classes.

3.3 Model Complexities

Lastly, we need to introduce some notions to measure the

complexity of the function classes considered. In this pa-

per, we consider Gaussian complexity which quantifies the

extent to which the function in the class Q can be correlated

with a noise sequence of length n× r.

Definition 3.7 (Gaussian Complexity). Let µ be a prob-

ability distribution on a set X ⊂ R
d and suppose that

x1, · · · , xn are independent samples selected according to

µ. Let Q be a class of functions mapping from X to R
r.

Define random variable

Ĝn(Q) = E
gki∼N (0,1)

[
sup
q∈Q

1

n

r∑

k=1

n∑

i=1

gkiqk(xi)

]
(2)

as the empirical Gaussian complexity, where qk(xi) is the

k-th coordinate of the vector-valued function q(xi), gki
(k ∈ [r], i ∈ [n]) are independent standard normal ran-

dom variables. The Gaussian complexity of Q is Gn(Q) =
EµĜn(Q).

Our main results are stated in terms of the Gaussian com-

plexity. In Section 4.4 and 4.5 we will plug in existing re-

sults of the Gaussian complexity of certain function classes

to obtain concrete bounds.
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We will need the following worst-case Gaussian complex-

ity for the pre-training predictor within Fp

Ḡn(Fp) = max
h(x1),··· ,h(xn)

Ĝn(Fp|h(xp)), (3)

here h ∈ H and xp = x1, · · · , xn ∈ X p. Similarly we

define Ḡm(Fd) as the worst-case Gaussian complexity for

the downstream predictor within Fd.

We note that a closely related notion is Rademacher com-

plexity. The empirical Rademacher complexity and Gaus-

sian complexity only differ by a log factor (Ledoux and Ta-

lagrand, 1991). We use Gaussian complexity in this work

for its benign properties brought by Gaussian distribution.

4 MAIN RESULTS

In this section, we present our main theoretical results. In

Section 4.1 we present an analysis in terms of the diversity

parameter for general loss function under certain regularity

conditions. In Section 4.2, we specialize the result to a set-

ting that is most relevant to NLP pre-training applications,

where Fp and Fd are sets of linear functions and the loss

is cross-entropy. In this particular case, our key result will

show that one can use the singular value of the last layer

to bound the diversity parameter. In Section 4.4 and 4.5

we instantiate our bounds on two concrete representation

function classes: linear subspace and multi-layer network

to showcase our main results.

4.1 Main Theorem

In this subsection, we present our generic end-to-end trans-

fer learning guarantee for multi-class transfer learning

problems. We do not impose any specific function class

formulations. Throughout this subsection, we only make

the following mild regularity assumptions to make our re-

sults general.

Assumption 4.1 (Regularity Conditions). We assume the

following regularity conditions hold:

• In pre-training, ℓ(·, ·) is Bp-bounded, and ℓ(·, y) is

Lp-Lipschitz for all y.

• In downstream task, ℓ(·, y) is Bd-bounded and Ld-

Lipschitz for all y.

• Any predictor f ∈ Fp is L(Fp)-Lipschitz with re-

spect to the Euclidean distance.

• Predictors are bounded: ‖f ◦ h(x)‖ ≤ DX p for any

x ∈ X p, h ∈ H, f ∈ Fp. Similarly ‖f ◦ h(x)‖ ≤
DX d for any x ∈ X d, h ∈ H, f ∈ Fd.

Specifically, one can show that common task-dependent

losses satisfy these conditions. For example, when ℓ

is the cross-entropy loss for k−class classification (cf.

Section 4.2), we prove that ℓ is
√
k − 1−Lipschitz and

DX−bounded where X denotes the input data domain.

Under these assumptions, we have the following quantita-

tive guarantee.

Theorem 4.2. Under Assumption 3.1 and 4.1, for a given

fixed failure probability δ, with probability at least 1−δ we

have the Transfer Learning Risk upper bounded by:

O

(
1

ν

{
Lp

[
log (n)[L(Fp)Gn(H) + Ḡn(Fp)] +

√
kDX p

n2

]

+ Bp

√
log (1/δ)

n

}
+ LdḠm(Fd) +Bd

√
log(1/δ)

m

)
.

The first line comes from the pre-training ERM procedure

and it accounts for the error of using an approximate opti-

mal representation ĥ ≈ h. The second line characterizes

the statistical error of learning the downstream-task predic-

tor fd from m samples. Note the diversity parameter ap-

pears in the denominator, which relates the pre-training risk

to the transfer learning risk. Theorem 4.2 shows the risk

would be small if the Gaussian complexities are small. We

expect that Gn(H) ≫ Ḡm(Fd) since H is often expressive

representation functions, while Fd is linear classifiers gen-

erally. We will show concrete examples where Gn(H) and

Ḡn(Fp) are O(
√

1/n) and Ḡm scales as O(
√

1/m). We

believe this theorem applies broadly beyond the concrete

settings considered in this paper.

In comparison with previous results, transfer learning risk

analyses in (Du et al., 2021; Tripuraneni et al., 2020) focus

on scalar output. Their results cannot be applied to multi-

class transfer learning tasks. In Theorem 4.2, we generalize

the analysis in (Tripuraneni et al., 2020) to handle multi-

class classification where the output is high dimensional

(number of classes). Technically, in the proof, we intro-

duce a vector-form Rademacher complexity chain rule for

disassembling composite function classes by making use of

the vector-form Rademacher contraction property (Maurer,

2016).

4.2 Multi-class Classification with Cross-entropy

Loss

Now we specialize the general results to the setting that is

of most interest to NLP pre-training, where the loss func-

tion ℓ is cross-entropy and the Fp and Fd are sets of lin-

ear functions. This choice is consistent with the NLP pre-

training: e.g., BERT (Devlin et al., 2019) uses transform-

ers as the representation learning function class H and uses

word-embedding matrices as Fp.

Formally we define

Fp = {f |f(z) = α⊤z, α ∈ R
r×(k−1),



Blessing of Class Diversity in Pre-training

‖αs‖ ≤ c1 for all s ∈ [k − 1], ‖α⊤z‖ ≤ c2}
Fd = {f |f(z) = α⊤z, α ∈ R

r×(k′−1),

‖αs‖ ≤ c0 for all s ∈ [k′ − 1], ‖α⊤z‖ ≤ c3}
where c0, c1, c2 and c3 are some positive constants. Then

the regularity conditions are instantiated as:

• Pre-training loss ℓ(·, y) is
√
k − 1-Lipschitz and

Bp = DX p-bounded.

• Downstream loss is
√
k′ − 1-Lipschitz and Bd =

DX d-bounded.

• Any f ∈ Fp is L(Fp) = c1
√
k − 1-Lipschitz w.r.t.

the ℓ2 distance.

Next, we discuss our main assumption that relates the di-

versity parameter to a concrete quantity of the last linear

layer.

Assumption 4.3 (Lower Bounded Least Eigenvalue). Let

the optimal linear predictor at the last layer for pre-training

be αp ∈ R
r×(k−1), ν̃ , σr(α

p (αp)
⊤
) > 0 where σr is

the r-biggest eigenvalue.

Similar assumptions have been used in multi-task represen-

tation learning (Du et al., 2021; Tripuraneni et al., 2021,

2020), and are shown to be necessary (Maurer et al., 2016;

Du et al., 2021). Different from their versions, our as-

sumption is tailored for the multi-class classification set-

ting. We provide proof sketches on how ν̃ serves as a lower

bound for the diversity parameter ν (cf. Lemma 4.5) in

Section 4.3, where we introduce new techniques for analy-

sis.

Intuitively, this assumption ensures that the pre-training

task matrix spans the entire r-dimensional space and thus

covers the output of the optimal representation h(·) ∈ R
r.

This is quantitatively captured by the σr(α
p (αp)

⊤
), which

measures how spread out these vectors are in R
r.

We now state our theorem for this specific setting.

