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Abstract
Reinforcement learning (RL) has demonstrated
remarkable achievements in simulated environ-
ments. However, carrying this success to real en-
vironments requires the important attribute of ro-
bustness, which the existing RL algorithms often
lack as they assume that the future deployment en-
vironment is the same as the training environment
(i.e. simulator) in which the policy is learned.
This assumption often does not hold due to the
discrepancy between the simulator and the real
environment and, as a result, and hence renders
the learned policy fragile when deployed.

In this paper, we propose a novel distribution-
ally robust Q-learning algorithm that learns the
best policy in the worst distributional perturbation
of the environment. Our algorithm first trans-
forms the infinite-dimensional learning problem
(since the environment MDP perturbation lies
in an infinite-dimensional space) into a finite-
dimensional dual problem and subsequently uses
a multi-level Monte-Carlo scheme to approximate
the dual value using samples from the simulator.
Despite the complexity, we show that the result-
ing distributionally robust Q-learning algorithm
asymptotically converges to optimal worst-case
policy, thus making it robust to future environ-
ment changes. Simulation results further demon-
strate its strong empirical robustness.

1. Introduction
Reinforcement learning (RL) has demonstrated remarkable
empirical success in simulated environments, with appli-
cations spanning domains such as robotics (Kober et al.,
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2013; Gu et al., 2017), computer vision (Sadeghi & Levine,
2016; Huang et al., 2017), finance (Li et al., 2009; Choi
et al., 2009; Deng et al., 2017) and games (Silver et al.,
2016; 2018). More recently, reinforcement learning has also
been applied to economic domains such as personalized
promotions in revenue management, inventory control in
supply chains and scheduling in queueing networks. How-
ever, carrying this success to real environments requires an
attribute that is often missing in the existing literature on
policy learning: robustness, because existing RL algorithms
often make the implicit assumption that the environment in
which the policy is trained will be the same as the environ-
ment in which the policy will be deployed. In other words,
a policy is evaluated in the same environment from which
the training data has been generated.

While the above assumption is arguably a good starting
point1 for developing a rigorous understanding of algorith-
mic performance of policy learning, it does not capture
the complexity of real-world applications because the dis-
crepancy between training and deployment environments
is often common and hard to anticipate (and hence account
for) in advance. Two common sources of discrepancies are:

1. Simulator model mis-specification. In many rein-
forcement learning (RL) applications, a policy is often
first trained in a simulator before being deployed in a
real environment. However, simulator models often
cannot capture the full complexity of the real environ-
ment, and hence will be mis-specified. Further, it is
hard to know exactly how the real environment differs
from the simulator (otherwise, the simulator would
have been augmented/modified to account for that).

2. Environment shifts. The underlying environment may
shift due to either non-stationarity or a different deploy-
ment environment (for the same task). As an example
of the latter, a personalized content recommendation

1Much like supervised learning was first developed under the
same assumption, before adversarial training was recognized as
a valuable tool to make empirical predictions robust; see, for
instance, (Sinha et al., 2018; Goodfellow et al., 2014; Ganin
et al., 2016; Zhang et al., 2019; Tramèr et al., 2017). The topic of
domain adaptation (Shimodaira, 2000; Saerens et al., 2002; Ben-
David et al., 2010; Courty et al., 2016; Ganin et al., 2016; Sun et al.,
2020; Arjovsky et al., 2019; Wang & Deng, 2018; Sagawa et al.,
2019) is another approach to address covariate shifts in supervised
learning, but the new domain is often assumed to be known.
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engine (learned from existing user browsing data col-
lected in one region or market) may need to be de-
ployed in a different region or market, with different
population characteristics. Another example occurs
in robotics, where a robot trained to perform certain
maneuvers (such as walking (Schulman et al., 2013)
or folding laundry (Maitin-Shepard et al., 2010)) in
an environment can fail catastrophically (Drew, 2015)
in a slightly different environment, where the terrain
landscape (in walking) is slightly altered or the laundry
object (in laundry folding) is positioned differently.

As a result, to learn an effective policy in practice, one must
be cognizant of such discrepancies and take them into ac-
count during the training stage in order to learn a policy that
is robust to the unknown environment changes that cannot
be avoided and are difficult to know in advance. Whereas
distributionally robust learning in the simpler supervised
learning setting has been extensively studied in the past
decade (see Section 1.1), an emerging literature has only
recently been initiated to study this problem in the RL con-
text (Si et al., 2020b; Zhou et al., 2021; Yang et al., 2021;
Kishan & Kalathil, 2021). In particular, a common and natu-
ral formulation adopted therein is to consider distributional
shifts for rewards and/or transition probabilities (defined via
different divergence measures or distances between proba-
bility distributions), and to learn from data (collected from
some generative model) the best policy under the worst-
case distributional shift, which thus carries a certain level of
robustness to the unknown environment shifts.

Currently, all the existing distributionally robust policy
learning algorithms mentioned above (Si et al., 2020b;a;
Zhou et al., 2021; Yang et al., 2021; Kishan & Kalathil,
2021) are model-based, which estimate the underlying
MDP first before provisioning some policy from it. Al-
though model-based methods are often more sample-
efficient and easier to analyze, their drawbacks are also well-
understood (Sutton & Barto, 2018; François-Lavet et al.,
2018): they are computationally intensive; they require
more memory to store MDP models and often do not gen-
eralize well to non-tabular RL settings. These issues limit
the practical applicability of model-based algorithms, which
stand in contrast to model-free algorithms that learn to se-
lect actions without first learning an MDP model. Such
methods are often more computationally efficient, have less
storage overhead, and better generalize to RL with function
approximation. In particular, Q-learning (Watkins & Dayan,
1992), as the prototypical model-free learning algorithm,
has widely been both studied theoretically and deployed in
practical applications. However, Q-learning is not robust
(as demonstrated in our simulations), and the policy learned
by Q-learning in one environment can perform poorly in
another under a worst-case shift (with bounded magnitude).
As such, we are naturally led to the following research ques-

tion:

Can we design a variant of Q-Learning that is distribution-
ally robust?

1.1. Related Work

Robustness has been studied in several settings that are
related to (but different from) our investigation. For in-
stance, a rich literature has explored distributionally robust
learning and optimization in supervised learning (Bertsi-
mas & Sim, 2004; Delage & Ye, 2010; Hu & Hong, 2013;
Shafieezadeh-Abadeh et al., 2015; Bayraksan & Love, 2015;
Gao & Kleywegt, 2016; Namkoong & Duchi, 2016; Duchi
et al., 2016; Staib & Jegelka, 2017; Shapiro, 2017; Lam &
Zhou, 2017; Chen et al., 2018; Volpi et al., 2018; Lee &
Raginsky, 2018; Nguyen et al., 2018; Yang, 2020; Moha-
jerin Esfahani & Kuhn, 2018; Zhao & Jiang, 2017; Abadeh
et al., 2018; Zhao & Guan, 2018; Gao et al., 2018; Ghosh &
Lam, 2019; Blanchet & Murthy, 2019; Duchi & Namkoong,
2018; Lam, 2019; Duchi et al., 2019), where the underlying
testing distribution is still the same as the training distribu-
tion, and the learner merely uses the distributional uncer-
tainty (around the empirical distribution) to guard against
over-generalization due to lack of data. As such, the statisti-
cal learning results in this area focus on the setting where
the distributional uncertainty decreases with the sample size
(and as such, is part of the algorithm rather than the environ-
ment); further, it has been well recognized that under certain
conditions, this approach is formally equivalent to regu-
larization (Duchi & Namkoong, 2019; Duchi et al., 2016;
Gao et al., 2017; Shafieezadeh-Abadeh et al., 2019), which
prevents over-fitting in the small data regime.

On the other hand, learning predictive rules in testing distri-
butions that are different from – and often perturbations of –
training distributions have also been studied in (Sinha et al.,
2018; Goodfellow et al., 2014; Ganin et al., 2016; Zhang
et al., 2019; Tramèr et al., 2017), where the training pro-
cedure is robustified by first perturbing the original dataset
with some synthesized noise before solving a empirical risk
minimization problem, which has been observed to work
well in a robust manner.

Going beyond the supervised learning setting, a related area
to ours is distributionally robust Markov decision processes
(MDPs) (González-Trejo et al., 2002; Iyengar, 2005; Xu &
Mannor, 2010; El Ghaoui & Nilim, 2005; Wiesemann et al.,
2013; Wolff et al., 2012; Mannor et al., 2016; Morimoto &
Doya, 2005; Yang, 2020). This line of work has studied the
known environment MDP setting (hence no learning) and
has mainly focused on the computational issues2. Closest to

2For instance, they have characterized various types of uncer-
tainty sets, and have shown that for almost all of them, the optimal
distributionally robust policy is NP-hard to compute. For rectan-
gular uncertainty sets (to which our formulation belongs), such
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our work is the recent distributionally robust policy learning
work already mentioned (Si et al., 2020b; Zhou et al., 2021;
Yang et al., 2021; Kishan & Kalathil, 2021): (Si et al.,
2020b) studies the special case of distributionally robust
policy learning in contextual bandits (i.e. horizon is 1),
while the other three study the infinite-horizon discounted
RL setting.

