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Abstract

We consider the statistical inference for noisy incomplete binary (or 1-bit) matrix. Despite
the importance of uncertainty quantification to matrix completion, most of the categorical
matrix completion literature focuses on point estimation and prediction. This paper moves
one step further toward statistical inference for binary matrix completion. Under a popu-
lar nonlinear factor analysis model, we obtain a point estimator and derive its asymptotic
normality. Moreover, our analysis adopts a flexible missing-entry design that does not
require a random sampling scheme as required by most of the existing asymptotic results
for matrix completion. Under reasonable conditions, the proposed estimator is statistically
efficient and optimal in the sense that the Cramer-Rao lower bound is achieved asymp-
totically for the model parameters. Two applications are considered, including (1) linking
two forms of an educational test and (2) linking the roll call voting records from multiple
years in the United States Senate. The first application enables the comparison between
examinees who took different test forms, and the second application allows us to compare
the liberal-conservativeness of senators who did not serve in the Senate at the same time.

Keywords: 1-bit matrix; Matrix completion; Binary data; Asymptotic normality; Non-
linear latent variable model.

1. Introduction

Noisy low-rank matrix completion is concerned with the recovery of a low-rank matrix when
only a fraction of noisy entries are observed. This topic has received much attention as a
result of its vast applications in practical contexts such as collaborative filtering (Goldberg
et al., 1992), system identification (Liu and Vandenberghe, 2010) and sensor localization
(Biswas et al., 2006). While the majority of the literature considers the completion of
real-valued observations (Candès and Recht, 2009; Candès and Tao, 2010; Keshavan et al.,
2010; Koltchinskii et al., 2011; Negahban and Wainwright, 2012; Chen et al., 2020), many
practical problems involve categorical-valued matrices, such as the famous Netflix challenge.
Several works have been done on matrix completion involving categorical variables, includ-
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ing Davenport et al. (2014) and Bhaskar and Javanmard (2015) for 1-bit matrix whose
entries take binary values, and Klopp et al. (2015) and Bhaskar (2016) for categorical ma-
trix, and Chen and Li (2022) for matrix of binary, count, and continuous variables. In these
works, low-dimensional nonlinear probabilistic models are assumed.

Despite the importance of uncertainty quantification to matrix completion, most of the
matrix completion literature focuses on point estimation and prediction, while statistical
inference has received attention only recently. Specifically, Chen et al. (2019) and Xia and
Yuan (2021) considered statistical inference under the linear models and derived asymptotic
normality results. The statistical inference for categorical matrices is more challenging due
to the involvement of nonlinear models. To our best knowledge, no work has been done
to provide statistical inference for the completion of categorical matrices. In addition to
nonlinearity, another challenge in modern theoretical analysis of matrix completion concerns
the double asymptotic regime where both the numbers of rows and columns are allowed
to grow to infinity. Under this asymptotic regime, both the dimension of the parameter
space and the number of observable entries grow with the numbers of rows and columns.
However, existing theory on the statistical inference for diverging number of parameters
(Portnoy, 1988; He and Shao, 2000; Wang, 2011) is not directly applicable, as the dimension
of the parameter space in the current problem grows faster than that is typically needed
for asymptotic normality; see Section 3 for further discussions.

In this paper, we move one step further toward statistical inference for the completion
of categorical matrices. Specifically, we consider the inference for binary matrix completion
under a unidimensional nonlinear factor analysis model with the logit link. Such a nonlin-
ear factor model is one of the most popular models for multivariate binary data, and it has
received much attention from the theoretical perspective (Andersen, 1970; Haberman, 1977;
Lindsay et al., 1991; Rice, 2004), as well as wide applications in various areas, including
educational testing (van der Linden and Hambleton, 2013), word acquisition analysis (Kid-
well et al., 2011), syntactic comprehension (Gutman et al., 2011), and analysis of health
outcomes (Hagquist and Andrich, 2017). It is also referred to as the Rasch model (Rasch,
1960) in the psychometrics literature. Despite the popularity and extensive research of the
model, its use for binary matrix completion and related statistical inferences for the latent
factors and model parameters have not been explored. The considered nonlinear factor
model is also closely related to the Bradley-Terry model (Bradley and Terry, 1952; Simons
and Yao, 1999; Han et al., 2020; Gao et al., 2021) for directed random graphs and the β-
model (Chatterjee et al., 2011; Yan et al., 2011; Rinaldo et al., 2013) for undirected random
graphs. In fact, the considered model can be viewed as a Bradley-Terry model or β-model
for bipartite graphs (Rinaldo et al., 2013). However, the asymptotic analysis of bipartite
graphs concerns a rectangular matrix involving two diverging indices—the numbers of rows
and columns of the data matrix—while a standard random graph concerns a square matrix
involving only one diverging index. Thus, a more refined asymptotic analysis is needed for
bipartite graphs, in order to approximate the asymptotic variance of the model parameters
and derive conditions under which consistency and asymptotic normality hold.

Specifically, we introduce a likelihood-based estimator under the nonlinear factor analy-
sis model for binary matrix completion. Under a very flexible missing-entry setting that does
not require a random sampling scheme, asymptotic normality results are established that
allow us to draw statistical inferences. These results suggest that our estimator is asymp-
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totically efficient and optimal, in the sense that the Cramer-Rao lower bound is achieved for
model parameters. The proposed method and theory are applied to two real-world prob-
lems, including (1) linking two forms of a college admission test that have common items
and (2) linking the voting records from multiple years in the United States Senate. In the
first application, the proposed method allows us to answer the question “for examinees A
and B who took different test forms, would examinee A perform significantly better than
examinee B if they had taken the same test form?”. In the second application, it can answer
the questions such as “Is Republican senator Marco Rubio significantly more conservative
than Republican senator Judd Gregg?”. Note that Marco Rubio and Judd Gregg had not
served in the United States Senate at the same time. We point out that the entry missing-
ness in these applications does not satisfy the commonly assumed random sampling schemes
for matrix completion.

The rest of the paper is organized as follows. In Section 2, we introduce the consid-
ered factor model and discuss its application to binary matrix completion. In Section 3,
we establish the asymptotic normality for the maximum likelihood estimator. A simula-
tion study is given in Section 4, and two real-data applications are presented in Section 5.
We conclude with discussions on the limitations of the current work and future direc-
tions in Section 6. All the proofs for the theoretical results developed in the article and
additional real-data application results are included in the appendices. The R code for
our numerical experiments can be found in https://github.com/Austinlccvic/A-Note-on-
Statistical-Inference-for-Noisy-Incomplete-1-Bit-Matrix. Throughout the paper, we adopt
the following notations. For positive sequences {an} and {bn}, we denote an . bn if there
exists a constant C > 0 that an ≤ Cbn for all n. We denote an � bn if an . bn and bn . an.
We denote an � bn if bn/an →∞ as n→∞.

2. Model and Estimation

Let Y be a binary (or 1-bit) matrix with N rows and J columns and Yij ∈ {0, 1} be the
entries of Y , i = 1, ..., N , and j = 1, ..., J . Some entries of Y are not observable. We use zij
to indicate the missing status of entry Yij , where zij = 1 indicates that Yij is observed and
zij = 0 otherwise. We let Z = (zij)N×J be the indicator matrix for data missingness. The
main goal of binary matrix completion is to estimate E(Yij |zij = 0).

This problem is typically tackled under a probabilistic model (see e.g., Cai and Zhou,
2013; Davenport et al., 2014; Bhaskar and Javanmard, 2015; Chen and Li, 2022), which
assumes that Yij , i = 1, ..., N , j = 1, ..., J , are independent Bernoulli random variables,
with success probability exp(mij)/{1 + exp(mij)} or Φ(mij), where mij is a real-valued
parameter and Φ is the cumulative distribution function of the standard normal distribution.
It is further assumed that the matrix M = (mij)N×J is either exactly or approximately low-
rank, where the approximate low-rankness is measured by the nuclear norm of M . Finally,
a random sampling scheme is typically assumed for zij . For example, Davenport et al.
(2014) considered a uniform sampling scheme where zij are independent and identically
distributed (i.i.d.) Bernoulli random variables and Cai and Zhou (2013) considered a non-
uniform sampling scheme. Under such a random sampling scheme, Z and Y are assumed
to be independent, and thus, data missingness is ignorable in the sense that under suitable

3



Chen, Li, Ouyang and Xu

conditions, M can be consistently estimated by maximizing the likelihood function for M
satisfying certain exactly or approximately low-rank constraints.

It is of interest to draw statistical inferences on linear forms of M , including the inference
of individual entries of M . This is a challenging problem under the above general setting
for binary matrix completion, largely due to the presence of a non-linear link function. In
particular, the existing results on the inference for matrix completion as established in Xia
and Yuan (2021) and Chen et al. (2019) are under a linear model that observes mij + εij for
the non-missing entries, where εij are mean-zero independent errors. Their analyses cannot
be directly applied to non-linear models.

As the first inference work of binary matrix completion with non-linear models, we start
with a basic setting in which we assume the success probability takes a logistic form of
M and each mij depends on a row effect and a column effect only. Asymptotic normality
results are then established for the inference of M . Specifically, this model assumes that

(1) given M , Yij , i = 1, ..., N , j = 1, ..., J , are independent Bernoulli random variables
whose distributions do not depend on the missing indicators in Z,

(2) the success probability for Yij is assumed to be exp(mij)/{1 + exp(mij)} that follows
a logistic link,

(3) M has the model parameterization that mij = θi − βj .

This model is typically referred to as the Rasch model, one of the most popular item response
theory models (Embretson and Reise, 2013) to model item-level response data in educational
testing and psychological measurement. See Example 1 below for the interpretation of θi
and βj in educational testing. In the rest, θi and βj will be referred to as the row and
column parameters, respectively. This parameterization allows the success probability of
each entry to depend on both a row effect and a column effect. We now introduce two
real-world applications and discuss the interpretations of the row and column parameters
in these applications.

Example 1. In educational testing, each row of the data matrix represents an examinee,
and each column represents an item (i.e., an exam question). Each binary entry Yij records
whether examinee i correctly answers item j. The row parameter θi is interpreted as the
ability of examinee i, which is an individual-specific latent factor. The column parameter
βj is interpreted as the difficulty of item j. The probability of correctly answering an item
increases with one’s ability θi and decreases with the difficulty level βj of the item.

In Section 5.1, we apply the considered model to link two forms of an educational test,
an important practical issue in educational assessment (Kolen and Brennan, 2014). That
is, consider two groups of examinees taking two different forms of an educational test, where
the two forms share some common items but not all, resulting in missingness of the data
matrix. As the two test forms may have different difficulty levels, it is usually not fair to
directly compare the total scores of two students who take different forms. The proposed
method allows us to compare examinees’ performance as if they had taken the same test
form and to also quantify the estimation uncertainty.