Theorem 4.4. Under Assumption 3.1, 3.2, 4.3, with prob-

ability at least 1 − δ we have the Transfer Learning Risk

upper bounded by:

O

(
1

ν̃

{
√
k

[
log (n)[

√
kGn(H) + Ḡn(Fp)] +

√
kDX p

n2

]

+DX p

√
log (1/δ)

n

}
+
√
k′ E

X d
Ĝm(Fd|ĥ ◦ xd)

+ σ

√
log(1/δ)

m
+DX d

√
log(1/δ)

m

)

Here EX dĜm(Fd|ĥ ◦ xd) is Gaussian complexity of em-

beddings

ĥ ◦ xd = {ĥ(x1), · · · , ĥ(xm)|xd = x1, · · · , xm ∈ X d}

where the expectation is over X d, and σ2 =
1
m supf∈Fd

∑m
i=1 V ar(ℓ(f ◦ ĥ(xd

i ), y
d
i )) is the maximal

variance over Fd.

We remark that in Theorem 4.4, since we specialize to

the case where Fp and Fd are sets of linear functions,

we can replace the term Ld · Ḡm(Fd) in Theorem 4.2 by

(
√
k′ · EX dĜm(Fd|ĥ ◦ xd) + σ

√
log(1/δ)/m) by utilizing

the functional Bernstein inequality. This improvement can

help us obtain Theorem 4.11. See Appendix A.2 for details.

Now we discuss the interpretation of Theorem 4.4. Typ-

ically, Ḡn(Fp) is much smaller than Gn(H) because

Gn(H) represents the complexity of the representation

function, which is often complex. In practice, n is often

large. Therefore, in the benign case where ν̃ = Θ(k)
(when the condition number of αp is O(1)), the dominat-

ing term will be Gn(H). As we will show in the following

subsections, this term typically scales as O(
√

1/n). To-

gether, the theorem clearly shows when 1) the number of

pre-training data is large, and 2) the least singular value

of the last linear layer for pre-training is large, the trans-

fer learning risk is small. On the other hand, if ν̃ is small,

then the bound becomes loose. This is consistent with prior

counterexamples on multi-task pre-training (Maurer et al.,

2016; Du et al., 2021) where the diversity is shown to be

necessary.

4.3 What is diversity parameter for Linear Layers?

To prove Theorem 4.4, one of our key technical contribu-

tions is to show the following lemma that bridges the gap

between Theorem 4.2 and Theorem 4.4

Lemma 4.5. Under Assumption 3.1, 3.2, 4.3, we have

dFd(ĥ;h) ≤ 1

Ω(ν̃)
dFp,fp(ĥ;h). (4)

In intuition, it says that ν̃ could serve as a lower bound

for the diversity parameter ν. The take-away message is

that we may wish to achieve a higher ν̃ in order to increase

the diversity of the pre-training models, thus improving its

generality to various downstream tasks.

Technically, in proving the results we shall need to apply

a modified self-concordance condition for better character-

izing multinomial logistic regression (Bach et al., 2010).

We note that the proofs of this part is very different from

the multi-task setting studied in previous works (Du et al.,

2021; Tripuraneni et al., 2020).

We define some additional notations for clarity and sim-

plicity in this subsection. Let α′ and α denote the

parameters for f̂p and fp respectively. Let Φ(x) =

log (1 +
∑k−1

s=1 e
xs), for x ∈ R

k−1, which is widely seen

in multinomial regression tasks because the cross-entropy

loss is inherently analogous to multinomial logistic loss.
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In this subsection, we emphasize on the techniques re-

quired to show the following lemma, which incorporates

the main difficulty in the proof for Lemma 4.5.

Lemma 4.6. The Kullback-Leibler (KL) divergence be-

tween the true underlying conditional distribution of a

multinomial logistic model and the distribution we ob-

tained can be bounded from both sides with quadratic loss,

c0e
−10q0

∥∥∥α′⊤ĥ(xp)− α⊤h(xp)
∥∥∥
2

≤ KL
[
P(·|α⊤h(xp)),P(·|α′⊤ĥ(xp))

]

≤ 1

2

∥∥∥α′⊤ĥ(xp)− α⊤h(xp)
∥∥∥
2

,

where c0 = 1
2λmin(Φ

′′(α⊤h(xp))) is the least

eigenvalue of Hessian matrix for Φ, q0 =
max(‖α′⊤ĥ(xp)‖, ‖α⊤h(xp)‖).
Remark 4.7. For the left hand side, the expression is related

to the least eigenvalue of the Hessian matrix at α⊤h(xp),
whereas the least eigenvalue would depend on an unknown

intermediate-term x′ if we adopt Taylor’s expansion.

Proof of Lemma 4.6. Below we use x for xp for clarity. For

generalized linear models,

KL
[
P(·|α⊤h(x)),P(·|α′⊤ĥ(x))

]
= Φ(α′⊤ĥ(x))−

Φ(α⊤h(x)) −∇Φ(α⊤h(x))⊤(α′⊤ĥ(x)− α⊤h(x)).

Hence the divergence serves as the second-order remainder

term according to Taylor’s theorem.

For the right hand side, the gradient of Φ(x) at ith-

coordinate ∂Φ
∂xi

= exi/1+
∑

s exs , the Hessian matrix is

∂2Φ

∂xi∂xj
=






exi ·(1+∑
s 6=i e

xs )

(1+
∑

s exs )2 , i = j

−exiexj

(1+
∑

s exs )2 , i 6= j.

Let σ(x) = 1
1+

∑
s exs

[ex1 , · · · , exk−1]
⊤

, the Hessian ma-

trix can be restated as

∇2Φ = diag(σ(x)) − σ(x)σ(x)⊤ .

For any non-zero vector y, we have

y⊤∇2Φy =
∑

i

σ(x)iy
2
i −

(
σ(x)⊤y

)2

≤ max(σ(x)i)‖y‖2

≤ ‖y‖2

which implies its largest eigenvalue is no bigger than 1.

For the left hand side, it is very straightforward to see that

the Hessian matrix is positive semi-definite. Though being

non-negative, we point out that bounding the second-order

remainder terms from below with quadratic loss requires

new techniques which we discuss below.

Since multinomial logistic regression is not strongly-

convex, we need to find new techniques that would present

benign properties to characterize the local landscape. Be-

low we introduce a class of convex functions called mod-

ified self-concordant functions, which would be useful in

quantitative analysis.

Definition 4.8 (Modified Self-concordance). Suppose F :

R
p 7→ R is a three times differentiable convex function

such that for some R > 0, for all u, v ∈ R
p, the function

g : t 7→ F (u+ tv) satisfies for all t ∈ R

|g′′′(t)| ≤ R‖v‖2 × g′′(t) (5)

Properties of self-concordance Self-concordance gives

nice characterizations of local curvature of convex func-

tions which plays important role in describing local con-

vexity (Bach, 2014). Some useful results are given upon

this condition (see (Bach et al., 2010, Proposition 1)),

we list out the three main inequalities as below: For all

w, v ∈ R
p, t ∈ R,

F (w + v) ≥ F (w) + vF ′(w)+

v⊤F ′′(w)v
R2‖v‖22

·
(
e−R‖v‖2 + R‖v‖2 − 1

)
,

F (w + v) ≤ F (w) + vF ′(w)+

v⊤F ′′(w)v
R2‖v‖22

·
(
eR‖v‖2 −R‖v‖2 − 1

)
,

e−tR‖v‖2F ′′(w) � F ′′(w + tv) � etR‖v‖2F ′′(w).

The first two inequalities are refined characterizations of

Taylor’s expansion, while the last line presents bounds for

Hessian matrix in the sense of positive semi-definiteness.

We find that multinomial logistic loss satisfies the modified

self-concordance condition with R = 5.

Proposition 4.9. For all u, v ∈ R
k−1, the function g : t 7→

Φ(u+ tv) satisfies

|g′′′(t)| ≤ 5‖v‖2g′′(t).

