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Abstract

In this work, we study how to efficiently obtain perfect samples from a discrete
distribution D given access only to pairwise comparisons of elements of its support.
Specifically, we assume access to samples (z, .S), where S is drawn from a distri-
bution over sets Q (indicating the elements being compared), and x is drawn from
the conditional distribution Dg (indicating the winner of the comparison) and aim
to output a clean sample y distributed according to D. We mainly focus on the case
of pairwise comparisons where all sets .S have size 2. We design a Markov chain
whose stationary distribution coincides with D and give an algorithm to obtain
exact samples using the technique of Coupling from the Past. However, the sample
complexity of this algorithm depends on the structure of the distribution D and
can be even exponential in the support of D in many natural scenarios. Our main
contribution is to provide an efficient exact sampling algorithm whose complexity
does not depend on the structure of D. To this end, we give a parametric Markov
chain that mixes significantly faster given a good approximation to the stationary
distribution. We can obtain such an approximation using an efficient learning from
pairwise comparisons algorithm (Shah et al., JMLR 17, 2016). Our technique
for speeding up sampling from a Markov chain whose stationary distribution is
approximately known is simple, general and possibly of independent interest.

1 Introduction

Machine Learning questions dealing with pairwise comparisons (PCs) constitute a fundamental and
broad research area with multiple real-world applications [SBBT 16, Kaz11, LOAF12, SBGW16,
FH10, W1J13]. For instance, the preference of a consumer to choose one product over another
constitutes a pairwise comparison between the two products. The two bedrocks of modern ML
applications are inference/learning and sampling. The area of learning from pairwise comparisons
has a vast amount of work [RA14, SBGW16, DKNS01, NOS12, Hun04, JLYY11, APA1S8, LSR21,
HOX14, SBB*16, VY16, NOS17, VYZ20]. In this problem, there exist n alternatives and an
unknown weight vector D € R"™ where D(i) is the weight of the i-th element with D(i) > 0
and 3, D(i) = 1, i.e., D is a probability distribution over [n]. Roughly speaking, the learner
observes pairwise comparisons (or more generally k-wise comparisons) of the form (w, {u,v}) €
[n] x [n]? that compare the alternatives u # v and w equals either u or v indicating the winner
of the comparison. The most fundamental distribution over pairwise comparisons is the BTL
model [BT52, Luc59] where the probability that the learner observes w = w when the items u, v
are compared is D(u)/(D(u) + D(v)). The learner’s goal is mainly to estimate the underlying
distribution D using a small number of pairwise comparisons.

In this work, we focus on questions concerning sampling, the second bedrock of modern ML. In fact,
we will deal with a fundamental area of the sampling literature, namely perfect sampling. In contrast
to approximate sampling, perfect (or exact) sampling from a probabilistic model requires an exact
sample from this model. Problems in this vein of research lie in the intersection of computer science
and probability theory and have been extensively studied [PW96, PW98, Hub04, Hub16, FGY 19,
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JSS21, AJ21, GJL19, BC20, HSW21]. Our work poses questions concerning perfect sampling in the
area of pairwise comparisons. We ask the following simple yet non-trivial question: Is it possible to
obtain a perfect sample x distributed as in D by observing only pairwise comparisons from D?

Apart from the algorithmic and mathematical challenge of generating exact samples, perfect simula-
tion has also practical motivation, noticed in various previous works [Hub16, JSS21, AJ21]. Crucially,
its value does not stem from the fact that the output of the sampling distribution is perfect; usually,
one can come up with a Markov chain whose evolution rapidly converges to the stationary measure.
Hence, the distance between the (approximate) sampling distribution from the desired one can become
small efficiently. This approximate sampling approach has a clear drawback: there is no termination
criterion, i.e., the Markov chain has to be run for sufficiently long time and this requires an a priori
known bound on the chain’s mixing time, which may be much larger than necessary. On the contrary,
perfect sampling algorithms come with a stopping rule and this termination condition can be attained
well ahead of the worst-case analysis time bounds in practice.

Second, the question that we pose appears to have links with the important literature of truncated
statistics [Gal97, DGTZ18]. Truncation is a common biasing mechanism under which samples from
an underlying distribution D over X are only observed if they fall in a given set S C X, i.e., one only
sees samples from the conditional distribution Dg. There exists a vast amount of applications that
involve data censoring (that go back to at least [Gal97]) where one does not have direct sample access
to D. Recent work in this literature [FKT20] asked when it is possible to obtain perfect samples from
some specific truncated discrete distributions (namely, truncated Boolean product distributions). The
area of pairwise comparisons can be identified as an extension of the truncated setting where the
truncation set can change (i.e., each subset of alternatives corresponds to some truncation set); while
perfect sampling has been a subject of interest in truncated statistics, the neighboring area of pairwise
comparisons lacks of efficient algorithms for this important question.

Problem Formulation. Let us define our setting formally (which we call Local Sampling Scheme).
This setting is standard (without this terminology) and can be found e.g., at [RA14].

