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An Alexander method for
infinite-type surfaces

Roberta Shapiro

ABSTRACT. The Alexander method is a combinatorial tool used to determine
when two elements of the mapping class group are equal. In this paper we ex-
tend the Alexander method to include the case of infinite-type surfaces. Ver-
sions of the Alexander method were proven by Herndndez-Morales-Valdez,
Herndndez-Hidber, and Dickmann. As sample applications, we verify a par-
ticular relation in the mapping class group, show that the centralizers of many
twist subgroups of the mapping class group are trivial, and provide a simple
basis for the topology of the mapping class group.
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1. Introduction

The Alexander method is a tool used to determine whether two homeomor-
phisms of a surface S are isotopic. It states that two homeomorphisms of S
are isotopic if and only if they have identical actions on the isotopy classes of
the curves in an Alexander system, which is a collection of curves with certain
properties described below.

The mapping class group of a surface S, denoted MCG(S), is the group of iso-
topy classes of homeomorphisms of S that fix S pointwise. Any isotopy must
therefore also fix the boundary pointwise at each time. (When S is orientable,
this group is usually called the extended mapping class group; this distinction
will be of no consequence in this paper.) There is an analogy between mapping
class groups and general linear groups. Via the Alexander method, Alexander
systems for surfaces play an analagous role of basis vectors in a vector space
in the sense that isotopy classes of homeomorphisms are determined by their
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action on an Alexander system. In fact, this analogy fits into a larger body of
work comparing mapping class groups to general linear and arithmetic groups;
see Ivanov [Iva02] and Ji [Ji12] for more.

Most earlier results surrounding the Alexander method work with surfaces
of finite-type-that is, surfaces whose fundamental groups are finitely gener-
ated. The most general statement of the Alexander method for finite-type sur-
faces was formulated by Farb—Margalit [FM12, Proposition 2.8], but the method
can be traced back to the works of Dehn [Deh38, Deh79] and Thurston [FLP79,
KM12].

In this paper, we extend the notion of an Alexander system to include curve
systems on infinite-type surfaces (surfaces whose fundamental groups cannot
be finitely generated), and then prove our main result: a generalization of the
Alexander method of Farb—Margalit [FM12] to include the case of infinite-type
surfaces (including non-orientable surfaces).

A version of the Alexander method was proven for orientable surfaces by
Hernandez-Morales-Valdez [HMV19] and for non-orientable surfaces by
Hernandez-Hidber [HH21]. In both of these papers, the authors construct a
family of Alexander systems such that any homeomorphism that fixes the iso-
topy class of each curve and arc in an Alexander system is isotopic to the identity
homeomorphism. In this paper, we work with homeomorphisms that permute
the isotopy classes of curves of arbitrary Alexander systems. As such, our main
theorem is a more direct analogue of the Alexander method for finite-type sur-
faces given by Farb-Margalit [FM12].

Alexander systems. Let S be a surface, possibly infinite-type and possibly
non-orientable. Although S may have punctures (isolated planar ends), it will
be convenient to treat these punctures as marked points. For the remainder of
this paper, we will refer to marked points and punctures interchangeably. We
define a curve to be the image of an embedding y : S! & S. We define an arc to
be the image of a proper embedding y : [0, 1] < S, where y(0) and y(1) are ei-
ther marked points or in the boundary and y | ¢ ;) is a proper embedding into the
interior of S with marked points removed. In particular, arcs are of finite type:
their endpoints correspond to isolated planar ends or boundary components.

A curve in S is essential if it is not nullhomotopic, not homotopic to a punc-
ture, and not homotopic to the boundary of a Mobius band; simple if it does not
self-intersect; and non-peripheral if it is not isotopic to a boundary component.
Our definition of curves implies that all curves are simple. An arc is essential
and non-peripheral if it and (a subset of) a boundary component do not jointly
bound an unpunctured disk in S.

