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Abstract

The latency and bandwidth properties of byte-addressable per-
sistent memory (PMEM) have the potential to significantly
improve system performance over a wide spectrum of appli-
cations. But at the same time, PMEM brings considerable
new challenges for the programmer compared with earlier
technologies. In particular, PMEM provides only 8-byte write
atomicity, can flush writes out of order, and its availability is
always limited by node failures. It’s possible to work with
the atomicity and ordering constraints of PMEM directly by
carefully sequencing the order of store operations and insert-
ing explicit flush and fence operations at each ordering point.
But this is tedious and error-prone: too many flush opera-
tions defeat the performance benefits of PMEM, and even
with generous use, it is difficult to prove that a given program
is crash-consistent. Logging is a great abstraction to deal
with these issues but prior work on PMEM logging has not
successfully hidden the idiosyncrasies of PMEM. Moreover,
shortcomings in the log interface and design have prevented
attainment of full PMEM performance. We believe that a log
design that hides the idiosyncrasies from programmers while
delivering full performance is key to success. In this paper, we
present the design and implementation of Arcadia, a generic
replicated log on PMEM to address these problems. Arcadia
handles atomicity, integrity, and replication of log records
to reduce programmer burden. Our design has several novel
aspects including concurrent log writes with in-order com-
mit, atomicity and integrity primitives for local and remote
PMEM writes, and a frequency-based log force policy for
providing low overhead persistence with guaranteed bounded
loss of uncommitted records. Our evaluation shows that Arca-
dia outperforms state-of-the-art PMEM logs, such as PMDK’s
libpmemlog, FLEX, and Query Fresh by several times while
providing stronger log record durability guarantees. We ex-
pect Arcadia to become the leading off-the-shelf PMEM log
design.
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1 Introduction

Persistent Memory (PMEM) provides byte-addressable ac-
cess to data and persistence across power cycles with latency
and bandwidth properties that make it an attractive storage
technology. At nearly the speed of DRAM, it promises signif-
icant performance gains for a number of important workloads.
Unfortunately, the persistence of PMEM is hard to realize
in practice [19,31]. Until store operations have been flushed
from CPU caches, they remain volatile, thus are lost on power
failure. Moreover, the CPU can reorder stores and implic-
itly evict cache lines at any time, making it necessary for the
programmer to meticulously order stores and explicitly flush
cache lines in order to maintain crash consistency.

Even then, the hardware provides only 8-byte atomicity for
local writes and so far no atomicity for remote writes over
the network, further complicating the work of updating data
in a crash-consistent way [15]. Using the memory interface
for speed also makes PMEM intrinsically local, thus node
failures and network partitions curtail its availability. This is
in stark contrast with the 4KB sector atomicity typical of other
common block-based storage technologies and the ability to
share storage across a storage area network such as NVMe-oF.

A further complication not unique to PMEM is that un-
correctable media errors or DIMM failures may result in
permanent loss of data [47].

All of these problems can be solved by introducing a repli-
cated log. First, logging solves the problem of atomicity of
updates for crash consistency across power failures. Before
making changes to PMEM, the programmer first records into
the log a description of the changes to be made (typically
redo or undo records), then makes the changes to primary
storage in PMEM. If the system crashes while making the
changes to PMEM, log recovery at the next start-up restores
consistency of the data in PMEM by completing (with redo)
or reverting (with undo) any partial updates [30]. Second,
replicating the log across nodes solves the problems of node
failures, network partitions, uncorrectable media errors, and
PMEM DIMM failures.



To preserve the performance benefits of PMEM as fast
primary storage, the log itself must also reside in fast PMEM
storage. The log must be implemented with performance and
reliability in mind and must be able to handle all the program-
ming challenges of PMEM. To meet these, a lot of work has
to go into the design of the log. But once this has been done,
the log provides a platform on which the programmer can
easily realize the benefits of PMEM as primary storage with
full performance and reliability.

In addition to serving as a log for PMEM as primary stror-
age, the fast PMEM log can also provide crash consistency
and excellent update latency for primary storage on any other
persistent medium, reducing the log latency that often limits
update rate.

PMEM’s byte addressability is an excellent match with
remote direct memory access (RDMA). With RDMA oper-
ations, data can be transferred quickly to and from PMEM
on a remote node. Using RDMA with PMEM is not without
complications, however, because it suffers from many of the
same atomicity and persistence problems as local PMEM.
Thus, the abstractions the log uses to manage the challenges
of PMEM locally must be extended to PMEM over RDMA.
Why doesn’t prior work solve all problems? Prior work on
PMEM logging [4,13,17,22,36,42,43,45] places inordinate
trust in hardware to retain and atomically update data. Prior
works were designed with the assumption that PMEM has
reliability similar to DRAM. However, reliability for PMEM
is a more complex and underappreciated problem': media
errors and software bugs can permanently corrupt data, and
the reliability of each memory-cell degrades as it is used, po-
tentially leading to premature failure [34,47]. So, in practice,
without sufficient redundancy and integrity checking, data
may be lost or corrupted, putting additional burden on the
programmer to achieve reliability. Further, prior work does
not adequately provide write concurrency necessary for full
PMEM performance while also ensuring in-order commit
(monotonicity).

In this paper, we present the design and implementation of
Arcadia’, a generic replicated log to tame the challenges of
PMEM. We make the following novel contributions in this

paper:

1. A generic interface for Arcadia that has two distinguish-
ing features: it hides the complexities of replication and
persistence, and it decouples steps that must be serial-
ized from those allowing concurrency. Log append con-
currency provides for application processing overlap,
hides the latencies of checksum calculation and replica-
tion, and provides concurrency necessary for full perfor-
mance.

2. Persistence, atomicity, and integrity primitives for both

'With DRAM, if there is data corruption or a media error, simply restart-
ing the application solves the problem, but this is not possible with PMEM.
2Named after the Greek province of Arcadia.

local and remote accesses to PMEM. These abstractions
hide the weak consistency of PMEM, ensure reliable
persistence, and make PMEM easier to use.

3. A design and implementation using the primitives above
to handle atomicity, integrity, and replication of log
records with total-order semantics.