Definition 1 ([RA14]). Let Z be a finite discrete domain. Consider a target distribution D supported
on Z and a distribution Q supported on subsets of Z. The sample oracle Samp(Q; D) is called
Local Sampling Scheme (LSS) and each time it is invoked, it returns an example (x, S) such that:
(i) the set S C Z is drawn from Q and (ii) x is drawn from the conditional distribution Dg, where

Dg(x) = D(x)1{x € S}/D(S) and D(S) = > .4 D(x).

For simplicity, we mostly focus on the case where Q is supported on a subset of Z x Z, and often refer
to Q as the pair distribution. Then, Q naturally induces an (edge weighted) undirected graph G o
on Z, where {u,v} € E(Gg), if {u, v} is supported on Q, and has weight equal to the probability
Q(u,v) that {u, v} is drawn from Q. When we deal with a pair distribution Q, the above generative
model lies in the heart of the pairwise comparisons [FV86, Mar96, W1J13]. The comparisons are
generated according to the Bradley-Terry-Luce (BTL) model (where the comparisons have size 2,
[BT52, Luc59]): there is an unknown weight vector D € R’ (D(u) indicates the quality of item
w) and, for two items u, v, the algorithm observes the sample (u, {u, v}), i.e., that u beats v with

probability 7 D(w)

IMESIOR Motivated by the importance of perfect simulation, we ask the following
question:

Question 1. Is there an efficient algorithm that draws i.i.d. samples (x,S) from Samp(Q; D) and
generates a single perfect sample y ~ D?

To put our contribution into context, let us ask another question whose answer is clear from previous
work. What is the sample complexity of learning D from a Local Sampling Scheme Samp(Q; D)?
Here, the goal is to estimate D in some L, norm given such comparisons. Some works focus on
learning the re-parameterization z € R™ with z, = log(D(x)). Depending on the context, either
the normalization condition (1, D) = 1 or (1, z) = 0 is used. [SBB™ 16] deal with the problem of
learning the re-parameterization z in the Ly norm when |S| = 2 (pairwise comparisons) or |S| = k
(k-wise comparisons with & = O(1)). The sample complexity for learning z in Ly norm from
pairwise comparisons is n./(\(Q)e?), where A(Q) is the second smallest eigenvalue of a Laplacian
matrix @, induced by the pair distribution Q (the learning result is tight in a minimax sense for
some appropriate semi-norm [SBB*16]). In particular, the matrix Q is defined as Q,, = —Q(z,y)
and Q. = Zy . Q(x,y). Hence, in the pairwise comparisons setting, the sample complexity of



learning incurs an overhead associated with A\(Q) (Table 1). The algorithm of [SBB™16] is a pivotal
component for our main result, as we will see later. [APA18] provide a similar result for learning D
in TV distance using a random-walk approach. We remark that learning from pairwise comparisons
requires some mild conditions concerning the sampling process (LSS in our case). We review them
shortly below.

Table 1: Learning and Exact Sampling from PCs of size 2. 5() subsumes logarithmic factors.

Sample Access Learning (¢ > 0) Exact Sampling
Definition 1 with Pairwise (z,L2) O(n/€’) - 557 -
Comparisons [SBB16] O(n?) - ﬁ (Theorem 3)

Conditions for Local Sampling Schemes. We provide a standard pair of conditions for Local
Sampling Schemes (these or similar conditions are also needed in the learning problem). We are
interested in LSSs that satisfy both of these conditions. However, some of our results still hold
when only the first condition is true; this will be more clear later. Assumption 1 is a necessary
information-theoretic condition for the pair distribution Q.

Assumption 1 (Identifiability). The support of the pair distribution Q of the Local Sampling Scheme
contains a spanning tree, i.e., the induced graph G g is connected. We define £ := E(Gg).

Intuitively, the pair distribution Q needs to be supported on a spanning tree. Equivalently, the
associated Laplacian matrix @ should have positive Fiedler eigenvalue A\(Q) > 0. Assumption 2 is a
condition about the support of Q and the target distribution D; it allows efficient learning of D from
pairwise comparisons and is related to the difficulty of estimating small D-probabilities.

Assumption 2 (Efficiently Learnable). There exists a constant ¢ > 1 such that target distribution D
satisfies % < max(g yyee % < ¢, where & is the support of the distribution Q.

From a dual perspective, Assumption 2 says that Q is supported only on edges where the two
corresponding D-ratios are well controlled and implies that any conditional distribution Dy, .y has

bounded variance, i.e., (1/¢)/(1 + ¢)? < % < ¢/(1+1/¢)2. A quite similar property

has been proposed in the problem of learning from pairwise comparisons [SBB*16].

Contributions and Techniques. We provide an algorithmic answer to Question 1 regarding perfect
sampling (under the above mild conditions) by showing the following:

There exists an efficient algorithm that draws O(n2 JX\(Q)) samples from Samp(Q; D) and outputs
a perfect sample x ~ D.