Example 2. Consider senators’ roll call voting records in the United States Senate. In
this application, each row of the data matrix corresponds to a senator, and each column
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corresponds to a bill voted in the Senate. Each binary response Yij records whether the
senator voted for or against the bill. It has been well recognized in the political science
literature (Poole et al., 1991; Poole and Rosenthal, 1991) that senate voting behavior is
essentially unidimensional, though slightly different latent variable models are used in that
literature. That is, it is believed that senators’ voting behavior is driven by a unidimensional
latent factor, often interpreted as the conservative-liberal political ideology. Moreover, it is
a consensus that Republican senators tend to lie on the conservative side of the factor, and
Democratic senators tend to lie on the liberal side. However, there are sometimes a very
small number of exceptions. To apply our method to senators’ roll call voting records, we
pre-process the data as follows. If bill j is more supported by the Republican party than the
Democratic party and senator i voted for the bill, then we let Yij = 1. If bill j is more
supported by the Democratic party and senator i voted against the bill, we let Yij = 1.
Otherwise, Yij = 0. More details about this data pre-processing can be found in Section 5.
Under the considered model, the row parameter may be interpreted as the conservativeness
score of senator i. That is, the higher the conservativeness score of a senator, the higher
chance for him/her to support a bill favored by the Republican party and to vote against a
bill favored by the Democratic party. The column parameter characterizes the bill effect.

In Section 5.2, we apply the model to link the roll call voting records from multiple years,
where different senators have different terms in the Senate, resulting in the missingness of
the data matrix. The model allows us to compare senators in terms of their conservative-
liberal political ideology, even if they have not served in the Senate at the same time.

As mentioned previously, the considered nonlinear factor model can be viewed as a
Bradley-Terry model (Bradley and Terry, 1952) for directed graphs that is commonly used
for modeling pairwise comparisons. In Remark 1 below, we discuss this connection and
explain the reason why the existing results, such as Han et al. (2020), do not apply to the
current setting.

Remark 1. Data Y under our model setting can be viewed as a bipartite graph with N + J
nodes. Its adjacency matrix takes the form(

NAN,N Y
(1N,J − Y )T NAJ,J

)
, (1)

where NAN,N and NAJ,J are two matrices whose entries are missing and 1N,J is a matrix
with all entries being 1. We let the value of 1 − Yij be missing if Yij is missing (i.e.,
zij = 0). Such a directed graph can be modeled by the Bradley-Terry model; see Bradley
and Terry (1952). In Han et al. (2020), asymptotic normality results are established for
n-by-n adjacency matrices that follow the Bradley-Terry model when the graph size n grows
to infinity. However, Han et al. (2020) only consider a uniformly missing setting. That is,
the probability that the edges between two nodes are missing is assumed to be the same for
all pairs of nodes. This assumption is not satisfied for the adjacency matrix (1), due to the
two missing matrices on the diagonal. In fact, the asymptotic analysis under the current
setting is more involved due to the need to simultaneously consider two indices N and J and
the increased complexity in approximating the asymptotic variance of model parameters.
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Given data {Yij : zij = 1, i = 1, ..., N, j = 1, ..., J}, the log-likelihood function for
parameters θ = (θ1, ..., θN )T and β = (β1, ..., βJ)T takes the form

l(θ, β) =
∑

i,j:zij=1

[Yij(θi − βj)− log{1 + exp(θi − βj)}] . (2)

The identifiability of parameters θ and β is subject to a location shift. That is, the distri-
bution of data remains unchanged if we add a common constant to all the θi and βj , as the
likelihood function in (2) only depends on all the differences θi − βj . To avoid ambiguity,

we require
∑N

i=1 θi = 0 in the rest. We point out that this requirement does not play a
role when we draw inferences about any linear form of M as the location shift of θ and β
does not affect the value of M , but it does involve when we draw inference on θ or β. We
estimate θ and β by the maximum likelihood estimator

(θ̂, β̂) = arg min
θ,β

− l(θ, β), s.t.,

N∑
i=1

θi = 0. (3)

The maximum likelihood estimator of θ and β further leads to the maximum likelihood
estimator of M , m̂ij = θ̂i − β̂j . As shown in Theorem 5 below, under mild conditions,
with probability tending to 1, optimization problem (3) has a unique solution in RN+J .
We solve the optimization problem by a projected gradient descent algorithm which is
summarized in Algorithm 1 below. We define proj(x) as a projection operator, mapping
a vector in RN to {θ ∈ RN :

∑N
i=1 θi = 0}. This projection operator has a closed form

proj(x) = (x1 − x̄, x2 − x̄, ..., xN − x̄), where x̄ = (
∑N

i=1 xi)/N .

Algorithm 1: Projected Gradient Descent Algorithm

Input: Partially observed data matrix Y , learning rates γ1 and γ2, tolerance ε, and

initial values θ(1) = (θ
(1)
1 , ..., θ

(1)
N )T and β(1) = (β

(1)
1 , ..., β

(1)
J )T .

Initialize l(0) = −∞ and l(1) = l(θ(1), β(1)), and iteration number t = 1;

while (|l(t) − l(t−1)| > ε) do
t = t+ 1;

θ(t) = proj(θ(t−1) + γ1
∂l(θ,β(t−1))

∂θ |θ=θ(t−1));

β(t) = β(t−1) + γ2
∂l(θ(t−1),β)

∂β |β=β(t−1) ;

l(t) = l(θ(t), β(t));

end

Output: (θ(I), β(I)) where I is the last iteration number.

The computational complexity in each iteration is O(
∑N

i=1

∑J
j=1 zij). It is easy to check

that both the objective function and the constraint are convex. Because each −lij(θi, βj) is

convex, the objective function−l(θ, β) =
∑

i,j:zij=1−lij(θi, βj) with the constraint
∑N

i=1 θi =

0 is also convex (Boyd et al., 2004). Specifically, the Hessian matrix of the objective function
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is a (N + J)× (N + J) positive semidefinite matrix with the only non-zero entries

− ∂2l(θ;β)

∂θ2
i

=
∑

j:zij=1

exp{−(θi − βj)}
[1 + exp{−(θi − βj)}]2

, for i = 1, . . . , N ;

− ∂2l(θ;β)

∂θiβj
= − exp{−(θi − βj)}

[1 + exp{−(θi − βj)}]2
, for i = 1, . . . , N ; j ∈ {l : zil = 1};

− ∂2l(θ;β)

∂β2
j

=
∑
i:zij=1

exp{−(θi − βj)}
[1 + exp{−(θi − βj)}]2

, for j = 1, . . . , J ;

− ∂2l(θ;β)

∂βjθi
= − exp{−(θi − βj)}

[1 + exp{−(θi − βj)}]2
, for j = 1, . . . , J ; i ∈ {k : zkj = 1}.

With the convergence theory for the projected gradient descent algorithm established in
Beck and Teboulle (2009), (θ(I), β(I)) from Algorithm 1 is guaranteed to converge to (θ̂, β̂),
supposing that (θ̂, β̂) is the unique solution to optimization (3). The convergence speed of
this projected gradient descent algorithm is O(1/I).

3. Statistical Inference

In this section, we consider the statistical inference of any linear form of M . Specifically,
we use g : RN×J 7→ R to denote a linear function of M that takes the form

g(M) =

N∑
i=1

J∑
j=1

wijmij , (4)

where the weights wij are pre-specified. It is straightforward that a point estimate of g(M)

is given by g(M̂) =
∑N

i=1

∑J
j=1wijm̂ij . Our goal is to establish the asymptotic normality for

g(M̂), based on which we can test hypotheses about g(M) or construct confidence intervals.
We provide two examples of g(M) that may be of interest in practice.

Example 3. Consider g(M) = mij for entry (i, j) that is not observed, i.e., zij = 0.
The asymptotic normality of m̂ij allows us to quantify the uncertainty in our prediction
exp(m̂ij)/{1+exp(m̂ij)} of the unobserved entry, which can be done using the delta method.

Example 4. Consider g(M) =
∑J

j=1(mij −mi′j)/J = θi − θi′, that is of interest in both
educational testing and ranking. If we interpret the model as the Rasch model in educational
testing, then θi can be regarded as examinee i’s ability level. Examinee i is more likely to
answer any question correctly than examinee i′ if θi > θi′, and vise versa. Therefore, even
when two examinees do not answer the same test form, the statistical inference of this
quantity will allow us to compare their performance and further quantify the uncertainty in
this comparison. On the other hand, if we draw connections to the Bradley-Terry model in
ranking, then θi can be interpreted as subject i’s ranking criteria. The statistical inference
on (θi − θi′) for any combination of i, i′ would allow us to quantify the uncertainty in the
rankings of all N subjects.
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In what follows, we establish some asymptotic results under a double asymptotic regime
where both N and J grow to infinity. Such an asymptotic regime is commonly adopted
for matrix completion. As discussed in Remark 2 below, the estimation is inconsistent
if J is kept fixed and N goes to infinity, which is typically known as the Neyman-Scott
phenomenon (Neyman and Scott, 1948). Remark 2 also discusses alternative estimators for
the Rasch model.

Remark 2. The Rasch model is closely related to the Neyman-Scott phenomenon discovered
in Neyman and Scott (1948). More specifically, Neyman and Scott (1948) give a setting
under which the number of model parameters grows with the number of observations. Under
this setting, they showed that the maximum likelihood estimator is statistically inconsistent
when the number of observations grows to infinity. Although Neyman and Scott (1948)
considered a normal model, the same phenomenon also exists under the Rasch model. That
is, as shown by Andersen (1973), Haberman (1977) and Ghosh (1995), (θ̂, β̂) defined in (3)
is statistically inconsistent when J is fixed and there is no missing data (i.e., zij = 1 for all
i and j). This phenomenon naturally carries over to the matrix completion setting.

With a fixed J , it is still possible to consistently estimate the column parameters βj
in the Rasch model using a conditional likelihood estimator (Andersen, 1970, 1972) or a
marginal likelihood estimator (Lindsay et al., 1991). These methods treat θis as nuisance
parameters and profile them out in the likelihood function. We believe that they can also
be extended to the matrix completion setting. However, it is not straightforward to extend
these estimation methods to a more general low-dimensional model for matrix completion,
and their statistical efficiency and computational cost under a matrix completion setting
need further investigation.

We first establish the existence and consistency for M , θ, and β. We denote

J∗ = min
{ J∑
j=1

zij : i = 1, ..., N
}

and J∗ = max
{ J∑
j=1

zij : i = 1, ..., N
}

as the minimum and maximum numbers of observed entries per row, respectively. Similarly,
we denote

N∗ = min
{ N∑
i=1

zij : j = 1, ..., J
}

and N∗ = max
{ N∑
i=1

zij : j = 1, ..., J
}

as the minimum and maximum numbers of observed entries per column, respectively. Let
‖x‖∞ = max{|xi| : i = 1, ..., n} be the infinity norm of a vector x = (x1, ..., xn)T . Let
θ∗, β∗ and M∗ be the true values of θ, β and M , respectively. Without loss of generality,
we assume N ≥ J. For simplicity, we also assume J∗ . N∗ and J∗ . N∗. We make the
following assumptions.

Condition 1. There exists a constant c <∞ such that ‖θ∗‖∞ < c and ‖β∗‖∞ < c.