A subsurface exhaustion of surface S is a sequence of finite-type subsurfaces
{S,} with S; C S;,; such that US, = S.

We say that a collection T' = {y;},<; of essential, non-peripheral, simple closed
curves and finite-type arcs on S is an Alexander system if it satisfies the following
properties:

(1) (minimal position) y; and y; are in minimal position for all i, j € I,
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(2) (distinct isotopy classes) no two elements of I are isotopic,

(3) (notripleintersections) for distincti, j, k € I, atleastone of y;Ny;,7;Nyx,
or y; Ny is empty, and

(4) (local finiteness) for a fixed subsurface exhaustion {S,} of S,

l{ri€T : vinS, #0} <o

for all n.

Properties (1), (2), and (3) of Alexander systems are inherited from the clas-
sical finite-type Alexander method. Property (4) is only needed for infinite-
type surfaces and is automatically satisfied for finite-type surfaces. Property
(4) is also equivalent to the following: every finite-type subsurface of S inter-
sects finitely many elements of I'. In fact, property (4) is a necessary condition;
a counterexample to the Alexander method with property (4) not satisfied is
given in Section 4.

We say that a set of curves and arcs in minimal position in S fills S if S \ T'is
a union of disks, once punctured disks, and Mobius bands (each possibly with
noncompact boundary). Equivalently, the components of S \ T" have a trivial
mapping class group.

Statement of the main theorem. To state the main theorem, we require sev-
eral more definitions. Define a surface graph to be an abstract graph with an
embedding into some surface. Given an Alexander system on a surface S, let
G(S,T) = Uy, be the surface graph in S whose vertex set, denoted V(G), is com-
prised of the points of intersection of curves and arcs in I' and the endpoints of
arcs (using marked points in lieu of punctures), and whose edges are the con-
nected components of Uy; \ V(G). Let G'(S,T) be the barycentric subdivision
of G(S,T'), which is also a surface graph.

An automorphism of a surface graph is an automorphism of the associated
abstract graph that arises from a homeomorphism of the surface.

Main theorem. Let S be any surface, I' = {y;};cr an Alexander system in S, and
¢ : S — S a homeomorphism. Suppose o is a permutation of the set I such that
¢(y;) is isotopic to y(; for all i. Then,
(1) there exists a homeomorphism 1 : S — S isotopic to ¢ rel 3S such that
(yi) = voq forally; €T,
(2) ¢ induces a unique automorphism ¢, of G'(S,T'), and
(3) ifTisfilling, then ¢, is the identity if and only if ¢ is isotopic to the identity.

The statement that ¢, acts by the identity on the barycentric subdivision
of G(S,T) is equivalent to saying that ¢ induces the identity automorphism of
G(S,T) and preserves the orientation of each loop edge.

We further note that ¢ need not be a self-homeomorphism of S, as our proof
will not use this at all. That is, our proof applies to a homeomorphism ¢ : S —
S" and Alexander systems I' (indexed by I) and I’ (indexed by I’) on S and S’,
respectively, with a bijection o : S — S’. In the case of distinct surfaces, ¢, is a
graph isomorphism and the last statement of the main theorem does not apply.
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When we work with the domain of ¢, we will say we are working with the
source and when we work with the range of ¢, we will name it the target.

A useful version: the case of the identity mapping class. A stable Alexan-
der system is an Alexander system such that any mapping class that acts by
the identity on the set of isotopy classes of curves in this system is the identity
mapping class.

The existence of a stable Alexander system is proved for orientable infinite-
type surfaces by Hernandez-Morales-Valdez [HMV19] and for non-orientable
surfaces by Hernandez-Hidber [HH21], both without noncompact boundary
components. Both papers provide explicit constructions for stable Alexander
systems. Given the constructions, proof of stability directly follows from the
Alexander method for finite-type surfaces. The existence of a stable Alexander
system is further proved for surfaces with noncompact boundary by Dickmann
[Dic22].

