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Abstract. Agriculture presents challenges in automation, especially so
in vision systems. Varying lighting conditions, sporadic diversity, and
large amounts of noise create di�culty in detecting target objects. Our
Mummy Nuts datasets present these challenges in tiny scale, camou-
flaged, dark, or even hidden target objects. However, the most recent
advancements in Convolutional Neural Networks (CNN) in the object de-
tection task have become increasingly accurate and robust. As there are
many di↵erent CNNs, selecting which CNN will perform the best may be-
come challenging. This paper proposes a two-dimensional benchmarking
methodology to evaluate five popular CNN models (YOLOv3, YOLOv5,
CenterNet, Faster R-CNN, and MobileNet SSD) on two NVIDIA GPUs
(Tesla T4 and A100). Our benchmarking methodology evaluates accu-
racy across all models and performance among models on each GPU.
Our results show the benefits of selecting models using our Augmented
dataset over the Original dataset. CNN Models overall see an increase in
recall values during inference by an average of 2.77X (with the highest
increase as YOLOv3 by 6.5X). For performance, over both Original and
Augmented datasets, the model training time reduces by an average of
4.45X when using A100 over Tesla T4.
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1 Introduction

Object detection using Convolutional Neural Networks (CNN) has become in-
creasingly popular. CNNs appear in an ever-growing field of applications and
are crucial in precision agriculture automation tasks such as yield estimation,
disease detection, and robotic harvesting. Agricultural object detection proves
to be a complex engineering problem due to many unseen variables that come
as a trait of agriculture.

? This work was supported in part by the NSF research grants CCF #2132049, EEC
#1941529, and a COR grant from University of California, Merced.
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Pest control is a challenging problem in agriculture and, if not performed
correctly, will damage farmer crop yield significantly. Almond growers are a
prime target as orchards may take permanent damage from pests known as
Navel Orangeworm (NOW), which nestle and feed on o↵-season almond nuts
(Mummy Nuts). Growers must adequately monitor and track NOW disease to
prevent spreading [1]. Furthermore, Mummy Nuts have diverse appearances and
prove di�cult for manual inspection. Due to this, Mummy Nut object detection
has been an under-researched topic in precision agriculture.

CNNs can be applied to an environment that may contain erratic behaviors.
For Mummy Nut detections, this is in the endless variations of the appearance
in the target object. Furthermore, agriculture relies heavily on the season and
restricts necessary data collection to a particular time frame each year. In the
case of Mummy Nuts, image data can only be taken during the winter. This
window would limit the data available to train CNNs.

In CNN training, the most critical component would be the dataset used.
A robust CNN model must be trained with a carefully curated dataset. High-
quality datasets should include thousands of images, with each class containing
images of similar features, respectively. For example, the Microsoft Common
Objects in COntext (MS COCO) dataset contains 2,500,000 labeled instances
in 328,000 images standing among the richest datasets [2]. Other popular, large-
scale datasets include ImageNet [3], Pascal VOC [4], SUN Database [5], and
Pedestrian Database [6]. Due to the necessity of large datasets, there is little
work on training CNNs with insu�cient data.

For Mummy Nut detection problems, we face numerous issues with dataset
curation. Most existing datasets are easy to annotate and can be considered a
simple task for human workflow. MS COCO deployed an annotation pipeline
to richly annotate each image using Amazon Mechanical Turk workers [2]. This
workflow assumes each image contains objects easily identifiable by non-expert
annotators. However, our proposed datasets are di�cult to annotate, showing
varying results in recall values between each annotator. Multiple expert annota-
tors reviewed each image to ensure the highest annotation recall and precision.
A large amount of noise contributes to the complication of annotation and de-
tection of target objects within an image, though it allows for model robustness.
Lastly, there is a significant underrepresentation of the variety of nuts. Each nut
classifies for a di↵erent di�culty class (e.g., Noisy, Dark, Tiny, etc.) we assigned
that will tell us how complex a particular detection may be. Di�culty classes
are not equally represented in the training set, which may decrease the recall
value per underrepresented class.