The tool that makes this possible (and algorithmic) is a novel variant of the elegant Coupling from
the Past (CFTP) algorithm of [PW96]. CFTP is a technique developed by Propp and Wilson ([PW96,
PW98]), that provides an exact random sample from a Markov chain, that has law the (unique)
stationary distribution (we refer to Appendix A.2.3 for an introduction to CFTP). To make our
contribution clear, we provide two theorems; Informal Theorem 1 that directly and “naively” applies
CFTP (indicating the challenges behind efficient sample correction) and a more sophisticated Informal
Theorem 2 that combines CFTP and learning from pairwise comparisons in order to get the result
of Table 1. We show how to efficiently generate “global” samples from the true distribution D
from few samples from a Local Sampling Scheme Samp(Q; D). To this end, our novel algorithm
combines the CFTP method [PW96, PW9§], a remarkable technique that generates exact samples
from the stationary distribution of a given Markov chain, with (i) an efficient algorithm that estimates
the parameters of Bradley-Terry-Luce ranking models from pairwise (and, in general, k-wise)
comparisons [SBBT16] and (ii) procedures based on Bernoulli factories [DHKN17, MP05, NP05]
and rejection sampling.

At a technical level, we observe (Section 2) that a Local Sampling Scheme Samp(Q; D) naturally
induces a canonical ergodic Markov chain on [n] with transition matrix M. The probability of a
transition from a state x to a state y is equal to the probability Q(x, y), that the pair {z, y} is drawn
from O, times the probability D(y)/(D(x) + D(y)), that y is drawn from the conditional distribution
Dyz,yy- Then, the unique stationary distribution of the resulting Markov chain coincides with the true



distribution D. Applying (a non-adaptive version of) the Coupling from the Past algorithm, we obtain
the following result under Assumption 1 and Assumption 2 for a target distribution D over [n]. For
the matrix M, we let T'(M) be its absolute spectral gap (see Appendix A.1 for extensive notation).

Informal Theorem 1 (Direct Exact Sampling from LSS). With an expected number of 9] (#1\24))

samples from a Local Sampling Scheme Samp(Q; D), there exists an algorithm (Algorithm 1) that
generates a sample distributed as in D.

The sample complexity of Informal Theorem 1 is, for instance, attained by the instance of Figure 1,
which we will discuss shortly.! We remark that Informal Theorem 1 holds more generally for Local
Sampling Schemes that only satisfy Assumption 1 and not Assumption 2; for a formal version of the
above result, we refer to Theorem 2 and for a discussion on the resulting sample complexity, we refer
also to Remark 1. Let us now see why Informal Theorem 1 is quite unsatisfying.

In Informal Theorem 1, the matrix M contains the transitions induced by Samp(Q; D) and the
transition u — v is performed with probability Q(u,v)D(v)/(D(u) + D(v)) and T'(M) is the
absolute spectral gap of the Markov chain’s transition matrix M on which CFTP is performed. Note
that both M and I'(M ) depend on Q and the target distribution D. In many natural cases, e.g., if
D is multimodal or includes many low probability points, the CFTP-based algorithm of Informal
Theorem 1 can be quite inefficient! For instance, Figure 1 is a bad instance for the standard CFTP
algorithm. It corresponds to an instance where the support of Q is the path graph over [n] and the
target distribution D is bimodal, satisfying Assumption 1 and Assumption 2 with ¢ = 2. In this
case, M captures the transitions of a negatively biased nearest-neighbor random walk on the path,
i.e., the probability of moving to the boundary is larger than moving to the interior. The coalescence
probability of the two extreme points is of order a™ for some 0 < « < 1. This probability is
connected to the maximum hitting time and, consequently, we get that the mixing time is Q(a™")
[LP17] and so the coalescence time is exponentially large. Informal Theorem 1 depends on I'(M)
and hence the exponential dependence on n is reflected in the conductance of the chain, which is
exponentially small. So, can we eliminate the bias due to Definition 1 efficiently?
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Figure 1: A bad instance for Informal Theorem 1.

As a technical contribution, we provide a novel exact sampling algorithm whose convergence does
not depend on D. We show how to improve the efficiency of CFTP by removing the dependence of
its sample (and computational) complexity on the structure of the true distribution D. In particular, in
Section 3, we show the following under Assumption 1 and Assumption 2:

Informal Theorem 2 (Exact Sampling from LSS using Learning). There exists an algorithm (Algo-
rithm 2 & Algorithm 3) that draws an expected number of 9] (%) samples from a Local Sampling
Scheme Samp(Q; D), and generates a sample distributed as in D.

In the above, A(Q) is the second smallest eigenvalue (a.k.a., the Fiedler eigenvalue) of @, the
weighted Laplacian matrix of the graph G g induced by Q; this is the same matrix that appears in
the learning result of Table 1. Crucially, the sample complexity in the above result is polynomial
in n, provided that the pair distribution Q is reasonable. For the path graph of Figure 1 with Q
the uniform distribution, Informal Theorem 1 yields an exponential sample complexity but the
spectrum of the matrix of Informal Theorem 2 is spec(Q) = {2O(1 — cos(mi/n))}! ;. Hence,
since 1 — cos(z) = sin?(z/2) ~ x2, we get that the sample complexity is poly(n). Moreover, the
runtime of the algorithm is sample polynomial.