In this paper, we provide another criterion for determining whether a home-
omorphism is isotopic to the identity based on how it acts on an Alexander
system, but this time without a significant restriction on the Alexander system;
this is item (3) in the Alexander method.

Applications of the Alexander method. The Alexander method and the ex-
istence of stable Alexander systems are key to proving multiple fundamental
results about mapping class groups of finite-type surfaces, including the com-
putation of the center of the mapping class group, the Dehn-Nielsen-Baer the-
orem, the solvability of the word problem for the mapping class group, and the
existence of certain relations in the mapping class group [FM12].

Some of the above applications were extended to mapping class groups of
infinite-type surfaces. For instance, Lanier and Loving [LL20] compute the
center of the mapping class group of a surface of infinite type using the results
of Hernandez-Morales-Valdez; their approach is analogous to the finite-type
case.

In Section 2 of this paper, we include several sample applications of our
Alexander method: verifying relations in the mapping class group, comput-
ing centralizers of subgroups of the mapping class group, and describing the
topology of the mapping class group using a simpler basis.

Paper outline. In Section 2, we prove the applications of our main theorem
from the previous paragraph. In Section 3, we prove the main theorem. We
conclude with Section 4, where we provide counterexamples to the Alexander
method with each of the hypotheses altered.

Acknowledgments. The author is infinitely grateful to Dan Margalit for his
support and for many helpful conversations. The author would further like
to thank Jestis Herndndez Herndndez for extensive discussions on a draft of
this paper. The author would also like to thank Ferran Valdez for correspon-
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2. Sample applications

In this section, we discuss three applications of the Alexander method: prov-
ing relations in the mapping class group of a surface, finding the centralizer
of subgroups of the mapping class group, and describing the topology (and,
more precisely, the non-discreteness and local non-compactness) of the map-
ping class group using a simpler basis. These applications represent the many
types of questions the Alexander method can answer.

2.1. Relations in the mapping class group. Let S be the orientable surface
with three ends accumulated by genus and no boundary components nor punc-
tures (the tripod surface). We label the ends a, b, and c, as in Figure 1 and let
I" be the Alexander system pictured in Figure 1.

FIGURE 1. Surface S with ends a, b, and c, along with an
Alexander system I on S. The handle shifts used in this ex-
ample are pictured as well.

Let h,, be a handle shift from end a to end b, h, a handle shift from end
b to end c, and h,, a handle shift from end c to end a. (Handle shifts are not
determined by a pair of ends; we take the arrows in Figures 1 and 2 as the defi-
nitions of the handle shifts. For example, h,;, sends the light blue curve closest
to end a to the diagonal pink curve, which in turn is sent to the navy blue curve
closest to end b; in particular, all involved genus are being shifted one over from
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FIGURE 2. Computations for the action of h.,hj.h,, on S and T

a to b while all genus closest to end ¢, separated off from the remainder of the
surface by the dark green curve, are fixed. The handleshifts h;. and h., are
defined similarly.) We verify a the following relation, which is a special case
of a relation initially proven by Afton-Freedman-Lanier-Yin [AFLY] using the
Alexander method for finite-type surfaces.

Proposition 2.1 (Afton-Freedman-Lanier-Yin). Let S be the surface and hyy,
hy. and h,, the handle shifts in Figure 2. Then,

heahpchap = id,
where we compose from right to left.

The computations are shown in Figure 2. We only need to keep track of the
curves within one genus of the center of S, as all other curves are not distorted
by the handle shifts.

The orientation of loop edges in G(S, I') does not change upon application of
heghpohgp- We conclude that b, hy hy,, = id is a valid relation.
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Afton-Freedman-Lanier-Yin also observe that in the tripod surface, h,,, hy,,
and hz} are conjugate in MCG(S), implying that in the abelianization of the
MCG(S), handle shifts are equal to the identity [AFLY].