Another factor that predominantly a↵ects CNN performance is the type of
object detection model used. Multiple popular CNN models are in use, and each
has a very di↵erent structure in training and inference computations. Lately,
quick one-stage detectors have been utilized in systems and show high accu-
racy, such as You Only Look Once (YOLO) [7], Regions with CNN features (R-
CNN) [8], Fast R-CNN [9], and Faster R-CNN [10]. These models create spaced
boxes across the input image called anchor boxes, each individually responsible
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for determining if a target object is within that box. Models like CenterNet [11]
take a di↵erent approach, using heatmaps to determine peak points where a
target object may appear. MobileNet [12] prioritizes a smaller network with
significantly lower parameters to run well on mobile devices.

With the Mummy Nuts dataset, deciding which CNN model may provide the
best results for each possible vision solution can become challenging. Only a few
benchmark studies in the community can aid the selection of CNN models for the
Mummy Nuts problem. Each model provides varying results depending on the
proposed solution. We design tools to richly annotate and enhance our dataset to
tackle its challenges. Our Data Augmentation tool expands the original dataset
by performing image transformations on each annotation, artificially generating
more diversity in our dataset. Our Di�culty Classification Annotator (DCA)
tool is a notation tool that marks each annotation in our dataset with flags.
These flags provide much more informative annotations denoting what di�culty
class each annotation falls within.

To help guide the community in selecting the proper CNN model, this pa-
per proposes a two-dimensional benchmarking methodology (e.g., accuracy and
performance) on di↵erent CNN models. Each image is large in resolution and
complexity, so performance latency during training and inference is evaluated
on di↵erent hardware accelerations.

We deploy five di↵erent CNN models (e.g., YOLOv3, YOLOv5, CenterNet,
Faster R-CNN, and MobileNet SSD) on two NVIDIA GPUs (e.g., A100 and
Tesla T4). Throughout our experiments, our significant observations include: 1)
All models saw an increase in recall value by an average of 2.77X (@IoU50)
when using the Augmented dataset compared to the Original dataset; 2) The
recall value of YOLOv3 increases by 6.5X (@IoU50) when using the Augmented
dataset compared to the Original dataset; 3) All models except for MobileNet
SSD su↵er localization precision issues when using the Original dataset; 4) Cen-
terNet, Faster R-CNN, and MobileNet SSD all decrease precision by an average
of 10.53X (@IoU50) using Augmented over Original; 5) For performance, over
both Original and Augmented datasets, the model training time reduces by an
average of 4.45X when using A100 over Tesla T4; 6) Faster R-CNN sees a con-
siderable speed up when running computations on A100 over Tesla T4 by about
5.76X; and 7) YOLO models have the fastest overall inference speed.

This paper makes the following contributions: 1) We create real-world
datasets for the Mummy Nuts problem, which can help the community to per-
form in-depth interdisciplinary research between computer science and preci-
sion agriculture areas; 2) We design easy-to-use benchmarking tools (e.g., Data
Augmentation Tool, DCA Tool, etc.) and integrate representative deep learn-
ing models into tools for agriculture scientists to investigate the Mummy Nuts
problems conveniently; and 3) Through our benchmarking methodology and re-
sults, we provide guidance on which models may be ideal for di↵erent proposed
solutions.
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2 Background and Motivation

Mummy Nuts and NOW Disease: Leaving Mummy Nuts on trees can at-
tract Navel Orangeworm pests (NOW) that will feed o↵ of the nutmeat, leaving
behind aflatoxins, a food safety contaminate linked to cancers [1]. Due to this,
managing the spread of NOW is crucial and requires several steps. Firstly, mon-
itoring the number of NOW pests and their mating growth is vital for planning
the timing of pesticide applications. NOW capture and mating disruption meth-
ods also e↵ectively reduce the population growth throughout NOW generations.
Lastly, winter sanitation by removing remaining Mummy Nuts from orchards
helps to remove the attractive food source for NOW pests. We tackle an early
experience in automating the monitoring process of the spread. By detecting
Mummy Nuts, we can monitor the food supply of NOW pests, produce a con-
centration heatmap of Mummy Nuts, and target and sanitize areas with high
concentrations. We observe the task of object detection to implement this mon-
itoring system. However, we notice that CNN model selection is essential as not
all models can provide similar results. The dataset provided to each model also
must be rich in features and carefully curated.