See Appendix A.2 for detailed derivations. Equipped with

self-concordance, we are ready to give a lower bound of the

divergence,

Φ(α′⊤ĥ(x)) − Φ(α⊤h(x))−∇Φ(α⊤h(x))⊤v

≥ 1

2
v⊤e−5‖v‖2F ′′(α⊤h(x))v

≥ 1

2
λmin(Φ

′′(α⊤h(x)))‖v‖2e−5‖v‖2

≥ 1

2
λmin(Φ

′′(α⊤h(x)))‖v‖2e−5(‖α′⊤ĥ(x)‖+‖α⊤h(x)‖)

≥ 1

2
λmin(Φ

′′(α⊤h(x)))‖v‖2 exp(−10q0)
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where v = α′⊤ĥ(x)− α⊤h(x). This completes our proofs

for Lemma 4.6. Please find the remaining details for com-

pleting the proof of Lemma 4.5 in Appendix A.2.

4.4 Linear Subspace Representation

Based on cross-entropy loss and linear predictors intro-

duced in Section 4.2, we further assume the underlying

representation is a projection onto a low-dimensional sub-

space. For r ≪ d, let the representation be

H = {h|h(x) = B⊤x,B ∈ R
d×r},

where B is a matrix with orthonormal columns. We re-

quire some additional regularity conditions. Following

prior work (Du et al., 2021; Tripuraneni et al., 2020), we

assume that ‖x‖ ≤ D and input data distribution satisfies

the following condition.

Definition 4.10. The covariate distribution Px(·) is Σ-sub-

gaussian if for all v ∈ R
d,

E[exp(v⊤x)] ≤ exp

(‖Σ1/2v‖2
2

)

where the covariance Σ further satisfies σmax(Σ) ≤ C and

σmin(Σ) ≥ c > 0 for universal constants c, C.

We have the following theorem that guarantees the perfor-

mance of transfer learning.

Theorem 4.11. Suppose Assumption 3.1, 3.2, and 4.3

hold, data generation follows Definition 4.10. For a suf-

ficiently large constant c4, we assume n ≥ c4d,m ≥ c4r,

D ≤ c4(min(
√
dr2,

√
rm)). Then with probability at least

1 − δ, we have the Transfer Learning Risk upper bounded

by:

O

(
1

ν̃

[
√
k log (n)

(√
kdr2

n
+ k

√
r

n

)
+

k

n2
+

√
log (1/δ)

n

]

+ (k′)
3
2

√
r

m
+ k′

√
log (1/δ)

m

)

To interpret this bound, consider the practically relevant

scenario where k′ = O(1) (e.g., sentiment analysis), m ≪
n, k ≪ n and r ≪ d, in the benign case ν̃ = Ω(k),

we have the transfer learning risk Õ
(√

dr2/n +
√

r/m
)

.

Note that this is exactly the desired theoretical guarantee

because the first term accounts for using all pre-training

data to learn the representation function and the second

term accounts for using the downstream data to learn the

last linear layer. This is significantly better than not us-

ing pre-training, in which case the risk scales O
(√

d/m
)

.

Furthermore, for the linear representation learning setting,

classic minimax bounds present a standardΩ(
√

d/m) lower

rate, which is also worse than our upper bound with rep-

resentation learning (Foster et al., 2018; Abramovich and

Grinshtein, 2018; Barnes and Ozgur, 2019).

4.5 Deep Neural Network Representation

In this subsection, we assume the underlying representation

function to be a σ = tanh-activated neural network, which

is often used in practice. Predictors are still required to be

linear functions at the interest of NLP pre-training, i.e.,

H = {h|h(x) = WKσ (WK−1σ (· · ·σ (W1x)))},
Fp = {f |f(z) = α⊤z, α ∈ R

r×(k−1),

‖αs‖ ≤ c1M(K)2, s ∈ [k − 1].‖α⊤z‖ ≤ c2},
Fd = {f |f(z) = α⊤z, α ∈ R

r×(k′−1),

‖αs‖ ≤ c0M(K)2, s ∈ [k′ − 1].‖α⊤z‖ ≤ c3}.

Here M refer to constants that only depend on the net-

work configuration, which satisfy: 1) for each p ∈
[K], ‖Wp‖1,∞ ≤ M(p), and 2) ‖WK‖∞→2 ≤ M(K).

Adapt Gaussian complexity results in Golowich et al.

(2018) we have

Gn(H) ≤ Õ

(
rM(K)3 ·D

√
K ·ΠK−1

p=1 M(p)√
n

)
,

Ḡn(Fp|h ◦ xp) ≤ O

(
(k − 1)M(K)3√

n

)
.

Now we are ready to state our theorem for this practical

setting of NLP pre-training.

Theorem 4.12. Under Assumption 3.1, 3.2, and 4.3, as-

sume M(K) ≥ c5 for a universal constant c5. Then with

probability at least 1 − δ, Transfer Learning Risk is upper

bounded by

Õ

(
krM(K)3 ·D

√
K ·ΠK−1

p=1 M(p)

ν̃
√
n

+
k

3
2M(K)3

ν̃
√
n

+
k′

3
2M(K)3√

m

)
.

To interpret this bound, one can easily show that a stan-

dard supervised learning paradigm without pre-training

would have a sample complexity of Õ(krM(K)3 ·D
√
K ·

ΠK−1
p=1 M(p)/

√
m). Again, this theorem demonstrates:

when 1) n ≫ m and 2) ν̃ is large, the rate of transfer

learning risk can be much smaller than that of the standard

supervised learning algorithm.

5 CONCLUSION AND FUTURE WORK

This work theoretically prove the benefit of multi-class pre-

training using the notion of class diversity. Our proof uses

the vector-form Rademacher complexity chain rule and a

modified self-concordance condition.
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Future work First, our work is based on realizability as-

sumptions (cf. Assumption 3.1 and 3.2) that are commonly

adopted in transfer learning and classical PAC learning

framework in order to present non-trivial statistical guar-

antees (Maurer et al., 2016; Du et al., 2021; Tripuraneni

et al., 2020; Shalev-Shwartz and Ben-David, 2014). We

believe our theorems can be extended to agnostic versions

by relaxing these assumptions.

Second, if the target task is well-aligned with the source

tasks, one can define more fine-grained notions to capture

the task relevance. An example is (Chen et al., 2022), in

which regression setting is studied. One interesting direc-

tion is extending their task relevance definition to the clas-

sification setting.

Finally, there has been some interesting recent work show-

ing that one can do pre-training (i.e., masked word predic-

tion) with the downstream dataset itself (which is usually

smaller than typical pre-training corpora) and get good re-

sults (Krishna et al., 2022). Compared to the setting studied

in this work, it might be harder to justify its performance

through a “diversity” perspective because their settings are

generally beyond the standard transfer learning scheme.

Nevertheless, our interpretation of ν as a task-relatedness

parameter might help shed light on these results, which is

worthy of investigation.
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A TECHNICAL PROOFS

In Section 3, we have introduced Gaussian complexity. Let us restate for clarity.

Let µ be a probability distribution on a set X ⊂ R
d and suppose that x1, · · · , xn are independent samples selected

according to µ. Let Q be a class of functions mapping from X to R
r. Define random variable

Ĝn(Q) = E

[
sup
q∈Q

1

n

r∑

k=1

n∑

i=1

gkiqk(xi)

]
(6)

as the empirical Rademacher complexity, where qk(xi) is the k-th coordinate of the vector-valued function q(xi), gki (k ∈
[r], i ∈ [n]) are independent Gaussian N (0, 1) random variables. The Gaussian complexity of Q is Gn(Q) = EµĜn(Q).

Analogously to the above we can define the empirical Rademacher complexity for vector-valued functions as

R̂n(Q) = E

[
sup
q∈Q

1

N

r∑

k=1

N∑

i=1

ǫkiqk(xi)

]
(7)

where ǫki(k ∈ [r], i ∈ [n]) are independent Rademacher Rad(12 ) random variables. Its population counterpart is defined as

Rn(Q) = Eµ[R̂n(Q)]. Note that the superscripts existing in Ĝ and R̂ imply that they are empirical measures.

A.1 Proofs for Section 4.1

We illustrate Theorem 4.2 in two stages. First we show pre-training representation difference can be upper bounded by

constants and function class complexities. Then we transfer it to the downstream task through the diversity parameter.