'For the instance of Figure 1 one can reduce the sample complexity of our results by a factor of n, since
the state space has a natural ordering and one could apply monotone CFTP (it suffices to coalesce two random
processes and not n).



Technical Overview. A first key idea towards establishing Informal Theorem 2 is to exploit learning
in order to accelerate the convergence of CFTP. We first apply (a modification of) the gradient-based
algorithm of [SBB'16] to the empirical log-likelihood objective, which estimates the parameters
of BTL ranking models from PCs, with samples from Samp(Q; D). As a result of this learning
algorithm (whose efficiency requires Assumption 2, as in [SBBT16]), we get a probability distribution

D, which approximates D with small relative error, in the sense that D(x) € (1 £ €) - D(x), for
any z in D’s support. As we saw in Table 1, the sample complexity will be roughly of order
O(n/(M(Q)€?))). To be precise, this learning phase gives us a sample complexity term of order
O(n?/X\(Q)) and corresponds to a single execution of the above learning algorithm for the target D
in relative error with accuracy e = ©(1/+/n) (the accuracy’s choice will be more clear later).

The new idea is that we can use the output of the learning algorithm D and a Bernoulli factory
mechanism to transform the Markov chain induced by Samp(Q; D) into an ergodic chain with
almost uniform stationary probability distribution, whose transition probabilities (and mixing time)
essentially do not depend on D! To do so, for each pair of states z,y, with (z,y) € £ and

5(z) > 5(3/) we can use Bernoulli downscaling (which constitutes an essential building block
for general Bernoulli factories, see e.g., [DHKN17, MPO5, NPOE]) to transform the (unknown)

probability of a transition from y to z to D(x)/(D(z) + D(y)) - D(y)/D(x) (conditional that the

edge (z,y) is drawn). Since D(x) ~ D(x), for all states z, this makes the probability of a transition
from z to y almost equal to the probability of a transition from y to x, which, in turn, implies that the
stationary distribution of the modified Markov chain is almost uniform. Thus, we speed up the CFTP
algorithm by removing the modes due to the landscape of the target D and can get an exact sample
from the stationary distribution of the modified Markov chain with O (nlog(n)/A(Q)) samples.
Namely, the sample complexity of this parameterized variant of the CFTP algorithm does not depend
on the structure of D anymore (of course, it does depend on the size n of D’s support). The above
constitute our second key idea and the intuition behind this re-weighting comes from the method of
simulated tempering [MP92, GLR18b, GLR18a].

Our third idea deals with the output of the algorithm. Since we want an exact/clean sample from D,
we cannot simply print the output of the above process. As a last step, we use rejection sampling,

guided by the distribution D, and apply the “reverse” modification, bringing the distribution of the
resulting sample back to D (see Algorithm 2). With high probability, this last rejection sampling will
succeed after ©(n) executions of the parameterized CFTP algorithm. However, note that we do not
have to execute the learning algorithm again. Hence, the total sample complexity is equal to the cost
of the learning phase (that is performed only once and its output is given as input to the parameterized
CFTP algorithm; see Algorithm 2) and the cost of the modified CFTP multiplied by ©(n) (due to

rejection sampling), which yields a total of O(n?/A\(Q)) samples. The above modification of the
Markov chain induced by Samp(Q; D), which improves possibly significantly its mixing time, is
simple and general and the parameterized variation of the standard CFTP algorithm (Algorithm 2)
might be of independent interest. In Appendix G, we discuss how to extend the analysis of the main
Algorithm 2 to sets of size larger than 2.

Related Work. Our results are related to and draw ideas from several areas of theoretical computer
science, which we review below.

Exact Sampling. Exact sampling comprises a well-studied field [Ken05, Hub16] with numerous
applications in theoretical computer science (e.g., to approximate counting [Hub98]). One of our
main tools, the Coupling From the Past algorithm, is the breakthrough result of [PW96, PW9§],
which established the applicability of perfect simulation, and made efficient simulation of challenging
problems (e.g., Ising model) feasible. After this fundamental result, the literature of perfect simulation
flourished and various exact sampling procedures have been developed, see e.g., [PW96, GM99,
Wil00, HS00, FHOO, Hub04]), and the references therein.

Learning and Ranking from Pairwise Comparisons. There is a vast amount of literature on
ranking and parameter estimation from pairwise comparisons (see e.g., [FV86, Mar96, Cat12] and
the references therein). A significant challenge in that field is to come up with models that accurately
capture uncertainty in pairwise comparisons. The standard ones are the Bradley-Terry-Luce (BTL)
model [BT52, Luc59] and the Thurstone model [Thu27]. Our work is closely related to previous
work on the BTL model [RA14, SBGW16, DKNSO1, NOS12, Hun04, JLYY11, APA18, LSR21]
and our sample complexity rates depend on the Fiedler eigenvalue of a pairwise comparisons’ matrix,
as in [HOX14, SBB'16, VY16, NOS17, VYZ20].



