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Abstract. This paper focuses on a two-dimensional (2D) incompressible Oldroyd-B model
with mixed partial dissipation. The goal here is to establish the small data global existence
and stability in the Sobolev space H2(R2). The velocity equation itself, without coupling
with the equation of the non-Newtonian stress tensor, is an anisotropic 2D Navier-Stokes
whose solutions are not known to be stable in Sobolev spaces due to potential rapid growth
in time. By unearthing the hidden wave structure of the system and exploring the smooth-
ing and stabilizing effect of the non-Newtonian stress tensor on the fluid, we are able to
solve the desired global existence and stability problem.

1. Introduction

A class of models of complex fluids is based on an equation for a solvent coupled with a
kinetic description of particles suspended in it. In the case of dilute suspensions weakly con-
fined by a Hookean spring potential, a rigorously established exact closure for the moments
in the kinetic equation of this Navier–Stokes–Fokker–Planck system yields the Oldroyd-B
system (see, e.g., [2, 8, 31]). The standard Oldroyd-B model can be written as

∂tu+ u · ∇u = −∇p+ ν∆u+ µ1∇ · τ,
∂tτ + u · ∇τ +Q(τ,∇u) + aτ = η∆τ + µ2D(u),

∇ · u = 0,

where u = u(x, t) represents the velocity field of the fluid, p = p(x, t) the pressure and
τ = τ(x, t) (a symmetric matrix) the non-Newtonian added stress tensor, and ν, µ1, a, η
and µ2 are nonnegative real parameters. Here D(u) is the symmetric part of the velocity
gradient defined by

D(u) =
1

2
(∇u+ (∇u)T ).

The bilinear term Q reads

Q(τ,∇u) = τW (u)−W (u)τ − b(D(u)τ + τD(u)),

where b ∈ [−1, 1] is a parameter and W (u) is the skew-symmetric part of the ∇u,

W (u) =
1

2
(∇u− (∇u)T ).

Fundamental issues such as the global existence and the stability problems on the Oldroyd-
B models have recently attracted considerable interests. There are substantial developments
and significant progress has been made. Interested readers may consult the references listed
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here (see, e.g., [1,4–15,17–19,21,22,24,25,27,29,30,36–39,41–45]). Understandably this list
represents only a small portion of the large literature on this subject. This paper focuses
on the following anisotropic Oldroyd-B system

∂tu+ u · ∇u = −∇p+ ∂11u+∇ · τ, x ∈ R2, t > 0,

∂tτ + u · ∇τ +Q(τ,∇u) + τ = ∂22τ +D(u),

∇ · u = 0,

(1.1)

which involves only horizontal kinematic dissipation and vertical dissipation in the equation
of τ . (1.1) may be relevant for certain anisotropic complex fluids. The anisotropic Navier-
Stokes equations have been used in the modeling of many fluids such as turbulent flows in
Ekman layers [32]. The equation of τ can be derived from the equation of the conformation
tensor by replacing the damping term related to the Weissenberg number by a dissipative
differential operator term [11]. It has become a common practice in the modeling and
numerical simulations of viscoelastic fluids to add stress diffusion (sometimes anisotropic
stress diffusion) in order to effectively stabilize the stress and the numerical calculations.
The effect of stress diffusion on the dynamics of creeping viscoelastic flow has been analyzed
(see, e.g., [20, 26, 33, 35]). The study of this paper would help fill the gap on how the
anisotropic stress tensor would affect the dynamics of viscoelastic flow. The goal of this
paper is to solve the small data global existence and stability problem. Without loss of
generality, we have set the parameters in (1.1) equal to 1 for notational convenience.

The lack of vertical velocity dissipation makes the stability problem concerned here dif-
ficult. The corresponding vorticity ω = ∇× u satisfies

∂tω + u · ∇ω = ∂11ω +∇×∇ · τ, x ∈ R2, t > 0 (1.2)

and it does not appear possible to establish any uniform-in-time bound on the Sobolev norms
of ω. Even when τ = 0, the vorticity gradient ∇ω for the anisotropic 2D Navier-Stokes
equation

∂tω + u · ∇ω = ∂11ω, x ∈ R2, t > 0 (1.3)

may grow in time. In fact, the only upper bound on ∇ω for (1.3) is double exponential in
time, for any 2 ≤ q ≤ ∞,

‖∇ω(t)‖Lq ≤ (‖∇ω0‖Lq)e
C ‖ω0‖L∞ t

.