Object Detection and Inference: Object detection is an essential applica-
tion for CNNs, and many models can perform this di↵erently. It takes both
localization and classification tasks into account by creating a spatially aware
bounding box labeled with the name of the class detected. Training a CNN
requires millions of parameter updates, equating to a large number of computa-
tions. Inference is the compression of those millions of parameters into a model
that can quickly run and make detections. Thus CNN training requires high
throughput while inference requires low latency [13]. As newer versions of object
detection systems have been built, each has continued to speed up the inference
process using di↵erent detection methods. There are multiple methods currently
in use to perform detections. One popular method is employing anchor boxes
and region proposals. This method creates anchor boxes spaced throughout in-
put images in which each anchor box is responsible for making a detection. Other
models eliminate the need for anchor boxes by converting the input image into
a heatmap where the maxima are assumed to be a detection. We will go into
more detail about each model in Section 3.

3 Requirements of Detecting Mummy Nuts with CNNs

This section presents an overview of selected object detection CNNs. We then
review the requirements of detecting Mummy Nuts on our datasets with CNNs.

3.1 Overview of Object Detection Models

You Only Look Once (YOLO) is based on spatially set anchor boxes on
input images that can observe if an object classification is within the boxes [7].
These anchor boxes will then produce a large number of bounding boxes around
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each instance of the object that is detected. The algorithm uses Non-Maximum
Suppression (NMS) to reduce bounding boxes within the Intersection over Union
(IoU) of another box with a higher confidence rate than the other boxes. In
Figure 1a, NMS is performed during the dense layer after making detections.

(a) YOLO (b) CenterNet

Fig. 1: (a) shows the design of YOLO, which contains 24 convolutional layers
with two fully connected layers at the end. (b) shows the design of CenterNet,
which uses an hourglass backbone where the convolutional layers are structured
with input and output layers at the largest sizes and the middle at the smallest,
mimicking an hourglass shape.

CenterNet focuses on the center points of each box detection rather than
the box dimensions. A heatmap of the detection is created, and the maxima of
the heatmap produce the detected center points [11]. CenterNet was proposed
to eliminate the need for anchor-based detectors. Removing the chances that an
anchor box would not be in range to make a detection. In Figure 1b, we see
that CenterNet uses the Stacked Hourglass network as its backbone, which is
104 layers deep [14].

Faster R-CNN is a two-stage detector with a region proposal stage and
Region of Interest (RoI) pooling stage [10]. Its post-processing stage, which in-
cludes the RoI pooling, puts this model behind YOLO and other single-stage
detectors in speed. However, R-CNN has been a good baseline in previous years
to compare to other speed-centered models in precision. The newer versions (e.g.,
Fast R-CNN and Faster R-CNN) also have increased in speed and now compete
with YOLO models.

Faster R-CNN can run with multiple backbone networks (e.g., VGG [15],
ResNet [16]) which in our results we use ResNet-101. In Figure 2a, the Conv
layers denote the section where di↵erent backbone networks may be used. The
original network that Faster R-CNN runs on (VGG-16) has high memory usage
compared to other networks. VGG-16 has between 95-125 million operations
compared to ResNet-101 at 35-65 million [17]. Though ResNet uses less memory,
it is also a significantly deeper network. ResNet is 101 layers deep which is 8X
deeper than VGG [16].
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(a) Faster R-CNN (b) MobileNet SSD

Fig. 2: (a) shows the network of Faster R-CNN. We can observe the region pro-
posal stage (Proposals) and the Region of Interest (RoI) pooling as the first
detection stage. (b) shows the network of MobileNet SSD. It uses MobileNet as
its backbone before entering convolutional layers.

MobileNet Single Shot Multibox Detector (MobileNet SSD) is a
single stage detector. It provides competitive results in accuracy and compu-
tation speeds compared to other single-stage detectors like YOLO. MobileNet
SSD makes more detections per class than YOLO, 8732 to 98 detections, re-
spectively [18]. In our experiments, we use MobileNet SSD to observe a model
that can operate on a mobile device. In Figure 2b, we can see MobileNet SSD
uses the MobileNet backbone. Should edge computing be necessary, this model
can provide satisfactory results alongside the small network size of MobileNet.
The MobileNet backbone significantly decreases the number of parameters in the
network. MobileNet lowers the number of parameters on COCO object detection
results from 138 million (VGG) to 4.2 million [12], making it ideal for mobile
computations.