4. A frequency-based log force policy for providing low
overhead persistence with guarantees on bounded data
loss.

We deploy Arcadia on two servers with Intel Optane PMEM
that are connected with RDMA. Our analysis shows that Ar-
cadia significantly outperforms state-of-the-art PMEM logs,
such as FLEX [43], PMDK’s libpmemlog [17], and Query
Fresh [42] while providing stronger log record durability guar-
antees. We expect Arcadia to be used as an off-the-shelf log
implementation for any storage system using logging, in par-
ticular systems that have weak consistency or disaggregated
storage.

2 Background and Motivation

In this section, we discuss the background and motivation of
our work.

2.1 Persistent Memory

PMEM technologies, such as PCM [23,24], ReRAM [2], STT-
RAM [39], 3D-XPoint [10], and memristor [35] are disruptive
technologies in storage system design. With three orders of
magnitude better latency and an order of magnitude better
bandwidth compared to flash [29,46], PMEM is an excellent
candidate for storing latency critical data. Given that PMEM is
an emerging technology with much higher cost than flash [21],
we do not expect PMEM to replace flash as primary storage
in the foreseeable future. Rather, we expect it to be used in
the role of latency critical logging and metadata storage in
next generation systems.

Despite its performance benefits, the write atomicity and
ordering problems of PMEM make it difficult to achieve both
performance and crash consistency.

2.2 RDMA Networking

Modern networking interconnects such as InfiniBand [14] and
RDMA over Converged Ethernet (RoCE) [5] are heavily used
in high-performance computing to achieve high throughput
and low latency. These technologies are now being increas-
ingly adopted in data centers worldwide. Through RDMA, a
process can read or update memory of a remote process while
minimizing remote involvement. Data transmission bypasses
both the local and remote OS, allowing zero-copy operation
with data transferred directly between network and memory
controllers. Protocol processing can generally be offloaded



to the hardware, further improving performance. RDMA pro-
vides both two-sided (Send and Recv) and one-sided (Read
and Write) primitives. The one-sided primitives benefit from
being able to transfer data without any critical path involve-
ment of the remote side. Choosing the appropriate primitive
is necessary for high-performance and low latency communi-
cation.

2.3 PMEM Persistence over RDMA

As with DRAM, RDMA can be used to directly access data in
PMEM. Unfortunately, the one-sided RDMA primitives were
not designed for the complicated persistence properties of
PMEM. RDMA writes to PMEM are acknowledged as soon
as data has reached the remote NIC. So, there is no guarantee
that data has been written to the desired memory location as
it could be cached within the NIC or PCle buffers. Once data
has been transferred out of the NIC, there is still no guarantee
that it has been made persistent because modern NICs can
put data directly into volatile CPU caches, still outside of the
PMEM persistence domain. As a result of the complicated
write path, there is no persistence or atomicity guarantees for
RDMA writes to PMEM. This makes the design of a repli-
cated log challenging because a fundamental requirement of
logging is to make record updates atomic and persistent. One
solution for solving both atomicity and persistence issues is
to leverage two-sided RDMA primitives in a request and re-
sponse replication model with the remote side responsible
for persisting data before responding to the replication re-
quest [8]. In doing so, the performance benefits of one-sided
RDMA cannot be realized. Another solution is to leverage
special hardware primitives, such as RDMA Commit [37] or
to always force the NIC to write data to PMEM instead of
CPU caches. The former relies on hardware support from the
NIC that is currently not available in any commodity product,
while the latter requires BIOS configuration changes that also
penalize the performance of any network traffic not destined
for PMEM. Therefore, one-sided RDMA writes cannot di-
rectly be leveraged to replicate data to remote PMEM unless
both the persistence and atomicity limitations are addressed.

2.4 Limitations of Prior Work

The performance critical nature of logging has led many re-
searchers to propose new log implementations on PMEM as
a way of improving end-to-end system performance. Table 1
presents a comparison of resilience to key failure scenarios
between Arcadia and related work. Several works have looked
at designing both unreplicated and replicated logging proto-
cols on PMEM [4,13,17,22,36,42,43,45,48]. Unreplicated
protocols, like PMDK’s libpmemlog [17] and FLEX [43] are
by design not resilient to node or device failures. This makes
it hard to apply them in systems with reliable and replicated
primary storage. The log is a single point of failure in persis-
tent systems, so its resilience must be at least that of primary
storage; therefore, replicated logging is essential for a robust

Log Device/Node Network Media Power
Design Failure Partition Error Loss
PMDK [17] X X X v
FLEX [43] X X X v
Query Fresh [42] v v X v
Tailwind [36] v v v X
Arcadia v v v v

Table 1: Comparison of resilience to key failure scenarios
with related work. Note that Arcadia is the only system that
is robust to all of these failure scenarios. In addition, it is the
only one to provide concurrent writes with in-order commit.

storage system. Unfortunately, prior work on replicated log-
ging places more trust in PMEM hardware’s ability to retain
data than is prudent. This is because these works were de-
signed with the assumption that PMEM has similar reliability
to DRAM. However, reliability for PMEM is more complex:
media errors and software bugs can permanently corrupt data,
and the reliability of each memory-cell degrades as it is used,
potentially leading to premature failure [34,47]. So, in prac-
tice, without sufficient redundancy and integrity checking,
data may be lost or corrupted, pushing the burden of reliabil-
ity onto the programmer. For instance, Query Fresh [42] and
Mojim [48] do not have any mechanism to handle memory
corruption (resulting from software accidentally writing data
to the wrong place) or undetected media errors, So it is possi-
ble for clients to read silently corrupted data. Further, Mojim
does not offer concurrent log writes. Tailwind [36] assumes
the presence of DMA capable battery-backed DRAM buffers
to guarantee persistence. Such special hardware support is
impractical in a production system and we are not aware of
any commodity system offering such support.

Providing concurrency for log writes on PMEM is another
dimension where prior work falls short. It is challenging to
provide concurrent writes to the log because multi-threaded
concurrency is non-deterministic and storage systems typi-
cally require log writes to preserve a total order (monotonic-
ity) to guarantee correctness. Without a total order, consis-
tency of systems cannot be guaranteed on recovery. While
some prior work does provide concurrent log writes, those
designs are for block-based disk or flash storage, not for byte-
addressable PMEM. PMEM makes this problem more chal-
lenging because cache lines may be evicted implicitly at any
time. So, if log data is accessed concurrently and in-place,
there are no ordering guarantees for data persistence. Prior
work completely sidesteps this issue by fully isolating log
writers to preserve the total log order but at the cost of limited
Or NO concurrency.