The double exponential growth rate was confirmed for the 2D Euler equation in a unit disk
by Kiselev and Sverak [23]. The growth rate for the 2D Euler equation on a more general
smooth bounded domain was explored by Xu [40]. Whether the double exponential upper
bound for the 2D Euler or for the anisotropic Navier-Stokes in the whole space R2 is sharp
remains an open problem.

In the case when the 2D Oldroyd-B model has both damping and full Laplacian dissi-
pation in the equation of τ , Elgindi and Rousset [13] were able to overcome the difficulty
by considering a combined quantity G := ω −∇×∇ ·∆−1τ and its equation, and success-
fully solved the small data global well-posedness problem. The 3D Oldroyd-B model has
both damping and full Laplacian dissipation was dealt with by Elgindi and Liu [12]. The
damping term in the equation of τ plays a crucial role in the approaches of [12,13].

Very recently Constantin, Wu, Zhao and Zhu [11] considered the d-dimensional (d = 2, 3)
Oldroyd-B model with only fractional dissipation (−∆)βτ and without damping in τ . [11]
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derived a system of special wave equations satisfied by u and P∇ · τ , where

P = I −∇∆−1∇·
denotes the Leray projection operator. As a consequence, [11] observed that the non-
Newtonian stress has a stabilizing effect on the fluid and was able to establish the small
data global well-posedness and stability for any β ≥ 1

2 .

Our Oldroyd-B model in (1.1) also admits a wave structure. By applying the Leray
projection operator P to eliminate the pressure term, we obtain

∂tu = ∂11u+ P(∇ · τ) +N1, N1 = P(−u · ∇u). (1.4)

Applying P∇· to the equation of τ , we have

∂tP∇ · τ = ∂22P∇ · τ − P∇ · τ +
1

2
∆u+N2 (1.5)

with
N2 = −P∇ · (u · ∇τ)− P∇ ·Q(τ,∇u).

Differentiating (1.4) and (1.5) in time and making several substitutions, we find{
∂ttu+ (1−∆)∂tu− ∂11(1− ∂22)u− 1

2∆u = N3,

∂ttP(∇ · τ) + (1−∆)∂tP(∇ · τ)− ∂11(1− ∂22)P(∇ · τ)− 1
2∆P(∇ · τ) = N4,

(1.6)

where N3 and N4 are given by

N3 = (∂t + 1)N1 +N2, N4 = (∂t − ∂11)N2 +
1

2
∆N1.

The wave structure derived above is a consequence of the coupling between the equations
of u and τ . Without the coupling and even for τ = 0, the linearized equation of u is given
by

∂tu = ∂11u. (1.7)

Clearly the linearized wave equation for u given by

∂ttu+ (1−∆)∂tu− ∂11(1− ∂22)u−
1

2
∆u = 0 (1.8)

is much more regularized than (1.7). We shall exploit the wave structure in (1.6) to gain
extra regularization and damping properties. One crucial regularity to be extracted is the
time integrability of the derivatives of u, not just the horizontal derivatives. This is a
consequence of the full Laplacian operator in (1.8). When we seek a solution (u, τ) of (1.1)
in the Sobolev space H2, we expect to gain the uniform time integrability, for a constant
C > 0 and for any t > 0, ∫ t

0
‖∇u(s)‖2H1 ds ≤ C <∞. (1.9)

Besides understanding the time integrability in (1.9) from the wave structure, there is
another simple way to comprehend (1.9). It is really the coupling in (1.4) and (1.5) that
allows us to transfer the time integrability from one function in the system to another. More
precisely, we can represent ∆u in terms of the rest in (1.5),

∆u = 2∂tP∇ · τ − 2∂22P∇ · τ + 2P∇ · τ − 2N2 (1.10)

then

‖∇u‖2H1 = −(u,∆u)− (∇u,∇∆u)
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= −2

∫
u · ∂tP∇ · τ + 2

∫
u · ∂22P∇ · τ dx

− 2

∫
u · P∇ · τ dx+ 2

∫
u ·N2 dx

− 2

∫
∇u · ∇∂tP∇ · τ + 2

∫
∇u · ∇∂22P∇ · τ dx

− 2

∫
∇u · ∇P∇ · τ dx+ 2

∫
∇u · ∇N2 dx,

where (f, g) above denotes the L2-inner product. The time integrability of ‖∇u‖2H1 is then
converted to the time integrability of other terms. This explains our strategy on how to
make use of the stabilizing effect of τ on the fluid to prevent the growth of the Sobolev
norms of the velocity. We are now ready to state our main result.