Similar relations are true in more general settings, including non-orientable
handle shifts. Such relations can be verified using the version of the Alexan-
der method in Hernandez-Morales—Valdez [HMV19]; our Alexander method
provides more flexibility with the choice of the Alexander system. We note that
the action on the above Alexander system alone (without considering the ori-
entations of curves) does not show that the above homeomorphism is isotopic
to the identity, as there is a second, orientation-reversing homeomorphism of
S that fixes the isotopy classes of all curves in T'.

2.2. Centralizer of subgroups of mapping class groups. In this section, we
will show a result relating to the centralizers of twist subgroups of mapping
class groups.

Let S be a surface with filling Alexander system I' = {y;};c; comprised of

two-sided curves. We define T = ({T’;ii }ier) to be the subgroup generated by the
k;th powers of the Dehn twists about the y;. The propositions in this section
concern this subgroup.

Let G,(S,T) be the ribbon graph associated with G(S, I'); this ribbon graph
contains the topological information of the Alexander system along with its reg-
ular neighborhood in S. Since I'" is comprised of two-sided curves without triple
intersections, we have that the geometric realization of G,(S,T’) is a union of
annuli {A;} with core curves {y;} glued together along disks. We define an auto-
morphism of a ribbon graph to be an automorphism of the underlying abstract
graph that preserves the A; setwise. We note that this is not the usual definition
of an automorphism of a ribbon graph.

If f : S — Sinduces an automorphism of G,(S, I') that fixes the curves corre-
sponding the elements of I', then each A; is mapped to itself and its orientation
is either preserved or reversed. In particular, for the orientation of A; to be pre-
served, the core curve y; of A; must be mapped to itself and the orientations of
both the core and cocore of A; must both be preserved or must both be reversed.

Let G/ (S, ') be the abstract graph associated with G’ (S, T'). We note that auto-
morphisms of G'(S, T') induce automorphisms of G, (S, I') by considering G,(S, T')
to be embedded in S with core curves y;. Similarly, automorphisms of G,(S, I')
induce automorphisms of G/(S, T') by forgetting the annular structure. That is,
there are natural inclusion (and, in particular, injective) maps

AU(G(S, T)) S Aut(G,(S,T)) < Aut(GL(S, T).

We note that if we replace Aut(G’(S,T')) by Aut(G(S, T')), this map need not be
injective.

We call an Alexander system I' on S weakly stable if: 1) it is filling and 2) any
automorphism of G,(S,T') in the image of F above that preserves each A; with
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orientation is the trivial automorphism; in particular, it is also the image of the
trivial automorphism of G’(S, I').

Proposition 2.2. Let S be a surface and I' a weakly stable Alexander system com-
prised of two-sided curves. Let {k;};c; be a collection of non-zero integers. Then,

the centralizer in MCG(S) of the subgroup T = ({T 7’2‘ Yier) is trivial.

Itis not straightforward to see how Proposition 2.2—and, by extension, Corol-
lary 2.3 that follows—could be achieved using the version of the Alexander
method of Hernandez-Morales-Valdez [HMV19], as the graphs G(S,T’) and
G,(S,T) play a crucial role in the proofs.

Proof of Proposition 2.2. Suppose [f] € MCG(S) is in the centralizer of T.
Since [ f] commutes with each T}’fii, it follows that f fixes the isotopy classes of
all curves in T as well as the orientation of the annular neighborhood of each
curve. We then have that f induces an automorphism & of G’(S, I') by statement
2 of the Alexander method. Furthermore, a = F(&) is an automorphism of
G,(S,T) that preserves the orientations of the A;.

Since I is weakly stable, & is the identity. The third statement of the Alexan-
der method implies that [ f] is the identity mapping class. O

We use the above proposition to prove the following example.

Corollary 2.3. Let S and T be the surface and Alexander system in Figure 3. Let
{k;}icr be a collection of non-zero integers. Then, T is weakly stable and hence the

centralizer in MCG(S) of the subgroup T = ({T’;i" Yier) is trivial.

s
s s

FIGURE 3. The Alexander system I' = {y;}; in Corollary 2.3.

