Alda: Integrating Logic Rules with Everything Else, Seamlessly

Yanhong A. Liu
Computer Science Department, Stony Brook University, Stony Brook, NY

liu@cs.stonybrook.edu

Sets and rules have been used for easier programming since the late 1960s. While sets are central
to database programming with SQL and are also supported as built-ins in high-level languages
like Python, logic rules have been supported as libraries or in rule-based languages with limited
extensions for other features. However, rules are central to deductive database and knowledge base
programming, and better support is needed.

This position paper highlights the design of a powerful language, Alda [LST*22], that supports
logic rules together with sets, functions, updates, and objects, all as seamlessly integrated built-ins,
including concurrent and distributed processes. The key idea is to allow sets of rules to be defined in
any scope, support predicates in rules as set-valued variables that can be used and updated directly,
and support queries using rules as either explicit or implicit automatic calls to an inference function.

Alda has a formal semantics, is implemented in a prototype compiler that builds on an object-
oriented language (DistAlgo [LSL17, Dis21] extending Python [Pyt22]) and an efficient logic rule
system (XSB [SW12, SWST22]), and has been used successfully on benchmarks and problems from
a wide variety of application domains—including those in OpenRuleBench [LFWKO09], role-based
access control (RBAC) [ANS04, FSG101], and program analysis—with generally good performance.

An example. Figure 1 shows an example program in Alda. It is for a small portion of the ANSI
standard for role-based access control (RBAC) [ANS04, FSGT01]. It shows the uses (with line
numbers in parentheses) of

classes (1-8, 9-21) with inheritance (9, 11), and object creation (22) with setup (2-3, 10-12);
sets, including relations (3, 12);

methods, including procedures (5-6, 13-14) and functions (7-8, 18-19, 20-21), and calls (23, 24);
updates, including initialization (3, 12) and membership changes (6, 14); and

queries, including set queries (8, 19 after union “+”, 21) and queries using rules (19 before “+”);

where the rules are defined in a rule set (15-17), explained in the next part.

Note that queries using set comprehensions (e.g., on lines 8, 19, 21) can also be expressed by
using rules and inference, even though comprehensions are more widely used. However, only some
queries using rules and inference can be expressed by using comprehensions; queries using recursive
rules (e.g., on lines 16-17) cannot be expressed using comprehensions.

Rules with sets, functions, updates, and objects. In Alda, rules are defined in rule sets,
each with a name and optional declarations for the predicates in the rules.
ruleset ::= rules name (declarations): rule+
rule = p(argy, ..., argy) if p;Cargss, ..., argia,), --o» Pe(argrs, ..., ATGkq,)

In the rule form, p, py, ..., p denote predicates, p(arg;, ..., arg,) denotes that p holds for its tuple
of arguments, and if denotes that its left-side conclusion holds if its right-side conditions all hold.
In a rule set, predicates not in any conclusion are called base predicates; the other predicates are
called derived predicates.

class CoreRBAC: # class for Core RBAC component/object

def setup(): # method to set up the object, with no arguments
self .USERS, self.ROLES, self.UR := {},{},{}
set users, roles, user-role pairs to empty sets
def AddRole(role): # method to add a role
ROLES.add(role) # add the role to ROLES
def AssignedUsers(role): # method to return assigned users of a role
return {u: u in USERS | (u,role) in UR} # return set of users having the role

class HierRBAC extends CoreRBAC: # Hierarchical RBAC extending Core RBAC
def setup():

super () .setup () # call setup of CoreRBAC, to set sets as in there
self .RH := {} # set ascendant-descendant role pairs to empty set
def AddInheritance(a,d): # to add inherit. of an ascendant by a descendant
RH.add ((a,d)) # add pair (a,d) to RH
rules trans_rs: # rule set defining transitive closure
path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)
path(x,y) if edge(x,z), path(z,y) # ... if edge holds for (x,z) and for (z,y)
def transRH(): # to return transitive RH and reflexive role pairs
return infer (path, edge=RH, rules=trans_rs) + {(r,r): r in ROLES}
def AuthorizedUsers(role): # to return users having a role transitively

return {u: u in USERS, r in ROLES | (u,r) in UR and (r,role) in transRH()}

h = new(HierRBAC, []) # create HierRBAC object h, with no args to setup
h.AddRole (’chair’) # call AddRole of h with role ’chair’
h.AuthorizedUsers (’chair’) # call AuthorizedUsers of h with role ‘chair’