Theorem 1.1. Assume the initial data (u0, τ0) ∈ H2(R2), and ∇ · u0 = 0. Then, there
exists a constant ε > 0 such that, if

‖u0‖H2 + ‖τ0‖H2 ≤ ε,

then (1.1) has a unique global classical solution (u, τ) satisfying, for any t > 0,

(‖u‖2H2 + ‖τ‖2H2) + 2

∫ t

0
(‖∂1u(s)‖2H2 + ‖∂2τ(s)‖2H2 + ‖τ(s)‖2H2 + ‖∇u(s)‖2H1) ds ≤ C ε2,

where C > 0 is pure constant.

We make two remarks about Theorem 1.1.

Remark 1.2. (1) The damping term in τ appears to be necessary in order to bound Q
in the L2-estimate. Q generates a term of the form ‖τ‖2L2, which requires damping
in τ to yield a suitable upper bound.

(2) When the combination of ∂11u and ∂22τ is replaced by that of ∂22u and ∂11τ , Theo-
rem 1.1 remains valid. We just need to slightly modify the proof. Therefore, as long
as the dissipation of u and τ are in different directions, the nonlinear terms can
be bounded suitably and the result still holds. Physically the dissipation of u and τ
in different directions helps complement the regularization of each other, and thus
controls the nonlinearity.

The local-in-time existence and uniqueness of solutions to (1.1) can be shown via standard
approaches such as those in the book of Majda and Bertozzi [28]. Our focus will be on the
global-in-time bound of (u, τ) in H2. One of the most suitable methods for this purpose
is the bootstrapping argument (see, e.g., [34, p.21]). To proceed, we first define a suitable
energy functional

E(t) = E1(t) + E2(t),

with

E1(t) := sup
0≤s≤t

(‖u‖2H2 + ‖τ‖2H2) + 2

∫ t

0
(‖∂1u(s)‖2H2 + ‖∂2τ(s)‖2H2 + ‖τ(s)‖2H2) ds,

E2(t) :=

∫ t

0
‖∇u(s)‖2H1 ds.
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E1 represents the standard energy consisting of the H2-norm of (u, τ) and the associated
time integrals parts from the horizontal dissipation in u and the vertical dissipation and
damping in τ . E2 is the time integral in (1.9) representing the extra regularization through
the coupling. Our main efforts are devoted to proving that, for any t > 0,

E(t) ≤ C1E(0) + C2E
3
2 (t). (1.11)

The bootstrapping argument applied to (1.11) then implies that, if E(0) ≤ ε2 for some
suitable ε > 0, then, for a constant C > 0 and any t > 0,

E(t) ≤ C ε2,
which, in particular, asserts the desired global bound on the H2-norm of (u, τ). The details
are provided in Section 2.

2. Proof of Theorem 1.1

This section details the proof of Theorem 1.1. First we list several anisotropic inequalities
to be used frequently in the proof.

The first is an anisotropic upper bound for a triple product, a very useful tool in bounding
the nonlinearity when the dissipation is anisotropic. Its proof can be found in [3].

Lemma 2.1. Assume that f , g, ∂2g, h and ∂1h are all in L2(R2). Then,∣∣∣∣∫
R2

fgh dx

∣∣∣∣ ≤ 2
3
2 ‖f‖L2‖g‖

1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂1h‖
1
2

L2 .

The second lemma provides an upper bound for the L∞-norm of a 2D function in terms
of the H1-norm of its horizontal or vertical derivatives.

Lemma 2.2. The following estimates hold when the right-hand sides are all bounded.

‖f‖L∞(R2) ≤ C‖f‖
1
4

L2(R2)
‖∂1f‖

1
4

L2(R2)
‖∂2f‖

1
4

L2(R2)
‖∂12f‖

1
4

L2(R2)
.