1.2. Our Contributions

We design a distributionally robust Q-learning algorithm
that has two features beyond the standard Q-learning al-
gorithm. The first feature lies in the new values that the
algorithm aims to learn: instead of Q-values, the algorithm
now aims to estimate the distributionally robust Q-values.
We achieve this by leveraging strong duality to transform
the distributionally robust Q-values (an infinite-dimensional
object since the distributional uncertainty set is infinite-
dimensional) into a finite-dimensional quantity, also known
as the distributionally robust Bellman operator. Second, we
design a novel multi-level Monte-Carlo estimator to unbias-
edly estimate the distributionally robust Bellman operator.
Through a careful analysis of our estimator’s bias and vari-
ance (see Theorem 3.7 and Theorem 3.8), we show that
the distributionally robust Q-learning algorithm asymptot-
ically converges to optimal distributionally robust policy
(Theorem 3.10). As such, our results provide an initial af-
firmative answer to the open question raised above, and
the convergence result provides a distributionally robust
counterpart to the well-known asymptotic convergence of
Q-learning (Jaakkola et al., 1994). Finally, we provide sim-
ulation results to demonstrate the robustness of the policy
learned by the proposed distributionally-robust Q-learning
algorithm.

1.3. Comparison with Existing Work

The distributionally robust Bellman equation was obtained
before in (Iyengar, 2005). However, this is merely a tool
for us to solve the problem in the dual space. Our main
contribution is to design a distributionally robust Q-learning
algorithm based on it. (Xu & Mannor, 2010) does not pro-
pose any new algorithm for learning a distributionally robust
policy but only proved some properties of distributionally ro-
bust MDP. (Yang, 2020) considers the Wasserstein distance
and uses a model-based algorithm that is totally different
from ours. Our algorithm is the first model-free algorithm
ever developed on this problem. Prior to our work, it is not
clear at all whether Q-learning can be made robust, since all
the existing algorithms in this area are model-based.

computation can be done efficiently in polynomial time, although
depending on how such uncertainty sets are specified, some of the
proposed algorithms require oracle access to solving an infinite-
dimensional problem, and hence are infeasible.

2. Distributionally Robust Policy Learning
with a Simulator

2.1. Standard Policy Learning

Let M = (S,A,P,R, γ) be a tabular RL environment,
where S and A are finite state space and action space re-
spectively, R : S × A → P(R≥0) (the set of random vari-
ables that are supported on R≥0) is the randomized reward
function, P = {ps,a(·)}(s,a)∈S×A is the transition model,
and γ ∈ (0, 1) is the discount factor. We assume that the
transition is Markovian, i.e., at each state s ∈ S, if action
a ∈ A is chosen, then the subsequent state is determined
by the conditional distribution ps,a(·) = p(·|s, a). The de-
cision maker will therefore receive a randomized reward
r(s, a). The value function V π(s) provides the expected
cumulative discounted reward under the policy π with initial
state s ∈ S ,

V π(s) = E

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣ s1 = s

]
.

Hence, the optimal value function is:

V ∗(s) := max
π∈Π

V π(s), ∀s ∈ S,

where Π denotes the class of random policies. It is well
known that the optimal value function is the solution of the
following Bellman’s equation:

V ∗(s) = max
a∈A

{
E [r(s, a)] + γEps,a [V

∗(s′)]
}
, ∀s ∈ S.

From here we define the optimal Q-function, Q∗ as

Q∗(s, a) = E [r(s, a)] + γEps,a [V
∗(s′)]

= E [r(s, a)] + γEps,a

[
max
a′∈A

Q∗(s′, a′)

]
.

Throughout this paper, we impose the following assumption
on the rewards.
Assumption 2.1. (Bounded rewards)
For any (s, a) ∈ S ×A, r(s, a) ∈ [0, Rmax].

2.2. A Distributionally Robust Formulation

In reality, the transition model P and rewardsR inM are
subjected to change over time, this motivates us to learn
a policy that is robust to certain perturbation in the envi-
ronment. In particular, we consider the setting of distri-
butionally robust RL, where both transition probabilities
and rewards might be perturbed w.r.t. the Kullback-Leibler
(KL) divergence DKL(P∥Q) =

∫
log
(

dP
dQ

)
dP whenever

P ≪ Q (P is absolutely continuous with respect to Q).
Remark 2.2. We pick KL divergence simply because it is
one common divergence measure that is easy to analyze
(given the already complicated nature of the problem). Our
results can also be generalized to f -divergence.
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In the original environment, let P0 = {p0s,a}(s,a)∈S×A be
the transition probabilities, ν0 be the joint distribution of
{r(s, a)}(s,a)∈S×A, where r(s, a) ∼ ν0s,a (marginal distri-
bution with respect to (s, a)). To construct the distributional
uncertainty setting, for each (s, a) ∈ S × A, we define
robust KL balls that are centered at p0s,a and ν0s,a by

Ps,a(δ) :=
{
ps,a ∈ ∆|S| : DKL

(
ps,a∥p0s,a

)
≤ δ
}

and

Rs,a(δ) :=
{
r(s, a) ∼ νs,a : DKL(νs,a∥ν0s,a) ≤ δ

}
respectively. Here δ > 0 is the level of distributional robust-
ness, and ∆|S| stands for the |S|−1 dimensional probability
simplex. Now we are able to build the uncertainty set P(δ)
by the Cartesian product of Ps,a(δ) for each (s, a) ∈ S×A.
This type of uncertainty set is called (s, a)−rectangular set
in standard literature (Wiesemann et al., 2013). Similarly
we defineR(δ) by the Cartesian product ofRs,a(δ) for each
(s, a) ∈ S × A. In the distributionally robust framework,
the adversarial player is assumed to pick the worst-case
transition model and rewards that minimize the expected
cumulative discounted reward. To be clear, we define the
distributionally robust value function as follows.

Definition 2.3. Given δ > 0 and policy π ∈ Π, the distribu-
tionally robust value function V rob,π

δ is defined as:

V rob,π
δ (s) :=

inf
p∈P(δ),r∈R(δ)

Ep,r

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s

]
.

(1)

Following the definition, V rob,π
δ measures the quality of a

policy π by computing its performance in the worst-case
environment among the set of all possible environments that
perturb the original transition P0 and reward distribution ν0

under a δ-KL ball. The optimal distributionally robust value
function is therefore defined by

V rob,∗
δ (s) := max

π∈Π
V rob,π
δ (s), ∀s ∈ S.

2.3. Strong Duality

Following the well known results in (Iyengar, 2005; Xu
& Mannor, 2010), we can write down the distributionally
robust dynamic programing for the distributionally robust
value function V rob,π

δ in Equation (1) as follows:

V rob,π
δ (s) =

inf
ps,π(s)∈Ps,π(s)(δ),

r∈Rs,π(s)(δ)

{
E[r(s, π(s))] + γEps,π(s)

[
V rob,π
δ (s′)

]}
.

(2)

Moreover, we can write down the distributionally robust
Bellman’s equation for the optimal value function as follows:

V rob,∗
δ (s) =

max
a∈A

inf
ps,a∈Ps,a(δ),
r∈Rs,a(δ)

{
E [r(s, a)] + γEps,a

[
V rob,∗
δ (s′)

]}
.

(3)

Note that both Equation (2) and Equation (3) are in general
computationally intractable since they involve infinite di-
mensional optimization. To address this issue, we introduce
the following strong duality lemma from distributionally
robust optimization under KL-perturbation.

Lemma 2.4 ((Hu & Hong, 2013), Theorem 1). Suppose
H(X) has finite moment generating function in the neigh-
borhood of zero. Then for any δ > 0,

sup
P :DKL(P∥P0)≤δ

EP [H(X)]

= inf
α≥0

{
α log

(
EP0

[
eH(X)/α

])
+ αδ

}
.

By Lemma 2.4, we can transform the Equation (2) to the
following equation.

V rob,π
δ (s) =

sup
α≥0

{
−α log

(
Eν0

s,π(s)

[
e−r(s,π(s))/α

])
− αδ

}
+

γ sup
β≥0

{
−β log

(
Ep0

s,π(s)

[
e−V rob,π

δ (s′)/β
])
− βδ

}
.