N N .

b

FIGURE4. The graph G,(S,T). Any automorphisms of G,(S, T')
must preserve loop edges. Due to the lack of symmetry in
G,(S,T), every automorphism of G(S, T') must fix all loop edges,
possibly reversing orientation. As such, all monochromatic
loops must be fixed setwise.
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Proof. Let a € AutG,(S,T) be induced by an automorphism & of G'(S, T') and
suppose o maps the annuli A; to themselves and preserves their orientations.
Leta, € Aut G4(S, T) be the induced automorphism of the abstract graph. That
is,

AU(G'(S, 1)) © Aut(G,(S, T))> G(S,T)

a = a = a,.

We note that & induces «a, as well by forgetting the surface structure. We want
to show that & is the identity automorphism.

Let G,(S,T) be the abstract graph associated to G(S, I'). If we orient the loop
edges of G,(S,T) and keep track of their orientations, then the elements of
Aut(G,(S,T)) are in a natural bijection with elements of Aut(G,(S,T)) (auto-
morphisms of G,(S,T’) need not repsect orientation). Let !, € Aut(G,(S,T))
be the automorphism corresponding to «,.

We first show that o, is a product of automorphisms that reverse the direc-
tions of loop edges or swap pairs of edges in 2-cycles. Any automorphism of
G,(S,T) must preserve same-colored cycles setwise such that no two cycles are
interchanged. This property of o/, is also inherited from a. Moreover, all 3-
cycles are fixed by any automorphism of G,(S, I'). It follows that «, may only
reverse orientations of loop edges (equivalent to a, swapping edges in 2-cycles
in G/(S,T)) or swap pairs of edges in 2-cycles.

Since a preserves the A; with orientations, the orientations of all curves that
intersect the curves corresponding to the red 3-cycles (thickened in the image)
are preserved. As such, the orientations of loop edges cannot be reversed. By
working our way sequentially toward the ends, the orientations of all other
curves must be preserved as well. It follows that a,—and similarly «,—are
the trivial automorphisms. It follows from injectivity that & is the trivial auto-
morphism of G'(S, T).

We now have that T" is weakly stable and Proposition 2.2 gives us that the
centralizer of T is trivial. O

2.3. Topology of mapping class groups.Aramayona-Vlamis discuss the
topology on the mapping class group of infinite-type surfaces and show that
the mapping class groups of infinite-type surfaces are not discrete and not lo-
cally compact [AV20]. As we describe below, the topology can be described in a
simpler manner using the Alexander method. The applications in this section
were suggested by Jesus Hernandez Hernandez [Her21].

The topology on the mapping class group via the Alexander method.
There is a natural topology on MCG(S) arising from the compact-open topology.
The permutation topology is an equivalent and more combinatorial description
of the topology on mapping class groups of infinite-type surfaces (see [AV20,
Section 4.1] for more details). We give a new perspective on the permutation
topology in light of the Alexander method.
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For any finite set A of isotopy classes of curves in S, let U(A) be the set of
mapping classes that fix all of the curves in A. Define the permutation topology
on MCG(S) to be the topology whose basis elements are all MCG(S)—translates
of all U(A).

Let S be an infinite-type surface and I'" a stable Alexander system in S. Such a
system exists by the works of Herndndez—Morales-Valdez [HMV19], Hernandez—
Hidber [HH21], and Dickmann [Dic22]. We define the Alexander topology T+
on MCG(S) as follows. For any finite subset B of (the isotopy classes of) curves
in T, let U(B) be the set of mapping classes that fix all the curves in B. Then,
the basis for 74 is the set of all MCG(S)—translates of all U(B).

Jrisindeed a topology. The basis elements cover MCG(S) since h € h-U(B)
for every B C T (abusing notation, as the elements of B are isotopy classes of
curves and I' contains curves). We also have thatif h € g, - U(B;) N g, - U(B,),
thenh € h- U(By)nh - U(B,) = h - U(B; U B,), another basis element.