Consequently,

‖f‖L∞ ≤ C‖f‖
1
2

H1‖∂1f‖
1
2

H1 , ‖f‖L∞ ≤ C‖f‖
1
2

H1‖∂2f‖
1
2

H1 .

The proof of Lemma 2.2 can be found in [16].

Proof. As explained in the introduction, it suffices to prove (1.11). For the sake of clarity,
we prove the following two inequalities, one for E1 and one for E2,

E1 ≤ E(0) + C1E
3
2
1 (t) + C2E

3
2
2 (t), (2.1)

E2 ≤ C3E(0) + C4E1(t) + C5E
3
2
1 (t) + C6E

3
2
2 (t), (2.2)

where C1 through C6 are positive pure constants. Then E1 + 1
2C4

E2 yields

E1 +
1

2C4
E2 ≤ E(0) + C1E

3
2
1 (t) + C2E

3
2
2 (t)

+
C3

2C4
E(0) +

1

2
E1(t) +

C5

2C4
E

3
2
1 (t) +

C6

2C4
E

3
2
2 (t)
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or

1

2
E1 +

1

2C4
E2 ≤

(
1 +

C3

2C4

)
E(0) +

(
C1 +

C5

2C4

)
E

3
2
1 (t) +

(
C2 +

C6

2C4

)
E

3
2
2 (t)

or

E(t) ≤ C̃1E(0) + C̃2E
3
2 (t). (2.3)

We take the initial data (u0, τ0) to be sufficiently small, say

E(0) = ‖(u0, τ0)‖2H2 ≤
1

16C̃1 C̃2
2

:= ε2.

Then the bootstrapping argument applied to (2.3) yields, for all

E(t) ≤ 1

8C̃2
2

:= 2C̃1ε
2.

In fact, if we make the ansatz that

E(t) ≤ 1

4C̃2
2

, (2.4)

then (2.3) implies

E(t) ≤ C̃1E(0) + C̃2
1

2C̃2

E(t) or
1

2
E(t) ≤ C̃1E(0)

or

E(t) ≤ 1

8C̃2
2

,

which is half of the bound in the ansatz (2.4). The bootstrapping argument then asserts
that this bound actually holds for all t > 0. This yields the desired global uniform bound
on ‖(u(t), τ(t))‖H2 .

It remains to prove (2.1) and (2.2). We first prove (2.1). Due to the equivalence

‖f‖H2 ∼ ‖f‖L2 + ‖∆f‖L2 , (2.5)

we just need to bound ‖(u, τ)‖L2 and ‖(∆u,∆τ)‖L2 . Dotting (1.1) by (u, τ), and applying
∆ to (1.1) and dotting the resulting equation by (∆u,∆τ), we find

1

2

d

dt
(‖(u, τ)‖2L2 + ‖(∆u,∆τ)‖2L2)

+ ‖∂1u‖2L2 + ‖∂1∆u‖2L2 + ‖∂2τ‖2L2 + ‖∆∂2τ‖2L2 + ‖τ‖2L2 + ‖∆τ‖2L2

= I1 + I2 + I3, (2.6)

where

I1 = −(∆(u · ∇u),∆u),

I2 = −(∆(u · ∇τ),∆τ),

I3 = −(Q(τ,∇u), τ)− (∆Q(τ,∇u),∆τ).

Here we have used the facts, due to ∇ · u = 0 and τij = τji for i, j = 1, 2,∫
u · (u · ∇u) dx = 0,

∫
τ · (u · ∇τ) dx = 0,
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(u · (∇ · τ) +D(u) · τ) dx = 0,

∫
(∆u ·∆(∇ · τ) + ∆D(u) ·∆τ) dx = 0.

We now bound I1. By ∇ · u = 0 and Lemma 2.1,

I1 = −
∫

∆u · (∆u · ∇u) dx− 2

∫
∆u · (∇u · ∇2u) dx

≤ C ‖∆u‖L2 ‖∆u‖
1
2

L2 ‖∂1∆u‖
1
2

L2 ‖∇u‖
1
2

L2 ‖∂2∇u‖
1
2

L2

+ C ‖∆u‖L2 ‖∇2u‖
1
2

L2 ‖∂1∇2u‖
1
2

L2 ‖∇u‖
1
2

L2 ‖∂2∇u‖
1
2

L2

≤ C ‖u‖H2 ‖∇u‖
3
2

H1 ‖∂1u‖
1
2

H2

≤ C ‖u‖H2 (‖∇u‖2H1 + ‖∂1u‖2H2).