Arcadia was designed to overcome these shortcomings of
prior work. Through replication, Arcadia can survive device/n-
ode failures and network partitions. Further, by leveraging
novel integrity and atomicity primitives for PMEM, Arcadia is
resilient to memory corruption, media errors, and power loss.



Arcadia also provides concurrency while preserving in-order
commits. To achieve this goal, Arcadia separates log writes
into a set of distinct steps and only isolates those that require
serialization. In this manner, unnecessary synchronization can
be avoided and concurrency is maximized.

3 Primitives for Local and Remote Accesses

Handling atomicity, integrity, and persistence of accesses to
PMEM is a non-trivial task. In this section, we first present
primitives for durable local and remote writes to PMEM.
Building upon these, we present primitives for atomically
and reliably accessing data in local or remote PMEM. Cru-
cially, these primitives handle the complexities of PMEM +
RDMA persistence and hide the weak and complicated per-
sistence properties of PMEM. We distinguish the primitives
as Persistence, Replication, Integrity and Atomicity.

Use Cases. The proposed primitives help make PMEM easier
to use. The integrity primitive can be used to reliably write
data once, or when the data being overwritten is known not
to be needed anymore. The atomicity primitive can be used
when updating existing data in place, where we need to make
sure that if there is a failure during write, the old data remains
readable. We show how these primitives can be applied in
Arcadia to achieve the persistence, integrity, and atomicity
requirements of log writes. The persistence and replication
primitives are building blocks for the integrity and atomicity
primitives, which Arcadia uses to format different portions
of the log — the integrity primitive for log records and the
atomicity primitive for the log header. Additional details on
how Arcadia uses these primitives can be found in §4.3.
Persistence Primitive. To guarantee persistence locally, we
construct a primitive using hardware access macros. It takes
a location and length in PMEM and makes sure that data
previously stored at that location is persistent. It relies on
architecture-specific instructions such as clwb and sfence
that can guarantee that data has been flushed from the volatile
CPU caches into PMEM.

Replication Primitive. Our goal is to construct a replication
primitive which can work on currently available commod-
ity hardware and does not require hardware-modification or
BIOS configuration changes. To this end, we design a single
round-trip protocol for both replicating and persisting data
to remote PMEM. We use the hybrid RDMA-Write-with-
Immediate (RDMA-Write-Imm) operation to both replicate
data and signal the remote server to force data to storage
using the persistence primitive. The ‘immediate’ value in
this operation carries with it the length of the data to force
while its starting address is obtained from the RDMA-Write
completion event. Essentially, the RDMA-Write-Imm acts
as an asynchronous RPC to signal the remote server to per-
sist data. Once the persist operation is complete, the remote
server sends an acknowledgement using a (two-sided) RDMA
Send. The local server can use this acknowledgement as an

| size [..| crc | data | crc |

<+<— header buf

Figure 1: Integrity Primitive Data Layout in PMEM

Listing 1: Integrity Primitive

1 # header and buf are preallocated in PMEM

2 function ReliableWrite(data, size)

3 header = generateHeader (data, size)

4 header.crc = crc32(header) # Header CRC
5 memcpy (buf.data, data, size) # Copy data
6 buf.crc = crc32(data) # Data CRC

7 # Replicate + Force header and data

8 return rdma_write_and_force(header, buf)
9

10 function ReliableRead(data)

11 rdma_read (header, buf) # Remote read

12 if (header.crc != crc32(header))

13 return false

14 if (buf.crc != crc32(buf.data))

15 return false

16 memcpy (data, buf.data, header.size)

17 return true

assurance of remote data persistence. This approach preserves
the asynchrony of one-sided RDMA while also guaranteeing
remote persistence.

Integrity Primitive. This primitive is designed for reliably
reading and writing data in PMEM (e.g., log records). Re-
liability here means that we should be able to verify the in-
tegrity of data. This requires protection against two situations
— the first where writes may be torn, i.e., only part of data is
persisted, and the second where data is corrupted because
of undetected media errors. To achieve reliability, we add
a header field to every data item with checksums protect-
ing both of header and data. Figure | provides an overview
of the data layout for this primitive. The header contains
the size of the data buffer and can be used to store addi-
tional information, for instance, to identify the type of data
stored. Listing | presents a pseudo-code of the primitive. The
rdma_write_and_force() function represents the replica-
tion primitive and can be replaced by the persistence primitive
if replication is not desired. For reliably writing data, check-
sums (such as CRC32) for header and data are generated.
By protecting both using checksums, there are no ordering
requirements of writes or persistence barriers for the header
and data. In addition, there is no requirement on atomicity of
writes to PMEM. This is crucial because replicating data using
one-sided RDMA does not provide any atomicity guarantees.
In our approach, a single replicate and persist operation is
sufficient for the entire write. When reading data, both the
header and data checksum must be checked before data can
be safely copied. Header integrity must be validated before
data integrity, otherwise the size field in the header may not
be correct. As an optimization in some circumstances, the
header checksum can be replaced by a special integrity check
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Figure 2: Atomicity Primitive Data Layout in PMEM

Listing 2: Atomicity Primitive

# idx and buf[] are preallocated in PMEM

1

2 function AtomicWrite(data)

3 memcpy (buf[!idx].data, data, size)

4 buf[!idx].crc = crc32(data) # Generate CRC
5 # Replicate + Force data and CRC

6 rdma_write_and_force(buf[!idx])

7 idx = lidx # Flip index

8 # Replicate + Force index

9 return rdma_write_and_force(idx)

10

11 function AtomicRead(data)

12 # Remote read

13 rdma_read(idx, buf)

14 if (buf[idx].crc != crc32(buf[idx].data))
15 return false

16 memcpy (data, buf[idx].data, size)

17 return true

value, such as a log sequence number (LSN), to eliminate the
cost of generating the checksum.