We show that the permutation topology and the Alexander topology are equiv-
alent. This result is to be expected since, by the Alexander method, a mapping
class is determined by its action on an Alexander system.

Proposition 2.4. Let S be an infinite-type surface and I a stable Alexander sys-
temon S. Then, T is equal to the permutation topology T .

Proof. We have that 7 is a priori finer than JT since I C 7, so it remains
to show the opposite inclusion. Let h € MCG(S) and let A be a set of isotopy
classes curves such that g-U(A) is a basis element that contains h. Then, h(a) =
gla)fora € A,sog-U(A) = h-U(A). Abusing notation, let 'y C T be a finite
set of curves such that the subsurface of S filled by ' contains all the curves
in A. We then have thath € g- U(A) = h- U(A) C h- U(T'4), completing the
proof. O

The mapping class group is not discrete. We now use our characterization
of the topology on MCG(S) to verify that the mapping class group is not discrete.

Let T be a stable Alexander system. Take {c,} to be a set of distinct curves
in T. It follows from the local finiteness of Alexander systems and our charac-
terization of the topology of the mapping class group in Proposition 2.4 that
{T, }nen limits to the identity. This is so because every finite-type subsurface of
S is eventually fixed by the T, .

This is akin to the example provided by Aramayona-Vlamis in their proof
of the fact that mapping class groups of infinite-type surfaces are not discrete.
Further discussion of this result is provided in Aramayona-Vlamis [AV20].

The mapping class group is not locally compact. Aramayona-Vlamis fur-
ther discuss why the mapping class group of an infinite-type surface is not lo-
cally compact; this discussion is rooted in the permutation topology. We show
the same result, but using the Alexander topology.
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To begin, fix a curve ¢ and consider the mapping class T.. Then, any neigh-
borhood N of T, must contain all the powers of T, (if T, fixes a curve, then so
does Tf for all k). As such, {Tf} is contained in N.

Suppose & is the limit of {T¥}. Applying Proposition 2.4, we see that {T¥}
must agree with & on increasing and exhaustive subsets of I' (and therefore
S). However, {T¥} does not stabilize on a neighborhood of c: let y be a curve
that intersects c. Then, T*(y) # TJ(y), implying that {Tf} is not eventually in
h - U({y}), a contradiction. Therefore, MCG(S) is not locally compact.

The same sequence is used by Aramayona—-Vlamis to show that the mapping
class group is not locally compact [AV20]. The novelty in our approach is that
the Alexander method provides a more algorithmic way to check convergence
that can be customized and optimized by a good choice of Alexander system.

3. Proof of the Alexander method

In this section, we prove the main theorem. Let S be a surface and I an
Alexander system on S. We restate the Alexander method for convenience.

Recall that G(S, T') is the surface graph on S whose vertices correspond to in-
tersections between curves and arcs in I" as well as endpoints of arcs and whose
edges correspond to the connected components of Uy; \ V(G). The barycentric
subdivision of G(S,T') is denoted G'(S, T").

With that notation, the main theorem states the following. Suppose ¢ : S —
S is a homeomorphism that permutes the isotopy classes of curves in I accord-
ing to permutation o. Then

(1) there exists a homeomorphism 3 : S — S isotopic to ¢ rel S such that
P(ri) = Vo forally; €T,

(2) ¢ induces a unique automorphism ¢, of G’(S,T), and

(3) if T is filling, then ¢,, is the identity if and only if ¢ is isotopic to the
identity.

Proof of main theorem. We will prove the three statements of the Alexander
method in turn.

Statement 1: finding a homeomorphism 1 isotopic to ¢. We first notice that ¢(T")
is an Alexander system. Since we will be isotoping ¢(I') to T, it is sufficient to
consider isotoping an Alexander system to another Alexander system such that
each curve (or arc) in the first is isotopic to a curve (or arc) in the second.