(4)

As a direct consequence of the Equation (4) (note that the
size of Π is finite in the tabular setting, see Theorem 3.2
in (Iyengar, 2005) for a standard proof), the optimal distri-
butionally robust value function V rob,∗

δ in fact satisfies the
following distributionally robust Bellman’s equation.

V rob,∗
δ (s) =

max
a∈A

{
sup
α≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ

}
+

γ · sup
β≥0

{
−β log

(
Ep0

s,a

[
e−V rob,∗

δ (s′)/β
])
− βδ

}}
.

(5)

3. Q-Learning in Distributionally Robust RL
3.1. Review of Q-Learning

The Q-learning algorithm determines the optimal Q-
function using point samples. Let π be some random pol-
icy such that P(π(s) = a) > 0 for all state-action pairs
(s, a) ∈ S × A. Suppose at time t, we draw a sample
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(st, at, rt, s
′
t) from the environment according to the policy

π. Then, Q-learning uses the following update rules

Qt+1(st, at)

=Qt(st, at) + αt(st, at)

[
rt + γmax

b∈A
Qt(s

′
t, b)−Qt(st, at)

]
=(1− αt(st, at))Qt(st, at) + αt(st, at)

[
rt + γmax

b∈A
Qt(s

′
t, b)

]
,

where the step-sizes αt will be properly chosen. The
key reason why Q-learning works is that both rt and
maxb∈A Qt(s

′
t, b) are unbiased estimators of E[r(st, at)]

and Epst,at
[maxb∈A Qt(s

′, b)]. Therefore we can use the
stochastic approximation theorem to show that Qt converges
to Q∗ with careful choice of step-sizes. For more details,
please read (Melo, 2001; Even-Dar et al., 2003).

3.2. Distributionally Robust Q-Learning

From Equation (3) and Equation (5), we know the optimal
distributionally robust Q-function Qrob,∗

δ satisfies

Qrob,∗
δ (s, a)

= inf
ps,a∈Ps,a(δ),
r∈Rs,a(δ)

{
E[r(s, a)] + γEps,a

[
max
b∈A

Qrob,∗
δ (s′, b)

]}

= sup
α≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ

}
+

γ · sup
β≥0

{
−β log

(
Ep0s,a

[
e−maxb∈A Q

rob,∗
δ

(s′,b)/β
])

− βδ
}
.

By analogy with the Bellman Operator, we can define the
δ-distributionally robust Bellman Operator as follows:

Definition 3.1. Given δ > 0 and Q ∈ RS×A, the δ-
distributionally robust Bellman Operator T rob

δ : RS×A →
RS×A is defined as

T rob
δ (Q)(s, a) :=

sup
α≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ

}
+

γ · sup
β≥0

{
−β log

(
Ep0

s,a

[
e−maxb∈A Q(s′,b)/β

])
− βδ

}
.

(6)

Remark 3.2. We define the δ-distributionally robust Bellman
Operator by using its dual form. However, it may be more
convenient to use the primal form

T rob
δ (Q)(s, a) =

inf
ps,a∈Ps,a(δ),
r∈Rs,a(δ)

{
E[r(s, a)] + γEps,a

[
max
b∈A

Q(s′, b)

]}
.

(7)

Our definition implies that Qrob,∗
δ is a fixed point of T rob

δ .
Now suppose we have a simulator that allows us to sam-
ple (r, s′) from (ν0s,a, p

0
s,a), can we come up with a nice

unbiased estimator of T rob
δ (Q)(s, a)? The plug-in esti-

mator of T rob
δ (Q)(s, a) is in fact biased (because of the

non-linearity). For instance, if we just take one sample,
say (s, a, r, s′). The corresponding plug-in estimator of
T rob
δ (Q)(s, a) is

sup
α≥0

{
−α log

(
e−r/α

)
− αδ

}
+

γ · sup
β≥0

{
−β log

(
e−maxb∈A Q(s′,b)/β

)
− βδ

}
=r + γmax

b∈A
Q(s′, b),

which is the same as what we have in standard Q-learning.
It is obviously not an unbiased estimator of T rob

δ (Q)(s, a).

To address this issue, we propose a new estimator of T rob
δ by

introducing the multilevel Monte-Carlo method (Blanchet &
Glynn, 2015; Blanchet et al., 2019). The formal description
of our estimator is defined as follows:

Definition 3.3. Given δ > 0, ε ∈ (0, 0.5) and Q ∈ RS×A,
the δ-distributionally robust estimator T̂ rob

δ,ε is defined as:

T̂ rob
δ,ε (Q)(s, a) := R̂rob

δ (s, a) + γT̂ rob
δ (Q)(s, a). (8)

For R̂rob
δ (s, a) and T̂ rob

δ (s, a), we firstly sample N ∈ N
from the distribution P(N = n) = pn = ε(1 − ε)n,
then use the simulator to draw 2N+1 samples (ri, s′i) from
(ν0s,a, p

0
s,a). Finally we define

R̂rob
δ (s, a) := r1 +

∆r
N,δ

pN
, . (9)

T̂ rob
δ (Q)(s, a) := max

b∈A
Q(s′1, b) +

∆q
N,δ(Q)

pN
. (10)

where

∆r
N,δ :=

sup
α≥0

−α log

 1

2N+1

2N+1∑
i=1

e−ri/α

− αδ

−
1

2
sup
α≥0

−α log

 1

2N

2N∑
i=1

e−r2i/α

− αδ

−
1

2
sup
α≥0

−α log

 1

2N

2N∑
i=1

e−r2i−1/α

− αδ



(11)
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and

∆q
N,δ(Q) :=

sup
β≥0

−β log

 1

2N+1

2N+1∑
i=1

e−maxb∈A Q(s′i,b)/β

− βδ

−
1

2
sup
β≥0

−β log

 1

2N

2N∑
i=1

e−maxb∈A Q(s′2i,b)/β

− βδ

−
1

2
sup
β≥0

−β log

 1

2N

2N∑
i=1

e−maxb∈A Q(s′2i−1,b)/β

− βδ

 .

(12)

Using the estimator T̂ rob
δ,ε , our Distributionally Robust Q-

Learning algorithm is summarized in Algorithm 1.

Algorithm 1 Distributionally Robust Q-Learning
Input: Uncertainty radius δ > 0, parameter ε ∈ (0, 0.5).
Initialization: Q̂rob

δ,t (s, a) ≡ 0, ∀(s, a) ∈ S ×A, t = 1.
repeat

for every (s, a) ∈ S ×A do
Sample N ∈ N from P(N = n) = pn = ε(1− ε)n.
Draw 2N+1 samples (ri, s′i) from the simulator.
Compute ∆r

N,δ and ∆q
N,δ(Q̂

rob
δ,t ) through Equa-

tion (11) and Equation (12) respectively.

R̂rob
δ (s, a)← r1 +

∆r
N,δ

pN

T̂ rob
δ (Q̂rob

δ,t )(s, a)←

max
b∈A

Q̂rob
δ,t (s

′
1, b) +

∆q
N,δ(Q̂

rob
δ,t )

pN

T̂ rob
δ,ε (Q̂rob

δ,t )(s, a)←

R̂rob
δ (s, a) + γT̂ rob

δ (Q̂rob
δ,t )(s, a)

Q̂rob
δ,t+1(s, a)←

(1− αt)Q̂
rob
δ,t (s, a) + αtT̂ rob

δ,ε (Q̂rob
δ,t )(s, a)

end for
t← t+ 1.

until Q̂rob
δ,t converges

Remark 3.4. In Algorithm 1, we can choose any αt which
satisfies the Robbins–Monro Condition, i.e.,

∑∞
i=1 αt =∞,∑∞

i=1 α
2
t <∞.

Remark 3.5. δ is an exogenous variable that quantifies the
level of conservatism, which we consider as pre-determined
(and not part of the algorithm). That said, it can also be
from past datasets if they are collected from different envi-
ronments, in which case the shift can be estimated.

3.3. Theoretical Guarantee

First of all, we introduce Lemma 3.6 which plays a critical
role in the proof of convergence of Algorithm 1.

Lemma 3.6. Given δ > 0, 0 < γ < 1, T rob
δ is a γ-

contraction map w.r.t. the infinity norm.

Proof. Given any Q1, Q2 ∈ RS×A, let Vi(s
′) =

maxb∈A Qi(s
′, b) for i ∈ {1, 2}. Fix a pair (s, a) ∈ S ×A.

By applying the primal form of T rob
δ (Equation (7)), we

have

T rob
δ (Q1)(s, a)− T rob

δ (Q2)(s, a) =

γ

(
inf

ps,a∈Ps,a(δ)
Eps,a [V1(s

′)]− inf
ps,a∈Ps,a(δ)

Eps,a [V2(s
′)]

)
.