Figure 1: An example program in Alda, for Role-Based Access Control (RBAC). In rules trans rs,
the first rule says there is a path from x to y if there is an edge from x to y, and the second rule
says there is a path from x to y if there is an edge from x to z and there is an edge from z to y.
The call to infer queries and returns the set of pairs for which path holds given that edge holds for
exactly the pairs in set RH, by doing inference using rules in trans_rs.

The key ideas of seamless integration of rules with sets, functions, updates, and objects are:

1. a predicate is a set-valued variable that holds the set of tuples for which the predicate is true;

2. queries using rules are calls to an inference function, infer, that computes desired values of
derived predicates using given values of base predicates;

3. values of base predicates can be updated directly as for other variables, whereas values of
derived predicates can only be updated by infer; and

4. predicates and rule sets can be object attributes as well as global and local names, just as
variables and functions can.

Declarative semantics of rules are ensured by automatically maintaining values of derived predicates
when values of base predicates are updated, by appropriate implicit calls to infer.
For example, in Figure 1, one could use an object field transRH in place of calls to transRH() in
AuthorizedUsers(role), use the following rule set instead of trans_rs, and remove transRH().
rules transRH_rs: # no need to call infer explicitly
transRH(x,y) if RH(x,y)

transRH(x,y) if RH(x,z), transRH(z,y)
transRH(x,x) if ROLES(x)

Field transRH is automatically maintained at updates to RH and ROLES by implicit calls to infer.

Discussion. Note that predicates in rules as set-valued variables, e.g., edge, and calling infer to
take or return values of set variables, e.g., RH in edge=RH, avoids the need of high-order predicates or
other sophisticated features, e.g., [CKW93], to reuse rules for different predicates in logic languages.

Alda also supports tuple patterns for set elements in set queries (as in DistAlgo [L.S09]) and
in queries using rules, e.g., (1,=x,y) in p matches any triple in set p whose first element is 1 and
whose second element equals the value of x, and binds y to the third element if such a triple exists.

Of course, through DistAlgo, Alda also supports distributed programming, e.g., for distributed
RBAC [Liul8, LS18], also called trust management [LMWO02], in decentralized systems.

Declarations in rules could specify predicate types and scopes, but are designed more impor-
tantly for specifying assumptions about predicates being certain, complete, closed, or not [L.S20,
LS21, LS22]. This is to give respective desired semantics for rules with unrestricted negation and
aggregation.

Note that the examples discussed use an ideal syntax, while the Alda implementation supports
the Python syntax. For example, x := {} is written as x = set() in Python syntax.

The Alda implementation compiles rule sets in rules and queries using infer to XSB rules
and queries, and compiles the rest to Python, which calls XSB to do the inference. The current
implementation supports primarily Datalog rules, but also handles unrestricted negation by using
XSB’s computation of the well-founded semantics [VRS91]. More general forms of rules and queries
can be compiled to rules and queries in XSB or other rule systems using the same approach. In
general, any efficient inference algorithm and implementation method can be used to compute the
semantics of rules and infer.

Future work includes (1) support for easy use of different desired semantics, especially with
modular use of rules, similar to knowledge units in DA-logic [LLS21]; and (2) efficient implementation
with complexity guarantees [LS09, TL10, TL11] for computing different desired semantics.

Acknowledge. This work was supported in part by NSF under grants CCF-1954837, CCF-
1414078, and 11S-1447549 and ONR under grants N00014-21-1-2719, N00014-20-1-2751, and N00014-
15-1-2208.