Atomicity Primitive. This primitive is designed for atomi-
cally accessing data in PMEM and is required when updating
an object with a fixed location (e.g., the log’s header). It guar-
antees that the entire data is updated atomically and that data
integrity can be validated on reads. Atomically updating data
is challenging because writes may be torn, so data may be
only updated partially. Data cannot be updated in-place be-
cause there is no guarantee of atomicity for remote writes
to PMEM. To solve this issue, we propose the use of copy-
on-write (CoW) for updates to data. Figure 2 provides an
overview of the data layout and Listing 2 presents a pseudo-
code of the primitive. We use two buffers to implement the
CoW approach and switch between the two for every update.
The index flag identifies the current valid buffer for reads.
Checksums protect data integrity. For any update, data must
be written to the invalid buffer. Once data and its checksum
have been written and persisted, the index can be updated
and persisted accordingly. As an optimization, to eliminate
the cost of persisting the index flag, the flag can be placed
in volatile storage as long as the valid data buffer can be
identified on recovery using the contents of the data. Another
possible optimization, to reduce space usage, is to always
write to a new dynamically allocated buffer and discard the
old buffer once the write has successfully completed.

4 Design

In this section, we present the design and implementation
of Arcadia. We design Arcadia as a replicated log with a
single-primary, multi-backup model. It has a single multi-
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Figure 3: Arcadia’s Layout on PMEM

threaded writer doing updates (logger) and a single reader
during recovery.

4.1 Design Overview

PMEM Layout. We place the entire log as a single file on
a DAX filesystem formatted on PMEM. The entire file is
mmaped into the address space of the process to enable load-
/store access to log records. Figure 3 shows an overview of
the log layout on PMEM. The log itself consists of a circu-
lar buffer of fixed size to hold the log records and a header
containing information necessary to both identify and recover
instances of the log. We call this header the superline, a term
combining superblock with cache line. The superline stores
the head and start LSN of the log, which recovery uses to
find the first valid record. We do not include the log tail in
the superline to avoid the overhead of having to update it on
each log append. Instead, we find the log tail on recovery by
iterating over all valid records to locate the end of the log.
Each log record in Arcadia consists of a header and payload
pair. The header contains the length and checksum of the pay-
load as well as a monotonically increasing LSN and a valid
flag. Arcadia relies on special values and basic consistency
checks like magic numbers, LSNs, checksums, and valid flags
to validate the log’s content in persistent storage.

Operation Modes. Arcadia can be deployed in one of three
operation modes — local, local+remote, or remote only. In the
local mode, log data is placed and accessed only on PMEM
available on the local server. In local+remote mode, the lo-
cal copy is the primary replica of the log with one or more
secondary servers serving as backups. Finally, in remote only
mode, all durable copies of the log reside on one or more
remote backups, while the client only holds a volatile copy of
the log.

Whenever Arcadia is configured in a mode with replica-
tion, at most one replica is local and the rest must be remote.
Because remote replicas have higher latency than local due to
network overhead, it follows that when replication is in use,
write latency is always limited by the network, thus having
a local replica does not significantly improve performance.
A positive consequence of this is that log clients can be lo-
cated anywhere there is good RDMA connectivity, and are
not required to have local PMEM.

Interface. Arcadia’s interface was designed with three goals
— (1) minimizing unintended synchronization, (2) providing



API Function Description

[id, ptr] reserve(size)
int copy(id, data, size)
int complete(id)

Reserve space for a record
Copy data into a record
Mark a record as completed

int force(id, freq=1) Force a record to PMEM
id append(data, size) Append a record

LSN getLSN(id) Get record LSN

int cleanup(id) Reclaim record space

int cleanupAll() Reclaim entire log
ITERATOR begin/end() Recovery iterator

Table 2: Arcadia’s Interface

direct access to PMEM, and (3) enabling use in any situation
requiring logging. An overview of the interface is presented
in Table 2.

Conventionally, log interfaces only include an append
method for log writes. Bundling the entire write as a single
append method limits overlap of application compute with
log writes and data persistence. To achieve the first goal, we
propose a set of fine-grained methods to write data in the log.
These methods break the append method into four separate
stages — reserve, copy, complete, and force. This separation
provides users flexibility to place the calls at the best pos-
sible location to maximize concurrency of application and
log-related activity. A single append method is also provided
as a combination of the four fine-grained methods wrapped
up into a single convenient operation when the fine-grained
interface isn’t needed.

The second goal is achieved by providing a direct pointer
to the PMEM region allocated for a record using reserve. The
benefit of having a direct pointer is that it allows the user to
assemble the log record contents directly in PMEM without
need to first build it in DRAM and then copy it. It avoids the
need for a data copy in cases where the data to be logged is
not already sitting in DRAM.

Finally, to achieve the third goal, we provide several generic
methods to add records, reclaim space used by records, and
iterate over valid records for recovery. These methods are
described in detail in §4.3.

4.2 Replication and Recovery Protocol

Arcadia implements a quorum-based protocol for replication
and recovery. The write quorum (W) is a configurable param-
eter that can be adjusted based on desired performance and
fault-tolerance. The read quorum (R) is automatically selected
based on W and the number of durable replicas (N) to satisfy
quorum requirements (R + W > N). Therefore, the system
can tolerate up to N — W replica failures when writing log
records.

Arcadia assumes that it is running within an existing cluster
infrastructure (such as Apache Zookeeper [3]) that manages

membership and quorum of nodes, and that assigns an active
primary node to control each instance of the Arcadia log and
run the user application.

Replication. When log data needs to be replicated, RDMA
Writes are initiated to all backups (remote log replicas) in
parallel. Next, we wait for the persistence acknowledgement
from all backups. Once sufficient writes have completed to
meet the write quorum, the data can be considered to be
durably replicated. Network partitions and backup failures
can disrupt this process. To handle such cases, Arcadia uses
a timeout-based approach. If the backup write times out, we
consider the backup to be failed and immediately close the
connection with that server. This also avoids the problem
of an inconsistent backup in cases with a transient network
partition. As long as the number of failed backups does not
impact the write quorum (i.e., W backups are in complete
sync), the replication process is successful. In situations where
write quorum cannot be achieved, replication will fail, and
as a consequence any call to force will also fail. We delegate
responsibility for these failures to the application. An easy
fix that the application can use in such cases is to gracefully
shutdown, add new backup servers (by copying the PMEM
log files), and restart the application.