With that in mind, let T" and I’ be Alexander systems in S such thaty; € T'is
isotopic to ylf € I'". We will construct an isotopy of S such that each y; is taken
toy].

Both Alexander systems are indexed by N or {1, ..., n}. We present the proof
in the case of Alexander systems with infinite cardinality; the finite case follows
the same outline.

We claim that there exists a subsurface exhaustion {S,}y of S as follows:
int(S;) contains y; U y.. That is, y; and | are isotopic in S; (rel 45;). First, the
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fact that every surface can be triangulated implies that every surface has an ex-
haustion by finite-type subsurfaces; let {S,,} be such an exhaustion. The closure
of each y; U y; is compact (when treating punctures as marked points); thus,
it must be contained in the interior of some S;. The sequence {S; }; is there-
fore the desired exhaustion of S. For simplicity of notation, we will denote our
exhaustion by {S;}.

We will now define a sequence of isotopies that we will perform sequentially
to produce an isotopy H : S X [0,1] — S such that for each x € S, we have that
H(x,0) = id and 3(x) := H(x,1), with (y;) = ]

We claim that there exists a sequence of isotopies H; : S X [0,1] — S sup-
ported on S;, defined recursively, such that

(1) the ith curve or arc is corrected: H;(y;,1) = ylf,

(2) previously corrected curves or arcs are not moved: for all j < i and
pE y;, H(p,t) = pforallt €[0,1],

(3) the intersections with other curves (and arcs) are preserved: H;(y; N
Y1) = ylf ny} forall j > iin such a way that each connected component

of Hy(y; \ 7:,1) is isotopic to a component of y;. \ 7] rely/,

(4) non-intersected subsurfaces are fixed: if (y; Uy]) N S; = @, then H; is
supported on S; \ S; (for j < i), and

(5) isotopies are gluable: H;(x,1) = H;,,(x,0) for all x € S.

To prove the claim, we address each of the five points. Points (1) and (2)
are achievable because y; and ylf are isotopic on S; and said isotopy can be per-
formed on S; cut along y; for j < i (retaining the boundary arising from y;).
Such an isotopy is the identity on the boundary—and, as such, it extends to
an isotopy of S that fixes y;. Point (3) is possible because we can perform an
isotopy that rotates, stretches, and/or shrinks along y; until the intersections
line up due to the lack of triple intersections. This is addressed in the proof of
Lemma 2.9 of Farb-Margalit [FM12].

We now prove that point (4) is achievable. Let A; be the set of nonperipheral
curvesindS;. Then, A;U{y;}and A ju{ylf } are Alexander systems in S; that satisfy
the hypotheses for the finite-type Alexander method. Following the proof of
Lemma 2.9 in Farb-Margalit [FM12], there is an isotopy of S; that takes y; to 7/1'/
and fixes A;. As such, we may take S; to be fixed as well.

Property (5) is achieved by defining the isotopies sequentially. We have there-
fore completed the proof the claim.

We define a sequence of functions to reparametrize the intervals.

1 1
& 1—21._1,1—5] - [0,1]

e im )

Let J; be the largest j such that (y;, U y}_) NS; # . Such a largest value exists
due to the local finiteness of Alexander systems. Finally, we define our overall
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isotopy H : Sx[0,1] - S:

Hi(p, (1) te [1 g 1]

2i-1’ 2i

H(p,1) =
i ngiH(p,l) p € ini(S;\ Si_p)andt = 1

The map H is continuous for all (x, t) if t < 1 due to the continuity of the H;,
point (5) above, and the pasting lemma from point-set topology. It remains to
show that H is continuous at t = 1. In other words, we want to show that, for
all p € S, there exists an open neighborhood U, of p and ¢, € [0, 1) such that
H(x,t) = x forall x € U, for all ¢t > ¢, for some t,. Suppose p € int(S;) for
some i. Then, H;(x,)|sx; = x for allJ > J; and for all ¢ by point (4) above.
Since p € int(S;), we have that there is an open neighborhood U, of p such
that H(x,t) = ¢(x) for all x € U, for all t > ¢, for some ¢.