Pre-training

Theorem A.1. In pre-training, with probability at least 1− δ, it holds that:

dFp,fp(h′;h)

≤ 4
√
πLpGn(Fp ◦ H) + 4Bp

√
log(2/δ)

n

≤ 4096Lp

[√
k − 1DX p

n2
+ log(n)[L(Fp)Gn(H) + Ḡn(Fp)]

]
+ 4Bp

√
log(2/δ)

n
.

Proof. We begin with

dFp,fp(h′;h) ≤ 2 sup
f∈Fp,h∈H

|Rp(f
p, h)− R̂p(f

p, h)|.

From the definition of Rademacher complexity (Wainwright, 2019, Theorem 4.12), with probability at least 1−2δ we have

sup
fp∈Fp,h∈H

|Rp(f
p, h)− R̂p(f

p, h)| ≤ 2Rn(ℓ(Fp ◦ H)) + 2Bp

√
log(1/δ)

n
.

Next, we apply the vector contraction inequality (Maurer, 2016). For function class F whose output is in R
K with

component fk(·), and the function (hi)s are some L-Lipschitz functions: RK 7→ R, we have

Eǫ sup
f∈F

n∑

i=1

ǫihi(f(xi)) ≤
√
2LEǫ sup

f∈F

n∑

i=1

K∑

k=1

ǫikfk(xi). (8)

Hence for loss function ℓ satisfying |ℓ(x)− ℓ(y)| ≤ Lp‖x−y‖2, ∀x, y ∈ R
k−1, the f takes value in R

k−1 with component

functions fs(·), s ∈ [k − 1], we have that population Rademacher complexity can be bounded by

Rn(l(Fp ◦ H)) = EXp

1

n
Eǫ sup

f∈Fp,h∈H

n∑

i=1

ǫiℓ(f ◦ h(xp
i ))
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≤ EXp

1

n

√
2Lp

Eǫ sup
f∈Fp,h∈F

n∑

i=1

k−1∑

s=1

ǫisfs(h(x
p
i ))

=
√
2LpRn(Fp ◦ H)

≤ √
πLpGn(Fp ◦ H)

where the last line uses the fact that Rademacher complexity is upper bounded by Gaussian complexity: Rn(Fp ◦ H) ≤√
π
2Gn(Fp ◦ H). Therefore we have, with probability at least 1− δ,

dFp,fp(h′;h)

≤ 4
√
πLpGn(Fp ◦ H) + 4Bp

√
log(2/δ)

n

≤ 4096Lp

[√
k − 1DX p

n2
+ log(n)[L(Fp)Gn(H) + Ḡn(Fp)]

]
+ 4Bp

√
log(2/δ)

n
,

where the last line uses decomposition of Gn(Fp ◦ H) into the individual Gaussian complexities of H and Fp, leverages

an expectation version of novel chain rule for Gaussian complexities (Lemma A.2).

In the spirit of Gaussian complexity decomposition theorem (Tripuraneni et al., 2020, Theorem 7), we introduce the

following decomposition result upon vector-form Gaussian complexities.

Lemma A.2. We have the following vector form Gaussian complexity decomposition:

Ĝn(Fp ◦ H) ≤ 8
√
k − 1DX p

n2
+ 512C(Fp ◦ H) · log (n) (9)

where we use C(Fp ◦ H) = L(Fp) · Ĝn(H) + Ḡn(Fp) to represent the complexity measure of the composite function

class.

Proof. Our proof extends (Tripuraneni et al., 2020, Theorem 7), which focuses on a multi-task scalar formulation. We

further extend it to multi-class vector formulation. Specifically, on top of the representation class H, they need to handle

F⊗t (t is the number of tasks) while our objective is a single function class Fp of higher dimension (Fp is (k − 1)-
dimensional for a k-class classification task). We note that our proof technique and that of previous works (Tripuraneni

et al., 2020; Maurer et al., 2016) both hinge on several properties of Gaussian processes.

To bound the empirical composite function class Fp(H), note that vector-form Gaussian complexity is defined as

Ĝn(Fp ◦ H) = E

[
1

n
˙supf(h)∈Fp(H)

k−1∑

s=1

n∑

i=1

gisfs(h(x
p
i ))

]

=
1√
n
E[ sup

f(h)∈Fp(H)

Zf(h)]

where we define mean-zero process Zf(h) = 1√
n

∑k−1
s=1

∑n
i=1 gisfs(h(x

p
i )), then E supf(h) Zf(h) = E supf(h) Zf(h) −

Zf ′(h′) ≤ E supf(h),f ′(h′) Zf(h) − Zf ′(h′). We further notice that Zf(h) − Zf ′(h′) is a sub-gaussian random variable

parameter

d2(f(h), f ′(h′)|xp) =
1

n

n∑

i=1

‖f(h(xp
i ))− f ′(h′(xp

i ))‖
2

=
1

n

k−1∑

s=1

n∑

i=1

(fs(h(x
p
i ))− f ′

s(h
′(xp

i )))
2

Dudley’s entropy integral bound (Wainwright, 2019, Theorem 5.22) shows

E sup
f(h),f ′(h′)

Zf(h) − Zf ′(h′)
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≤ 2E sup
d(f(h),f ′(h′)|xp)≤δ

Zf(h) − Zf ′(h′) + 32J (
δ

4
, DX p)

= 2E sup
d(f(h),f ′(h′)|xp)≤δ

Zf(h) − Zf ′(h′) + 32

∫ DXp

δ
4

√
logN(u;Fp(H)|xp)du.

It is straightforward to see the first term follows:

E sup
d(f(h),f ′(h′)|xp)≤δ

Zf(h) − Zf ′(h′) ≤ E[‖g‖]δ ≤
√
n(k − 1)δ

We now turn to bound the second term by decomposing the distance metric into a distance over Fp and a distance over H.

We claim that, for arbitrary h ∈ H, f ∈ Fp, let h′ be ǫ1-close to h in empirical l2-norm w.r.t inputs xp
1 , x

p
2 · · · , xp

n. Given

h′, let f ′ be ǫ2-close to f in empirical l2 loss w.r.t h′(xp). Using the triangle inequality we have that

d(f(h), f ′(h′)|xp) =

√√√√ 1

n

n∑

i=1

‖f(h(xp
i ))− f ′(h′(xp

i ))‖

≤ d(f(h), f(h′)|xp) + d(f(h′), f ′(h′)|xp)

≤

√√√√ 1

n

n∑

i=1

‖f(h(xp
i ))− f(h′(xp

i ))‖2 + ǫ2

≤ L(Fp)

√√√√ 1

n

n∑

i=1

‖h(xp
i )− h′(xp

i )‖2 + ǫ2

= L(Fp) · ǫ1 + ǫ2,

where we have used that ‖f(x)− f(y)‖ ≤ L(Fp)‖x− y‖ for any f ∈ Fp.

As for the cardinality of the coveringCFp(H). Observe |CFp(H)| =
∑

h∈CH(xp)
|CFp

h
| ≤ |CH(xp)|·maxh∈H(xp) |CFp

h(xp)
|.

This provides a bound on the metric entropy of

logN(ǫ1 · L(Fp) + ǫ2;Fp(H)|xp) ≤ logN(ǫ1;H|xp) + max
h(xp)

N(ǫ2;Fp|h ◦ xp).

Applying the covering number upper bound with ǫ1 = ǫ
2·L(Fp) , ǫ2 = ǫ

2 gives a bound of entropy integral ofa ,

∫ DXp

δ
4

√
logN(u;Fp(H)|xp)du

≤
∫ DXp

δ
4

√

logN

(
u

2L(Fp)
;H
∣∣∣∣xp

)
du+

∫ DXp

δ
4

max
h◦xp

√
logN

(u
2
;Fp

∣∣h ◦ xp
)
du

From the Sudakov minoration theorem (Wainwright, 2019, Theorem 5.30) for Gaussian processes and the fact that packing

numbers at scale u upper bounds the covering number at scale ∀u > 0 we find:

logN(u;H|xp) ≤ 4

(√
nĜn(H)

u

)2

, logN(u;Fp|h(xp)) ≤ 4

(√
nĜn(Fp|h ◦ xp)

u

)2

.