Recovery. Once the existing cluster infrastructure has as-
signed an active node to manage the Arcadia log, Arcadia
checks that a sufficient number of copies of the log are avail-
able and consistent to meet the log read quorum, R. If the read
quorum is not met because backups are unavailable, Arcadia
fails recovery and lets the user retry after more backups come
online. If read quorum fails because too many copies are cor-
rupted, then Arcadia cannot guarantee data consistency and
recovery cannot proceed safely. During the recovery process,
we use data in the superline to detect which copies of the log
are consistent and contain the most recent data. Before accept-
ing new requests, Arcadia repairs any inconsistent or failed log
copies using the consistent copies. Only inconsistent copies
are modified during recovery, therefore, the recovery process
is idempotent and invulnerable to repeated failures. Once re-
covery has completed, the primary and all backups are up to
date, and new requests can be safely accepted.

Handling Primary Failure. The primary node hosting the
user application can fail at any time. We ensure that Arcadia
handles such failures by using the cluster infrastructure. On
primary failure, this infrastructure triggers leader election,
selects a new primary, and informs all backups of the primary
change. All backups immediately close their connection with
the primary to ensure that it is fenced off. This prevents the old
primary from continuing to replicate log records after it comes
back up. The user application is then migrated to the new
primary and restarted once log recovery is complete. Since
Arcadia replicates log records synchronously, the new primary
is guaranteed to have the latest log records that were forced
by the client. This preserves both application consistency and
correctness.



Handling Diverging Histories. Diverging histories can hap-
pen due to repeated failures of different backups. For example,
assume we have 3 log replicas (A, B, and C) with R=2 and
W=2. Replica A writes a record of value X at LSN 1, and then
crashes. Recovery reads replicas B and C, which have not
written anything at LSN 1. They are consistent and recovery
proceeds without A. Next, replicas B and C write a record of
value Y at LSN 1, and then crash. Recovery reads replicas A
and B and discovers one replica with X at LSN 1, and one
with ¥ at LSN 1, creating a conflict during recovery. To solve
this problem, we add an epoch field to the superline in each
log copy. The epoch values start out at 1. On each recovery,
all available copies are read and the maximum epoch value is
calculated. At least read quorum of copies must be readable,
or recovery cannot continue. Recovery increments the epoch
by 1 and writes the new value to all available copies. Writes
to a write quorum of nodes must be successful to continue.
Only log copies with the maximum epoch are considered
valid. So, in the example above, only replicas B and C will
be considered valid during the last recovery, thereby avoiding
diverging histories.

4.3 Using the Log

In this sub-section, we describe how Arcadia accesses and
updates the log in detail. Arcadia uses the proposed integrity
primitive for accessing log records and the atomicity primitive
for accessing the superline. As an optimization to the integrity
primitive, we use the LSN for validating the header rather than
a checksum. For optimizing the atomicity primitive, we keep
the index in volatile memory and identify the valid superline
on recovery based on which copy has the latest start LSN.

Concurrent Log Writes and Monotonicity. Arcadia allows
concurrent writes despite having in-order commits. We de-
scribe how each write method is handled internally to enable
this. The reserve method allocates space for log records and
returns a direct pointer to the allocated space in PMEM”. It
is also responsible for generating the LSN for the record. To
ensure monotonicity of LSNs, this method synchronously al-
locates log space and generates LSNs. The copy method is
a convenience method to copy data into a reserved record.
It uses non-temporal stores that bypass the CPU caches to
copy data to PMEM efficiently. This method can be safely
called multiple times to copy different data chunks into the
record. Note that users may choose not to use this method and
instead use memcpy or CPU stores to copy data themselves.
The complete method is used once all data has been written
to the record. Complete generates and writes the checksum
for the record payload and also sets the valid flag in the record
header. The force method guarantees that a record is durable,
i.e., it will be available after a crash. It does this by replicating
and persisting records. Importantly, it ensures that there are
no gaps in the stream of committed records. To do this, force

3When configured without local PMEM, reserve returns a pointer to a
buffer in DRAM.

waits, if necessary, until all previous records have been marked
valid (complete) and forces them first. Doing so ensures that
records are always persisted in-order despite concurrent log
writers.

The key insight here is that reserve and force are the only
synchronous methods required during a log write. Multiple
threads can safely call copy and complete in parallel. Al-
though data is concurrently written into the log, the reserve
and force methods carefully track the status of all records to
ensure that monotonicity is still maintained.

Log Space Reclamation. Space reclamation is important
when records are no longer necessary for recovery because
the changes they describe have already been made durable.
Depending on the type of logging algorithm used, records may
be invalidated at different times. However, a cleanup method
operating at the granularity of a record is sufficiently generic
to be applicable in all cases. This method is responsible for
unsetting the valid flag of the record. It also checks if there
is a contiguous section of the log starting from the head (the
oldest valid record) that can be reclaimed. If so, it advances the
log head and updates its value in the superline. A cleanupAll
method is also provided to reclaim the entire log. This method
simply re-initializes the entire log and updates the superline
accordingly, but preserves the current log epoch number.
Recovery Iterator. This iterator is used to access all valid
records upon recovery from a crash. It is useful in bringing
the system back to a consistent state using data in the log.
Before it can be used, the recovery protocol (see §4.2) is
triggered to repair any corruption and ensure consistency of
all copies. The recovery iterator operates on the local log copy
and obtains the log head from its superline to find the oldest
valid record. To validate records, three integrity checks are
performed — (1) all LSNs leading up to the record and of the
record itself must be monotonically increasing, (2) the valid
flag must be set, and (3) the checksum of the payload must
match. The iterator ends when any one of these checks fails.
These integrity checks guarantee that any partially written,
uncommitted, or corrupted records are not applied during
recovery.

4.4 Force Policy

Up until now, we have assumed that log writers would always
do an explicit force on the log after writing a log record, i.e.
that the thread doing the logging would not be able to continue
until the log record was safely committed. But doing a force
operation on the log after every write is expensive. The high
cost of persisting data and the coarse granularity of writes
for traditional block storage motivated researchers to propose
techniques to reduce the number of synchronous, small writes
required by relaxing freshness requirements (how up to date
the state is after crash recovery). One popular approach is
called group commit [11]. In this approach, log records are
persisted in batches (or windows), such that the number of
unpersisted records at any time is limited by a threshold,
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Figure 4: Example showing the worst case scenario for the
frequency-based force policy with 7=3 and F'=2, where all
threads are blocked in trying to force persistence. All 6
records have been completed and may be lost on crash.

often called the group commit size. By controlling the group
commit size, the desired level of freshness can be achieved.