Truncated Statistics. Our work falls in the research agenda of efficient learning and exact sampling
from truncated samples [Bre96, Coh16]. Recent work has obtained efficient algorithms for efficient
learning from truncated [DGTZ18, KTZ19, DGTZ19, 1ZD20, DRZ20, BDNP21, NP19, FKT?20,
DKTZ21] and censored [MMS21, FKKT21, Ple21] samples. Closer to our work, [FKT20] also deal
with the question of exact sampling from truncated samples.

Correction Sampling. Sample correction is a field closely related to our work. This area of research
deals with the case where input data are drawn from a noisy or imperfect source and the goal is to
design sampling correctors [CGR18] that operate as filters between the noisy data and the end user.
These algorithms exploit the structure of the distribution and make “on-the-fly” corrections to the
drawn samples. Moreover, the problem of local correction of data has received much attention in
the contexts of self-correcting programs, locally correctable codes, and local filters for graphs and
functions (see e.g., [BLR93, SS10, JR13, ACCL04, BGJ* 10, GLT20]).

Conditional Sampling. Conditional sampling deals with the adaptive learning analog of LSS, where
the goal is again to learn an underlying discrete distribution from conditional/truncated samples, but
the learner can change the truncation set on demand and is extensively studied [Canl5, FJOT15,
ACK15b, BC18, ACK15a, GTZ17, KT19, CCKT19].

2 An Exact Sampling Algorithm using CFTP

Consider a discrete target distribution D. For pair distributions Q, the Local Sampling Scheme
Samp(Q; D) can be regarded as a graph G = (V, E) with V' = supp(D) and £ = supp(Q). We let
V = [n]. Let M denote the canonical transition matrix of the Markov chain, associated with the
oracle Samp(Q; D). The entries of M = [M,,], ,c[n) are defined as:

D(y)

Mo = QNG+ 50

for any = # y and Mmzlesz forz e [n]. (1)
Y#T

Observe that the transition from z to y is performed when both the edge {z, y} is drawn from Q,
with probability proportional to Q(z,y) and y is drawn from the conditional distribution Dy, . .
The Markov chain, whose transitions are described by M, has some notable properties: it has D
as stationary distribution and is ergodic. We can invoke the fundamental CFTP algorithm over the
Markov chain of [PW96, PW98] to obtain a perfect sample from D.

Algorithm 1 Exact Sampling from Local Sampling Schemes of Informal Theorem 1 & Theorem 2

1: procedure EXACTSAMPLER() > Sample access to the LSS oracle Samp(Q; D).
2: t<+0
3: Fy(z) « z, for any z € [n]
4: while F} has not coalesced do > While no coalescence has occured.
5: t—t—1
6: Draw sample (i, j, w) with (4,5) € Eand w € {i,5}
7: forz=1...ndo > In order to update state x.
8: ifz ¢ {i,j} or x = w then Fi(x) + Fyy1(x) > Append Fy in the past.
9: else Fy(z) « Fi11(w) > New transition with probability Q(x, w)%.
10: end
11: end
12: Output F3(1) > Output the perfect sample.

13: end procedure

We extensively discuss CFTP in Appendix A.2.3 for the interested reader. CFTP yields the following
(unsatisfying) result, whose proof can be found at the Appendix B.

Theorem 2 (Direct Exact Sampling from LSS). Let Dy, be the minimum value of the target
distribution D. Under Assumption 1 and for any 6 > 0, Algorithm 1 draws, with probability at least

1-5,N=0 (% log(%)) samples from a Local Sampling Scheme Samp(Q; D) over [n],

runs in time polynomial in N and outputs a sample distributed as in D.

Note that in the above result (Theorem 2), the confidence parameter & corresponds to the number
of samples required and not the quality of the output sample (the sample is perfect with probability



1). We comment that the proof of the above Theorem is nearly straightforward and follows from
the analysis of the CFTP algorithm; the purpose of Theorem 2 is to indicate that a direct application
of CFTP would potentially lead to an exponential number of samples due to the shape of the target
distribution. Our main technical contribution begins in the next section: We give an exact sampler
that surpasses the dependence on the target’s structure using learning and rejection sampling.

3 Improving the Exact Sampling Algorithm using Learning

The main drawback of Theorem’s 2 algorithm is that its sample complexity depends on both @ and
D and consequently in many natural scenaria the sample complexity may be exponentially large in n.
Next, we present Algorithm 2, which will allow us to remove the dependence on D for the Markov
chain and reduce the sample complexity to polynomial in the domain size. The crucial differences
compared to Algorithm 1 are the lines. Algorithm 2 is a parameterized extension of CFTP
and its input is a vector p € [0, 1]”. We remark that when p is the all-ones vector 1, we obtain the
previous Algorithm 1.