3.2 Requirements of Benchmarking Models

To properly benchmark our models, each must tackle a di↵erent challenge in our
Mummy Nut datasets. YOLO outperforms R-CNN when trained on artwork and
natural images. This high generalizability makes YOLO less likely to break down
when applied to new domains or unexpected inputs [7]. Given our dataset’s vast
appearance diversity, high generalizability may increase recall value. Faster R-
CNN may also create more detection errors on background content compared
to YOLO [19]. Considering the amount of noise in our Original dataset, Faster
R-CNN may be more suitable for our Augmented dataset, presenting less noise
within images.

In our experiments, we use modern versions of YOLO, including YOLOV3 [19]
and V5 [20]. YOLOv3 runs on the DarkNet-53 backbone network, which is 53
convolutional layers deep [21]. This is nearly half the size of the ResNet-101
network that Faster R-CNN uses. Considering the tiny objects in our dataset,
the chances of missing a target object with anchor-based detectors (e.g., YOLO,
Faster R-CNN, or MobileNet SSD) are relatively high. Thus CenterNet provides
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a di↵erent approach for problems where typical anchor boxes may fail. The back-
bone CenterNet uses is created for the task of human pose estimation and is built
to capture information at every scale [14]. With this structure, CenterNet can
tackle the problem of a large variety of Mummy Nut sizes. Considering the need
for edge computation in the agricultural setting, MobileNet SSD provides a very
small network to fulfill that requirement.

4 Benchmarking Methodology

Our benchmarking methodology is as follows: we collect real datasets on Mummy
Nuts, analyze object detection results with popular CNN models, propose our
Augmented dataset, and redo our object detection analysis until we achieve
adequate numbers with our chosen metrics.

4.1 Proposed Datasets: Original and Augmented

A carefully curated dataset must be used during training to build a robust model.
Underrepresentation in di↵erent values within the dataset should be avoided
whenever possible. However, when data can only be collected during a specific
time of the year, it would significantly limit the amount of data and improve-
ments to the data (e.g., better lighting, more angles, etc.). In collaboration with
agriculture scientists, we have curated two datasets (Original and Augmented)
for the task of Mummy Nut object detection. In our Original dataset, we ob-
serve a large amount of underrepresentation in specific shapes and sizes of the
nuts. Due to the sporadic diversity in agriculture, a rich dataset is challenging
to produce. Hence, we propose a new Augmented dataset that derives from the
Original and includes data augmentation methods to artificially increase the
size of annotations. Our Original dataset contains 33 images (4032x3024) and
about 267 annotated nuts, while our Augmented dataset contains 294 images
(200x200), each containing a modified or original annotated nut.

The proposed datasets pose many challenges for deep neural networks:Noise:
Most training datasets should include noise to a certain degree to create a more
robust model. However, our original dataset contains a significantly larger object-
to-noise ratio that most models can not understand well. Approximately 75%
of each image include noise that severely hinders the visual features of our ob-
jects. Small Scale: Our dataset contains tiny annotation boxes (smallest at an
area of 121 pixels), which may cause di�culty for anchor-based object detec-
tion systems. We observe which models may be a↵ected by this di�culty. Large
Data: To preserve as many visual features as possible, we use the full-size image
(3024 by 4032). However, this requires much larger training times between mod-
els and larger memory space for computations. We experiment with di↵erent
models’ training and inference times. Diversity: There is a large variety in the
appearance of our objects in shapes, sizes, and coloration. Due to unpredictable
exposure to light, target objects within our dataset may lose all surface textures
or appear overwhelmingly rich in features.
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Fig. 3: Four sample pictures of the Mummy Nut dataset. Hanging on the branches
of these trees are the target objects (Mummy Nuts).

In Figure 3, we can observe the variety of di�cult detections in our dataset.
These nuts account for 71.8% of all annotated nuts throughout our dataset,
a↵ecting a large portion of our accuracy. Within our di�cult detections, we also
classified tiny nuts as about 9% of the total dataset.

Figure 4 shows a close-up collage to display examples of di�cult Mummy
Nuts detections. Frames (a) and (f) contain dark nuts that lack visual features
and are further surrounded by a noisy background, causing models to miss these
nuts as detections. Frames (b) and (d) contain bundles of nuts that, conversely
to frames (a) and (f), are rich in visual features. However, they are overly rich
and feature a rare trait in coloration. Frames (c) and (e) contain camouflaged
nuts, which cause trouble even for the human eye to spot.