Combining the definition of worst-case Gaussian complexity with the aforementioned results we have

Ĝn(Fp ◦ H) ≤ 2
√
k − 1δ + 256 log

4DX p

δ

(
L(Fp)Ĝn(H) + Ḡn(Fp)

)
,

substitute δ with 4DXp

n2 , proof is completed.
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Downstream learning Next we turn to the second stage and come up with theoretical guarantees by using inexact ĥ
learned from the first stage.

Theorem A.3. In the downstream task, we have that with probability at least 1− δ,

Rd(f̂
d, ĥ)−Rd(f

d, h) ≤ dFd(ĥ;h) + 4
√
πLd · Ḡm(Fd) + 4Bd

√
log(2/δ)

m

Proof. Assumption 3.1 implies

Exd,yd

[
ℓ
(
gd
(
xd
)
, yd
)]

= Rd(f
d, h).

To start, let f̃ = argminf∈Fd Rd(f, ĥ) and Rd(f̂
d, ĥ)−Rd(f

d, h) equals
[
Rd(f̃ , ĥ)−Rd(f

d, h)
]
+
[
Rd(f̂

d, ĥ)−Rd(f̃ , ĥ)
]

where the first term satisfies

inf
f̃∈Fd

[
Rd(f̃ , ĥ)−Rd(f

d, h)
]

≤ sup
fd∈Fd

inf
f̃∈Fd

[
Rd(f̃ , ĥ)−Rd(f

d, h)
]

= dFd(ĥ, h)

The second term follows the similar lines of Theorem A.1

Rd(f̂
d, ĥ)−Rd(f̃ , ĥ) ≤ 4

√
πLd

EX dĜm(Fd|ĥ ◦ xd) + 4Bd

√
log (1/δ)

m

Again we make use of the worst-case argument

EX dĜm(Fd|ĥ ◦ xd) ≤ Ḡm(Fd).

Combining the results gives the statement.

Proof of main Theorem 4.2 Having introduced class diversity parameter, proof is directly completed via combination

of Theorem A.1 and Theorem A.3.

A.2 Proofs for Section 4.2

We could provide a better dependence on the boundedness noise parameters in Theorem A.3 using Bernstein inequality.

We present the following corollary which has data-dependence in the Gaussian complexities.

Corollary A.4. Presuming Assumption 3.1 holds, we have that then with probability at least 1− δ,

Rd(f̂
d, ĥ)−Rd(f

d, h)

≤ dFd(ĥ;h) + 4
√
πLd · EX dĜm(Fd|ĥ ◦ xd) + 4σ

√
log(2/δ)

m
+ 50Bd log(2/δ)

m

Proof. Denote Z = supf |R̂d(f, ĥ)−Rd(f, ĥ)|, we apply the functional Bernstein inequality (Massart, 2000, Theorem 3)

to control the fluctuations. With probability at lest 1− δ, we have

Z ≤ 2E[Z] + 4
σ√
m

√
log(

1

δ
) + 35

Bd

m
log(

1

δ
), (10)

where σ2 = 1
m supf

∑m
i=1 V ar(ℓ(f ◦ ĥ(xd

i ), y
d
i )). Thus

E[Z] ≤ 2EX dR̂m(l(Fd)|ĥ ◦ xd)

≤ 2EX d

√
2LdR̂m(Fd|ĥ ◦ xd)

≤ 2EX d

√
πLdĜm(Fd|ĥ ◦ xd),

where the second line uses vector-based contraction principle, the last line upper bounds the empirical Rademacher com-

plexity by Gaussian counterparts.
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Proof of Theorem 4.4 Observe that

ℓ(η; y) = −y⊤η + log (1 +
k−1∑

s=1

eηs), ℓ(η; y) ≤ ‖η‖

and ∣∣∣∣
∂ℓ(η; y)

∂ηi

∣∣∣∣ =
∣∣∣∣∣yi −

eηi

1 +
∑k−1

s=1 e
ηs

∣∣∣∣∣ ,

|∇ηℓ(η; y)| ≤
√
k − 1,

so it is Lp =
√
k − 1−Lipschitz. By definition the class Fp with parameters ‖αs‖2 ≤ O(1), s ∈ [k − 1], we obtain that

L(Fp) = O
(√

k − 1
)

since for any x, y ∈ R
r, any f ∈ Fp we have

‖f(x)− f(y)‖2 = ‖α⊤x− α⊤y‖2

≤
k−1∑

s=1

(〈αs, x− y〉)2

≤
k−1∑

s=1

‖αs‖2‖x− y‖2

≤ c21(k − 1)‖x− y‖2

In conclusion we have

• Pre-training loss ℓ(·, yp) is
√
k − 1-Lipschitz.

• Downstream loss ℓ(·, yd) is
√
k′ − 1-Lipschitz.

• Linear layer f is L(Fp) = O
(√

k − 1
)
-Lipschitz.

Consider task-specific function classes for characterizing class-diversity parameters. From Lemma 4.6 and Lemma 4.5 we

know that

ν = Ω(ν̃), ν̃ = σr(α1α
⊤
1 ).

Combining these pieces of results then the proof is completed.

With the following proposition, we interpret the cross-entropy loss in the well-specified model under our multinomial

logistic model distribution.

Proposition A.5. Under Assumption 3.2, for the cross entropy loss ℓ we have

Ey∼P(·|f◦h(x))[ℓ(f̂ ◦ ĥ(x), y)]− ℓ(f ◦ h(x), y)] = KL
[
P(·|f ◦ h(x)),P(·|f̂ ◦ ĥ(x))

]

= KL
[
P(·|α⊤h(x)),P(·|α′⊤ĥ(x))

]
.

Recall that α′ and α are parameters for f̂ and f respectively. The proof is straightforward by applying Assumption 3.2.

Proof of Proposition 4.9

Proof. Let P (t; v0) = 1 +
∑

s e
us+tvs and P (t; vi) =

∑
s v

i
se

us+tvs , i > 1. Then we use multinomials P to represent

derivatives of g(t)

g(t) = log(P (T ;V 0))

g′(t) =
P (t; v1)

P (t; v0)
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g′′(t) =
P (t; v2)P (t; v0)

P (t; v0)2

g′′′(t) =
P (t; v3)P (t; v0)2 − 3P (t; v2)P (t; v1)P (t; v0) + 2P (t; v1)3

P (t; v0)3

Let rs = eus+vst, hence

g′′(t) =
(
∑

s v
2
srs) · (1 +

∑
s rs)− (

∑
s vsrs)

2

(1 +
∑

s rs)
2

=

∑
i<j rirj(vi − vj)

2 +
∑

i v
2
i ri

(1 +
∑

s rs)
2

In the following we expand g′′′(t) as:

∑
i<j rirj(vi − vj)

2[
∑

k(vi + vj − 2vk)rk] +
∑

i v
3
i ri +

∑
i

∑
j v

2
i rirj(2vi − 3vj)

(1 +
∑

s rs)
3

=

∑
i<j rirj(vi − vj)

2[
∑

k(vi + vj − 2vk)rk] +
∑

i v
2
i ri

(
vi(1 + 2

∑
j rj)− 3

∑
j vjrj

)

(1 +
∑

s rs)
3

,

observe that

1

1 +
∑

s rs

∣∣∣∣∣
∑

k

(vi + vj − 2vk)rk

∣∣∣∣∣ ≤
∑

k

|vi + vj − 2vk|
rk

1 +
∑

s rs
≤ 4‖v‖2

1

1 +
∑

s rs

∣∣∣∣∣∣
vi(1 + 2

∑

j

rj)− 3
∑

j

vjrj

∣∣∣∣∣∣
≤ 5‖v‖2

Substitute these into definition of self-concordance then proof is completed.