With PMEM, the performance characteristics of persistent
writes have changed drastically. PMEM write latency and
granularity is much lower than other PCle connected storage
devices, so the cost of persistence is lower too. This seems
to imply that there is no merit in limiting write frequency
with PMEM. However, we find that when adding replication
overhead to overall performance characteristics, the overhead
of persistence remains relatively high. This is because the
cost of replication over RDMA is often an order of magni-
tude higher than local writes to PMEM. To reduce the cost of
replication, we first explore if group commit can be a viable
approach. We find that although it improves overall latency,
it is not scalable; at high concurrency, group commit has sig-
nificant overhead. This is because a shared counter or mutex
is required to maintain the current window. Concurrent ac-
cess to this counter/mutex across threads results in significant
cache thrashing and reduces the effectiveness of group com-
mit. This effect was not observed in prior work either because
they did not allow concurrent access to the log, or because
the IO latency overshadowed synchronization overhead. With
fast PMEM hardware, the software and synchronization over-
head constitutes a significant portion of overall latency, so the
effects of synchronization are much more pronounced.

To reduce the overhead of replication and persistence with-
out adding synchronization overhead, we propose a novel
frequency-based force policy. The key idea is as follows. In-
stead of maintaining a window of unpersisted records, we
force records at intervals determined by a predefined ‘update
frequency’. The crux of the idea lies in the fact that we can
leverage the monotonicity of record LSNs to determine when
to force data. For instance, given a frequency of F', data will
be persisted every time a record with an LSN divisible by F
is forced. Each thread that completes a record with such an
LSN becomes the ‘force leader’ for the current batch of unper-
sisted records and is responsible for persisting them, which
distributes this effort over all active threads. In this manner,
we do not need a shared counter or mutex to maintain the win-
dow, but instead piggy back on existing synchronization to
generate monotonic LSNs (in reserve) as consecutive integers.

In our design, threads can write and force records to the log

concurrently. Though the writes never overlap each other in
the log space, they do race each other in time, and as a result,
holes can be left in the log if a crash occurs after a thread
writing further ahead in the log has completed its write while
other threads haven’t yet filled in the records leading up to it.
In order to provide total ordering in Arcadia, a force operation
cannot return success until all records leading up to the forced
record have been persisted and marked complete, thus a force
later in the log must wait for any earlier force operations.

In the worst case, all threads can get blocked doing a force.

This can happen if, for instance, the first thread doing a force
is context switched, or if a record with an earlier LSN that
is not a multiple of F has not yet completed. When threads
force with the configured frequency, they are each separated
by F records. This gives us the theoretical upper bound of
the number of completed records that can be lost as F X T,
where T is the maximum number of threads or concurrent
forces allowed. Figure 4 shows an example of the worst case
scenario with 7=3 and F'=2. All three threads are blocked in
this scenario. It is easy to see that the maximum number of
records that may be lost on crash* can be correctly calculated
using the formula described here.
Use Cases. There are two use cases for this policy. The first is
where explicit guarantees of persistence are not required for
ensuring consistency (e.g., when recording logical operations
in the log for a volatile key-value store). In this case, the
frequency-based force policy can be used for all log updates
to reduce the overhead of persisting records. A few of the
recent updates may be lost on crash (the policy provides a
bounded guarantee for how many updates can be lost), but
consistency is not compromised. The second use case is where
explicit guarantees of persistence are required for ensuring
consistency (e.g., when recording state updates in the log
for a database). Even in this case, the frequency-based force
policy can be used for all log updates to reduce the overhead
of persistence (by calling force with freq=F for every record).
When users require an explicit guarantee of record persistence
(e.g., during the commit of a transaction), they may either
issue a synchronous force (a force with freq=1) or check if
the difference between the LSN of a newly allocated record
and the record they want forced is greater than the theoretical
upper bound of the size of the vulnerability window, F x T

5 Experimental Analysis

In this section, we present the evaluation of Arcadia. We
conduct a comprehensive analysis of the impact of the novel
aspects of our design. We also compare performance and
resilience of Arcadia with state-of-the-art PMEM-optimized
logs, FLEX [43], PMDK’s libpmemlog [17] (referred to as
simply PMDK in the evaluation), and Query Fresh [42]. We
were unable to compare with Tailwind [36] because it requires
special hardware support and its source code is unavailable.

4We call this the vulnerability window.
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Figure 5: Microbenchmark Comparison with FLEX and PMDK

5.1 Experimental Testbed

Our experimental testbed consists of two Linux (4.18)
nodes, each equipped with two Cascade Lake CPUs
(5218@2.30GHz), 192GB DRAM (2 x 6 x 16GB DDR4
DIMMs), and 1.5TB PMEM (2 x 6 x 128GB DCPMMs) con-
figured in App Direct mode. Each CPU has 16 physical cores
(with hyperthreading enabled) and 22MB of L3 cache (LLC).
All available PMEM is formatted as two ext4 DAX filesys-
tems, each utilizing the memory of a single CPU socket as a
single interleaved namespace. The two nodes are connected
using 100Gbps EDR InfiniBand. One node is used as the
primary while the other is used as a backup.

All code was compiled using GCC 8.3.1. PMDK [17] 1.8
was used across all evaluations to keep comparisons fair.
Hardware counters were obtained using a combination of
Intel VTune Profiler [16], Intel PCM [18], and Linux perf
utility. DCPMM hardware counters were collected using the
ipmwatch utility, a part of the VTune Profiler.

5.2 Microbenchmark Evaluation

We first present a microbenchmark-level comparison of Arca-
dia with FLEX and PMDK. Since FLEX and PMDK do not
support replication, we compare them with Arcadia deployed
in local mode.

Latency: We evaluate the latency of log writes with a single
thread while varying the record size. Figure 5(a) shows this
evaluation. We find that Arcadia has the lowest latency out of
all three designs, up to 6x faster than PMDK and 8x faster than
FLEX. One of the main reasons for this trend is that Arcadia
does not maintain the pointer to the tail (most recently added
record) of the log in PMEM (superline) and thus does not
need to update it on every record write. FLEX performs the
worst because it has high software overhead and it appends the
record header and payload in separate operations. To confirm
the reasons for these observations, we analyzed the breakdown
of log writes for a 1KB record in Figure 5(b). We can clearly
observe that flushing data to PMEM takes much more time in
FLEX and PMDK. This is because they both update the log
tail for each write. The flush time is especially high because
it also includes the additional store fence required to wait
for data being copied into PMEM before the tail update. By

avoiding a tail update, Arcadia shows much lower latency
despite computing checksums.