Fig. 4: Six examples of di�cult detections. Each frame contains a red box that
denotes where the Mummy Nuts appear.

Without tuning the anchor boxes of a CNN, the chances of missing detections
increase. This raises the question of whether to resize anchors for small or large
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objects. In Figure 5, most annotations are tiny, though many outliers exist.
Resizing anchors for small target objects would make detecting larger target
objects more di�cult and vice versa. Models that remove the need for anchor
boxes can altogether avoid this problem (e.g., CenterNet).

Fig. 5: The area (in pixels) of each anno-
tation box across the entire dataset. We
can see a majority of annotation boxes
are smaller than 2000px in size.

We also introduce our second
dataset (Augmented), which expands
our Original training dataset by
8.9X. The Augmented dataset con-
tains cropped data augmented an-
notations from the Original dataset.
Networks that rely heavily on anchor
boxes may see a change in perfor-
mance from this dataset. To create
this dataset, we first used the origi-
nal fully annotated dataset and pro-
duced a crop window per annotation
centered on each annotation. The crop
window (200x200) is larger than the
largest annotation in the training set.

Cuto↵ annotations or multiple annotations within one crop were excluded. Each
annotation was subject to a random number of image transformations (up to 6),
including stretching and rotations. These augments are done to each cropped
image, e↵ectively enlarging our input dataset.

4.2 Metrics

In the evaluation of the accuracy of each model, we observe the following metrics:
precision (Prec), recall (Rec), and average precision (AP). These are evaluated
based on the true positives, true negatives, false positives, and false negatives we
observe after a model has run its predictions. IoU tells us if a detection will clas-
sify as one of the four prediction categories. For performance, we evaluate latency
between models and GPUs. These values give us the four evaluation metrics we
will focus on, which are as follows: Precision: is the proportion that the target
object in an image will be detected correctly over all attempts. Recall: tells us
the proportion of target objects captured over all attempts. In other words, it
represents the target objects overlooked by the detection model. Average Pre-

cision (AP): is the precision with respect to recall. AP is calculated by the area
under the curve (AUC) of a precision-recall graph based on each model’s preci-
sion and recall values. In the MS COCO object detection challenge, a 101-point
interpolation is used to evaluate models [2]. While for ImageNet, AUC method
is used [3]. We used AUC rather than 11 or 101-point interpolation to evaluate
lower accuracy values better, as n-point interpolation may be prone to drops
in precision in between interpolations and lead to less evaluation accuracy [22].
In our datasets, we observe that 101-point interpolation leads to less sensitive
accuracy, where AUC evaluation calculates the area each time there is a drop in
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precision. For this reason, we evaluate AUC. The equation is provided below:

AP =
X

(rn+1 � rn)Pinterp(rn+1) (1)

Performance: Performance represents how long it takes for models to perform
computations on our dataset. The time it takes to perform required computations
will be vital in determining which model is most suitable for specific agriculture
applications. We measure two di↵erent processing phases. 1) Training results
observe the time it takes to train a model to the point where the loss converges. 2)
Inference measures the total time (including pre-processing time of convolutional
layers) to perform inference on a single image.

4.3 Proposed Tools

We propose tools to ease the workflow with our Mummy Nuts dataset. In Table 1,
we list all tools we have created for the object detection task of Mummy Nuts.
Di�culty Class Annotation (DCA) is a tool that allows the user to input
an annotated dataset and receive a richer annotation set that includes one or
more di�culty class flags per annotation. For example, we can create a specific
set of flags (e.g., Camouflaged, Dark, Overlap, etc.) and mark each annotation
with as many di�culty flags that apply. Metric Evaluation (Metric Eval)

computes all evaluation metrics on input detection results from any of the 5
models. This tool is flexible to multiple model annotation formats. If the input
contains DCA flags, the evaluation will also include results for each di�culty
class. Data Augmentation (Data Aug) tool takes an annotated dataset,
crops windows (200x200 px) centering on each annotation, and produces new
images with image transformations. The complete output creates an enlarged
dataset. This tool is used to create our Augmented dataset.