Consider any ϵ > 0, suppose p(ϵ) ∈ Ps,a(δ) makes
Ep(ϵ) [V2(s

′)] ≤ infps,a∈Ps,a(δ) Eps,a
[V2(s

′)] + ϵ. Then
we know

inf
ps,a∈Ps,a(δ)

Eps,a
[V1(s

′)]− inf
ps,a∈Ps,a(δ)

Eps,a
[V2(s

′)]

≤Ep(ϵ) [V1(s
′)− V2(s

′)] + ϵ ≤ max
s′∈S
|V1(s

′)− V2(s
′)|+ ϵ

≤ max
(s′,b)∈S×A

|Q1(s
′, b)−Q2(s

′, b)|+ ϵ = ∥Q1 −Q2∥∞ + ϵ.

Combining the previous part, we have ∀ϵ > 0,

T rob
δ (Q1)(s, a)−T rob

δ (Q2)(s, a) ≤ γ∥Q1 −Q2∥∞ + γϵ,

which implies

T rob
δ (Q1)(s, a)− T rob

δ (Q2)(s, a) ≤ γ∥Q1 −Q2∥∞.

By a similar argument, we also have

T rob
δ (Q2)(s, a)− T rob

δ (Q1)(s, a) ≤ γ∥Q1 −Q2∥∞.

Hence, there is

|T rob
δ (Q1)(s, a)− T rob

δ (Q2)(s, a)| ≤ γ∥Q1 −Q2∥∞.

Note that the above result is true for any (s, a) ∈ S × A,
which implies

∥T rob
δ (Q1)− T rob

δ (Q2)∥∞ ≤ γ∥Q1 −Q2∥∞.

Next, we give the key theorem of our estimator T̂ rob
δ,ε .

Theorem 3.7. Given δ > 0. If Assumption 2.1 holds, then
for any ε ∈ (0, 0.5), T̂ rob

δ,ε is an unbiased estimator of T rob
δ ,

i.e., ∀Q ∈ RS×A, (s, a) ∈ S ×A,

E
[
T̂ rob
δ,ε (Q)(s, a)

]
= T rob

δ (Q)(s, a).
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Due to the page limitation, we defer the whole proof of
Theorem 3.7 into Appendix B and give a proof outline here.
By the law of total probability, we first can get

E[R̂rob
δ (s, a)]

= lim
n→∞

sup
α≥0

{
−α log

(
1

2n

2n∑
i=1

e−ri/α

)
− αδ

}
,

a similar result will hold for E[T̂ rob
δ (Q)(s, a)]. One key

technical point helping us to move on is to understand

α∗ = argmax
α≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])}
,

and β∗ defined in a similar way. By employing different
events defined in Appendix B, we finally can derive

lim
n→∞

sup
α≥0

{
−α log

(
1

2n

2n∑
i=1

e−ri/α

)
− αδ

}
= sup

α≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])}
,

which completes the unbiasedness of R̂rob
δ (s, a). Similar

result will give us the unbiasedness of T̂ rob
δ (Q)(s, a).

Besides, we introduce another key property of T̂ rob
δ,ε .

Theorem 3.8. Given δ > 0, ε ∈ (0, 0.5). If Assumption 2.1
holds, then there exists a constant C(δ, ε, ν0,P0) > 0 such
that for any Q ∈ RS×A and (s, a) ∈ S ×A,

Var
[
T̂ rob
δ,ε (Q)(s, a)

]
≤ C(δ, ε, ν0,P0)(1 + ∥Q∥2∞).

The proof of Theorem 3.8 is also deferred to Appendix C.
Remark 3.9. For Theorem 3.8, our setting is different from
(Blanchet & Glynn, 2015; Blanchet et al., 2019), which
requires a careful analysis and a different proof strategy.
One key difference is that expectation terms in Equation (6)
are inside the log function. However, in (Blanchet & Glynn,
2015; Blanchet et al., 2019), expectations are always at the
most outside. The non-linearity of the log function makes
the analysis more difficult. Another technical point is we
need to understand the optimizers of T rob

δ , i.e.,

α∗ = argmax
α≥0

{
−α log

(
E
[
e−r(s,a)/α

])
− αδ

}
,

β∗ = argmax
β≥0

{
−β log

(
Ep0s,a

[
e−maxb∈A Q(s′,b)/β

])
− βδ

}
,

where proof techniques are different for α∗, β∗ = 0 and
α∗, β∗ ̸= 0.

Finally, combing previous results, we are able to establish
the following convergence guarantee for Algorithm 1.

Theorem 3.10. Given δ > 0. If Assumption 2.1 holds, then
for any ε ∈ (0, 0.5), Q̂rob

δ,t in Algorithm 1 will converge to
Qrob,∗

δ as t→∞.

Proof. Following the proof in (Melo, 2001; Even-Dar et al.,
2003), we can rewrite the update rule of Algorithm 1 as

D(Q̂rob
δ,t+1)(s, a) =

(1− αt)D(Q̂rob
δ,t )(s, a) + αt(T̂ rob

δ,ε (Q̂rob
δ,t )−Qrob,∗

δ )(s, a),

where D(Q) := Q−Qrob,∗
δ . Combining Lemma 3.6, Theo-

rem 3.7 and the fact that T rob
δ (Qrob,∗

δ ) = Qrob,∗
δ , we have∣∣∣E [(T̂ rob

δ,ε (Q̂rob
δ,t )−Qrob,∗

δ )(s, a)
]∣∣∣

=
∣∣∣(T rob

δ (Q̂rob
δ,t )−Qrob,∗

δ )(s, a)
∣∣∣

=
∣∣∣(T rob

δ (Q̂rob
δ,t )− T rob

δ (Qrob,∗
δ ))(s, a)

∣∣∣
≤γ∥D(Q̂rob

δ,t )∥∞.

Next, by Theorem 3.8, we have

Var
[
(T̂ rob

δ,ε (Q̂rob
δ,t )−Qrob,∗

δ )(s, a)
]

=Var
[
T̂ rob
δ,ε (Q̂rob

δ,t )(s, a)
]

≤C(δ, ε, ν0,P0)(1 + ∥Q̂rob
δ,t ∥2∞)

=C(δ, ε, ν0,P0)(1 + ∥D(Q̂rob
δ,t ) +Qrob,∗

δ ∥2∞)

≤2(1 + ∥Qrob,∗
δ ∥2∞)C(δ, ε, ν0,P0)(1 + ∥D(Q̂rob

δ,t )∥2∞).

Also note that αt satisfies the Robbins–Monro Condition,
these intermediate results then yield the convergence of
Algorithm 1 by Theorem 1 of (Jaakkola et al., 1994).

4. Numerical Experiments
We use a supply chain model to test Algorithm 1 in our
numerical experiments. In the supply chain model, the state
space S = [n] := {0, 1, · · · , n − 1, n} which represents
the possible number of goods we have. The action space
A = [n] represents the number of goods we can order. In
every day t ∈ N+, the number of goods demanded by the
market is an unobserved random variable dt ∼ Uni[n]. We
assume {dt}t∈N+

are multiple independent. At the start of
every day t, suppose the number of goods is st, then we can
determine the number of goods we want to order, i.e., our
action at ∈ [n− st]. Besides, we assume there is no delay
for us to receive our order. So the cost ct at day t is

ct = k1[at > 0] + h(st + at − dt)
+ + p(dt − st − at)

+,

h and p are pre-specified constants denoting holding cost for
every single good and per unit lost sales penalty, respectively.
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Table 1. Distributionally robust policy for different ε

ε π̂rob
δ,ε (0) π̂rob

δ,ε (1) π̂rob
δ,ε (2) π̂rob

δ,ε (3) π̂rob
δ,ε (4) π̂rob

δ,ε (s ≥ 5)

0.49 7 6 5 4 3 0
0.499 7 6 5 4 3 0

0.5 7 6 5 4 3 0
0.6 7 6 5 4 3 0

We can decompose ct as two parts h(st + at − dt)
+ and

p(dt − st − at)
+. A holding cost of h(st + at − dt)

+ will
appear on remaining goods and a lost sales penalty of p(dt−
st − at)

+ is incurred if the number of demand could not be
served due to insufficient goods. k is a fixed ordering cost.
In our experiments, due to the limit computation resources,
we fix n = 10. Besides, we take h = 1, p = 2, k = 3 and
set the discount factor γ = 0.9 with starting from s1 = 0.

By using standard Q-learning, one can find the non distri-
butionally robust, optimal policy π∗ for the non perturbed
problem, i.e., δ = 0, satisfying

π∗(s) =

{
8− s 0 ≤ s ≤ 2

0 3 ≤ s ≤ 10
.