Condition 2. For any (i, j), there exist k ≥ 1 and 1 ≤ i1, i2, ..., ik ≤ N and 1 ≤
j1, j2, ..., jk ≤ J such that zij1 = zi1j1 = zi1j2 = zi2j2 = ... = zikjk = zikj = 1.
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Figure 1: An indicator matrix for which Condition 2 is not satisfied.

Condition 1 assumes that all the row and column parameters are bounded. This con-
dition further guarantees that |mij | ≤ 2c for all i and j. A similar requirement on mij is
needed for 1-bit matrix completion; see e.g., Davenport et al. (2014). Condition 2 is neces-
sary and sufficient for the identifiability of θ, β and M . We can view Z as the adjacency
matrix of a bipartite graph with N + J nodes, where there exists an edge between a row
node i and column node j if and only if zij = 1. Condition 2 is saying that this bipartite
graph is a connected graph. If Condition 2 is not satisfied, then there exist i and j such
that mij is not identifiable and thus cannot be consistently estimated. We summarize this
result in Proposition 3.

Proposition 3. If Condition 2 holds and given mij for all i and j such that zij = 1, then θ

and β are uniquely determined by equations
∑N

i=1 θi = 0 and θi−βj = mij, i = 1, ..., N, j =
1, ..., J , for which zij = 1. That is, θ and β can be uniquely determined by mij values of the
observed entries.

On the other hand, if Condition 2 does not hold and given mij for all i and j such

that zij = 1, then there exists (θ̃, β̃) 6= (θ, β), such that
∑N

i=1 θ̃i = 0,
∑N

i=1 θi = 0, and
θi − βj = θ̃i − β̃j = mij, i = 1, ..., N, j = 1, ..., J, zij = 1. In that case, there exist i and j
such that zij = 0 and

θi − βj 6= θ̃i − β̃j ,

so that the corresponding mij is not identifiable.

We give an example where Condition 2 is not satisfied.

Example 5. Suppose that both N and J are even numbers. We let zij = 0 if i ∈ {N/2 +
1, ..., N} or j ∈ {J/2 + 1, ..., J}, and zij = 1 otherwise. This indicator matrix is shown in
Figure 1. For any (i, j) satisfying zij = 0, there is no k ≥ 1 and 1 ≤ i1, i2, ..., ik ≤ N and
1 ≤ j1, j2, ..., jk ≤ J such that zij1 = zi1j1 = zi1j2 = zi2j2 = ... = zikjk = zikj = 1.

We remark that when Condition 2 is not satisfied, it is still possible to draw inference
on θi, βj , and mij , for i ∈ R ⊂ {1, ..., N} and j ∈ C ⊂ {1, ..., J}, when the bipartite
graph corresponding to the submatrix (zij)i∈R,j∈C is connected. In that case, we can apply
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Theorems 5 through 8 below to a subset of data with i ∈ R and j ∈ C. We further remark
that Condition 2 is likely satisfied under mild conditions when the missing indicator matrix
Z is generated by a uniform random sampling scheme. Theorem 4 below provides a sufficient
condition under which Condition 2 holds.

Theorem 4. Suppose that zij are i.i.d. Bernoulli random variables, satisfying P (zij =
1) = p. Let both J and p be functions of N satisfying

Np ≥ Jp ≥ (log(N))4.

Then with probability tending to 1, Condition 2 holds if there exists an integer n ≥ 1 such
that

pnJ (n−1)/2N (n−1)/2 − log(NJ)→∞

if n is odd, and
pnJn/2N (n/2)−1 − 2 log(N)→∞

if n is even.

Theorem 4 is implied by Theorem B Bollobás and Klee (1984) of which concerns the
diameter of a random bipartite graph and the fact that a graph is connected if and only
if its diameter is finite. For example, consider the setting N = J and let n = 2. Then
Theorem 4 suggests that Condition 2 holds with high probability, if p2N − 2 log(N)→∞.

We next establish the estimation consistency. The following condition is needed.

Condition 3. As N and J grow to infinity, the following are satisfied:

(a) J−1
∗ logN → 0.

(b) N∗J∗N
−1 →∞ and J2

∗J
−1 →∞.

(c) N∗ � N∗.

Condition 3(a) is a mild technical condition requires that J∗ grows faster than logN .
Condition 3(b) imposes constraints on the number of observations for parameters to grow
at suitable rates. In particular, note that in the case of N∗ � N∗ and J∗ � J∗, the
observed entries of the matrix can be of the order O(N∗J∗)=O(N∗J∗); then the condition
of N∗J∗N

−1 →∞ gives a natural requirement for the consistency theory that the number
of observed entries needs to have a higher order than the number of unknown parameters,
which is of the order O(N). Condition 3(c) requires that N∗ and N∗ are of the same order
for convenience of the proof. This assumption essentially requires a balanced missing data
pattern that has a similar spirit as the random sampling regimes for missingness adopted
in Cai and Zhou (2013) and Davenport et al. (2014).

Similar to Condition 2, the rate requirement of Condition 3 can also be shown to be
held with high probability for random design under related requirements, when the missing
indicator matrix Z is generated by a uniform random sampling scheme. To illustrate this,
let zij be i.i.d. Bernoulli random variables with P (zij = 1) = p. Then for any j, by

Hoeffding’s inequality, we have P (|
∑N

i=1 zij−Np| > xN,J) ≤ 2J−(1+ε) where xN,J = [N(1+
ε) log(J)/2]1/2 and ε > 0 is a small constant. By union bound, we then have N∗ � N∗ � Np

10



Statistical Inference for Noisy Incomplete Binary Matrix

with high probability, if N−1/2(log(J))1/2 . p. Similarly we have J∗ � J∗ � Jp with high

probability if J−1/2(log(N))1/2 . p. When N ≥ J , it is easy to check that Condition 3 is

satisfied with high probability if Jp� logN and J−1/2(log(N))1/2 . p under this random
design setting.

Theorem 5. Assume that Conditions 1, 2 and 3 hold. Then, as N, J grow to infinity,
maximum likelihood estimator (θ̂, β̂) exists in RN+J and is unique, with probability tending
to 1. Furthermore, we have

‖θ̂ − θ∗‖∞ = op(1), ‖β̂ − β∗‖∞ = op(1),

and
max
i,j
|m̂ij −m∗ij | = op(1).

We note that the maximum likelihood estimator does not exist if there exists a row i
such that Yij′s take the same value for all j′ such that zij′ = 1, or if there exists a column
j such that Yi′js take the same value for all i′ such that zi′j = 1. In these cases, the
corresponding θi and βj will converge to ∞ or −∞. Theorem 5 suggests that these cases
are unlikely to occur when both N and J are large. In practice, to avoid non-convergence,
we can add the constraints that |θi| ≤ C and |βj | ≤ C for all i and j and a sufficiently large
constant C.

Note that Theorem 5 does not give the convergence rate. We now give the optimal
convergence rate under stronger conditions in addition to Condition 3.

Condition 4. As N and J grow to infinity, the following are satisfied:

(a) J−2
∗ N∗(logN)2 → 0.

(b) N
−1/2
∗ log J → 0.

(c) J∗ � J∗.

Condition 4(a) is a stronger version of Condition 3(a) that requires J∗ grows faster

than N
1/2
∗ logN . Condition 4(b) imposes additional constraints on the grow rate of N∗.

Condition 4(c) requires that J∗ and J∗ are of the same order. This set of conditions,
together with Condition 3 will guarantee the optimal convergence rates and asymptotic
normality. Similar to Conditions 2 and 3, Condition 4 can also be shown to be held with
high probability for random design, when the missing indicator matrix Z is generated by
i.i.d. Bernoulli random variables with the parameter p satisfies certain requirement. In
particular, following the discussion for Condition 3, we can see that Condition 4 is satisfied
when J2p� N(logN)2 and J−1/2(log(N))1/2 . p.

Theorem 6. Assume that Conditions 1—4 hold. Then, as N, J grow to infinity, maximum
likelihood estimator (θ̂, β̂) exists, with probability tending to 1. Furthermore, as N and J
grow to infinity, we have

‖θ̂ − θ∗‖∞ = Op
{

(logN)
1
2J
− 1

2
∗
}
, ‖β̂ − β∗‖∞ = Op

{
(log J)

1
2N
− 1

2
∗
}
,

and

max
i,j
|m̂ij −m∗ij | = Op

{
(log J)

1
2N
− 1

2
∗ + (logN)

1
2J
− 1

2
∗
}
.

11
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Remark 7. Theorem 6 above gives the optimal convergence rates for ‖θ̂ − θ∗‖∞, ‖β̂ −
β∗‖∞, and maxi,j |m̂ij − m∗ij |. To illustrate this, consider an oracle setting that β take

true values; then the convergence rates for maximum likelihood estimators θ̂i are θ̂i − θ∗i =

Op(J
−1/2
∗ ) and they independently follow asymptotic normal distributions. From the result

that the maximum of N i.i.d. standard normal random variables has the order of (logN)1/2

(Van Handel, 2014), we can see the optimal convergence rate of the max-norm of θ̂ is

‖θ̂−θ∗‖∞ = Op{(logN)1/2J
−1/2
∗ }. Similar arguments can be applied to show the optimality

of the convergence rate of ‖β̂ − β∗‖∞ = Op{(log J)1/2N
−1/2
∗ }. As m̂ij = θ̂i − β̂j, the

convergence rate of |m̂ij −m∗ij | = Op{(log J)1/2N
−1/2
∗ + (logN)1/2J

−1/2
∗ } is optimal.

To state the asymptotic normality result for g(M̂), we reexpress

g(M) = wTg θ + w̃Tg β,

where wg = (wg1, · · · , wgN )T and w̃g = (w̃g1, · · · , w̃gJ)T . Note that this expression always

exists by letting wgi =
∑J

j=1wij and w̃gj = −
∑N

i=1wij . Recall that wijs are weights defined

in (4). We introduce some notation. Let σ2
ij = var(Yij) = exp(θ∗i −β∗j )/{1 + exp(θ∗i −β∗j )}2,

σ2
i+ =

∑J
j=1 zijσ

2
ij , and σ2

+j =
∑N

i=1 zijσ
2
ij . Further denote σ̂2

ij = exp(θ̂i− β̂j)/{1 + exp(θ̂i−
β̂j)}2, σ̂2

i+ =
∑J

j=1 zij σ̂
2
ij , and σ̂2

+j =
∑N

i=1 zij σ̂
2
ij to be the corresponding plug-in estimates.

We use ‖ · ‖1 to denote the L1 norm of a vector. The result is summarized in Theorem 8
below.

Theorem 8. Assume Conditions 1—4 hold. Consider a linear function g(M) = wTg θ+w̃Tg β
with g(M) 6= 0. Further suppose that there exists a constant C > 0 such that ‖wg‖1 < C
and ‖w̃g‖1 < C. Then

σ̃(g)−1
{
g(M̂)− g(M∗)

}
→ N(0, 1) in distribution,

where σ̃2(g) =
∑N

i=1w
2
gi(σ

2
i+)−1 +

∑J
j=1 w̃

2
gj(σ

2
+j)
−1.