Annotation Plot (APlot) plots all annotations on an image, which allows
us to visualize annotation box concentrations, scale sizes, and empty areas. An-
notation Plot tool can also provide data on all annotation box sizes, similar to
Figure 5. Noise Isolation (Noise Iso) helps reduce the amount of noise in a
Mummy Nut tree image. Pixels that classify as the grass gets lowered, allowing
focus on pixels that are the tree or Mummy Nut. This tool can aid in the anno-
tation pipeline to increase annotation recall. Annotation View (Anno View)

creates a temporary viewing window during the tool’s runtime that shows the
target nut and the annotation bounding box. The tool can cycle through all
annotations in a dataset, aiding the annotation pipeline when peer-reviewing
annotations. Annotation Reformat (Anno Reformat) allows reformatting
of an annotation to a di↵erent format. This is especially useful when using mul-
tiple models requiring di↵erent annotation formats.

5 Experiments

This section provides our experimental setups and benchmarking results.
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Table 1: All proposed tools and their functions. These tools require two types of
inputs: Annotated Dataset (AD) and Detection Box (DT) Results.

Tool Input(s) Output(s)
DCA AD AD w/di�culty class flags per annotation
Metric Eval AD+DT metrics based on detection box positions w/DCA
Data Aug AD enlarged AD via image augments per annotation
APlot AD all annotation boxes plotted + data of all box sizes
Noise Iso AD AD w/all noise values lowered
Anno View AD viewing window of each annotation
Anno Reformat AD reformatted annotations for di↵erent model formats

5.1 Platform Selection

We use two di↵erent GPU hardware to run our computations. The first is an
in-home cluster with an NVIDIA A100 40GB PCIe GPU. The NVIDIA A100
GPU is capable of 156 TFLOPS on dense 32-bit float tensors [23]. Model training
benefits significantly from the GPU’s high 1555 GB/s bandwidth and 40GB of
GPU memory. The cluster’s CPU is an Intel(R) Xeon(R) Gold 6336Y with 24
cores, 36MB of cache, and a base frequency of 2.40GHz [24]. The second GPU
is a Tesla T4 which is more easily accessible via Google Colab. The Tesla T4
contains 2560 NVIDIA CUDA cores and is capable of 65 trillion mixed-precision
floating point operations [25]. The Colab CPU is a virtual CPU with two cores
with a clock speed of 2.2GHz. We use these two platforms to test each model’s
performance throughput and speed.

5.2 Results

Our results are categorized into two subsections, as shown below. Overall Ac-

curacy: An overview of how each model performs on our dataset. Due to the
small size of our dataset, our numbers are preliminary. However, we may still
make some significant distinctions. We observe the number of predictions a model
makes on background pixels, quantifying the robustness of each model to noise.
Localization performance can be observed between IoU results from 0.50 and
0.10. IoU becomes very sensitive with small-scale objects and scales dispropor-
tional to normal-sized boxes [26]. For this reason, we acknowledge the results of
an IoU at 0.10. Recall also provides valuable data in a complex dataset where
collecting maximum true positives is essential. Performance: We have observed
each model’s performance in training and inference. We quantify di↵erences in
those numbers with our Original dataset, our Augmented dataset, and di↵erent
GPU platforms. For the Original dataset, we record the time for one inference.
For the Augmented dataset we split input images evenly into 64 crops to match
training inputs. We then record the total time of performing 64 inferences, equiv-
alent to one Original dataset image.

Overall Accuracy: With a very noisy dataset, models will generate excessive
detections on background pixels. Models that do not have a high threshold NMS
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may not properly filter out duplicate detections on the same true positive. In
Table 2, MobileNet SSD su↵ers from this as it produces 2X the number of
ground truths in the test set. We observe that this is due to the size of the
MobileNet convolutional network. Since the network is much smaller than other
modern networks, MobileNet SSD may need a deeper network to learn complex
features properly. However, the lowest AP score comes from YOLOv3. YOLOv5’s
precision and recall increase by about 2X and AP by about 5X when the IoU
threshold is set to 0.10. This tells us that YOLOv5 struggles with localization
issues for detections on our dataset. The highest values overall are in Faster
R-CNN with low localization error and high precision. The lowest amount of
background detections is made from Faster R-CNN, which gives this model 100.0
precision at an IoU of 0.10. This may be due to Faster R-CNN running on the
ResNet network, as it is a very deep network (101 layers), which provides higher
confidence in detections and fewer false positives.