Now we are ready to give a lower bound of KL−divergence,

Φ(α′⊤ĥ(x)) − Φ(α⊤h(x))−∇Φ(α⊤h(x))⊤v

≥ 1

2
v⊤e−5‖v‖2F ′′(α⊤h(x))v

≥ 1

2
λmin(Φ

′′(α⊤h(x)))‖v‖2e−5‖v‖2

≥ 1

2
λmin(Φ

′′(α⊤h(x)))‖v‖2e−5(‖α′⊤ĥ(x)‖+‖α⊤h(x)‖)

≥ 1

2
λmin(Φ

′′(α⊤h(x)))‖v‖2 exp(−10q0)

where v = α′⊤ĥ(x) − α⊤h(x). Proof for Lemma 4.6 is completed.

Proof of Lemma 4.5

Proof. For function classes Fp, Fd and data samples generated from multinomial logistic regression distribution (see

Assumption 3.2), the worst-case representation difference is similar to that in multi-task analysis (Tripuraneni et al., 2020,

Lemma 1):

dFd(ĥ;h) = sup
fd∈Fd

inf
f ′∈Fd

E

{
ℓ(f ′ ◦ ĥ(xd), yd)− ℓ(fd ◦ h(xd), yd)

}

≤ sup
‖αs‖≤c0

inf
‖α′

s‖≤c0

1

2
EX d

∥∥∥α′⊤ĥ(xd)− α⊤h(xd)
∥∥∥
2

, here s ∈ [k′ − 1]
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=

k′−1∑

s=1

sup
‖αs‖≤c0

inf
‖α′

s‖≤c0

1

2
EX d

(
α′⊤

s ĥ(x
d)− α⊤

s h(x
d)
)2

≤ (k′ − 1)
c20
2
σ1(Λsc(ĥ, h)).

The first line is because of Proposition A.5 and Lemma 4.6. In the last line, the inner infima is considered as the partial

minimization of a convex quadratic form (see (Boyd and Vandenberghe, 2004, Example 3.15, Appendix A.5.4)).

Define population covariance if representations ĥ and h as

Λ(ĥ, h) =

[
E[ĥ(x)ĥ(x)⊤] E[ĥ(x)h(x)⊤]
E[h(x)ĥ(x)⊤] E[h(x)h(x)⊤]

]
=

[
Fĥĥ Fĥh
Fhĥ Fhh

]

Λsc(ĥ, h) = Fhh − Fhĥ(Fĥĥ)
†Fĥh is the generalized Schur complement of h with respect to ĥ.

Next we control the pre-training representation differenceound is subtler,

dFp,fp(ĥ;h)

≥ inf
α′

c0EX p

[
exp(−10max(‖α′⊤ĥ(xp)‖, ‖α⊤h(xp)‖)) ·

∥∥∥α′⊤ĥ(xp)− α⊤h(xp)
∥∥∥
2
]
,

which is because of Proposition A.5 and Lemma 4.6.

It is known

EX p

[
exp(−10max(‖α′⊤ĥ(xp)‖, ‖α⊤h(xp)‖)) ·

∥∥∥α′⊤ĥ(xp)− α⊤h(xp)
∥∥∥
2
]

≥ e−10c2
∥∥∥α′⊤ĥ(xp)− α⊤h(xp)

∥∥∥
2

Hence this metric could be claimed to be lower bounded as,

Ω

(
inf
α′

Exp

∥∥∥α′⊤ĥ(xp)− α⊤h(xp)
∥∥∥
2
)

= Ω
(
α⊤
1 Λsc(ĥ;h)α1

)

= Ω
(
tr(Λsc(ĥ;h)C)

)
, where C = α1α

⊤
1 .

In the second line, we redefine α1 as parameter α of pre-training for clarity. In this way we conclude that,

dFp,fp(ĥ;h) = Ω
(
tr(Λsc(ĥ, h)C)

)
= Ω

(
σ1(Λsc(ĥ, h))σr(C)

)
,

where C implies expansion of representation h(x) ∈ R
r, and its condition number σr(C) indicates how spread out this

vector is in R
r:

C =

k−1∑

s=1

(α1)s(α1)
⊤
s = α1α

⊤
1 , α1 ∈ R

r×(k−1)

Aforementioned calculations show

dFd(ĥ;h) ≤ 1

Ω(ν̃)
dFp,fp(ĥ;h), ν̃ = σr(C).

Proof is completed.

A.3 Proofs for Section 4.4

Proof. We begin with bounding each of the complexity terms in the Corrolary A.4.

We make use of data-dependent inequalities (Tripuraneni et al., 2020, Lemma 4) to help upper bound related quantities.

Intuitively Definition 4.10 implies tail-bound properties in a sub-gaussian process.
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•

Ĝn(H) =
1

n
E

[
sup
B∈H

r∑

k=1

n∑

i=1

gkib
⊤
k x

p
i

]

= O

(√
dr2

n

)

•

Ĝn(Fp|h ◦ xp) =
1

n
E

[
sup

α1,··· ,αk−1

k−1∑

s=1

n∑

i=1

gisα
⊤
s B

⊤xp
i

]

=
c1(k − 1)

n
E‖

n∑

i=1

gisB
⊤xp

i ‖

=
c1(k − 1)√

n

√
tr(B⊤ΣB)

then Ḡn(Fp) ≤ O
(
(k − 1)

√
r
n

)
.

• Similarly,

Ĝm(Fd|h ◦ xd) ≤ c1(k
′ − 1)√
m

√√√√
r∑

i=1

σi(B̂⊤ΣB̂)

then Ḡm(Fd) ≤ O
(
(k′ − 1)

√
r
m

)
.

• boundedness parameter DX p = supα,B ‖α⊤B⊤x‖ = c2

• cross entropy ℓ(η; y) = −y⊤η + log (1 +
∑k−1

s=1 e
ηs), then

∣∣∣∂ℓ(η;y)∂ηi

∣∣∣ =
∣∣∣yi − eηi

1+
∑k−1

s=1 eηs

∣∣∣, |∇ηℓ(η; y)| ≤
√
k − 1,

so it is Lp =
√
k − 1−Lipschitz in its first coordinate uniformly over its second for pre-training and Ld =√

k′ − 1−Lipschitz for downstream task.

• |ℓ(η; y)| ≤ O(‖η‖), where ‖η‖ = ‖x⊤Bpα‖ ≤ c2.

In Corollary A.4, we define and compute the maximal variance term σ2 as,

σ2 =
1

m
sup

fd∈Fd

m∑

i=1

V ar(ℓ′(fd ◦ ĥ(xd
i ), y

d
i ))

≤ k′ − 1

m
sup

fd∈Fd

m∑

i=1

V ar(fd ◦ ĥ(xd
i ))

=
k′ − 1

m
sup

‖αs‖≤O(1)

k′−1∑

s=1

m∑

i=1

V ar(α⊤
s B̂

⊤xd
i )

=
(k′ − 1)2

m
sup

‖αs‖≤O(1)

m∑

i=1

(αsB̂)⊤ΣB̂αs

= (k′ − 1)2O(‖B̂ΣB̂‖2)
= O

(
(k′ − 1)2

)

With these results in hand, we are now prepared to apply Corollary A.4, w.p. at least 1− δ

Rd(f̂
d, ĥ)−Rd(f

d, h)
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≤ dFd(ĥ;h) + 4
√
πLd · EX dĜm

(
Fd
∣∣∣ĥ ◦ xd

)
+ 4σ

√
log (2/δ)

m
+ 50Bd log (2/δ)

m

where Ĝm(Fd|ĥ ◦ xd) is defined in Theorem 4.4.

Thus Ld ·EX dĜm

(
Fd
∣∣∣ĥ ◦ xd

)
≤ LdḠm(Fd) ≤ O((k′ − 1)

3
2

√
r
m ), σ ≤ O(k′ − 1), and Bd ≤ O(

√
k′ − 1D). Further,

we obtain upper bound of worst-case representation difference by diversity parameter and adoption of Theorem A.1: w.p.

at least 1− δ

dFd(ĥ;h)

≤ dFp,fp(ĥ;h)

ν

≤ 1

ν

{
4096L

[
log (n) · [L(Fp) ·Gn(H) + Ḡn(Fp)] +

√
k − 1DX p

n2

]
+ 4B

√
log (2/δ)

n

}

.
1

ν

{
√
k log (n)

(√
kdr2

n
+ k

√
r

n

)
+

k

n2
+

√
log (1/δ)

n

}

The last thing to consider for completing the proof for Theorem 4.11 is giving accurate characterization of diversity pa-

rameter ν, which we leave for the next subsection.