For the distributionally robust setting, we can think the prob-
ability distribution of dt is no longer a uniform distribution
anymore, which is quite reasonable in reality.

In the simulation, we set δ = 1 as the perturbation parameter.
At the k-th step of Algorithm 1, we set the learning rate αk

be 1
1+(1−γ)(k−1) to satisfy the Robbins–Monro Condition.

We will treat Algorithm 1 as having converged when the
infinity norm of the difference between the updated value
and the old value is no greater than tolerance = 0.05.

For the parameter ε used in our estimator, we consider
ε ∈ {0.49, 0.499.0.5, 0.6}. Note that our Theorem 3.10
only ensures the convergence for ε ∈ (0, 0.5), but we will
test some values out of this range. Besides, the reason
why we only choose {0.49, 0.499} rather than adding some
other smaller ε ∈ (0.0.5) is that from the construction of our
estimator, we can find smaller ε will lead to a huge number
of samples with high probability, to avoid this problem, we
only test ε close to 0.5. To reduce the effect of variance,
for every ε, we will run 5 times and use the averaged value
as the final output Q̂rob

δ,ε . Finally, we use Q̂rob
δ,ε to find the

greedy policy

π̂rob
δ,ε (s) = argmax

a∈[n−s]

Q̂rob
δ,ε (s, a), ∀s ∈ S

for every ε. The output greedy policy π̂rob
δ,ε for every ε is

listed in Table 1. We can see all policies are the same as

π̂rob
δ (s) =

{
7− s 0 ≤ s ≤ 4

0 5 ≤ s ≤ 10
.

In Table 2, we list the averaged number of iterations and
averaged number of samples used for every ε. Combing our
results in Tables 1 and 2, it shows that Algorithm 1 may
converge with even less samples when ε /∈ (0, 0.5) .

Table 2. Averaged number of iterations and samples used for dif-
ferent ε.

ε #ITERATIONS #SAMPLES

0.49 1869.6 2959020.8
0.499 1815.4 2398951.2

0.5 1864.6 2478958.8
0.6 1864.8 820703.6

Now we define a perturbed uniform distribution with param-
eter m and b as follows:

Unim,b([n])(x) =

{
b+1
n+1 x ∈ {m,m+ 1}
n−1−2b
n2−1 x /∈ {m,m+ 1}

.

With the perturbed distribution, we test our distribution-
ally robuast policy π̂rob

δ and non distributionally robuast
policy π∗ for b ∈ {1, 1.5, 2, 2.5} (Note that b can not be
too large, otherwise there will exist some pair (s, a) such
that DKL(ps,a∥p0s,a) > δ or DKL(νs,a∥ν0s,a) > δ) and every
m ∈ [n − 1]. We report the total cost averaged over 2000
runs for different b in Figures 1 to 4.

With varying test probabilities, our distributionally robust
policy performs better in worst cases when the probability
distribution of demand is centered in {5, 6, 7} instead of the
uniform distribution, demonstrating again the effectiveness
of our proposed distributionally robust formulations.

5. Conclusion
In this paper, we proposed a novel unbiased estimator of
the distributionally robust Bellman Operator. By using the
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Figure 1. Total Cost for b = 1

Figure 2. Total Cost for b = 1.5

Figure 3. Total Cost for b = 2

Figure 4. Total Cost for b = 2.5

estimator, we proposed a novel Q-learning algorithm, distri-
butionally robust Q-learning, that is able to learn a robust
Q value function under the KL-divergence perturbation of
transition probabilities and rewards. We established the
asymptotic convergence guarantee of the proposed distribu-
tionally robust Q-learning algorithm.

Several open problems suggest itself. First, although asymp-
totic convergence is desirable, it would also be interesting
to obtain finite-sample guarantees for distributionally robust
Q-learning algorithm. We believe such a result would re-
quire a completely different line of analysis, whose scope
goes significantly beyond this paper. Second, this paper
focused on the infinite-horizon discounted RL setting. A
much more challenging but also highly useful setting to con-
sider is the (infinite horizon) average reward RL (Dong et al.,
2021). RL in this setting is less explored, and distribution-
ally robust policy learning in this setting poses significant
technical challenges. Finally, another important direction
of research is to generalize the results to high-dimensional
state settings (Ren & Zhou, 2020), where the intrinsic di-
mension is low. Data efficiency in such settings will be of
particular importance. We look forward to these problems
being addressed by the emerging distributionally robust re-
inforcement learning community.
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A. Technical Lemmas
First of all, we introduce two ancillary concentration inequalities.

Lemma A.1 ((Fournier & Guillin, 2015), Concentration inequality for Wasserstein distance ). For µ ∈ P(R), we consider
an i.i.d. sequence (Xk)k≥1 of µ-distributed random variables and, for all n ≥ 1, the empirical measure

µn :=
1

n

n∑
k=1

δXk
.

Assume that there exists γ > 0 such that E2,γ(µ) :=
∫
R exp(γ|x|2)µ(dx) <∞. Then for all n ≥ 1, all x > 0,

P (W(µn, µ) ≥ x) ≤ Ce−cnx2

,

where the Wasserstein distanceW(µn, µ) is defined by

W(µn, µ) := inf
π∈Π(µn,µ)

{∫
|x− y|π(dx, dy)

}
,

and the positive constant C and c depends only on γ and E2,γ(µ).
Lemma A.2 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables such that Xi ∈ [ai, bi] almost
surely for all i = 1, 2, · · · , n. Then for every t > 0,

P

(∣∣∣∣ 1n
n∑

i=1

(Xi − EXi)

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

B. Missing Proof of Theorem 3.7

Proof. Fix a pair (s, a) ∈ S × A, we first prove R̂rob
δ (s, a) defined in Equation (9) is an unbiased estimator of

supα≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ

}
which forms the first part of our δ-distributionally robust Bellman Oper-

ator (see Equation (6)). Let
g(α) = −α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ.

Denote α∗ = argmaxα≥0 g(α). Given 2N samples {ri ∼ ν0s,a}, let ν̂2N = 1
2N

∑2N

i=1 δri . Similarly, ν̂2NO (resp. ν̂2NE ) is
defined by using the subset of 2N samples in which the index of every element is odd (resp. even). We use g2N to represent
the function defined by replacing ν0s,a by ν̂2N in g and α∗

2N = argmaxα≥0 g2N (α). Similarly, we also have g2NO , g2NE , α∗
2NO

and α∗
2NE

. Now we have

E
[
R̂rob

δ (s, a)
]
= E

[
r1 +

∆r
N,δ

pN

]
= E [r1] + E

[
∆r

N,δ

pN

]
= E [g20(α

∗
20)] +

∞∑
n=0

E
[
∆r

N,δ

pN

∣∣∣N = n

]
pn

= E [g20(α
∗
20)] +

∞∑
n=0

E
[
∆r

n,δ

]
= E [g20(α

∗
20)] +

∞∑
n=0

E

[
g2n+1(α∗

2n+1)−
g2n+1

O
(α∗

2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

]

= E [g20(α
∗
20)] +

∞∑
n=0

E [g2n+1(α∗
2n+1)− g2n(α

∗
2n)]

= lim
n→∞

E [g2n(α
∗
2n)] .
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We only need to show
lim
n→∞

E [g2n(α
∗
2n)] = g(α∗). (13)

Based on our Assumption 2.1, we can give an upper bound of α∗ by observing

0 ≤ ess inf r(s, a)

= g(0)

≤ g(α∗)

= −α∗ log
(
Eν0

s,a

[
e−r(s,a)/β∗

])
− α∗δ

≤ Rmax − α∗δ

⇒ α∗ ≤ Rmax/δ.

By a similar argument, α∗
2n ≤ Rmax/δ also holds. Besides, from above derivation, we can find

0 ≤ ess inf r(s, a) ≤ g(α∗) ≤ Rmax. (14)

Thus
0 ≤ g2n(α

∗
2n) ≤ Rmax (15)

holds by a similar argument. Starting from here, we split the proof into two cases: α∗ = 0 and α∗ > 0.

• α∗ = 0. By proposition 2 in (Hu & Hong, 2013), α∗ = 0 implies λ := ν0s,a(r(s, a) = ess inf r(s, a)) > 0. We first
introduce the following two events:

G2n := {∃r′i = ess inf r(s, a)} ∩ {∀r′i ≥ ess inf r(s, a)},
Z2n := {α∗

2n = 0}.

Note that we have the following result for G2n :

P[Gc
2n ] = 1− P[G2n ]

= 1− P[{∃r′i = ess inf r(s, a)}]
= P[{∀r′i ̸= ess inf r(s, a)}]
= (1− λ)2

n

.