Moreover, σ̃(g) can be replaced by its plug-in estimator, i.e.,

σ̂(g)−1
{
g(M̂)− g(M∗)

}
→ N(0, 1) in distribution, (5)

where σ̂2(g) =
∑N

i=1w
2
gi(σ̂

2
i+)−1 +

∑J
j=1 w̃

2
gj(σ̂

2
+j)
−1.

We now discuss the implications of Theorem 8. For each θi, var(θ̂i) = (σ2
i+)−1

{
1+o(1)

}
.

It is worth noting that by the classical theory of maximum likelihood estimation, (σ2
i+)−1

is the Cramer-Rao lower bound for the estimation of θi when the column parameters β
are known. Thus, the result of Theorem 8 implies that θ̂i is an asymptotically optimal
estimator for θi. Similarly, for each βj , var(β̂j) = (σ2

+j)
−1
{

1+o(1)
}

, which also achieves the
Cramer-Rao lower bound asymptotically, when the row parameters θ are known. Moreover,
var(m̂ij) = var(θ̂i − β̂j) =

{
(σ2
i+)−1 + (σ2

+j)
−1
}{

1 + o(1)
}

. We end this section with a
remark.

Remark 9. The derived asymptotic theory is different from that for non-linear regression
models of increasing dimensions that has been studied in Portnoy (1988), He and Shao
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(2000) and Wang (2011). To achieve asymptotic normality under the setting of these works,
one requires the number of observations to grow faster than the square of the number of
parameters. Under the setting of the current work, the model has N+J−1 free parameters,
while the number of observed entries is allowed to grow much slower than NJ ≤ (N+J−1)2.

4. Simulation Study

We study the finite-sample performance of the likelihood-based estimator. We consider two
settings: (1) N = 5000 and J = 200, and (2) N = 10000 and J = 400. Missing data are gen-
erated under a block-wise design. That is, we split the rows into five equal-sized clusters and
the columns into four equal-sized clusters. We let each row cluster correspond to the columns
from a distinct combination of two column clusters. Rows from the same cluster have the
same missing pattern. Specifically, their entries are observable and only observable on the
columns that this row cluster corresponds to. This missing data pattern can be illustrated by
a five-by-four block-wise matrix {(1, 0, 0, 1, 0)T , (1, 1, 0, 0, 1)T , (0, 1, 1, 1, 0)T , (0, 0, 1, 0, 1)T },
where 1 and 0 represent a submatrix with zij = 1 and 0, respectively. An illustration of the
missing pattern Z is illustrated in Figure 2. Under the first setting, N∗ = 2000, N∗ =
3000, and J∗ = J∗ = 100. Under the second setting, N∗ = 4000, N∗ = 6000, and
J∗ = J∗ = 200. For each setting, θ is simulated from a uniform distribution over the
space {x = (x1, ..., xN )T :

∑N
i=1 xi = 0,−2 ≤ xi ≤ 2}, and β is obtained by simulating

βj independently from the uniform distribution over the interval [−2, 2]. For each setting,
2000 independent data sets are generated from the considered model.

Figure 2: A heat map of Z. The black and white regions correspond to zij = 1 and 0,
respectively.

Under setting (1), the mean squared estimation errors for M , θ, and β are 0.067, 0.064,
and 0.0028, respectively, across all relevant entries and all 2000 independent samples. Un-
der setting (2), these values read 0.033, 0.031 and 0.0013, respectively. Unsurprisingly,
increasing sample sizes can improve estimation accuracy.

We then examine the variance approximation in Theorem 8. We compare σ̂2(g), σ̃2(g)
and s2(g), where s2(g) denotes the sample variance of g(M̂) that is calculated based on the
2000 simulations. As σ̂2(g) varies across the data sets, we calculate σ̄2(g) as the average
of σ̂2(g) over 2000 simulated data sets. We consider functions g(M) = mij , θi, βj , i =
1, ..., N, j = 1, ..., J . The results are given in Figure 3, where panels (a)-(c) show the scatter
plots of s2(g) against σ̄2(g) and panels (d)-(f) show those of s2(g) against σ̃2(g). These
plots suggest that σ̄2(g), σ̃2(g), and s2(g) are close to each other, for the specific forms of
g that are examined.
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Figure 3: Panels (a)-(c) plot s2(g) against σ̄2(g) for g(M) = mij , θi, and βj , respectively, for
fixed block-wise setting. Panels (d)-(f) plot s2(g) against σ̃2(g) for g(M) = mij , θi
and βj , respectively, for fixed block-wise setting. Each panel shows 100 randomly
sampled mij , θi, or βj under each setting. The line y = x is given as a reference.

To validate asymptotic normality, we compare the empirical densities of the 2000 sample
estimates of m11, θ1 and β1 against their respective theoretical normal density curves in
Figure 4 for illustration. We can observe from Figure 4 that the empirical distributions of
the estimates agree well with their corresponding theoretical distributions.

Furthermore, for each mij , θi, and βj , we construct its 95% Wald interval based on (5),
for which the empirical coverage based on 2000 independent replications is computed. This
result is shown in Figure 5, where the two panels correspond to the two simulation settings,
respectively. In each panel, the three box plots show the empirical coverage probabilities for
entries of M , θ, and β, respectively. As we can see, all these empirical coverage probabilities
are close to the nominal level of 95%.

We also report the average number of iterations for convergence and the average CPU
time per iteration as follows. For the above designs, the average number of iterations and
average CPU time per iteration are (a) 184.70 and 9.24 seconds under setting 1; (b) 176.46
and 47.18 seconds under setting 2. The convergence criteria is set to be the consecutive
change in the joint log-likelihood is smaller than 0.001.
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Figure 4: Panels (a)-(c) presents the empirical densities (histograms) of m̂11, θ̂1 and β̂1

under setting (1), respectively, out of 2000 simulations for fixed block-wise setting.
Panels (e)-(g) presents the empirical densities of m̂11, θ̂1 and β̂1 under setting (2),
respectively, out of 2000 simulations, for fixed block-wise setting. The curves are
theoretical density curves of N(m11, σ̃

2(m11)), N(θ1, σ̃
2(θ1)) and N(β1, σ̃

2(β1)),
respectively, included as references.

In addition, to further demonstrate the performance of the likelihood-based estimator,
we also conduct a simulation study where zij are randomly sampled under the setting
that N = 5000 and J = 200. Let zij be sampled i.i.d. from a Bernoulli distribution
with P (zij = 1) = 0.5. The generation of the rest of the parameters and the evaluation
techniques for the estimators are the same as in study under fixed block-wise setting. Under
random sampling setting, the mean squared estimation errors for M , θ, and β are 0.068,
0.064, and 0.0027, respectively, across all relevant entries and all 2000 independent samples.
The average number of iterations and average CPU time per iteration are 182.55 and 13.93
seconds.

To examine the variance approximation under random sampling setting, we compare
σ̂2(g), σ̃2(g) and s2(g) using the scatter plots of s2(g) against σ̄2(g) in panels (a)-(c) of
Figure 6 and the scatter plots of s2(g) against σ̃2(g) in panels (d)-(f) of Figure 6, based
on the 2000 simulation replications. From Figure 6, we see that under random sampling
setting, the σ̄2(g), σ̃2(g), and s2(g) are close to each other for different g(M).
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Figure 5: Panels (a) and (b) show the empirical coverage rates for the 95% Wald intervals
under fixed block-wise settings (1) and (2), respectively.

To check the asymptotic normality under the random sampling setting, Figure 7 presents
the empirical densities of the estimates densities of m11, θ1 and β1 over 2000 samples against
theoretical curves. The plots show that the empirical distributions agree well with the
theoretical normal distributions. Figure 8 further shows the empirical coverage of 95%
Wald intervals over the 2000 replications for M, θ, and β. These plots suggest the empirical
coverage probabilities are close to the nominal level of 95%.

5. Real-data Applications

In what follows, we consider two real-data applications.

5.1 Application to Educational Testing

We first apply the proposed method to link two forms of an educational test that share
common items. The data set is a benchmark data set for studying linking methods for
educational testing (González and Wiberg, 2017). It contains binary responses from two
forms of a college admission test. Each form has 120 items and is answered by 2000 ex-
aminees. There are 40 common items shared by the two test forms. There is no missing
data within each test. Thus, N = 4000, J = 200, and 40% of the data entries are missing.
We apply the proposed method to this data set. Making use of Theorem 8, 95% confidence
intervals are obtained for both the row (i.e., person) parameters and the column (i.e., item)
parameters. The results allow us to compare students who took different test forms, as well
as non-common items from the two forms. For illustration, we randomly choose 100 row
parameters and 100 column parameters and show their 95% confidence intervals in Figure 9.
Such uncertainty quantification can be vital for colleges when making admission decisions.
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Figure 6: Panels (a)-(c) plot s2(g) against σ̄2(g) for g(M) = mij , θi, and βj , respectively,
and Panels (d)-(f) plot s2(g) against σ̃2(g) for g(M) = mij , θi and βj , respectively,
for the random design setting. Each panel shows 100 randomly sampled mij , θi,
or βj under each setting. The line y = x is given as a reference.

5.2 Application to Senate Voting

We now apply the proposed method to the United States senate roll call voting data. Data
from the 111th through the 113th congress that include the voting records from January
11, 2009, to December 16, 2014. Quite a few senators did not serve for the entire period.

To apply our method to senators’ roll call voting records with θi being interpreted as the
conservativeness score of senator i, we pre-process the data as follows. First, five senators
who did not serve for more than half a year during the period are removed from the data
set, including Edward M. Kennedy, Joe Biden, Hilary Clinton, Julia Salazar, and Carte
Goodwin. Second, 191 bills are removed, as all the observed votes for each of these bills are
the same, and consequently, their maximum likelihood estimates do not exist. After these
two steps, the resulting data set contains N = 139 senators and J = 1648 bills. Finally,
for bill j that has higher percentage support within the Republican party than that within
the Democratic party, we let Yij = 1 if senator i voted for the bill and Yij = 0 if senator i
voted against it. For bill j that has higher percentage support within the Democratic party
than that within the Republican party, we let Yij = 1 if senator i voted against the bill and
Yij = 0 if he/she voted for it. The value of Yij is missing if the senator chose not to vote or
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Figure 7: Panels (a)-(c) presents the empirical densities (histograms) of m̂11, θ̂1 and β̂1

for the random design setting, respectively. The curves are theoretical density
curves of N(m11, σ̃

2(m11)), N(θ1, σ̃
2(θ1)) and N(β1, σ̃

2(β1)), respectively, included
as references.
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Figure 8: Boxplots of the empirical coverage rates for the 95% Wald intervals under the
random design setting.

he/she was not in the senate when this bill was voted. For the final data being analyzed,
the proportion of missing entries is 26.1%, and the connectedness Condition 2 is satisfied.
The missingness pattern of the data set is given in Figure 10. Note that in this example,
N < J . However, our asymptotic results are still applicable if we simply switch the roles of
N and J in the required conditions.