Algorithm 2 Parameterized Extension of Algorithm 1

1: > For instance, this may be the output of Algorithm 5.
2: procedure EXACTSAMPLER(p) > Sample access to the LSS oracle Samp(Q; D).
3: t < 0, Fy(x) < z, forany x € [n]

4: while F; has not coalesced do > While no coalescence has occured.
S: t—t—1

6: Draw sample (i, j, w) with (¢,7) € Eand w € {i,5}

7: forxr=1...ndo > In order to update state x.
8: ifz ¢ {i,j} or x = w then Fi(x) < Fy1(x)

9: else Fy(z) <
10: end

11: end

12: > Be(p) is a p-biased Bernoulli coin.
13: Output F;(1) > Qutput the perfect sample or Fail.

14: end procedure

We perform Algorithm 2 using as input parameter p an estimate D of the target D with (relative)
error of order ¢ = 1/4/n (this estimate is obtained via Theorem 4 & Algorithm 5 using O(n?/\(Q))
samples from Samp(Q; D), as we will see later). Under the perspective of LSSs as random walks on
an irreducible Markov chain, Algorithm 2 proceeds by executing CFTP. Recall that in each draw from
Samp(Q; D), a transition can be realized by the matrix M . The fact that this transition depends on
the target D is pathological, as we observed previously. The algorithm, instead of performing this
transition (as the non-adaptive CFTP algorithm of Theorem 2 does), performs a Bernoulli factory
mechanism (downscaling), using the estimates D in order to make each transition almost uniform (see
Line 9 of Algorithm 2). This change introduces some (known) bias to the random walk and changes
the stationary distribution from D to an almost uniform one. By performing the CFTP method, the
algorithm iteratively reconstructs the past of the infinite simulation, until all the simulations have
coalesced at time ¢ = 0. When coalescence occurs, the algorithm has an exact sample from the biased
(almost uniform) stationary distribution. Since the introduced bias is known (it corresponds to the
inverse of the estimates D), the algorithm accepts the sample using rejection sampling, guided by D,
so that the final sample is distributed according to the target distribution D (see Line 13 of Algorithm
2). Specifically, we show (for the proof, see Appendix C) that:

Theorem 3 (Exact Sampling from LSS using Learning). Under Assumption 1 and Assumption 2,
for any § > 0, there exists an algorithm (Algorithm 3) that draws, with probability at least 1 — §,
N =0 (n? log?(n)/\Q) - log(1/8)) samples from a Local Sampling Scheme Samp(Q; D), runs
in time polynomial in N, and outputs a sample distributed as in D.

We proceed with the analysis of Algorithm 3, which can be decomposed into two parts: the Learning
Step (Line 2) and several iterations of Algorithm 2 (Line 5).



Algorithm 3 Exact Sampling from Local Sampling Schemes of Informal Theorem 2 & Theorem 3

1: procedure EXACTSAMPLERWITHLEARNING(J) > The algorithm of Theorem 3.
2 D < LEARN(e :=1//n,8) > Learn D in relative error with Algorithm 5 (Theorem 4).
3 X1

4: while x =1 repeat

5: X <~ EXACTSAMPLER(D) > Call Algorithm 2.
6 Output x

7: end procedure

Learning Step. For two distributions D, D with ground set [n], we introduce the sequence/list (of
lengthn) 1-D/D := (1-D(x)/D(x))zc[n)- Observe that the pair of sequences (1-D/D,1-D/D)
captures the relative error between the two distributions. The sample complexity of the task of learning
D in e-relative error is summarized by the following:

Theorem 4 (Learning Phase). For any €,6 > 0, there exists an algorithm (Algorithm 5) that draws
N=0 ( e log( )) samples from Samp(Q; D) satisfying Assumptions 1 and 2, runs in time

polynomial in N, and, with probability at least 1 — 6, computes an estimateNﬁ of the target distribution
D, that satisfies the relative error guarantee max { I1—=D/D| oo, |11 — D/DHOO} <e

We execute once the learning algorithm (Algorithm 5) that estimates D in relative error and we choose
accuracy € = 1/y/n. We would like to shortly comment on the choice of the accuracy value: An
accuracy of constant order would still potentially yield a biased random walk. After the re-weighting
step, our goal is to show that the target distribution becomes almost uniform and that the absolute
spectral gap of the reformed matrix is of order A(Q) (see the proof of Lemma 15). In order to ensure
this, any accuracy that vanishes with n is sufficient. We chose to set € = 1/+/n so that the complexity

of learning ( (I “ro7ez ) matches that of the exact sampling procedure (5 (Q)) This learning step costs

n2/A(Q) samples and the estimate D is used as input to Algorithm 2. For the proof of Theorem 4,
we refer to the Appendix E. We can now move to Line 5.