By Lemma 4 in (Zhou et al., 2021), ∀ϵ > 0, there exists a constant N(ϵ, δ), such that ∀n ≥ N(ϵ, δ), P[Zc
2n ] ≤ ϵ. Now

we choose ϵ > 0 arbitrarily, when n ≥ N(ϵ),

E [|g2n(α∗
2n)− g(α∗)|] = E [|g2n(α∗

2n)− g(α∗)|1G2n∩Z2n
] + E

[
|g2n(α∗

2n)− g(α∗)|1Gc
2n

∪Zc
2n

]
= E

[
|g2n(α∗

2n)− g(α∗)|1Gc
2n

∪Zc
2n

]
≤ Rmax(P[Gc

2n ] + P[Zc
2n ])

≤ Rmax((1− λ)2
n

+ ϵ),

where the first inequality is by Equation (14) and Equation (15). Hence we know

lim
n→∞

E [|g2n(α∗
2n)− g(α∗)|] ≤ ϵRmax,

which implies
lim
n→∞

E [|g2n(α∗
2n)− g(α∗)|] = 0.

Using above result, Equation (13) holds immediately in this case.
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• α∗ > 0. We define the following event in this case,

NZ2n :=

{
α∗

2
≤ α∗

2n

}
.

By Lemma 4 in (Zhou et al., 2021), ∀ϵ > 0, there exists a constant N ′(ϵ), such that once n ≥ N ′(ϵ), we have
P[NZc

2n ] ≤ ϵ. Now we choose ϵ > 0 arbitrarily, when n ≥ N ′(ϵ)

E [|g2n(α∗
2n)− g(α∗)|] ≤ E [|g2n(α∗

2n)− g(α∗)|1NZ2n
] + E

[
|g2n(α∗

2n)− g(α∗)|1NZc
2n

]
≤ E

 sup
α∈[α∗

2 ,Rmax
δ ]
|g2n(α)− g(α)|1NZ2n

+Rmaxϵ.

Observe that Eν0
s,a

[
e−r(s,a)/α

]
≥ e−Rmax/α and Eν̂2n

[
e−r(s,a)/α

]
≥ e−Rmax/α hold, combining the Lipschitz

property of log x when x is bounded below, we know

|g2n(α)− g(α)|
α

=
∣∣∣log (Eν0

s,a

[
e−r(s,a)/α

])
− log

(
Eν̂2n

[
e−r(s,a)/α

])∣∣∣
≤

∣∣∣Eν0
s,a

[
e−r(s,a)/α

]
− Eν̂2n

[
e−r(s,a)/α

]∣∣∣
e−Rmax/α

.

Then we have

sup
α∈[α∗

2 ,Rmax
δ ]
|g2n(α)− g(α)|1NZ2n

≤ sup
α∈[α∗

2 ,Rmax
δ ]
|g2n(α)− g(α)|

= sup
α∈[α∗

2 ,Rmax
δ ]

|g2n(α)− g(α)|
α

α

≤ sup
α∈[α∗

2 ,Rmax
δ ]

∣∣∣Eν0
s,a

[
e−r(s,a)/α

]
− Eν̂2n

[
e−r(s,a)/α

]∣∣∣× Rmaxe
2Rmax/α

∗

δ
.

For any α ∈
[
α∗

2 , Rmax

δ

]
, the function e−x/α is a Lipschitz function on [0,∞), and the Lipschitz constant is bounded

by 2/α∗. Hence, by the dual representation of Wasserstein distance, we have

sup
α∈[α∗

2 ,Rmax
δ ]
|g2n(α)− g(α)|1NZ2n

≤ 2Rmaxe
2Rmax/α

∗

δα∗ W(ν0s,a, ν̂2n), (16)

where the Wasserstein distanceW(ν0s,a, ν̂2n) is defined by

W(ν0s,a, ν̂2n) := inf
π∈Π(ν0

s,a,ν̂2n )

{∫
|x− y|dπ(x, y)

}
.

Now we know

E [|g2n(α∗
2n)− g(α∗)|] ≤ 2Rmaxe

2Rmax/α
∗

δα∗ E
[
W(ν0s,a, ν̂2n)

]
+Rmaxϵ.

By Lemma A.1 (note that we assume r is bounded, so the condition for Lemma A.1 is satisfied automatically), there
exists c, C > 0 such that P[W(ν0s,a, ν̂2n) ≥ t] ≤ Ce−2nct2 . We have

E
[
W(ν0s,a, ν̂2n)

]
=

∫ ∞

0

P[W(ν0s,a, ν̂2n) ≥ t]dt

=

∫ Rmax

0

P[W(ν0s,a, ν̂2n) ≥ t]dt

≤
∫ Rmax

0

Ce−2nct2dt

≤ C
√
π

√
c2

n+2
2

.
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This implies
lim
n→∞

E [|g2n(α∗
2n)− g(α∗)|] ≤ Rmaxϵ.

Note that we choose ϵ > 0 arbitrarily, so there is

lim
n→∞

E [|g2n(α∗
2n)− g(α∗)|] = 0

Hence we know Equation (13) holds in this case.

Now we can conclude that R̂rob
δ (s, a) is an unbiased estimator of supα≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ

}
.

From here we give the proof that T̂ rob
δ (Q)(s, a) defined in Equation (10) is an unbiased estimator of

supβ≥0

{
−β log

(
Ep0

s,a

[
e−maxb∈A Q(s′,b)/β

])
− βδ

}
which constructs the remaining part of our δ-distributionally robust

Bellman Operator. Given Q ∈ RS×A and (s, a) ∈ S ×A. We define V (s′) = maxb∈A Q(s′, b) for any s′ ∈ S and

S∗ = argmin
s′∈S,p0

s,a(s
′)>0

V (s′).

Let
f(β) = −β log

(
Ep0

s,a

[
e−V (s′)/β

])
− βδ.

Denote β∗ = argmaxβ≥0 f(β). Given 2N samples {s′i ∼ p0s,a}, let p̂2N (s) =
∑2N

i=1 1[s
′
i=s]

2N
. Similarly, p̂2NO (resp. p̂2NE ) is

defined by using the subset of 2N samples in which the index of every element is odd (resp. even). We use f2N to represent
the function defined by replacing p0s,a by p̂2N in f and β∗

2N = argmaxβ≥0 f2N (β). Similarly, we also have f2NO , f2NE , β∗
2NO

and β∗
2NE

. Following the similar proof for g used in the previous part, we will have

E
[
T̂ rob
δ (Q)(s, a)

]
= lim

n→∞
E [f2n(β

∗
2n)] .

Hence we only need to show
lim
n→∞

E [f2n(β
∗
2n)] = f(β∗). (17)

We can observe that both β∗ and β∗
2n are no bigger than 2∥Q∥∞/δ. For β∗, this is because

min
s′∈S

p0
s,a(s

′)>0

V (s′) =f(0)

≤f(β∗)

=− β∗ log
(
Ep0

s,a

[
e−V (s′)/β∗

])
− β∗δ

≤ max
s′∈S

p0
s,a(s

′)>0

V (s′)− β∗δ

⇒ β∗ ≤

 max
s′∈S

p0
s,a(s

′)>0

V (s′)− min
s′∈S

p0
s,a(s

′)>0

V (s′)

 /δ

≤2∥Q∥∞/δ.

If we apply the similar argument to β∗
2n , we can get the same result. Besides, from the above derivation, we can see

−∥Q∥∞ ≤ min
s′∈S,p0

s,a(s
′)>0

V (s′) ≤ f(β∗) ≤ max
s′∈S,p0

s,a(s
′)>0

V (s′) ≤ ∥Q∥∞. (18)

Besides,
−∥Q∥∞ ≤ f2n(β

∗
2n) ≤ ∥Q∥∞ (19)
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also holds with a similar reason. Now we define the following two key events,

E2n :=
{
p0s,a(s

′
i) > 0, ∀1 ≤ i ≤ 2n

}
,

T2n :=

{ ∑
s′∈S∗

p̂2n(s
′) ≥ 1

2

∑
s′∈S∗

p0s,a(s
′)

}
.