Our asymptotic results allow us to compare senators’ ideological positions, even if they
did not serve in the senate at the same time. For example, Judd Gregg served in the senate
between January 3, 1993, and January 3, 2011, while Marco Rubio started his first term as
a senator on January 3, 2011. In our model, Judd Gregg (θi) and Marco Rubio (θk) have
estimated conservativeness scores of 2.59 and 4.25, respectively. Applying our asymptotic
results, we have θ̂i − θ̂k = −1.66 and its standard error is 0.169. If we test H0 : θi = θk
against H1 : θi 6= θk, we obtain an extremely small p-value of 9.0 × 10−23. Therefore, we
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Figure 9: (a) 95% confidence intervals of 100 row parameters, with 50 randomly selected
from each group. (b) 95% confidence intervals of the 100 column parameters, with
40 each randomly chosen from group 1 and group 2 and 20 randomly selected from
anchor items (i.e., common items).

conclude that senator Marco Rubio is significantly more conservative than senator Judd
Gregg.

In addition, we present in Tables 1 and 2 the ten senators with the largest row parameter
estimates and the ten senators with the smallest row parameter estimates. These results
align well with the public perceptions of these senators. For example, Jim Demint, who is
ranked the most conservative senator in this data set by our method, was also identified by
Salon as one of the most conservative members of the Senate (Kornacki, 2011). Our method
ranks Mike Lee second, though his conservativeness score is not significantly different from
that of Demint. In fact, in 2017, the New York Times used the NOMINATE system (Poole
and Rosenthal, 2001) to arrange Republican senators by ideology and ranked Lee as the
most conservative member of the Senate (Parlapiano et al., 2017). For another example,
Brian Schatz, ranked the most liberal senator by our method, is well-known as a liberal
Democrat. During his time in the Senate, he voted with the Democratic party on most
issues.

Finally, the 95% confidence intervals for all the row parameters are shown in Figure
11, and a full list of rankings for all 139 senators is given in the Appendices, where the
corresponding row parameter estimates and their standard errors are also presented.

6. Discussions

This note considers the statistical inference for binary (or 1-bit) matrix completion under
a unidimensional nonlinear factor model, the Rasch model. Asymptotic normality results
are established. Our results suggest that the maximum likelihood estimator is statistically
efficient, even though the number of parameters diverges. Our simulation study shows
that the developed asymptotic result provides a good approximation to finite sample data,
and two real-data examples demonstrate its usefulness in the areas of educational testing
and political science. One limitation of the current asymptotic normality result is that
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Figure 10: A heat map of Z. The black and white regions correspond to zij = 1 and 0,
respectively.

Rank Senator (party) State Conservativeness Score (s.e.(θ̂))

1 Jim DeMint (Rep) South Carolina 5.87 (0.157)
2 Mike Lee (Rep) Utah 5.73 (0.138)
3 Ted Cruz (Rep) Texas 5.65 (0.195)
4 Tom Coburn (Rep) Oklahoma 5.25 (0.114)
5 Rand Paul (Rep) Kentucky 5.24 (0.129)
6 Tim Scott (Rep) South Carolina 5.17 (0.176)
7 Jim Bunning (Rep) Kentucky 4.92 (0.204)
8 Ron Johnson (Rep) Wisconsin 4.84 (0.119)
9 James Risch (Rep) Idaho 4.81 (0.102)
10 Jim Inhofe (Rep) Oklahoma 4.69 (0.103)

Table 1: Ranking of the top 10 most conservative senators predicted by the model. Rep
and Dem represent the Republican party and the Democratic party, respectively.

Rank Senator (party) State Conservativeness Score (s.e.(θ̂))

1 Brian Schatz (Dem) Hawaii -4.74 (0.468)
2 Roland Burris (Dem) Illinois -4.43 (0.297)
3 Mazie Hirono (Dem) Hawaii -4.17 (0.383)
4 Cory Booker (Dem) New Jersey -4.14 (0.572)
5 Tammy Baldwin (Dem) Wisconsin -3.90 (0.352)
6 Sherrod Brown (Dem) Ohio -3.89 (0.168)
7 Tom Udall (Dem) New Mexico -3.85 (0.165)
8 Dick Durbin (Dem) Illinois -3.83 (0.164)
9 Ben Cardin (Dem) Maryland -3.82 (0.163)
10 Sheldon Whitehouse (Dem) Rhode Island -3.74 (0.163)

Table 2: Ranking of the top 10 most liberal senators predicted by the model. Rep and Dem
represent the Republican party and the Democratic party, respectively.
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Figure 11: 95% confidence intervals of 139 row (i.e. senator) parameters.

it requires relatively strong conditions, especially Condition 4(a), which excludes settings

where J∗ = O(N
1/2
∗ ). Thus, future research is needed to investigate the extent to which

these conditions can be relaxed.
The current results can be easily extended to matrix completion problems with a quan-

tized measurement that has a similar natural exponential family form. Admittedly, the
model considered may be oversimple for complex application problems, for example, cer-
tain collaborative filtering problems for which the rank of the underlying matrix M may be
higher than considered here, and the underlying latent factors may be multi-dimensional.
The extension of the current results to more flexible models is left for future investigation.
As the first inference result for binary matrix completion, we believe the current results will
shed light on the statistical inference for more general matrix completion problems.
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Appendix

The appendix contains the proofs of theorems and proposition in Appendix A, the proofs
of the supporting lemmas in Appendix B, and additional real-data application results from
Section 5.2 “Application to Senate Voting” in Appendix C.

Appendix A: Proof of Theorems and Proposition

Appendix A contains proofs of the theorems and the proposition developed in the main
article.

Proof [Proof of Theorem 4] This result is directly implied by Theorem B of Bollobás and
Klee (1984), which shows that under the conditions of Theorem 4, with probability tending
to 1, the corresponding bipartite random graph has diameter no larger than n + 1. This
result combined with the fact that a graph is connected if and only if its diameter is finite
proves Theorem 4.

We now focus on the rest of the theorems and propositions. We start with defining some
notation. Implicitly index J with N such that JN →∞ as N →∞ for notation convenience.
Note that this does not impose any rate requirement for N and J. Let ΩN =

{
x = (xij :

zij = 1, i = 1, ..., N, j = 1, ..., J) : xij = θi − βj , θi, βj ∈ R,
∑N

i=1 θi = 0
}

be a vector space.

Define on ΩN a variance weighted inner product [·, ·]σ with [x, y]σ =
∑N

i=1

∑
j∈SJ (i) xijσ

2
ijyij

for any x, y ∈ ΩN , where SJ(i) = {j = 1, ..., J : zij = 1}, σ2
ij = exp(m∗ij)/{1 + exp(m∗ij)}2

and the subscript σ means the inner product depends on σ2
ij , i = 1, ..., N, j = 1, ..., J, zij = 1.

Denote the associated norm as ‖ · ‖σ with ‖x‖2σ =
∑N

i=1

∑
j∈SJ (i) x

2
ijσ

2
ij for x ∈ ΩN . Let

MN =
(
mij : zij = 1, i = 1, ..., N, j = 1, ..., J,mij = θi − βj) ∈ ΩN , M∗N =

(
m∗ij : zij =

1, i = 1, ..., N, j = 1, ..., J,m∗ij = θ∗i − β∗j ) ∈ ΩN and M̂N =
(
m̂ij : zij = 1, i = 1, ..., N, j =

1, ..., J, m̂ij = θ̂i− β̂j) ∈ ΩN . Note that as a result of Proposition 3, for any linear form g of

M , g(M) can be re-expressed as a linear form of x ∈ ΩN , with g(x) =
∑N

i=1

∑
j∈SJ (i)wijxij ,

where we denote wij = wij(g), which depends on g, for notation simplicity. Let Ω∗N consist of
all linear forms g on ΩN such that g(x) = 0 if x = 0 and x ∈ ΩN . Without loss of generality,
we will work with g ∈ Ω∗N in the proofs. For any subset A ⊂ Ω∗N , define ‖ · ‖σ(A) to be the
norm on ΩN such that for any x ∈ ΩN , ‖x‖σ(A) is the smallest non-negative number such
that |g(x)| ≤ ‖x‖σ(A)σ(g) for any g ∈ A, where σ(g) = supx∈ΩN {|g(x)| : ‖x‖σ ≤ 1}. Let

EN =
(
Eij : zij = 1, i = 1, ..., N, j = 1, ..., J

)
,

with Eij = E[Yij ] = em
∗
ij/(1 + em

∗
ij ), be the vector of expected responses corresponding to

the observed entries. Further define RN ∈ ΩN satisfying

[x,RN ]σ =

N∑
i=1

∑
j∈SJ (i)

xij(Yij − Eij), x ∈ ΩN .
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Define an evaluation measure UN (·, ·) such that for any y, v ∈ ΩN , UN (y, v) ∈ ΩN satisfies

[x, UN (y, v)]σ =
N∑
i=1

∑
j∈SJ (i)

xij
{
σ2(yij)− σ2

ij

}
vij , x ∈ ΩN ,

where σ2(yij) = eyij/(1 + eyij )2. Note when y is equal to M∗N or when v is a zero vector,
then UN (y, v) = 0. Further denote that wi+ =

∑
j∈SJ (i)wij , w+j =

∑
i∈SN (j)wij and

w++ =
∑N

i=1

∑
j∈SJ (i)wij , where SN (j) = {i = 1, ..., N : zij = 1}. We first give proof for

Theorem 5 below.
Proof [Proof of Theorem 5]

We start with establishing the existence of M̂N by applying the fixed point theorems of
Kantorovich and Akilov (1964, pages 695-711). We start with constructing a function FN on
ΩN with a fixed point M̂N . Consider FN (y) = y+ rN (y) for y ∈ ΩN , where rN : ΩN 7→ ΩN

is defined by the equation,

[x, rN (y)]σ =
N∑
i=1

∑
j∈SJ (i)

xij
{
Yij − E(yij)

}
, x ∈ ΩN ,

where E(yij) = eyij/(1 + eyij ). Note that FN has a fixed point ω ∈ ΩN if and only if

N∑
i=1

∑
j∈SJ (i)

xij
{
Yij − E(ωij)

}
= 0, x ∈ ΩN .

Let P be the orthogonal projection onto ΩN . Let Ê = {E(m̂ij) : i = 1, ..., N, j =
1, ..., J, zij = 1} and Yz = {Yij : i = 1, ..., N, j = 1, ..., J, zij = 1}. Then following from
Berk (1972, pages 196-198), M̂N is a maximum likelihood estimator of M∗N if and only if

PÊ = PYz. Hence, M̂N exists if and only if ω exists. Furthermore, since the log-likelihood
l(Yz, ·) is strictly concave, if the maximum likelihood estimator M̂N of M∗N exists, then it

must be unique. Therefore, if M̂N exists, ω = M̂N . So, we just need to verify the conditions
of the fixed point theorem to show that the fixed point ω indeed exists.