Throughput: Figure 5(c) presents throughput curves in a
multi-threaded setting. We measure the overall log throughput
while increasing the number of threads concurrently adding
records to the log. Both FLEX and PMDK have flat curves
because they fully isolate writers using coarse-grained locks
and do not provide any concurrency. Arcadia only isolates
steps that require serialization (reserve and force), and can
provide some level of concurrency. Its throughput is maxi-
mum at 4 threads, but reduces slightly at higher concurrency.
There are two reasons for this — (1) synchronization overhead
in reserve and force, and (2) poor bandwidth for highly con-
current accesses to PMEM. We also measure the aggregate
log throughput in a multi-tenant setting. This is a common
usage scenario where multiple tenants are sharing the same re-
sources. Figure 5(d) shows the throughput for different record
sizes with 16 concurrent single-threaded tenants, each writing
to a separate log. Without replication, Arcadia performs the
best in all cases. As the record size increases, throughput is
bound by the PMEM bandwidth, and all log implementations
converge to that limit. An observation we make is that Arca-
dia’s throughput is lower for 64B records than 128B records.
This is because of the write amplification effects in DCPMM
for small-sized writes. With replication, Arcadia has lower
throughput than FLEX and PMDK for small record sizes.
In these cases, replication overhead bounds overall through-
put. However, for large record sizes (> 2KB), throughput is
indistinguishable from the local mode.

5.3 Replication Overhead Analysis

To understand the performance characteristics of replication
with PMEM and RDMA, we conduct an experiment to mea-
sure the replication overhead with Arcadia deployed in lo-
cal+remote mode. To highlight performance impact, we mea-
sured three methods of write flush ordering: (1) parallel, in
which the local cache flush and RDMA replication are done in
parallel, (2) serial with the local flush performed first followed
by the remote flush (LF+Rep.), and (3) serial with the remote
flush done first followed by the local flush (Rep.+LF). Fig-
ure 6(a) analyzes the log write latency across record sizes for
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Figure 6: Replication Overhead Analysis

the three methods. Surprisingly, we find that the flush order
has significant impact on overall latency. Contrary to expecta-
tion, parallel has the worst latency, while serial with remote
flush first has the best. To understand why, we analyzed the
overhead of just the copy and force operations of log writes
(shown in Figure 6(b)) as well as the LLC miss counts of the
three methods (shown in Figure 6(c)). The copy+force over-
head curves mirror the log write latency curves, confirming
that the local flush and fence operations are responsible for
higher RDMA latency. Local flush is an order of magnitude
faster than remote flush; therefore, when using the parallel
method, the local cache flush invalidates data from the LLC.
So, RDMA writes need to read data back from PMEM instead
of reading it directly from the LLC. This additional read is
manifested as additional LLC misses and is confirmed by
Figure 6(c). The serial method with local flush first suffers
from the same problem, and shows only marginally better per-
formance compared to the parallel method. We suspect that
this is because concurrent reads and writes to PMEM in the
parallel method conflict and slightly reduce performance. The
serial method with remote flushed first (Rep.+LF) has the best
performance because RDMA writes can go data directly from
the LLC — the LLC misses graph confirms this conclusion.
Next, we analyze the impact of number of log backups on
throughput. Our testbed has only two nodes, so we conduct
this experiment on another cluster with six Skylake nodes and
EDR InfiniBand®. Figure 6(d) shows the impact of number
of backups on throughput for different record sizes. A com-
mon observation across record sizes is that adding backups
results in a significant drop in throughput. This is expected
because the overhead of replication is significant. However,
adding additional backups after the first one has little addi-
tional impact because the asynchronous nature of RDMA
enables data to be sent to multiple backups in parallel. This is
a significant result because it shows that whenever replication
is enabled, throughput is not significantly impacted by the
number of backups. Consequently, it’s not necessary to com-
promise fault-tolerance for performance when replication is

3 At the time of writing this paper, cache write-back instructions had not
been implemented in Intel processors.

®This cluster does not have real PMEM, so we emulate PMEM with
DRAM. This is also why we do not use this cluster for all other tests.
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Figure 7: Recovery Evaluation

enabled. These results also show that in cases where PMEM
is not available on all nodes, even nodes without PMEM can
use Arcadia efficiently by having only remote log replicas.

5.4 Recovery Evaluation

To evaluate the recovery performance of Arcadia, we mea-
sured the total time taken to recover log state and iterate over
all valid records on recovery, calling a null recovery function
for each record. Figure 7(a) compares Arcadia’s recovery la-
tency in local mode with FLEX and PMDK. Both Arcadia
and FLEX rely on checksums to verify record integrity, so
they have similar performance. This is because the time taken
to verify checksums dominates recovery latency, which is also
why latency increases linearly with log size. PMDK does not
use checksums, so its recovery procedure only consists of
calling null functions for each record. This is why it is able
to recover so fast. However, by not relying on any integrity
checks, it is unable to handle undetected media errors and
may redo or undo updates using corrupted data. Figure 7(b)
compares Arcadia’s recovery latency with replication enabled
in normal recovery and when the primary log copy fails or
is lost. These represent the best and worst case situations
for recovery, respectively. We observe that when the primary
copy is lost, the latency is higher. In this scenario, Arcadia
needs to recover the primary copy using data in the backup
which increases recovery time. However, this process uses
the fast one-sided RDMA reads for copying data which does
not add significant overhead. Even for a 256MB log, recovery
takes less than 500ms in the worst case; so, we conclude that
recovery is fast enough for most practical scenarios.
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5.5 Force Policy Analysis

We compare group commit and frequency-based force poli-
cies in this experiment. We compare log throughput for the
two policies in Figure 8(a). The group size or frequency is
listed in parenthesis. We evaluate with two different values
for each policy; these values have been chosen such that their
theoretical vulnerability window sizes are comparable. So,
group (128) is comparable to freq (8), while group (256) is
comparable to freq (16). We also evaluate the sync policy
in which each log write is synchronously forced. Results
demonstrate the group commit has significant overhead at
high concurrency and its throughput drops by 30% at 16
threads. Concurrent access to the window size variable is be-
hind this drop. On the other hand, the frequency-based policy
is much more scalable because it avoids this synchronization
overhead. To confirm that synchronization overhead is the
reason for poor performance of group commit, we analyze
the L1d miss rate for all policies (see Figure 8(b)). We can
clearly observe that group commit has much higher miss rates
because of constant cache thrashing as a result of concurrent
accesses to the shared counter.