A.4 Proofs for Section 4.5

Proof. In deep neural network, we first review complexity quantities. Adapted from Theorem 8 (Golowich et al., 2018),

we have

R̂n(N ) ≤
(
2

n
ΠK

p=1M(p)

)√√√√(K + 1 + log d) ·max
j∈[d]

n∑

i=1

x2
i,j

≤
2D

√
K + 1 + log d · ΠK

p=1M(p)√
n

.

where xi,j denotes the j-th coordinate of vector xi.

Then we proceed to bound the Gaussian complexities for our deep neural network and prove Theorem 4.12. Recall that

under the conditions of the result we can use former results to verify the task diversity condition is satisfied with parameters

Ω(ν̃) with ν̃ = σr(α1α
⊤
1 ) > 0. We can see that ‖Ex[ĥ(x)h

∗(x)⊤‖2 ≤ Ex‖ĥ(x)h∗(x)‖ ≤ O(M(K)2) using the norm

bound from. Hence under this setting we can choose c1 sufficiently large so that c1M(K)2 & M(K)2

c c2. The condition

M(K) & 1 in the theorem statement is simply used to clean up the final bound.

In order to instantiate Theorem 4.2 we begin by bounding each of the complexity terms in the expression.

• For the feature learning complexity in the training phase, we leverage above results, then

Ĝn(H) =
1

n
E[sup

WK

r∑

k=1

n∑

i=1

gkihk(x
p
i )] ≤

r∑

k=1

Ĝn(hk(x
p
i ))

≤ log(n) ·
r∑

k=1

R̂nhk(x
p
i ) ≤ r log(n)

2D
√
K + 1 + log d · ΠK

p=1M(p)√
n

.

This also implies the population Gaussian complexity.

• By definition the class F as linear maps with parameters ‖αs‖2 ≤ c1M(K)2, ∀s ∈ [k − 1], we obtain that L(F) =
c1
√
k − 1M(K)2.

• For the complexity of learning Fp in the training phase we obtain,

Ĝn(Fp|h ◦ xp) =
1

n
Eg[sup

α∈F

k−1∑

s=1

n∑

i=1

gisα
⊤
s h(x

p
i )] .

(k − 1)M(K)2

n
Eg[‖

n∑

i=1

gish(x1i)‖]
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Table 1: Performance of diversity-regularized BERT pre-training with different values of diversity factor λ. We

finetune the pre-trained model on 8 downstream tasks from GLUE benchmark and evaluate them on their dev sets. All

results are “mean (std)” from 5 runs with different random seeds. For MNLI, we average the accuracies on its matched and

mismatched dev sets. For MRPC and QQP, we average their accuracy and F1 scores. For STS-B, we average Pearson’s

correlation and Spearman’s correlation. All other tasks uses accuracy as the metric. The better-than-baseline numbers are

underlined, and the best numbers are highlighted in boldface.

Model MNLI MRPC SST-2 CoLA QQP QNLI RTE STS-B

BERT-base (λ = 0.005) 84.17 (0.23) 87.16 (1.81) 92.48 (0.19) 59.99 (0.28) 89.42 (0.08) 88.11 (0.54) 67.28 (3.43) 89.33 (0.07)

BERT-base (λ = 0.05) 84.01 (0.10) 86.35 (5.15) 93.00 (0.16) 62.66 (1.07) 89.46 (0.03) 87.64 (0.44) 60.64 (6.08) 89.57 (0.13)

BERT-base (λ = 0.5) 84.00 (0.20) 89.42 (0.51) 92.93 (0.24) 60.76 (0.71) 89.33 (0.12) 88.01 (0.23) 67.93 (1.18) 89.22 (0.23)

BERT-base (reproduced) 83.96 (0.08) 86.14 (4.64) 92.64 (0.20) 61.46 (0.74) 89.28 (0.09) 88.10 (0.27) 63.64 (6.64) 89.19 (0.07)

.
(k − 1)M(K)2

n

√√√√
n∑

i=1

‖h(xp
i )‖2 .

(k − 1)M(K)2√
n

max
i

‖h(xp
i )‖.

For tanh activation function, we simply have

‖h(x)‖2 = ‖WKrK−1‖22 ≤ ‖WK‖2∞→2,

where rK−1 denotes ourput of the K − 1th layer,

‖h(x)‖ ≤ O(M(K)).

In conclusion we obtain

Ḡn(Fp) ≤ O

(
(k − 1)M(K)3√

n

)
.

• Similarly

Ĝm(Fd|h ◦ xd) ≤ O

(
(k′ − 1)M(K)3√

m

)

Then for Regularity conditions we have

• Boundedness parameter DX p = supα,h ‖α⊤h(xp)‖ = c2.

• Pre-training loss is Lp =
√
k − 1-Lipschitz and Bp = c2-bounded.

• Downstream loss is Ld =
√
k′ − 1-Lipschitz and Bd = c3-bounded.

Assembling the previous complexity arguments shows the transfer learning risk is bounded by

.
Lp
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(
log(n)

[
L(Fp)r log(n)

D
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KΠK

p=1M(p)√
n

+
kM(K)3√

n

])
+

Ldk′M(K)3√
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+

(
1
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max

(
Lp

√
kDX p

n2
, Bp

√
log(1/δ)

n

)
+Bd

√
log(1/δ)

m

)

Substitute regularity conditions into it, then the risk is simplified as stated in Theorem 4.12.

B EXPERIMENTS

Our theoretical analysis in previous sections implies that the diversity of the model parameter matrix at the linear output

layer in pre-training has a significant impact on the transfer capability, in the sense that the larger ν (diversity parameter

of fp), the smaller the risk. Therefore, we could explicitly add a diversity regularizer to the linear output layer to increase
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diversity. Motivated by this, we propose to add the following diversity regularizer to the original BERT pre-training loss

so that it becomes:

L′(Θ) = L(Θ)− λ · ln det(αp (αp)
⊤
), (11)

where Θ denotes the set of all model parameters, λ is a hyper-parameter that controls the magnitude of the diversity

regularization, det(·) denote the determinant of a matrix, and αp is the model parameter matrix at the output linear layer.

This type of diversity regularizer was proposed in Zou and Adams (2012). This regularization technique is different from

prior work because it is specifically designed for multi-class pre-training: we only add the diversity regularizer to the last

linear layer.

We use the above diversity-regularized loss (along with the original ℓ2-regularization) to pretrain BERT-base models under

different values of diversity factor λ. Then we fine-tune them on 7 classification tasks and 1 regression task from the GLUE

benchmark (Wang et al., 2019) to evaluate their transfer performance.5 Our pre-training and finetuning implementations

are based on the opensource code released by Nvidia.6 We use the same pre-training data as the original BERT (i.e.,

English Wikipedia + TorontoBookCorpus).7 Our detailed pre-training and finetuning hyper-parameters along with other

experimental details are reported in Appendix B.1.

In Table B, we report our performance on the dev sets of the 8 downstream tasks. All the experiments are repeated 5 times

with different random seeds, and we report their mean values along with the standard deviations. The complete experiment

results (including full MNLI, QQP, and MRPC results) can be found in Appendix B.1. From Table B, we note that adding

the diversity regularization could generally improve the performance on these downstream tasks. In particular, when

λ = 0.5, our pre-trained model outperforms the original BERT-base on 6 out of 8 tasks (with 3 of them being significant),

while achieving comparable performance on the other 2 tasks. Although our model is slightly behind the original BERT on

CoLA and QNLI, such a performance gap is not statistically significant. Besides, we also see that our model with λ = 0.5
achieves a much more stable performance (i.e., smaller std) on tasks with scarce finetuning data (< 4K samples in MRPC

and RTE). Our results, albeit still preliminary, demonstrate the potential of such a simple diversity-regularizer. It could

be an effective and simple performance booster for any of the existing pre-trained NLP models (e.g., XLNet (Yang et al.,

2019), RoBERTa (Liu et al., 2020), ALBERT (Lan et al., 2020), etc) with negligible computation and implementation cost.