By ∇ · u = 0 and Lemma 2.1,

I2 = −
∫

∆τ · (∆u · ∇τ) dx− 2

∫
∆τ · (∇u · ∇2τ) dx

≤ C ‖∆τ‖L2 ‖∆u‖
1
2

L2 ‖∂1∆u‖
1
2

L2 ‖∇τ‖
1
2

L2 ‖∂2∇τ‖
1
2

L2

+ C ‖∆τ‖L2 ‖∇u‖
1
2

L2 ‖∂1∇u‖
1
2

L2 ‖∇2τ‖
1
2

L2 ‖∂2∇2τ‖
1
2

L2

≤ C (‖u‖H2 + ‖τ‖H2) (‖τ‖2H2 + ‖∂1u‖2H2 + ‖∂2τ‖2H2).

Naturally I3 is divided into two parts I3 = I3,1 + I3,2 with

I3,1 = −(Q(τ,∇u), τ), I3,2 = (∆Q(τ,∇u),∆τ).

By Lemma 2.1,

I3,1 ≤ C‖τ‖L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖τ‖
1
2

L2‖∂2τ‖
1
2

L2 ≤ C‖u‖H2‖τ‖2H2 .

To distinguish between the horizontal and the vertical derivatives, we rewrite I3,2 as

I3,2 = −
∫

∆Q ·∆τ dx = −
∫

(∂11Q+ ∂22Q) · (∂11τ + ∂22τ) dx

= −
∫

(∂11Q · ∂11τ + ∂11Q · ∂22τ + ∂22Q · ∂11τ + ∂22Q · ∂22τ) dx

= I3,2,1 + I3,2,2 + I3,2,3 + I3,2,4.

By Hölder’s inequality and Lemma 2.2,

I3,2,1 = −
∫
∂11τ · ∇u · ∂11τ + 2∂1τ · ∂1∇u · ∂11τ + τ · ∂11∇u · ∂11τ dx

≤ C‖∂11τ‖L2‖∇u‖L∞‖∂11τ‖L2 + C‖∂1τ‖L∞‖∂1∇u‖L2‖∂11τ‖L2

+ C‖τ‖L∞‖∂11∇u‖L2‖∂11τ‖L2

≤ C‖τ‖2H2‖∇u‖
1
2

H1‖∂1∇u‖
1
2

H1 + C‖∂1τ‖
1
2

H1‖∂2∂1τ‖
1
2

H1‖∂1∇u‖L2‖τ‖H2

+ C‖∂1u‖H2‖τ‖2H2

≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).
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By integration by parts and Lemma 2.2,

I3,2,2 =

∫
∂1Q · ∂122τ dx

≤ ‖τ‖L∞‖∂1∇u‖L2‖∂2∂12τ‖L2 + ‖∂1τ‖L2‖∇u‖L∞‖∂2∂12τ‖L2

≤ ‖∂2τ‖H2‖τ‖H2‖u‖H2 + ‖τ‖H2‖∂1u‖
1
2

H2‖u‖
1
2

H2‖∂2τ‖H2

≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

I3,2,3 has the same bound as I3,2,2. The estimate for I3,2,4 is also similar,

I3,2,4 =

∫
∂2Q · ∂222τ dx

≤ C‖τ‖L∞‖∂2∇u‖L2‖∂222τ‖L2 + ‖∂2τ‖L2‖∇u‖L∞‖∂222τ‖L2

≤ C‖∂2τ‖H2‖τ‖H2‖u‖H2 + ‖∂2τ‖
3
2

H2‖τ‖
1
2

H2‖∂1u‖
1
2

H2‖u‖
1
2

H2

≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

Combining the bounds above leads to

I3 = I3,1 + I3,2 ≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2),

I1 + I2 + I3 ≤ C ‖u‖H2 (‖∇u‖2H1 + ‖∂1u‖2H2)

+ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

Inserting the upper bound for I1 + I2 + I3 in (2.6), integrating in time and invoking the
norm equivalence (2.5), we find