Executing Algorithm 2. We next focus on a single execution of the parameterized CFTP algorithm.
Our goal is to transform the Markov chain of the Local Sampling Scheme defined in Equation (1) to
a modified Markov chain with an almost uniform stationary distribution. We are going to provide
some intuition. Applying Theorem 4, we can consider that, for any € [n], there exists a coefficient
D(x) ~ D(x). The idea is to use D(z) and make the stationary distribution of the modified chain
close to uniform. Intuitively, this transformation should speedup the convergence of the CFTP
algorithm. The downscaling method of Bernoulli factories gives us a tool to do this modification.

We can implement the modified Markov chain via downscaling as follows: Consider an edge {z, y}

with transition probability pair (pgy, pys). Without loss of generality, we assume that ﬁ(y) > ﬁ(m)
(which intuitively means that we should expect that p,,, > p,.). Then, the downscaler leaves py,

unchanged and reduces the mass of p,,, to make the two transitions almost balanced. Consider the LSS
transition matrix M with M, = O(x, y)ﬁ% and My, =1-3" , M, Also, let D be an
estimate for the distribution D (Theorem 4). For the pair (z, y), we modify the transition probability

Pay = Mgy, only if p,y > py., to be equal to the following: p,, = Q(z, y)ﬁ%gg;

Q(x,y)% = pyz , Wwhere we use that D(z) ~ D(z) and D(y) ~ D(y). The transition
probability from x to y corresponds to a Bernoulli variable Be(pg, ), which is downscaled by
D(x) / D(y ) < 1. The modified transition probability p,, can be implemented by drawing a A ~

Be(D(z)/D(y)) and then drawing a P ~ Be(pgy) (from Samp(Q; D)) and, finally, realizing the
transition from x to y only if AP = 1. This implementation is valid since the two sources of
randomness are independent. So, we perform a downscaled random walk based on the transition

matrix M with Mmy Day (the “small” probability Y Pyx remained intact). We call M the D- scaling

~

of M. Lemma 5 summarizes the key properties of M. The definition of the mixing time, used below,
can be found at the notation Appendix A.1 and the full proof can be found at the Appendix D.



Lemma 5 (Properties of Rescaled Random Walk). Let D be a distribution on [n] and consider an
e-relative approximation D of D, as in Theorem 4 with ¢ = 1/\/n. Consider the transition matrix
M of the Local Sampling Scheme Samp(Q; D) (see Equation (1)), and let M be the 15—scaling of
M. Then, the transition matrix M (i) has stationary distribution 7o with To(z) = O(1/n) for all

x € [n] and (ii) the mixing time of the transition matrix M is Tmix(ﬂ) =0 (1?\%83) )

Proof Sketch. Set J, = D(x) + D(y). For a pair (z,y) € &, before the downscaling, the pairwise
(z,y)-comparison corresponds to the random coin (D(y )/ny,D( )/Jzy) and let D(y) > D(z).
After the downscaling, this coin becomes (locally) almost fair, i.e., ( (@) Ty + Exys D(x)/ Tuyy) -
Hence, the modified transition matrix M can be written as M = D ® Q + Qo [&4y], where D

is a symmetric matrix with ny = mln{D( ), D)}/ (D(z) +D(y)) = Dyz, Q is the Laplacian
matrix of the graph Gg and [{,,] is a matrix with entries £, where £, is only non-zero in the
modified transitions © — y, i.e., if pyy > Dye then My, = Q(x,y) - (D(x)/Jzy + &ay); for this pair,
we set &, = 0. Finally, Q o [¢,,] denotes the modified Hadamard product® between @ and [{,,].
Due to the accuracy € of the learning algorithm, we have that |{,,| = O(1/y/n).

We analyze (i) the stationary distribution and (ii) the mixing time. For Part (i), the chain M remains
irreducible and the detailed balance equations of M satisfy Day/Pye = D(y) - D(x)/(D(y) - D(x)).
Since D is an e-relative approximation of D with ¢ = O(1/,/n), it holds that for any = € [n]
D(z)/D(x) € [1 — ¢, 1 + €]. Hence, the unique stationary distribution 7, satisfies: 7o(z)/7o(y) €
[1—06(1/y/n),1+6(1/y/n)] for any =,y € [n]. So, it must be the case that 7(x) = ©(1/n).

For Part (ii), in order to show that the mixing time is of order O(log(n)/A(Q)), it suffices to
show (by Lemma 9) that (i) the minimum value of the stationary distribution is O(1/n) and (ii)

the absolute spectral gap I'(M) of M satisfies (M) = Q(A(Q)), where A(Q) is the minimum
non-zero eigenvalue of the Laplacian matrix Q. The first property follows directly from the closeness

of the stationary distribution of M to the uniform one. We now focus on the latter. Our goal is to
control the absolute spectral gap I'(M ). In fact, this matrix can be seen as a perturbed version of

the matrix D ® Q@ as we discussed in the beginning of the proof sketch. The perturbation noise
matrix E = Q o [£;,] is a matrix whose entries contain (among others) the approximation errors
[£2y]- Hence, we can use Weyl’s inequality [Tao12] in order to control the absolute spectral gap of