We leave the development of the more advanced diversity regularizer as a future work.

B.1 More Details

Full statistics (including matched and mismatched dev sets for MNLI, accuracy and F1 scores for MRPC and QQP, and

(Pearson’s correlation + Spearman’s correlation)/2 for STS-B. All other tasks uses accuracy as the metric) could be found

in Table B.1.

Table 2: Full statistics on GLUE dev sets.

Model Statistics MNLI(m/mm) MRPC(acc/F1) SST-2 CoLA QQP(acc/F1) QNLI RTE STS-B

λ = 0.005 mean 83.96/84.37 84.90/89.42 92.48 59.99 90.96/87.88 88.11 67.28 89.33

std 0.26/0.21 2.28/1.34 0.19 0.28 0.05/0.11 0.54 3.43 0.07

λ = 0.05 mean 83.88/84.14 83.72/88.98 93.00 62.66 90.97/87.96 87.64 60.64 89.57

std 0.04/0.16 6.69/3.62 0.16 1.07 0.05/0.04 0.44 6.08 0.13

λ = 0.5 mean 83.96/84.04 87.75/91.09 92.93 60.76 90.85/87.81 88.01 67.93 89.22

std 0.15/0.24 0.52/0.50 0.24 0.71 0.10/0.14 0.23 1.18 0.23

BERT-base mean 83.85/84.07 83.48/88.80 92.64 61.46 90.87/87.68 88.10 63.64 89.19

std 0.13/0.04 6.08/3.19 0.20 0.74 0.07/0.11 0.27 6.64 0.07

5We do not report the WNLI (classification) task due to its reported issues of the task in Devlin et al. (2019).
6Distributed under Apache License: https://github.com/NVIDIA/DeepLearningExamples/tree/master/

PyTorch/LanguageModeling/BERT
7Collected and pre-processed using the code and script included in the open-source code: https://github.com/NVIDIA/

DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
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Complete statistics Here we provide complete results on GLUE dev sets over 5 random seeds.

Table 3: Performance of reproduced BERT-base model.

GLUE MNLI(m/mm) MRPC(acc/F1) SST-2 CoLA QQP(acc/F1) QNLI RTE STS-B

42 83.90/84.04 71.32/82.44 92.66 60.11 90.94/87.72 87.58 66.79 89.25
0 83.86/84.12 86.27/90.18 92.43 62.05 90.74/87.53 88.19 54.29 89.07

seed 393 83.78/84.06 86.76/90.63 92.54 61.42 90.93/87.84 88.29 70.36 89.19
78 84.05/84.02 86.76/90.63 92.55 61.50 90.89/87.60 88.12 57.14 89.18

3837 83.66/84.11 86.27/90.13 93.00 62.20 90.87/87.73 88.33 69.64 89.26

mean 83.85/84.07 83.48/88.80 92.64 61.46 90.87/87.68 88.10 63.64 89.19
std 0.13/0.04 6.08/3.19 0.20 0.74 0.07/0.11 0.27 6.64 0.07

Table 4: Performance of λ = 0.005 regularized pre-training model.

GLUE MNLI(m/mm) MRPC(acc/F1) SST-2 CoLA QQP(acc/F1) QNLI RTE STS-B

42 84.24/84.43 87.25/90.72 92.20 59.99 90.94/87.85 87.09 67.14 89.40
0 83.91/83.96 86.27/90.47 92.43 60.06 91.03/87.88 88.24 70.71 89.36

seed 393 83.84/84.51 85.54/89.52 92.55 59.48 90.89/87.68 88.33 71.07 89.22
78 84.23/84.44 84.80/89.45 92.78 60.13 90.95/87.97 88.71 65.71 89.38

3837 83.56/84.53 80.64/86.93 92.43 60.30 91.01/88.00 88.17 61.79 89.28

mean 83.96/84.37 84.90/89.42 92.48 59.99 90.96/87.88 88.11 67.28 89.33
std 0.26/0.21 2.28/1.34 0.19 0.28 0.05/0.11 0.54 3.43 0.07

Table 5: Performance of λ = 0.05 regularized pre-training model.

GLUE MNLI(m/mm) MRPC(acc/F1) SST-2 CoLA QQP(acc/F1) QNLI RTE STS-B

42 83.88/84.22 86.52/90.27 92.89 61.12 91.06/87.95 86.93 65.00 89.52
0 83.83/83.92 88.97/92.00 93.00 64.36 90.96/87.93 87.73 54.29 89.65

seed 393 83.96/83.98 70.59/81.92 93.12 62.22 90.94/88.03 87.47 61.79 89.65
78 83.86/84.26 87.50/91.06 92.78 63.13 90.94/87.97 88.26 68.93 89.69

3837 83.86/84.30 85.04/89.66 93.23 62.49 90.93/87.91 87.82 53.21 89.33

mean 83.88/84.14 83.72/88.98 93.00 62.66 90.97/87.96 87.64 60.64 89.57
std 0.04/0.16 6.69/3.62 0.16 1.07 0.05/0.04 0.44 6.08 0.13

Table 6: Performance of λ = 0.5 regularized pre-training model.

GLUE MNLI(m/mm) MRPC(acc/F1) SST-2 CoLA QQP(acc/F1) QNLI RTE STS-B

42 83.75/83.87 87.75/90.89 93.00 59.79 90.88/87.75 87.58 65.71 89.00
0 83.84/84.30 88.24/91.56 92.66 60.94 90.87/87.77 88.14 67.86 89.25

seed 393 83.98/83.68 87.99/91.46 93.12 60.99 90.98/88.04 88.22 68.21 89.19
78 84.02/84.29 87.99/91.33 93.23 60.22 90.87/87.86 88.12 68.93 89.65

3837 84.19/84.05 86.76/90.21 92.66 61.86 90.67/87.61 87.98 68.93 89.03

mean 83.96/84.04 87.75/91.09 92.93 60.76 90.85/87.81 88.01 67.93 89.22
std 0.15/0.24 0.52/0.50 0.24 0.71 0.10/0.14 0.23 1.18 0.23
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Finally, we report detailed hyperparameter settings below.

Pre-training Hyperparameters for pre-training are shown in Table 7.

Hyperparam phase-1 phase-2

Number of Layers 12 12
Hidden size 768 768
FFN inner hidden size 3072 3072
Attention heads 12 12
Steps 7038 1563
Optimizer LAMB LAMB
Learning Rate 9e-3 6e-3
β1 0.9 0.9
β2 0.999 0.999
WarmUp 28.43 % 12.80 %
Batch Size 65536 32768

Table 7: Hyperparameters used in pre-training our models. We use the LAMB optimizer (You et al., 2020) for large-batch

pretraining of the BERT model, where β1 and β2 are its two hyper-parameters.

Finetuning Hyperparameters for downstream tasks are shown in Table 8. We adapt these hyperparameters from Liu et al.

(2020), Devlin et al. (2019), and Yang et al. (2019).

LR BSZ # EP WARMUP WD FP16 SEQ

CoLA 1.00E-05 32 20 6% 0.1 O2 128
SST-2 3.00E-05 32 10 6% 0.1 O2 128
MNLI 3.00E-05 32 5 6% 0.1 O2 128
QNLI 3.00E-05 32 10 6% 0.1 O2 128
QQP 3.00E-05 32 5 6% 0.1 O2 128
RTE 3.00E-05 16 5 6% 0.1 O2 128

MRPC 3.00E-05 16 5 6% 0.1 O2 128

Table 8: The hyperparameters used in finetuning our model in downstream tasks. LR: learning rate. BSZ: batch size. #EP:

number of epochs. WARMUP: warmup ratio. FP16: automatic mixed precision (AMP) level. SEQ: input sequence length.

Computing infrastructure We pretrain our (diversity-regularized) BERT-base models using 32 Nvidia V100 GPUs

(32GB RAM each), and the finetuning of the model uses 4 Nvidia V100 GPUs.