The homeomorphism ¥(x) := H(x, 1) has the property (y;) = ylf by points
(1), (2), and (3) above, so y; is isotoped to ylf and is not moved afterward.

Statement 2: ¢ induces a unique automorphism of G(S,T). We now return to
our original notational conventions. That is, the I' in the proof of statement
1 is now ¢(T') and the I” in the proof of statement 1 is now I. It follows from
Statement 1 that ¢ induces an automorphism of G(S,T’). It remains to show
that this automorphism is unique.

It is sufficient to show that any automorphism of G(S, I') induced by an iso-
topy of S is the identity. The universal cover of S is the hyperbolic plane H?.
The preimage of G(S,T) in H? is a graph whose vertices are the preimages of
vertices of G(S, T') and edges are preimages of edges in G(S, I'). We may further
lift an isotopy of S to an isotopy of H? such that the identity isotopy lifts to the
identity.

As each arc and curve is isotoped on a finite-type surface, the induced graph
automorphism of the preimage of G(S, ') must preserve the endpoints of the
lifts of the arcs and curves at 0H?, and therefore preserve every elevation of
every curve and arc (connected component of the preimage of a curve or arc
under the projection map) in I'. As such, all intersections between elevations
of curves in I must be preserved by the isotopy, and it follows that the induced
automorphism of the preimage graph in H? is the identity. We conclude that ¢
induces a unique automorphism of G(S, I).

Statement 3: inducing the identity automorphism on G'(S,T) implies being iso-
topic to the identity. Let T be a filling Alexander system in S. Suppose ¢, is the
identity automorphism of G’(S, I'); that is, ¢, preserves the orientation of loop
edges in G(S,T'). By our work above, ¢, takes vertices to vertices and edges to
edges; thus, if an edge has distinct vertices, its orientation is preserved by ¢...
We now have that ¢, fixes, with orientation, each edge of G'(S, T') and therefore,
¢ fixes the boundary of each disk, punctured disk, and Mobius band in S \ T
(keeping the boundary arising from I'). It follows that, up to isotopy, ¢ is equal
to the identity on every disk, once-punctured disk, and Mdébius band. We then
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apply the pasting lemma from point-set topology to obtain that ¢ is isotopic to
the identity. O

4. Non-example of an Alexander system

In this section, we illustrate why the local finiteness condition on Alexander
systems is necessary.

The main idea of this restriction is that we do not want any limit points of
distinct elements of our Alexander system. That is, any sequence {x,,} of points
on distinct y; does not converge. Let us consider an example with seemingly
minimal convergence.

FIGURE 5. An example of an Alexander system I' on a sur-
face S where local finiteness is broken. We note that any disk
about the origin (isolated puncture connected to all other punc-
tures) intersects infinitely many arcs in I'. The key point is that
although all arcs in the left image are isotopic to their corre-
sponding arcs in the right image, the two configurations are not
homeomorphic.

Let S be the plane with punctures at the origin and at angles L and 0 on the
n

unit circle. Let I' consist of arcs connecting 0 to the punctures on the unit circle
(except to the puncture at angle 0). It suffices to show that I' is not well-defined
up to homeomorphism.

Let I'; be the collection of arcs that appear as straight rays from the origin to
the punctures on the unit circle (except at angle 0). Let I', be the same collection
of arcs, except the arc at angle 1 is isotoped counterclockwise to hit (but not
cross) the positive x-axis at minimum one point before x = 1. As such, there is
a sequence of points on the arcs in I, that converges to a point in an arc; this is
a property preserved by homeomorphisms and it is not true of I';. An example
of such arrangements is shown in Figure 5.
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We note that we require that arcs be of finite type in order for the above proof
technique to work. However, there may be a version of the Alexander method
which allows for all arcs.
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