The Kantorovich & Akilov’s fixed point theorem requires construction of a sequence that
converges to the fixed point. Consider the sequence {tNk : k = 0, 1, ...}, with tN0 = M∗N
and tN(k+1) = FN (tNk) for k = 0, 1, ... Note that tN1 = M∗N + RN . To check whether this

sequence is well-defined and converges to M̂N , we need to examine the differential dFNy of
FN at y ∈ ΩN . Note that for y + v ∈ ΩN ,

[x, FN (y + v)− FN (y)]σ =
N∑
i=1

∑
j∈SJ (i)

xijσ
2
ij

[
vij + (σ2

ij)
−1
{
E(yij)− E(yij + vij)

}]
= −[x, UN (y, v)]σ + o(v),

where o(v)/‖v‖σ → 0 as ‖v‖σ → 0. It follows that dFNy(v) = −UN (y, v). Denote
‖dFNy‖σ(A) to be the smallest nonnegative number such that

‖dFNy(v)‖σ(A) ≤ ‖dFNy‖σ(A)‖v‖σ(A), v ∈ ΩN .
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Let Ap be the set consisting of all the point maps fij on ΩN , i.e. fij(x) = xij for any
x ∈ ΩN . By Lemma 10(c) below, there exist sequences fN and dN such that

‖dFNy‖σ(Ap) ≤ dN‖y −M∗N‖σ(Ap) whenever ‖y −M∗N‖σ(Ap) ≤ fN , y ∈ ΩN .

Lemma 10. Assume Conditions 1—3 hold. If Ap = {fij : i = 1, ..., N, j = 1, ..., J, zij = 1}
such that fij(x) = xij for x ∈ ΩN . Let CN = |Ap|, the cardinality of Ap. Then there exist
sequences fN > 0 and dN ≥ 0 satisfying the followings.
(a). As N →∞, f2

N/ logCN →∞.
(b). As N →∞, f2

N (N−1
∗ + J−1

∗ )→ 0.
(c). If y, v ∈ ΩN and ‖y−M∗N‖σ(Ap) ≤ fN , then there exists n <∞ such that for all N > n,
‖UN (y, v)‖σ(Ap) ≤ dN‖y −M∗N‖σ(Ap)‖v‖σ(Ap). Furthermore, dNfN → 0 as N →∞.

As shown in Kantorovich and Akilov (1964, pages 695-711), if ‖RN‖σ(Ap) <
1
2fN and

dN‖RN‖σ(Ap) < 1
2 , then M̂N exists. By Lemma 11 below, we have pr(‖RN‖σ(Ap) <

1
2fN ) → 1 as N → ∞. Therefore, it follows from Lemma 10(c) that with probability
tending to 1, dN‖RN‖σ(Ap) <

1
2fNdN → 0.

Lemma 11. Let A ⊂ Ω∗N . Let CN denote the cardinality of A. If there exist sequences
fN > 0 and dN ≥ 0 satisfying (a). 0 < CN < ∞ and f2

N/ logCn → ∞ as N → ∞,
(b). If y, v ∈ ΩN and ‖y − M∗N‖σ(A) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(A) ≤ dN‖y −M∗N‖σ(A)‖v‖σ(A), (c). dNfN → 0 as N → ∞. Then
pr
(
‖RN‖σ(A) < 1

2fN
)
→ 1 as N →∞.

Hence, the conditions of the fixed point theorem are satisfied with probability approach-
ing 1. It then follows that the maximum likelihood estimators M̂N exists with probability
tending to 1. Since Condition 2 holds, as a direct consequence of Proposition 3, the cor-
responding maximum likelihood estimators θ̂i, i = 1, ..., N and β̂j , j = 1, ..., J can be
uniquely determined given M̂N . Therefore, with probability approaching 1 that they all
exist, as N →∞. The first part of the theorem then follows.

Now we seek to prove the consistency results. Taking sequences fN and dN again as
satisfying the results in Lemma 10 and A = Ap. Then both Lemmas 11 and 12 hold. From
the results of Lemmas 11 and 12, it can be implied that as N →∞, with probability tending
to 1 that,

‖M̂N −M∗N‖σ(Ap) = O(fN ). (6)

From Haberman (1977, pages 822-824), σ(g) is in fact the standard deviation of g(M̂N ).
We further note by Lemma 13 below,

max
g∈Ap

σ(g) ≤ τ−1
2 (N−1

∗ + J−1
∗ )

1
2 , (7)

for some 0 < τ2 <∞.

Lemma 12. Assume Conditions 1—3 hold. Let A ⊂ Ω∗N . If there exist sequences fN > 0
and dN ≥ 0 satisfying (a). pr

(
‖RN‖σ(A) < 1

2fN
)
→ 1 as N → ∞, (b). If y, v ∈ ΩN and

‖y −M∗N‖σ(A) ≤ fN , then there exists n < ∞ such that for all N > n, ‖UN (y, v)‖σ(A) ≤

24



Statistical Inference for Noisy Incomplete Binary Matrix

dN‖y −M∗N‖σ(A)‖v‖σ(A), (c). dNfN → 0 as N →∞. Then, as N →∞, with probability
approaching 1 that,∣∣∣‖M̂N −M∗N‖σ(A)

‖RN‖σ(A)
− 1
∣∣∣ ≤ d 1

2
N → 0 and ‖M̂N −M∗N −RN‖σ(A) ≤ dN‖RN‖2σ(A).

Lemma 13. Assume Conditions 1—3 hold and
∑N

i=1 θi = 0, the asymptotic variance of
the maximum likelihood estimator of m∗ij , var(m̂ij), for any i = 1, ..., N and j = 1, ..., J ,
takes the form,

var(m̂ij) = (σ2
i+)−1 + (σ2

+j)
−1 +O(N−1

∗ J−1
∗ ) as N →∞.

Then as N →∞, we have with probability approaching 1 that

max
i,j,zij=1

|m̂ij −m∗ij | = max
i,j,zij=1

|fij(M̂N )− fij(M∗N )|

= max
i,j,zij=1

|fij(M̂N −M∗N )|

≤ max
i,j,zij=1

σ(fij)‖M̂N −M∗N‖σ(Ap)

≤ ‖M̂N −M∗N‖σ(Ap)
{

max
g∈Ap

σ(g)
}

= O
{
fN
(
N−1
∗ + J−1

∗
) 1

2

}
→ 0. (8)

The second last line follows from (6) and (7) and the last line follows from Lemma 10(b).

By Proposition 1, given m̂ij for i = 1, ..., N, j = 1, ..., J, zij = 1, all the θ̂i, i = 1, ..., N

and β̂j , j = 1, ..., J can be uniquely determined. Since (8) holds, as a direct consequence

of the Slutsky Theorem, we have with probability tending to 1 that ‖θ̂ − θ∗‖∞ → 0 and
‖β̂−β∗‖∞ → 0 as N →∞. From here, we have maxi,j |m̂ij−m∗ij | → 0. Hence we complete
the proof of consistency results in this theorem.

The proof of Theorem 6 is a continuum of the proof of Theorem 5 with additional
conditions. We next present the proof of Theorem 6.

Proof [Proof of Theorem 6]

To derive explicit rates of convergence for ‖θ̂− θ∗‖∞ and ‖β̂−β∗‖∞, we adopt a similar
approach as in the derivation of convergence of maxi,j:zij=1 |m̂ij −m∗ij |. In particular, for
the column parameters βj , we consider linear functions gj ∈ Ω∗N such that gj(x) = βj .
We can construct gj as follows. The idea is to include all the row parameters θi so as to

use the identifiability constraint
∑N

i=1 θi = 0. For any i ∈ SN (j), we use mij = θi − βj
in the construction. While for each i ∈ SNφ(j), where SNφ(j) = {1, 2, ..., N} \ SN (j), by
Condition 2, there must exist 1 ≤ ii1, ii2, ..., iik ≤ N and 1 ≤ ji1, ji2, ..., jik ≤ J such that

zi,ji1 = zii1,ji1 = zii1,ji2 = zii2,ji2 = ... = ziik,jik = ziik,j = 1.
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Therefore, we can construct gj as

gj(x) =− 1

N

{ ∑
i∈SN (j)

mij

+
∑

i∈SNφ (j)

(
mi,ji1 −mii1,ji1 +mii1,ji2 −mii2,ji2 + ...−miik,jik +miik,j

)}
=βj .

Let Aβ =
{
gj : j = 1, ..., J

}
. Now consider a sequence fN satisfying the rate requirements

f2
N/ log J → ∞ and f2

NN
−1/2
∗ → 0 as N → ∞. Then by Lemma 14 below, we can pick a

sequence dN satisfying Lemma 14(a) and Lemma 14(b). Furthermore, by Lemma 15 below,
we know that σ2(gj) = (σ2

+j)
−1 + O(N−1

∗ J−1
∗ ) for any gj ∈ Aβ. Therefore, there exist

positive 0 < c2 <∞ and some n such that for all N > n,

max
j=1,...,J

σ(gj) < c−1
2 N

− 1
2

∗ .

Lemma 14. Assume Conditions 1—4 hold. If Aβ = {gj : j = 1, ..., J} such that gj ∈ Ω∗N
and gj(x) = βj for x ∈ ΩN . Let CN = |Aβ| = J be the cardinality of Aβ. For any positive

sequence fN such that f2
N/ log J →∞ and f2

NN
−1/2
∗ → 0 as N →∞, there exists a sequence

dN ≥ 0 satisfying the followings.
(a). If y, v ∈ ΩN and ‖y −M∗N‖σ(Aβ) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(Aβ) ≤ dN‖y −M∗N‖σ(Aβ)‖v‖σ(Aβ).
(b). dNf

2
N → 0 as N →∞.

Lemma 15. Assume Conditions 1—4 hold and
∑N

i=1 θi = 0. The asymptotic variance of

the maximum likelihood estimator of an individual column parameter, var(β̂j), asymptoti-
cally attains the oracle variance (σ2

+j)
−1 in the sense that

var(β̂j) = (σ2
+j)
−1 +O(N−1

∗ J−1
∗ ) as N →∞.

Note that by taking sequences fN and dN satisfying the conditions in Lemma 14 and
setting A = Aβ, it can be shown easily that the results of Lemmas 11 and 12 still hold.
Hence, it can be implied that as N →∞, with probability tending to 1,

‖M̂N −M∗N‖σ(Aβ) = O(fN ).

Then as N →∞, we have with probability approaching 1 that,

max
j=1,...,J

|β̂j − β∗j | = max
j=1,...,J

|gj(M̂N )− gj(M∗N )|

= max
j=1,...,J

|gj(M̂N −M∗N )|

≤ ‖M̂N −M∗N‖σ(Aβ) max
j=1,...,J

σ(gj)

< c−1
2 N

− 1
2

∗ ‖M̂N −M∗N‖σ(Aβ)

= O
{

(log J)
1
2N
− 1

2
∗

}
as N →∞,
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where the last step can be implied from the fact that ‖M̂N −M∗N‖σ(Aβ) = O
(
fN
)

and
the rate requirement of fN in Lemma 14, where the minimum order of fN is determined
by f2

N/ log J → ∞ as N → ∞. Specifically, it can be verified that for any fN satisfying

f2
N/ log J → ∞, if ‖M̂N −M∗N‖σ(Aβ) = O

(
fN
)
, then ‖M̂N −M∗N‖σ(Aβ) = O{(log J)1/2}.

Therefore,

‖β̂ − β∗‖∞ = Op

{
(log J)

1
2N
− 1

2
∗

}
. (9)

Now for the row parameters θi, we adopt a similar strategy by constructing linear
functions gi ∈ Ω∗N such that gi(x) = θi.