‖(u, τ)‖2H2 + 2

∫ t

0
(‖∂1u‖2H2 + ‖∂2τ‖2H2 + ‖τ‖2H2) ds

≤ ‖(u0, τ0)‖2H2 + C

∫ t

0
‖u‖H2 (‖∇u‖2H1 + ‖∂1u‖2H2) ds

+ C

∫ t

0
(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2) ds

≤ ‖(u0, τ0)‖2H2 + C sup
0≤s≤t

‖u(s)‖H2

∫ t

0
(‖∇u‖2H1 + ‖∂1u‖2H2) ds

+ C sup
0≤s≤t

(‖u‖H2 + ‖τ‖H2)

∫ t

0
(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2) ds

≤ E(0) + C E
3
2
1 (t) + C E

3
2
2 (t).

This proves (2.1), namely

E1(t) ≤ E(0) + C E
3
2
1 (t) + C E

3
2
2 (t).

To prove (2.2), we invoke (1.5) or (1.10) to write ‖∇u‖2H1 as

‖∇u‖2H1 = −(u,∆u)− (∇u,∇∆u)

= −2

∫
u · ∂tP∇ · τ dx+ 2

∫
u · ∂22P∇ · τ dx
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− 2

∫
u · P∇ · τ dx+ 2

∫
u ·N2 dx

− 2

∫
∇u · ∇∂tP∇ · τ dx+ 2

∫
∇u · ∇∂22P∇ · τ dx

− 2

∫
∇u · ∇P∇ · τ dx+ 2

∫
∇u · ∇N2 dx, (2.7)

where
N2 = −P∇ · (u · ∇τ)− P∇ ·Q(τ,∇u).

In addition,∫
u · ∂tP∇ · τ dx =

d

dt

∫
u · P∇ · τdx−

∫
P∇ · τ · ∂tu dx

=
d

dt

∫
u · P∇ · τdx

−
∫

P∇ · τ · (∂11u+ P(∇ · τ) + P(−u · ∇u)) dx.

Similarly,∫
∇u · ∂t∇P∇ · τ dx =

d

dt

∫
∇u · ∇P∇ · τdx

−
∫
∇P∇ · τ · ∇(∂11u+ P(∇ · τ) + P(−u · ∇u)) dx.

Inserting the last two equations in (2.7), we find

‖∇u‖2H1 = J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8, (2.8)

where

J1 = −2
d

dt

∫
u · P∇ · τdx− 2

d

dt

∫
∇u · ∇P∇ · τdx,

J2 = 2

∫
u · ∂22P∇ · τ dx+ 2

∫
∇u · ∇∂22P∇ · τ dx,

J3 = −2

∫
u · P∇ · τ dx− 2

∫
∇u · ∇P∇ · τ dx,

J4 = −2

∫
u · P∇ · (u · ∇τ) dx− 2

∫
∇u · ∇P∇ · (u · ∇τ) dx,

J5 = −2

∫
u · P∇ ·Q(τ,∇u) dx− 2

∫
∇u · ∇P∇ ·Q(τ,∇u) dx,

J6 = 2

∫
P∇ · τ · ∂11u dx+ 2

∫
∇P∇ · τ · ∇∂11u dx,

J7 = 2

∫
P∇ · τ · P(∇ · τ) dx+ 2

∫
∇P∇ · τ · ∇P(∇ · τ) dx,

J8 = −2

∫
P∇ · τ · P(u · ∇u) dx− 2

∫
∇P∇ · τ · ∇P(u · ∇u) dx.

We first have ∫ t

0
J1 ds ≤ C ‖u(t)‖L2‖τ(t)‖H1 + C ‖u0‖L2‖τ0‖H1
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+ C ‖u(t)‖H1‖τ(t)‖H2 + C ‖u0‖H1‖τ0‖H2

≤ C ‖u(t)‖H1‖τ(t)‖H2 + C ‖u0‖H1‖τ0‖H2 .

By integration by parts and Hölder’s inequality,

|J2| ≤ ‖∇u‖H1 ‖∂2τ‖H2 , |J3| ≤ ‖∇u‖H1‖τ‖H1 ,

|J6| ≤ ‖∇τ‖H1 ‖∂1u‖H2 , |J7| ≤ ‖∇ · τ‖2H1 ≤ ‖τ‖2H2 .