Note the facts P [En
2 ] = 1 and

P [T c
2n ] = P

[ ∑
s′∈S∗

p̂2n(s
′) <

1

2

∑
s′∈S∗

p0s,a(s
′)

]

= P

[ ∑
s′∈S∗

p0s,a(s
′)−

∑
s′∈S∗

p̂2n(s
′) >

1

2

∑
s′∈S∗

p0s,a(s
′)

]

= P

[ ∑
s′∈S∗

p0s,a(s
′)−

∑
s′∈S∗

2n∑
i=1

1[s′i = s′]

2n
>

1

2

∑
s′∈S∗

p0s,a(s
′)

]

= P

[ ∑
s′∈S∗

p0s,a(s
′)− 1

2n

2n∑
i=1

∑
s′∈S∗

1[s′i = s′] >
1

2

∑
s′∈S∗

p0s,a(s
′)

]
≤ e−2n−1(

∑
s′∈S∗ p0

s,a(s
′))

2

,

where the last inequality is right because of Lemma A.2. With the above proposition, we can start to show that Equation (17)
is true, we consider the following decomposition

E [|f2n(β∗
2n)− f(β∗)|] = E [|f2n(β∗

2n)− f(β∗)|1E2n
]

= E [|f2n(β∗
2n)− f(β∗)|1E2n∩T2n

] + E
[
|f2n(β∗

2n)− f(β∗)|1E2n∩T c
2n

]
≤ E [|f2n(β∗

2n)− f(β∗)|1T2n∩E2n
] + 2∥Q∥∞P [T c

2n ∩ E2n ] ,

where the last inequality holds due to Equation (18) and Equation (19). Now denote mins′∈S,p0
s,a(s

′)>0 V (s′) as v. Note
that we have shown 0 ≤ β∗, β∗

2n ≤ 2∥Q∥∞/δ. Observe that under T2n and E2n , ∀β ∈ [0, 2∥Q∥∞/δ], there are

Ep0
s,a

[
e(−V (s′)+v)/β

]
=
∑
s′∈S

p0s,a(s
′)e(−V (s′)+v)/β ≥

∑
s′∈S∗

p0s,a(s
′)e(−V (s′)+v)/β

=
∑

s′∈S∗

p0s,a(s
′) ≥ 1

2

∑
s′∈S∗

p0s,a(s
′)

and

Ep̂2n

[
e(−V (s′)+v)/β

]
=
∑
s′∈S

p̂2n(s
′)e(−V (s′)+v)/β ≥

∑
s′∈S∗

p̂2n(s
′)e(−V (s′)+v)/β

=
∑

s′∈S∗

p̂2n(s
′) ≥ 1

2

∑
s;∈S∗

p0s,a(s
′).

Then under T2n and E2n , we know

|f2n(β∗
2n)− f(β∗)| ≤ sup

β∈[0, 2∥Q∥∞
δ ]

β
∣∣∣log (Ep0

s,a

[
e−V (s′)/β

])
− log

(
Ep̂2n

[
e−V (s′)/β

])∣∣∣
≤ 2∥Q∥∞

δ
sup

β∈[0, 2∥Q∥∞
δ ]

∣∣∣log (Ep0
s,a

[
e(−V (s′)+v)/β

])
− log

(
Ep̂2n

[
e(−V (s′)+v)/β

])∣∣∣
≤ 2∥Q∥∞

δ
sup

β∈[0, 2∥Q∥∞
δ ]

∣∣∣Ep0
s,a

[
e(−V (s′)+v)/β

]
− Ep̂2n

[
e(−V (s′)+v)/β

]∣∣∣
1
2

∑
s′∈S∗ p0s,a(s

′)

≤ 4∥Q∥∞∑
s′∈S∗ p0s,a(s

′)
∥p0s,a − p̂2n∥1.

(20)
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The third inequality is right is by the Lipschitz property for log x when x is bounded from below. Finally we have

E [|f2n(β∗
2n)− f(β∗)|] ≤ E [|f2n(β∗

2n)− f(β∗)|1T2n∩E2n
] + 2∥Q∥∞P [T c

2n ∩ E2n ]

≤ 4∥Q∥∞∑
s′∈S∗ p0s,a(s

′)
E
[
∥p0s,a − p̂2n∥1

]
+ ∥Q∥∞e−2n−1(

∑
s′∈S∗ p0

s,a(s
′))

2

.

Note

E
[
∥p0s,a − p̂2n∥1

]
=

∫ ∞

0

P
[
∥p0s,a − p̂2n∥1 ≥ t

]
dt

=

∫ 2

0

P
[
∥p0s,a − p̂2n∥1 ≥ t

]
dt

≤
∫ 2

0

∑
s′∈S

P
[
|p0s,a(s′)− p̂2n(s

′)| ≥ t

|S|

]
dt

≤ |S|
∫ 2

0

2e−2n+1t2/|S|2dt

≤ |S|
2
√
π

2
n+1
2

,

where the second inequality is by Lemma A.2. Hence we have

E [|f2n(β∗
2n)− f(β∗)|] ≤ 4∥Q∥∞|S|2

√
π(∑

s′∈S∗ p0s,a(s
′)
)
2

n+3
2

+ 2∥Q∥∞e−2n−1(
∑

s′∈S∗ p0
s,a(s

′))
2

.

This is enough to conclude

lim
n→∞

E [|fn
2 (β

∗
2n)− f(β∗)|] = 0. (21)

Note that Equation (21) implies that Equation (17) is true. Now we complete our partial proof, i.e., T̂ rob
δ (Q)(s, a) is an

unbiased estimator of supβ≥0

{
−β log

(
Ep0

s,a

[
e−maxb∈A Q(s′,b)/β

])
− βδ

}
.

Finally we complete the proof that T̂ rob
δ,ε (Q)(s, a) := R̂rob

δ (s, a)+γT̂ rob
δ (Q)(s, a) is an unbiased estimator of T rob

δ (Q)(s, a)

for any Q ∈ RS×A and (s, a) ∈ S ×A.

C. Missing Proof of Theorem 3.8
Proof. Following the same notations defined in the proof of Theorem 3.7 (cf. Appendix B), we have already known for any
ε ∈ (0, 0.5), Q ∈ RS×A and (s, a) ∈ S ×A,

E[T̂ rob
δ,ε (Q)(s, a)] = E[R̂rob

δ (s, a) + γT̂ rob
δ (Q)(s, a)]

= sup
α≥0

{
−α log

(
Eν0

s,a

[
e−r(s,a)/α

])
− αδ

}
+ γ · sup

β≥0

{
−β log

(
Ep0

s,a

[
e−maxb∈A Q(s′,b)/β

])
− βδ

}
= g(α∗) + γf(β∗).

By the definition of variance we have

Var[T̂ rob
δ,ε (Q)(s, a)] ≤ 2Var[R̂rob

δ (s, a)] + 2γ2Var[T̂ rob
δ (Q)(s, a)].
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We first analysis the term Var[R̂rob
δ (s, a)] by noticing

Var[R̂rob
δ (s, a)] = E[(R̂rob

δ (s, a)− g(α∗))2]

≤ E

[(
r1 +

∆r
N,δ

pN

)2
]

≤ 2E[(r1)2] + 2E

[(
∆r

N,δ

pN

)2
]

≤ 2R2
max + 2

∞∑
n=0

E[(∆r
n,δ)

2]

pn
.

Now let us bound the term E[(∆r
n,δ)

2]. Like the proof of Theorem 3.7, we also consider following two cases

• α∗ = 0. By Proposition 2 in (Hu & Hong, 2013), α∗ = 0 if and only if λ := ν0s,a(r(s, a) = ess inf r(s, a)) > 0 and
λ ≥ e−δ. Since δ is chosen by us, we can ignore the edge case λ = e−δ by introducing randomness on δ. Now we
define the following three events:

C2nO
:= {ν̂2nO (ess inf r(s, a)) > e−δ},

C2nE
:= {ν̂2nE (ess inf r(s, a)) > e−δ},

C2n := {ν̂2n(ess inf r(s, a)) > e−δ}.

When the event C2nO
∩G2nO

(recall G2nO
:= {∃r′i = ess inf r(s, a), i ∈ {1, 3, · · · , 2n−1}}∩{∀r′i ≥ ess inf r(s, a), i ∈

{1, 3, · · · , 2n− 1}}) holds, again, Proposition 2 in (Hu & Hong, 2013) implies that we have α∗
2nO

= 0 and g2nO (α
∗
2nO

) =

ess inf r(s, a). The same argument can be applied to the subscript 2nE and 2n. Besides, note that

C2nO
∩ C2nE

⊆ C2n

and
G2nO

∩G2nE
⊆ G2n ,

which implies C2nO
∩ C2nE

∩G2nO
∩G2nE

⊆ C2n ∩G2n . Then we have the following result

E[(∆r
n,δ)

2] = E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2


= E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2

1C
2
n+1
O

∩C
2
n+1
E

∩G
2
n+1
O

∩G
2
n+1
E


+ E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2

1(C
2
n+1
O

∩C
2
n+1
E

∩G
2
n+1
O

∩G
2
n+1
E

)c


= E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2

1(C
2
n+1
O

∩C
2
n+1
E

∩G
2
n+1
O

∩G
2
n+1
E

)c


≤ 2R2

max(P[Cc
2n ] + P[Gc

2n ]).