In specific, we can construct the linear function gi as follows.

gi(x) =
1

|SJ(i)|
∑

j∈SJ (i)

{mij + gj(x)} =
1

|SJ(i)|
∑

j∈SJ (i)

(θi − βj + βj) = θi,

where |SJ(i)| denotes the cardinality of SJ(i). Let Aθ consist of gi, i = 1, ..., N , i.e. Aθ ={
gi : i = 1, ..., N

}
. Take a positive sequence fN satisfying the rate requirements f2

N/ logN →
∞ and f2

NJ
−1
∗ → 0 as N → ∞, then by Lemma 16 below, we can pick a sequence dN

satisfying Lemma 16(a) and Lemma 16(b). Furthermore, by Lemma 17 below, we know
that σ2(gi) = (σ2

i+)−1+O(N−1
∗ J−1

∗ ) for any gi ∈ Aθ. Hence, there exist positive 0 < γ2 <∞
and such that

max
i=1,...,N

σ(gi) < γ−1
2 J

−1/2
∗ .

Lemma 16. Assume Conditions 1—4 hold. If Aθ = {gi : i = 1, ..., N} such that gi ∈ Ω∗N
and gi(x) = θi for x ∈ ΩN . Let CN = |Aθ| = N be the cardinality of Aθ. Then for any
positive sequence fN such that f2

N/ logN → ∞ and J−1
∗ f2

N → 0 as N → ∞, there exists a
sequence dN ≥ 0 satisfying the followings.

(a). If y, v ∈ ΩN and ‖y −M∗N‖σ(Aθ) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(Aθ) ≤ dN‖y −M∗N‖σ(Aθ)‖v‖σ(Aθ).

(b). dNfN → 0 as N →∞.

Lemma 17. Assume Conditions 1—4 hold and
∑N

i=1 θi = 0, the asymptotic variance of

an individual row parameter, var(θ̂i), asymptotically attains oracle variance (σ2
i+)−1 in the

sense that

var(θ̂i) = (σ2
i+)−1 +O(N−1

∗ J−1
∗ ) as N →∞.

Note that by taking sequences fN and dN satisfying the conditions in Lemma 16 and
setting A = Aθ, it can be implied easily that Lemmas 11 and 12 still hold. Similarly, from
pr(‖RN‖σ(Aθ) <

1
2fN )→ 1 and the results of Lemma 12, it can be implied as N →∞, we

have with probability tending to 1 that,

‖M̂N −M∗N‖σ(Aθ) = O(fN ).

27



Chen, Li, Ouyang and Xu

It follows, as N →∞, we have with probability approaching 1 that,

max
i=1,...,N

|θ̂i − θi| = max
i=1,...,N

|gi(M̂N )− gi(M∗N )|

= max
i=1,...,N

|gi(M̂N −M∗N )|

≤ ‖M̂N −M∗N‖σ(Aθ) max
i=1,...,N

σ(gi)

< γ−1
2 J

− 1
2

∗ ‖M̂N −M∗N‖σ(Aθ)

= O
{

(logN)
1
2J
− 1

2
∗

}
as N →∞,

where the last step can be implied from the fact that with probability tending to 1, ‖M̂N −
M∗N‖σ(Aθ) = O

(
fN
)
, and the rate requirement of fN in Lemma 16, where the minimum

order of fN is determined by f2
N/ logN → ∞. Specifically, it can be verified that for any

fN satisfying f2
N/ logN → ∞, if ‖M̂N −M∗N‖σ(Aθ) = O

(
fN
)
, then ‖M̂N −M∗N‖σ(Aθ) =

O{(logN)1/2}. It follows that,

‖θ̂ − θ∗‖∞ = Op

{
(logN)

1
2J
− 1

2
∗

}
. (10)

Combining (9) and (10), we have maxi,j |m̂ij −m∗ij | = Op
{

(log J)
1
2N
− 1

2
∗ + (logN)

1
2J
− 1

2
∗
}
.

Therefore, we complete the proof of the theorem.
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Next, we give proof for Theorem 8 below.

Proof [Proof of Theorem 8] We first seek to show |σ2(g)/σ̃2(g)− 1| → 0 as N →∞, where
σ2(g) = σ{g(M̂)}. Since Conditions 1—4 hold and ‖wg‖1, ‖w̃g‖1 < C, by Lemma 18 below,

|σ2(g)− σ̃2(g)| = O(N−1
∗ J−1

∗ ) as N →∞. (11)

Hence, it follows ∣∣∣σ2(g)

σ̃2(g)
− 1
∣∣∣ =
|σ2(g)− σ̃2(g)|

σ̃2(g)
→ 0 as N →∞,

where the last step follows from (11) and the definition of σ̃2(g).

Lemma 18. Assume Conditions 1—4 hold and
∑N

i=1 θi = 0. Consider a linear function

g : ΩN 7→ R with g(x) =
∑N

i=1 hiθi +
∑J

j=1 h
′
jβj . If there exists a positive C <∞ such that∑N

i=1 |hi| < C and
∑J

j=1 |h′j | < C, then

σ2(g) =

N∑
i=1

h2
i (σ

2
i+)−1 +

J∑
j=1

h′2j (σ2
+j)
−1 +O(N−1

∗ J−1
∗ ) as N →∞.

Then if we can show σ(g)−1{g(M̂)− g(M∗)} → N(0, 1) in distribution, the first part of
the theorem would follow directly. As a direct application of Proposition 3, we can re-write
function g on ΩN using [·, ·]σ as follows. Let cN ∈ ΩN be defined by the equation

g(x) = [cN , x]σ =
N∑
i=1

∑
j∈SJ (i)

cijxijσ
2
ij , x ∈ ΩN .

Then we can express,

g(M̂N )− g(M∗N ) = g
(
M̂N −M∗N

)
=
[
cN , M̂N −M∗N

]
σ

=
[
cN , M̂N −M∗N −RN

]
σ

+
[
cN , RN

]
σ
. (12)

Recall that σ(g) = supx∈ΩN

{
|[cN , x]σ| : ‖x‖σ ≤ 1

}
, the supremum is attained at x =

cN/‖cN‖σ, so σ(g) = ‖cN‖σ. We consider two possible cases, wg = 0 in case 1 and wg 6= 0
in case 2, and we seek to prove the result of the theorem hold under both cases separately.

We first consider case 1. Similar as in the proof of Theorem 5, we consider a set Aβ
consisting of linear functions gj ∈ Ω∗N on ΩN such that gj(x) = βj with Aβ = {gj : j =

1, ..., J}. We now pick a positive sequence fN satisfying f2
N/ log J →∞ and f2

NN
−1/2
∗ → 0

as N →∞. Then by Lemma 14, we can pick a sequence dN ≥ 0 satisfying Lemma 14(a) and
Lemma 14(b). Furthermore, it can be implied that Lemmas 11 and 12 still hold by taking
A = Aβ. Moreover, Lemma 15 and Condition 3(c) imply that there exist 0 < γ1, γ2 < ∞
and some n such that for all N > n,

γ−1
1 N

− 1
2

∗ < σ(gj) < γ−1
2 N

− 1
2

∗ , gj ∈ Aβ. (13)
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Now for any x ∈ ΩN ,

|g(x)| = |w̃Tg β|
≤ ‖w̃g‖1 max

j=1,...,J
{|βj |}

≤ C max
gj∈Aβ

{|gj(x)|}

= C max
gj∈Aβ

{ |gj(x)|
σ(gj)

σ(gj)
}

≤ C
{

max
gj∈Aβ

|gj(x)|
σ(gj)

}
max
gj∈Aβ

σ(gj)

= C‖x‖σ(Aβ) max
gj∈Aβ

σ(gj)

≤ Cγ−1
2 N

− 1
2

∗ ‖x‖σ(Aβ), (14)

where the second last step follows from the definition of ‖ · ‖σ(Aβ) and the last step follows
from (13). Since case 1 assumes wg = 0, so g(M) 6= 0 implies w̃g 6= 0. Then as a direct
consequence of Lemma 18, there exists some 0 < γ3 <∞ such that for all N > n,

σ(g) ≥ γ3N
− 1

2
∗ . (15)

As a result of (14), we have∣∣∣[cN , M̂N −M∗N −RN
]
σ

∣∣∣ ≤ Cγ−1
2 N

− 1
2

∗ ‖M̂N −M∗N −RN‖σ(Aβ). (16)

Note that from (12),

g(M̂N )− g(M∗N )

σ(g)
=

[
cN , M̂N −M∗N −RN

]
σ

+
[
cN , RN

]
σ

σ(g)

Rearrange gives as N →∞, with probability tending to 1 that,

∣∣∣g(M̂N )− g(M∗N )

σ(g)
−
[
cN , RN

]
σ

σ(g)

∣∣∣ =

∣∣∣[cN , M̂N −M∗N −RN ]σ

∣∣∣
σ(g)

≤ Cγ−1
2 N

− 1
2

∗
σ(g)

‖M̂N −M∗N −RN‖σ(Aβ)

≤ Cγ−1
2 γ−1

3 dN
[
‖RN‖σ(Aβ)

]2
≤ 1

4
Cγ−1

2 γ−1
3 dNf

2
N

→ 0, (17)

where the second line follows from (16), the third line can be obtained from (15) and Lemma
12, the second last line can be implied by Lemma 11 and the last line follows from Lemma
14. Hence, it turns out that it suffices to show

[
cN , RN

]
σ
/σ(g) → N(0, 1). Write ZN =
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[cN , RN ]σ/σ(g) =
∑N

i=1

∑
j∈SJ (i)

{
cij(Yij − Eij)

}
/‖cN‖σ for simplicity. The strategy is to

show the moment generating function of ZN , denoted as GZN (t), converges to exp{t2/2}, the
moment generating function of the standard Gaussian. Write c′ij = cij/‖cN‖σ = cij/σ(g)
for simplicity. We consider the log moment generating function of ZN ,

logGZN (t) = logE
[
etZN

]
= logE

[
exp

{ t

σ(g)

N∑
i=1

∑
j∈SJ (i)

cij(Yij − Eij)
}]

= −t
N∑
i=1

∑
j∈SJ (i)

c′ijEij + log
N∏
i=1

∏
j∈SJ (i)

E
{

exp(tc′ijYij)
}

= −t
N∑
i=1

∑
j∈SJ (i)

c′ijEij +
N∑
i=1

∑
j∈SJ (i)

logE
{

exp(tc′ijYij)
}

=

N∑
i=1

∑
j∈SJ (i)

[
log
{

1 + exp(m∗ij)
}−1 − log

{
1 + exp(tc′ij +m∗ij)

}−1 − tc′ijEij
]

=
N∑
i=1

∑
j∈SJ (i)

[
log
{
h(m∗ij)

}
− log

{
h(tc′ij +m∗ij)

}
− tc′ijEij

]
, (18)

where h(mij) = {1+exp(mij)}−1. We can then apply Taylor expansion to log{h(tc′ij+m
∗
ij)}

about m∗ij . For some t′ = αt with 0 < α < 1,

log{h(tc′ij +m∗ij)} = log{h(m∗ij)} − Eijtc′ij −
t2

2
c′2ijσ

2(m∗ij + t′c′ij).