Thanks to many people for help and discussions, including: Scott Stoller, for complete formal
semantics for Alda and experimental results; Yi Tong, for implementation extending DistAlgo
implementation and initial experiments; Bo Lin, for initial help with implementation and his robust
DistAlgo implementation; David Warren, for an initial 28-line XSB program for interface to XSB;
Tuncay Tekle, for additional initial experiments and his significant results on efficient Datalog
queries; Thang Bui, for additional applications in program analysis and optimization; and students
in undergraduate and graduate courses, for using earlier versions of Alda, called DA-rules.

References

[ANS04] ANSI INCITS. Role-Based Access Control. ANSI INCITS 359-2004, American National Stan-
dards Institute, International Committee for Information Technology Standards, Feb. 2004.

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187-230, 1993.

[Dis21] DistAlgo. distalgo.cs.stonybrook.edu, 2021. Accessed September 14, 2022.

[FSG*01]

[LEWKO9]

[Liulg]

[LMW02]

[LS09]
[LS18]

[LS20]

[LS21]

[LS22]

[LSL17]

[LST+22]

[Pyt22]
[SW12]

[SWS+22]

[TL10]

[TL11]

[VRS91]

David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chan-
dramouli. Proposed NIST standard for role-based access control. ACM Transactions on Infor-
mation and Systems Security, 4(3):224-274, 2001.

Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. OpenRuleBench: An analysis of the
performance of rule engines. In Proceedings of the 18th International Conference on World Wide
Web, pages 601-610. ACM Press, 2009.

Yanhong A. Liu. Role-based access control as a programming challenge. In Proceedings of the
Workshop on Logic and Practice of Programming, Oxford, U.K., 2018.

Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
pages 114-130, 2002.

Yanhong A. Liu and Scott D. Stoller. From Datalog rules to efficient programs with time and
space guarantees. ACM Transactions on Programming Languages and Systems, 31(6):1-38, 2009.

Yanhong A. Liu and Scott D. Stoller. Easier rules and constraints for programming. In Proceed-
ings of the Workshop on Logic and Practice of Programming, Oxford, U.K., 2018.

Yanhong A. Liu and Scott D. Stoller. Founded semantics and constraint semantics of logic rules.

Journal of Logic and Computation, 30(8):1609-1638, Dec. 2020. Also http://arxiv.org/abs/
1606.06269.

Yanhong A. Liu and Scott D. Stoller. Knowledge of uncertain worlds: Programming with logical
constraints. Journal of Logic and Computation, 31(1):193-212, Jan. 2021. Also https://arxiv.
org/abs/1910.10346.

Yanhong A. Liu and Scott D. Stoller. Recursive rules with aggregation: A simple unified seman-
tics. Journal of Logic and Computation, 2022. To appear. Also http://arxiv.org/abs/2007.
13053.

Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to efficiency for distributed al-

gorithms. ACM Transactions on Programming Languages and Systems, 39(3):12:1-12:41, May
2017.

Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin, and K. Tuncay Tekle. Programming with
rules and everything else, seamlessly. Computing Research Repository, arXiv:2205.15204 [cs.PL],
May 2022. http://arxiv.org/abs/2205.15204.

Python Software Foundation. Python. http://python.org/, Accessed September 14, 2022.

Terrance Swift and David S Warren. XSB: Extending Prolog with tabled logic programming.
Theory and Practice of Logic Programming, 12(1-2):157-187, 2012.

Theresa Swift, David S. Warren, Konstantinos Sagonas, Juliana Freire, Prasad Rao, Baoqiu Cui,
Ernie Johnson, Luis de Castro, Rui F. Marques, Diptikalyan Saha, Steve Dawson, and Michael
Kifer. The XSB System Version 5.0,x, May 2022. http://xsb.sourceforge.net. Latest release
May 12, 2022.

K. Tuncay Tekle and Yanhong A. Liu. Precise complexity analysis for efficient Datalog queries.
In Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming, pages 35—44, 2010.

K. Tuncay Tekle and Yanhong A. Liu. More efficient Datalog queries: Subsumptive tabling beats
magic sets. In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data, pages 661672, 2011.

Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620-650, 1991.