Table 2: Inference accuracy with our Original dataset (4032 by 3024 images).
The predictions (Pred) show how many predictions each model has made. The
true positives (TP) show the number of those predictions classified as correct
according to the IoU threshold. Precision (Prec), Recall (Rec), and Average
Precision (AP) are shown with corresponding IoU thresholds. The test partition
has 15 ground truths.
Model Pred TP@.5 Prec@.5 Rec@.5 AP@.5 TP@.1 Prec@.1 Rec@.1 AP@.1
YOLOV3 11 2 18.18 13.3 2.87 3 27.2 20.0 7.33
YOLOV5 25 4 16.0 26.6 4.31 8 32.0 53.3 21.9
CenterNet 12 4 33.3 26.6 13.7 6 50.0 40.0 30.0
Faster R-CNN 9 7 77.7 46.6 41.6 9 100.0 60.0 60.0
MobileNet SSD 30 6 20.0 40.0 10.0 6 20.0 40.0 12.0

In Table 3, we notice our Augmented dataset causes each model to increase
background detection errors. Since our Augmented test set contains much smaller
input images, we notice higher number of detections. However, we see a signif-
icant increase in recall in the YOLO models compared to the Original dataset.
For YOLOv3, We observed a 6.5X increase in the recall at IoU 0.50 from the
Original dataset to the Augmented dataset. While for YOLOv5, we saw a 2.5X
increase. While the YOLO models do not decrease in precision, each of the
three other models does. This is due to the large number of background errors
that these models now produce. CenterNet increases the most at about 29.6X
more background detections. Since CenterNet uses heatmaps rather than anchor
boxes, these background errors are likely due to a large amount of noise, as the
maxima of the heatmaps may become lower when there are fewer distinctions in
coloration. MobileNet SSD is ranked second, producing about 24X more back-
ground detections. As with the Original dataset, this is likely due to the small
size of the backbone network. YOLO models are more robust to background
errors, with the most significant increase in errors at 2.6X. Since they use an-
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chor boxes rather than heatmaps and a larger backbone network than MobileNet
SSD, they get better results using the Augmented dataset.

Table 3: Inference accuracy with our Augmented dataset (200 by 200 images).
Model Pred TP@.5 Prec@.5 Rec@.5 AP@.5 TP@.1 Prec@.1 Rec@.1 AP@.1
YOLOV3 37 13 35.1 86.6 38.5 13 35.1 86.6 38.5
YOLOV5 32 10 31.2 66.6 26.2 10 31.2 66.6 26.2
CenterNet 245 8 3.26 53.3 3.27 9 3.67 60.0 5.17
Faster R-CNN 30 13 43.3 86.6 51.0 13 43.3 86.6 51.0
MobileNet SSD 583 6 1.02 40.0 0.57 7 1.20 46.6 0.78

Performance: We can observe in Figure 6 that on the Tesla T4, Faster R-CNN
has a significantly longer training time than the rest of the models, likely due to
the large depth of the backbone network and a large number of computations.
On the A100, we see a significant decrease in latency due to the larger network
benefiting greatly from the considerable upgrade in bandwidth, up to a 5.85X
speedup for Faster R-CNN.

(a) Training Time (b) Inference Time

Fig. 6: Computation times of each model using Original dataset on both GPUs.
We compare the performance speed of our five models, YOLOv3 (Y3), YOLOv5
(Y5), CenterNet (CN), Faster R-CNN (FR), and MobileNet SSD (MS) on the
Tesla T4 (T-T4) and A100 (A100).

In Figure 7, we can observe that Faster R-CNN still takes the longest to run
training on the Augmented dataset on the Tesla T4 and speedup of 5.68X with
A100. YOLOv5 has faster training and inference times on the Original dataset,
while YOLOv3 performs slightly better on the Augmented dataset. This is likely
due to optimizations for larger image sizes of successive versions of YOLO. We
also notice that YOLO has the fastest overall inference time on both datasets.
MobileNet SSD can perform much quicker on the Augmented dataset than the
Original dataset since it is a tiny network and benefits from smaller inputs, as
provided by the Augmented dataset.
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(a) Training Time (b) Inference Time

Fig. 7: Computation times of each model using Augmented dataset.