Note the following two bounds

P[Cc
2n ] ≤ e−2n+1(λ−e−δ)2 , P[Gc

2n ] ≤ (1− λ)2
n

.

The first bound is due to Lemma A.2 again. Finally we have

E[(∆r
n,δ)

2] ≤ 2R2
max(e

−2n+1(λ−e−δ)2 + (1− λ)2
n

).
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Then if we choose pn = ε(1− ε)n, we know

Var[R̂rob
δ (s, a)] ≤ 2R2

max + 4R2
max

∞∑
n=0

e−2n+1(λ−e−δ)2 + (1− λ)2
n

pn
= K ′

1(λ, δ, ε, ν
0) <∞.

Note that λ depends on (s, a). However, the number of pair (s, a) is finite, hence we can find a uniform constant bound
K1(δ, ε, ν

0) ≥ K ′
1(λ, δ, ε, ν

0) for any (s, a) ∈ S ×A which makes α∗ = 0.

• α∗ > 0. In this case, we follow the way proposed by (Zhou et al., 2021). Define

τ := min
{
α log

(
Eν0

s,a

[
e−X/α

])
+ αδ, ᾱ log

(
Eν0

s,a

[
e−X/ᾱ

])
+ ᾱδ

}
−
(
α∗ log

(
Eν0

s,a

[
e−X/α∗

])
+ α∗δ

)
,

where α = α∗/2 and α = Rmax/δ. Besides, we introduce the following event

F2n(α) :=

{∣∣∣Eν̂2n

[
e−r(s,a)/α

]
− Eν0

s,a

[
e−r(s,a)/α

]∣∣∣ < τ

2

(
2αeRmax/α

)−1
}
.

Note that by Lemma 4 in (Zhou et al., 2021), under F2n(α) ∩ F2n(α) ∩ F2n(α
∗), we have α∗

2n ∈ [α, α]. Let
F2n = F2n(α) ∩ F2n(α) ∩ F2n(α

∗). Note that F2nO
∩ F2nE

⊂ F2n , thus we have

E[(∆r
n,δ)

2] = E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2


= E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2

1F
2
n+1
O

∩F
2
n+1
E


+ E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2

1(F
2
n+1
O

∩F
2
n+1
E

)c


≤ E

(g2n+1(α∗
2n+1)−

g2n+1
O

(α∗
2n+1
O

) + g2n+1
E

(α∗
2n+1
E

)

2

)2

1F
2
n+1
O

∩F
2
n+1
E

+ 2R2
maxP[F c

2n ]

≤ 2E
[
(g2n+1(α∗

2n+1)− g(α∗))
2
1F2n+1

]
+ 2E

[
(g2n(α

∗
2n)− g(α∗))

2
1F2n

]
+ 2R2

maxP[F c
2n ]

≤ 16R2
maxe

4Rmax/α
∗

(δα∗)2
E[W2(ν0s,a, ν̂2n+1)] +

16R2
maxe

4Rmax/α
∗

(δα∗)2
E[W2(ν0s,a, ν̂2n)] + 2R2

maxP[F c
2n ],

where the last inequality holds by a similar argument for Equation (16). Using a similar calculation used in the proof of
Theorem 3.7, we can find

E[W2(ν0s,a, ν̂2n+1)] = O(2−n),

E[W2(ν0s,a, ν̂2n)] = O(2−n).

Besides, by Lemma 4 in (Zhou et al., 2021), we know P[F c
2n ] = O(e−2n), Besides, note pn = ε(1−ε)n for ε ∈ (0, 0.5).

Then we know

E[(R̂rob
δ (s, a)− g(α∗))2]

≤2R2
max +

∞∑
n=0

16R2
maxe

4Rmax/α
∗

(δα∗)2
E[W2(ν0s,a, ν̂2n+1)]

pn
+

16R2
maxe

4Rmax/α
∗

(δα∗)2
E[W2(ν0s,a, ν̂2n)]

pn
+ 2R2

max

P[F c
2n ]

pn

=K ′
2(α

∗, δ, ε, ν0)

<∞.

Since we are in the tabular setting ,we can find a constant K2(δ, ε, ν
0) > K ′

2(α
∗, δ, ε, ν0) for any (s, a) which makes

α∗ > 0.
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By the previous two cases, we know E[(R̂rob
δ (s, a)− g(α∗))2] ≤ max(K1(δ, ε, ν

0),K2(δ, ε, ν
0)). Now we start to analysis

Var[T̂ rob
δ (Q)(s, a)] = E[(T̂ rob

δ (Q)(s, a)− f(β∗))2]. By the similar approach, we can find

E[(T̂ rob
δ (Q)(s, a)− f(β∗))2] = E[(max

b∈A
Q(s′1, b) +

∆q
N,δ

pN
− f(β∗))2]

≤ E[(max
b∈A

Q(s′1, b) +
∆q

N,δ

pN
)2]

≤ 2E[(max
b∈A

Q(s′1, b))
2] + 2E

(∆q
N,δ

pN

)2


≤ 2∥Q∥2∞ + 2
∞∑

n=0

E[(∆q
n,δ)

2]

pn
.

Use the same notations we defined in the proof of Theorem 3.7, we can find

E[(∆q
n,δ)

2]

=E

(f2n+1(β∗
2n+1)−

f2n+1
O

(β∗
2n+1
O

) + f2n+1
E

(β∗
2n+1
E

)

2

)2


=E

(f2n+1(β∗
2n+1)−

f2n+1
O

(β∗
2n+1
O

) + f2n+1
E

(β∗
2n+1
E

)

2

)2

1E
2
n+1
O

∩E
2
n+1
E

∩T
2
n+1
O

∩T
2
n+1
E


+ E

(f2n+1(β∗
2n+1)−

f2n+1
O

(β∗
2n+1
O

) + f2n+1
E

(β∗
2n+1
E

)

2

)2

1(E
2
n+1
O

∩E
2
n+1
E

∩T
2
n+1
O

∩T
2
n+1
E

)c


≤E

(f2n+1(β∗
2n+1)−

f2n+1
O

(β∗
2n+1
O

) + f2n+1
E

(β∗
2n+1
E

)

2

)2

1E
2
n+1
O

∩E
2
n+1
E

∩T
2
n+1
O

∩T
2
n+1
E

+ 8∥Q∥2∞(P[Ec
2n ] + P[T c

2n ])

≤2E
[
(f2n+1(β∗

2n+1)− f(β∗))
2
1E2n+1∩T2n+1

]
+ 2E

[
(f2n(β

∗
2n)− f(β∗))

2
1E2n∩T2n

]
+ 8∥Q∥2∞(P[Ec

2n ] + P[T c
2n ])

≤ 32∥Q∥2∞
(
∑

s′∈S∗ p0s,a(s
′))2

E[∥p0s,a − p̂2n+1∥21] +
32∥Q∥2∞

(
∑

s′∈S∗ p0s,a(s
′))2

E[∥p0s,a − p̂2n∥21] + 8∥Q∥2∞(P[Ec
2n ] + P[T c

2n ]),

where the last inequality follows a similar argument like Equation (20). By a similar calculation in the proof of Theorem 3.7,
we will have E[∥p0s,a − p̂2n+1∥21] = O(2−n) and E[∥p0s,a − p̂2n∥21] = O(2−n). We have already known P[T c

2n ] = O(e−2n)
and P[Ec

2n ] = 0 from the proof of Theorem 3.7. Note that pn = ε(1− ε)n for ε ∈ (0, 0.5), we have
∞∑

n=0

E[(∆q
n,δ)

2]

pn
= ∥Q∥2∞K ′

3(s, a, ε, δ,P0) <∞.

Now we can find a uniform bound K3(δ, ε,P0) > 0 such that

E[(T̂ rob
δ (Q)(s, a)− f(β∗))2] ≤ 2∥Q∥2∞ + 2

∞∑
n=0

E[(∆q
n,δ)

2]

pn

≤ (2 + 2K ′
3(s, a, ε, δ,P0))∥Q∥2∞

≤ K3(δ, ε,P0)(1 + ∥Q∥2∞),

Thues we can see

Var[T̂ rob
δ,ε (Q)(s, a)] ≤ 2max(K1(δ, ε, ν

0),K2(δ, ε, ν
0)) + 2γ2K3(δ, ε,P0)(1 + ∥Q∥2∞)

≤ C(δ, ε, ν0,P0)(1 + ∥Q∥2∞),

where C(δ, ε, ν0,P0) > 0 is some uniform constant. Hence we complete the proof.