M. This inequality gives a crucial perturbation bound for the singular values for general matrices.

Since the matrix M can be seen as a perturbation (as we discussed previously), we can (informally
speaking) use Weyl’s inequality to control the singular values After some algebraic manipulation, we

derive that (M) = Q(A(Q)). O

So, a single iteration of the parameterized CFTP algorithm with transition matrix M (see Line 5 of

Algorithm 3) guarantees that with an expected number of N = O (nTiix(M)) = O (nlog(n)/A(Q))
samples, it reaches Line 12 with a sample y = F;(1) that is generated by the parameterized CFTP
algorithm (the iterations in Line 4). We then have to study the quality of the output sample y.
Crucially, by the utility of the standard CFTP algorithm, the law of y is the normalized measure
that is proportional to D/D, i.e., To(y) = (P(y)/D(y))/ e P(x)/D () (this is the stationary
distribution of the modified random walk). Hence, we cannot simply output . For this reason, we
perform rejection sampling. Specifically, as we will see, a single execution of Algorithm 2 either
produces a single sample distributed as in D with some known probability p or fails to output any
sample with probability 1 — p (this is because we do not sample from D but from an almost uniform
distribution). If the rejection sampling process is successful, then the while loop (Line 4) of Algorithm
3 will break and the clean sample will be given as output. One can show that ©(n) iterations of
the parameterized CFTP algorithm suffice to generate a perfect sample. Hence, the total sample
complexity is of order O(n?log(n)log(n/8)/A\Q)) (at each step &’ = ©(§/n)). We continue with
a sketch behind the rejection sampling process of Line 13 of Algorithm 2.

2We have that (Q o A) s QryAcy, (Q ° A) T > yza QoyAay.



Claim 1 (Sample Quality and Rejection Sampling). Algorithm 2, with input the output of the Learning
Phase, outputs a state x € [n] with probability proportional to D(x) or outputs L. Moreover,
Algorithm 3 outputs a perfect sample from D with probability 1.

To see this, set A = > 1, D(y )/D(y). At the end of Line 11, Algorithm 2 outputs z o

D(x)/D(x), since the unique stationary distribution is 7(z) = (D(z)/D(x))/A and the utility
of the CFTP guarantees that the outputs state follows the stationary distribution. For the sample «,
we perform a rejection sampling process, with acceptance probability D(z). Algorithm 2 has n + 1
potential outputs: It either prints « € [n] or L indicating failure. The arbitrary sample = € [n] is
observed with probability 7(z) - D(x) = D(x)/A. The remaining probability mass is assigned to
L . We claim that the output of Line 6 of Algorithm 3 has law D. Observe that the whole stochastic
process of Algorithm 3 outputs z € [n] with probablhty Soco Pr[ReJect] Prlz is Accepted]

D(x)/A- 3772, Pr[Reject]’, where Pr[Reject] = 4 3°, i1 D(zg( —D(y)) =1—% € (0,1). As

a result, we get that the probability that x is the output of the above stochastic process is D(x).

4 Conclusion

We close with an open question: Is the bound O(n?/A(Q)) tight? The main difficulty is that it is
not clear how to obtain a lower bound against any possible exact sampling algorithm. We would
like to mention that the dependence on 1/A(Q) is expected and intuitively unavoidable. This term is
connected to the mixing time. Let us become more specific. The (sample) complexity of our proposed
method is O(n?/A\(Q)). The term 1/\(Q) appears due to the mixing time of the (transformed)

Markov chain. The complexity of CFTP is ©(nTix). Hence, any CFTP-based exact sampler (or
more broadly random walk based algorithm) will have that kind of spectral dependence.

Similarly, a dependence on the support’s size n is necessary in general. Note that the structure of the
target distribution D is crucial: if the target is uniform (or generally “flat”), then a bound of order
O(n/A(Q)) is obtained by the naive CFTP method; for distributions with modes, our algorithm
achieves quadratic dependence on n. The sample complexity of a potential (not necessarily random-
walk based) exact sampling algorithm will depend on Q, but might achieve a sample complexity
not directly dependent on A(Q). The unclear part is our algorithm’s dependence on n. While our

algorithm attains a bound of 9] (n?), it is not obvious whether an algorithm with sample complexity
2 .
o(n?) exists.

Similarly, it is interesting to ask whether there are (efficient) ways to transform the chain in order to
get a faster sample corrector. Our learning method finds a vector p (input of Algorithm 2) that makes
the re-weighted distribution close to uniform. Is it possible to find another p (without our learning
algorithm) such that (i) when transforming the chain with p, we obtain a fast mixing chain; and (ii)
the success probability in the rejection sampling step will be sufficiently high?

This work provided a theoretical understanding to perfect sampling from pairwise comparisons. We
believe it is an interesting direction to experimentally evaluate our proposed methodology.

We mention that this work is purely theoretical and has no negative societal impact.
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