5.3 Observations and Discussion

We evaluate our two-dimensional benchmarking methodology of accuracy and
performance with all the results. We observe accuracy with a heavier emphasis
on recall values rather than precision due to the small scale of our annotations
which aids in compensating for the di�culty within our Mummy Nut dataset. For
performance, we evaluate two di↵erent GPUs to observe computation latency.
We collect the computation time of model training and inference.

From these results, we notice several key observations, and we make a note
of their significance. Firstly, all models saw an average recall value increase of
2.77X, with YOLOv3 at the most significant increase of 6.5X, when using our
Augmented dataset over the Original. This observation implies that our method
can further improve the model recall. We notice that all models except Mo-
bileNet SSD face localization precision issues with the Original dataset. These
localization issues tell us that most models create bounding boxes that may not
enclose the Mummy Nut well, though MobileNet SSD performs more precisely.
CenterNet, Faster R-CNN, and MobileNet SSD decrease precision by an aver-
age of 10.53X using the Augmented dataset over the Original. If an Augmented
dataset approach is desired, YOLO models may provide better results in preci-
sion than the other three models. For performance, the overall model training
time over both Original and Augmented datasets can be reduced by an average
of 4.45X when using A100 over Tesla T4. Though we notice Faster R-CNN sees
the most significant benefit from this speedup by 5.76X over both datasets. This
would be due to larger CNNs being able to take full advantage of the increased
computation capacity of A100. YOLO models have the fastest overall inference
speed and prove useful for quick inference applications.

6 Related Work

A survey on popular precision agriculture datasets overviews 34 di↵erent datasets
for deep learning workloads that include multimodal data [27].

Other highly rich datasets create an annotation pipeline to ensure the highest
possible annotation precision and recall. MS COCO splits the pipeline into three
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sections: Category Labeling, Instance Spotting, and Instance Segmentation [2],
creating a workflow simple enough for inexperienced annotators to provide a rich
dataset. Other large-scale datasets [3,4,5,6] outline strong annotation pipelines.

Contrast limited adaptive histogram equalization (CLAHE) is a computer
vision technique that can equalize the brightness exposure between images to
maintain features within an image [28]. Using a dual-modal detection of color
images and thermal, both precision and recall values are much higher than using
color images alone [29]. Other methods can make 3D detection using LiDAR
point clouds [30], which is much more informative for a complex environment.
IoU becomes very sensitive with small-scale objects and scales disproportional
to normal-sized boxes, lowering model accuracy. Normalized Wasserstein Dis-
tance (NWD) creates a new metric for IoU that can be implemented into Faster
R-CNN [26]. Most models also struggle to make rotation-invariant detections.
Multiple di↵erent models have been proposed [31,32,33,34] which tackles the
challenges in oriented target objects.

Other proposed methods tackle accelerating EdgeAI inference systems for
object detection, improving performance and accuracy with modern EdgeAI
platforms [35,13]. There is also a study on the performance of mobile GPUs [36].
A benchmark of multiple Deep Learning models on di↵erent edge devices evalu-
ates the performance latency of object detection tasks [37]. Work that lists and
surveys multiple popular Deep Learning benchmarks provides insightful obser-
vations on each type of benchmark [38].

Our work is di↵erent than all of these existing studies since we aim to provide
valuable benchmarking datasets and tools for an engaging, meaningful, and chal-
lenging research problem in the precision agriculture area (i.e., Mummy Nuts).

7 Conclusion and Future Work

We propose a benchmarking methodology to evaluate five di↵erent CNN models
using two dimensions of measurement, which include accuracy and performance.
Our results show that using our Augmented dataset can drastically change the
CNN model’s overall performance. All models increase recall with our Aug-
mented dataset, with YOLO models as the most significant increase. Faster
R-CNN and YOLOv3 can achieve the highest recall of all models when using
data from the Augmented dataset. However, if it is desired that the Original
dataset is used, we find that Faster R-CNN performs very well in both precision
and recall values. YOLO models do well in speed, with the overall fastest infer-
ence speed. However, the Augmented dataset is significantly more sensitive to
noise for each model, though less for YOLO models and Faster R-CNN. To sum
up, YOLO and MobileNet SSD models may be more suitable for an Augmented
dataset method, whereas CenterNet may perform better on the Original dataset.
Faster R-CNN is the most versatile and may be well applicable to both datasets.
For future work, we will enrich our datasets further.
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