By integration by parts, Hölder’s inequality and Lemma 2.1,

|J4| ≤ ‖∇u‖L2 ‖u‖L∞‖∇τ‖L2 + C ‖∆u‖L2 ‖∇u‖
1
2

L2 ‖∂1∇u‖
1
2

L2 ‖∇τ‖
1
2

L2 ‖∂2∇τ‖
1
2

L2

+ C ‖∆u‖L2 ‖u‖L∞‖∆τ‖L2

≤ C ‖u‖H2(‖∇u‖2H1 + ‖∇τ‖2H1) + C ‖∇u‖
1
2

L2 ‖∇τ‖
1
2

L2‖∇u‖H1‖∂1u‖
1
2

H2 ‖∂2τ‖
1
2

H2

≤ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖∇τ‖2H1 + ‖∂2τ‖2H2).

Similarly,

|J5| ≤ ‖∇u‖L2 ‖τ‖L∞‖∇u‖L2 + C ‖∆u‖L2 ‖∇u‖
1
2

L2 ‖∂1∇u‖
1
2

L2 ‖∇τ‖
1
2

L2 ‖∂2∇τ‖
1
2

L2

+ C ‖∆u‖L2 ‖τ‖L∞‖∆u‖L2

≤ C ‖τ‖H2 ‖∇u‖2H1 + C ‖∇u‖
1
2

L2 ‖∇τ‖
1
2

L2‖∇u‖H1‖∂1u‖
1
2

H2 ‖∂2τ‖
1
2

H2

≤ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖∇τ‖2H1 + ‖∂2τ‖2H2)

and

|J8| ≤ 2‖∇τ‖L2‖u‖L∞ ‖∇u‖L2 + C‖∆τ‖
1
2

L2 ‖∂2∆τ‖
1
2

L2 ‖∇u‖
3
2

L2‖∂1∇u‖
1
2

L2

+ C ‖∆τ‖
1
2

L2 ‖∂2∆τ‖
1
2

L2 ‖u‖
1
2

L2‖∂1u‖
1
2

L2‖∆u‖L2

≤ C ‖u‖H2‖∇τ‖L2‖∇u‖L2

+ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖∂2τ‖2H2)

≤ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖τ‖H2 + ‖∂2τ‖2H2).

Inserting the bounds above in (2.8) and integrating in time, we obtain

E2(t) :=

∫ t

0
‖∇u(s)‖2L2 ds = −2

∫
u · P∇ · τdx+ 2

∫
u0 · P∇ · τ0 dx

− 2

∫
∇u · ∇P∇ · τdx+ 2

∫
∇u0 · ∇P∇ · τ0 dx

+

∫ t

0
(J1 + J2 + · · ·+ J8) ds

≤ C ‖u(t)‖H1‖τ(t)‖H2 + C ‖u0‖H1‖τ0‖H2

+ CE1(t) +
1

2
E2(t) + CE

3
2
1 (t) + CE

3
2
2 (t),

≤ CE(0) + CE1(t) +
1

2
E2(t) + CE

3
2
1 (t) + CE

3
2
2 (t), (2.9)
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where we have used several Hölder’s inequalities,∫ t

0
‖∇u‖H1 ‖∂2τ‖H2ds ≤

1

4

∫ t

0
‖∇u‖2H1 ds+ C

∫ t

0
‖∂2τ‖2H2ds

≤ 1

4
E2(t) + C E1(t),∫ t

0
‖∇u‖H1‖τ‖H1 ds ≤

1

4
E2(t) + C E1(t),∫ t

0
‖∇τ‖H1 ‖∂1u‖H2 ≤ C E1(t),

∫ t

0
‖∇ · τ‖2H1ds ≤ ‖τ‖2H2 ds ≤ C E1(t)

and ∫ t

0
(‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖τ‖H2 + ‖∂2τ‖2H2) ds

≤ CE
3
2
1 (t) + CE

3
2
2 (t).

It then follows from (2.9) that

1

2
E2(t) ≤ CE(0) + CE1(t) + CE

3
2
1 (t) + CE

3
2
2 (t),

which is (2.2). This completes the proof of Theorem 1.1. �
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