We also measure the distribution of the vulnerability win-
dow size (from latest completed record to the most recently
forced record) for the frequency-based policy. Unlike group
commit, the vulnerability window size is not fixed because if
a thread gets blocked doing a force, other threads can keep
adding new records and increase the window size. Figures 8(c)
and 8(d) show this distribution for frequencies of 8 and 16,
respectively. Interestingly, we find that the probability dis-
tribution is skewed towards smaller sizes, far below the the-
oretical upper bound. This shows that on average, threads
are unlikely to block on a force. Overall, we conclude that
the frequency-based policy is not only more scalable, but in
practice it provides better resilience than its theoretical limit.

5.6 Arcadia Applications

RocksDB. To demonstrate the practical benefits of Arcadia,
we integrate it with RocksDB (adding/changing only ~200
LoC), a popular key-value database used at Facebook, by
swapping out its write-ahead-log with Arcadia and use the
fine-grained interface for adding log records. We evaluate
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this version in both local and local+remote modes and com-
pare it with the FLEX integration of RocksDB [32]. Figure 9
compares the latency and throughput for both sequential and
random key-value puts at full-subscription (16 threads). By
reducing the log append latency and using the fine-grained
API to increase concurrency, Arcadia improves latency by up
to 38% and throughput by up to 62% in local mode (0O bkp).
In local+remote mode (1 bkp), Arcadia is faster than FLEX
(which is local-only) for sequential puts and on-par for ran-
dom puts, despite enabling replication. Replication overhead
is much less than the overhead of the entire put operation.
Hence, there is little difference in performance with and with-
out replication. Finally, random puts are much slower than
sequential puts, so latency is dominated by operations other
than logging, and log performance differences are negligible.

Masstree. We integrate Arcadia with Masstree [28]
(adding/changing only ~100 LoC), another popular key-value
database, to enable comparison with Query Fresh. This experi-
ment shows the practical benefits of the frequency-based force
policy. Figure 10(a) compares the throughput of read-modify-
writes and Figure 10(b) compares the theoretical vulnerability
window size for Query Fresh and Arcadia (with both group
commit and frequency-based force policies). From the results,
we observe that Arcadia’s group commit policy has high syn-
chronization overhead at 8 and 16 threads which reduces
performance bringing it close to Query Fresh’s throughput.
Query Fresh also uses group commit but it only enables lim-
ited log concurrency. Therefore, it delivers lower throughput
than Arcadia but is also less impacted by the synchronization
overheads of group commit. The frequency-based policy is
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able to deliver the best performance (up to 65% faster than
Query Fresh) and fault-tolerance by avoiding unnecessary
synchronization and forcing records more frequently.

5.7 Key Insights

Our measurements demonstrate the performance benefits of
our approach compared to PMDK, FLEX, and Query Fresh.
The measurements confirm the benefits of specific innovations
and design choices in Arcadia, such as avoiding the superline
tail pointer, and using concurrency to limit the impact of
checksums and replication. They also highlight subtle factors
such as the synchronization implied by group commit and the
interaction between local flush and remote replication, giving
confidence in the overall conclusions.

Arcadia’s log interface crucially decouples steps requir-
ing serialization from those allowing concurrency to maxi-
mize performance of parallel applications. It also illustrates
PMEM’s byte-addressability to avoid unnecessary data copy-
ing. The proposed frequency-based force policy gives flexibil-
ity in the freshness and performance trade-off, while allowing
more concurrency than the traditional group commit method.

6 Related Work

Logging on PMEM. A number of prior works [4,13,17,22,
36,42,43], have leveraged PMEM performance for logging
as a means to improve overall system performance. Some of
these works (Query Fresh [42], WBL [4], NV-Logging [13])
propose PMEM-based logs that are tightly integrated with
a particular system or logging algorithm. Some of them
(PMDK [17], FLEX [43], NVWAL [22]) propose unrepli-
cated logs that cannot provide high availability. Others (e.g.,
Tailwind [36]) rely on special hardware support. Moreover,
none of these are able to satisfy the robustness requirements
of large-scale production systems because they do not provide
resilience to all likely failure scenarios.

Logging on Flash/Disk. Corfu [6], Raft-based log [1],
Apache Kafka [41], DistributedLog [9], GNR [7], and
JBD2 [40] are relevant log implementations on traditional
flash and disk storage that are deployed in production systems.
These designs are considered to be reliable and robust. How-
ever, they were designed considering the performance charac-
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teristics, access methods, and reliability of flash/disk which
are considerably different than those of PMEM. Naively ap-
plying them to PMEM is unlikely to yield good results.
Combining RDMA and PMEM. Octopus [26], Forca [12],
File-MR [45], Orion [44], pDPM [38], AsymNVM [27],
NVES [20], Hotpot [33], Mojim [48], and RDMP-KV [25]
have worked on combining PMEM with RDMA for fast
access to remote persistent storage. Each takes a different
approach to remote persistence and atomicity that are not
broadly applicable in other situations because they are either
tied to a particular data format (key-value or file) or the com-
plications of RDMA + PMEM persistence are not fully solved.
In contrast, in this paper, we present abstract primitives for
ensuring remote persistence, atomicity, and integrity, that can
be applied generically on commodity hardware.

7 Conclusion

We’ve described Arcadia, a generic log with easy to use inter-
face, stored on PMEM, and replicated using RDMA. Imple-
menting fast, fault-tolerant systems is a challenging problem,
and a good log implementation is a crucial abstraction for
success. Arcadia efficiently encapsulates the operations of
PMEM and RDMA to manage atomicity, persistence, and
replication. It takes a creative approach in its API to eliminate
unnecessary synchronization to provide the concurrency nec-
essary to get the full performance from PMEM. We hope that
wide adoption of this technology will significantly advance
the frontier of fast and robust storage systems.
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