Substitute into Equation (18),

logGZN (t) =
t2

2

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗ij + t′c′ij), ‖t′c′N‖σ(Aβ) ≤ fN . (19)

With ‖c′N‖σ = ‖cN‖σ/‖cN‖σ = 1, the summation term in (19) can be re-expressed as
follows,

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗ij + t′c′ij) =

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗ij + t′c′ij)− σ2

ij + σ2
ij

}
= ‖c′N‖2σ +

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
= 1 +

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
.
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Note that

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
=

1

σ(g)

N∑
i=1

∑
j∈SJ (i)

cij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
c′ij

=
1

σ(g)
g
{
UN (M∗N + t′c′N , c

′
N )
}

≤ Cγ−1
2 N

− 1
2

∗
σ(g)

‖UN (M∗N + t′c′N , c
′
N )‖σ(Aβ)

≤ Cγ−1
2 N

− 1
2

∗
σ(g)

dN‖t′c′N‖σ(Aβ)‖c′N‖σ(Aβ)

≤ Cγ−1
2 N

− 1
2

∗
σ(g)

dNfN

≤ Cγ−1
2 γ−1

3 dNfN

→ 0 as N →∞.

The second line follows from Uij(M
∗
N + t′c′N , c

′
N ) = (σ2

ij)
−1
{
σ(m∗ij + t′c′ij) − σ2

ij

}
c′ij . The

third last step follows from ‖c′N‖σ(Aβ) ≤ ‖c′N‖σ = 1 and the last step can be implied from
Lemma 14(b). Therefore, logGZN (t)→ t2/2 as N →∞.

Now consider case 2. We adopt a similar strategy to derive asymptotic normality as in
case 1. Define set Aθ,β to consist of linear functions gi, g

′
j ∈ Ω∗N on ΩN such that gi(x) = θi

and g′j(x) = βj , with Aθ,β = {gi, g′j : i = 1, ..., N, j = 1, ..., J}. The explicit forms of gi and
g′j can be found in the proof of Theorem 5.

From now onwards, we take sequences fN and dN as satisfying the conditions in Lemma
19 below. Note it can be implied that with such fN and dN , Lemmas 11 and 12 still hold
by taking A = Aθ,β. From Lemmas 15 and 17, we know that for any f ∈ Aθ,β , there exist
0 < c1, c2 <∞ and some n such that for all N > n,

c−1
1 N

− 1
2

∗ < σ(f) < c−1
2 J

− 1
2

∗ . (20)

Lemma 19. Assume Conditions 1—4 hold. If Aθ,β = {gi, g′j : i = 1, ..., N, j = 1, ..., J}
such that gi, g

′
j ∈ Ω∗N , and gi(x) = θi and g′j(x) = βj for x ∈ ΩN . Let CN = |Aθ,β|, the

cardinality of Aθ,β. Then there exist sequences fN > 0 and dN ≥ 0 satisfying the followings.

(a). As N →∞, f2
N/ logCN →∞.

(b). If y, v ∈ ΩN and ‖y −M∗N‖σ(Aθ,β) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(Aθ,β) ≤ dN‖y −M∗N‖σ(Aθ,β)‖v‖σ(Aθ,β). Furthermore, dNf

2
N → 0 as

N →∞.
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Now for any x ∈ ΩN ,

|g(x)| = |wTg θ + w̃Tg β|

≤
(
‖wg‖1 + ‖w̃g‖1

)
max

i=1,...,N,j=1,...,J
{|θi|, |βj |}

=
(
‖wg‖1 + ‖w̃g‖1

)
max
f∈Aθ,β

{|f(x)|}

=
(
‖wg‖1 + ‖w̃g‖1

)
max
f∈Aθ,β

{ |f(x)|
σ(f)

σ(f)
}

≤
(
‖wg‖1 + ‖w̃g‖1

){
max
f∈Aθ,β

|f(x)|
σ(f)

}{
max
f∈Aθ,β

σ(f)
}

< 2Cc−1
2 J

− 1
2

∗ ‖x‖σ(Aθ,β), (21)

where the last step follows from the definition of ‖ · ‖σ(Aθ,β), (20) and the assumption that
‖wg‖1, ‖w̃g‖1 < C. Further note that since wg 6= 0, as a direct consequence of Lemma 18
and Condition 4(c), there exists some 0 < c3 <∞ such that for all N > n,

σ(g) ≥ c3J
− 1

2
∗ . (22)

As a result of (21),∣∣∣[cN , M̂N −M∗N −RN
]
σ

∣∣∣ ≤ 2Cc−1
2 J

− 1
2

∗ ‖M̂N −M∗N −RN‖σ(Aθ,β).

Again, we have

g(M̂N )− g(M∗N )

σ(g)
=

[
cN , M̂N −M∗N −RN

]
σ

+
[
cN , RN

]
σ

σ(g)

As N →∞, re-arrange gives with probability tending to 1 that,

∣∣∣g(M̂N )− g(M∗N )

σ(g)
−
[
cN , RN

]
σ

σ(g)

∣∣∣ =

∣∣∣[cN , M̂N −M∗N −RN ]σ

∣∣∣
σ(g)

≤ 2Cc−1
2 J

− 1
2

∗
σ(g)

‖M̂N −M∗N −RN‖σ(Aθ,β)

≤ 2Cc−1
2 J

− 1
2

∗
σ(g)

dN
[
‖RN‖σ(Aθ,β)

]2
≤ 1

2
Cc−1

2 c−1
3 dNf

2
N

→ 0, (23)

Again, we can denote ZN =
[
cN , RN

]
σ
/σ(g) for notation simplicity. Similar as in case 1,

we just need to show ZN → N(0, 1). We consider the log moment generating function of
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ZN , denoted as logGZN (t). Write c′ij := cij/σ(g). Then similarly as in the proof for case 1,
we obtain

logGZN (t) =
t2

2

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗ij + t′c′ij), ‖t′c′N‖σ(Aθ,β) ≤ fN ,

where,

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗ij + t′c′ij) = 1 +

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
.

Note that

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
=

1

σ(g)

N∑
i=1

∑
j∈SJ (i)

cij
{
σ2(m∗ij + t′c′ij)− σ2

ij

}
c′ij

=
1

σ(g)
g
{
UN (M∗N + t′c′N , c

′
N )
}

≤ 2Cc−1
2 J

− 1
2

∗
σ(g)

‖UN (M∗N + t′c′N , c
′
N )‖σ(Aθ,β)

≤ 2Cc−1
2 J

− 1
2

∗
σ(g)

dN‖t′c′N‖σ(Aθ,β)‖c′N‖σ(Aθ,β)

≤ 2Cc−1
2 J

− 1
2

∗
σ(g)

dNfN

≤ 2Cc−1
2 c−1

3 dNfN

→ 0 as N →∞.

The second line follows from Uij(M
∗
N + t′c′N , c

′
N ) = (σ2

ij)
−1
{
σ(m∗ij + t′c′ij) − σ2

ij

}
c′ij . The

third last step follows from ‖c′N‖σ(Aθ,β) ≤ ‖c′N‖σ = 1 and the last step can be implied from

Lemma 19(b). Therefore, logGZN (t)→ t2

2 as N →∞. Hence, the first part of the theorem
follows.

Now we seek to prove the second part of the theorem. The strategy is to show |σ̂2(g)−
σ̃2(g)|/σ̃2(g)→ 0 in probability as N →∞. Consider

|σ̂2(g)− σ̃2(g)|
σ̃2(g)

=

∣∣∣∑N
i=1w

2
gi

{
(σ̂2
i+)−1 − (σ2

i+)−1
}

+
∑J

j=1 w̃
2
gj

{
(σ̂2

+j)
−1 − (σ2

+j)
−1
}∣∣∣∑N

i=1w
2
gi(σ

2
i+)−1 +

∑J
j=1 w̃

2
gj(σ

2
+j)
−1

=

∣∣∣∑N
i=1w

2
gi

{
σ2
i+−σ̂2

i+

(σ̂2
i+)(σ2

i+)

}
+
∑J

j=1 w̃
2
gj

{
σ2
+j−σ̂2

+j

(σ̂2
+j)(σ

2
+j)

}∣∣∣∑N
i=1w

2
gi(σ

2
i+)−1 +

∑J
j=1 w̃

2
gj(σ

2
+j)
−1

≤

∣∣∣∑N
i=1w

2
gi

{∑
j∈SJ (i) |σ2

ij−σ̂2
ij |

(σ̂2
i+)(σ2

i+)

}
+
∑J

j=1 w̃
2
gj

{∑
i∈SN (j) |σ2

ij−σ̂2
ij |

(σ̂2
+j)(σ

2
+j)

}∣∣∣∑N
i=1w

2
gi(σ

2
i+)−1 +

∑J
j=1 w̃

2
gj(σ

2
+j)
−1

. (24)
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Since m∗ij , m̂ij ∈ R, 0 < σ2
ij , σ̂

2
ij < 1. Note that there exist 0 < c4, c5 <∞ that

σ2
i+, σ̂

2
i+ > c4J∗, σ2

+j , σ̂
2
+j > c5N∗.

Further note that there exists a positive c6 <∞ such that

max
i,j,zij=1

|σ2
ij − σ̂2

ij | ≤ c6 max
i,j,zij=1

|m∗ij − m̂ij |

= op(1), as N →∞.

where the last line follows from (8). It follows∑
j∈SJ (i) |σ2

ij − σ̂2
ij |

(σ̂2
i+)(σ2

i+)
= op

(
J−1
∗
)
, (25)∑

i∈SN (j) |σ2
ij − σ̂2

ij |
(σ̂2

+j)(σ
2
+j)

= op
(
N−1
∗
)
. (26)

Moreover, we note that ‖wg‖1, ‖w̃g‖1 < C implies that
∑N

i=1w
2
gi < c7 and

∑J
j=1 w̃

2
gj < c7

for some c7 <∞. From (24), it can be implied that

|σ̂2(g)− σ̃2(g)|
σ̃2(g)

= op(1), as N →∞,

where the above result follows from (25), (26) and the assumption that g(x) 6= 0 for any
x ∈ ΩN . Since we have shown σ̃(g)−1{g(M̂) − g(M∗)} → N(0, 1) in distribution in the
first part of the proof, it follows that σ̂(g)−1{g(M̂) − g(M∗)} → N(0, 1) in distribution as
N →∞.

Next, we give proof of Proposition 3 below.
Proof [Proof of Proposition 3]

We prove the first part of the proposition by direct construction; in particular, we find
the solutions for θ and β, respectively, given equations

∑N
i=1 θi = 0 and θi − βj = mij ,

i = 1, ..., N, j = 1, ..., J , for which zij = 1. We first construct the solution for βj , j =
1, ..., J . The idea is to include all the row parameters θi so that we can apply the constraint∑N

i=1 θi = 0.
Denote SJ(i) = {j = 1, ...J : zij = 1}, SN (j) = {i = 1, ..., N : zij = 1}, and SNφ(j) =

{1, 2, ..., N} \ SN (j). Then for any i ∈ SN (j), we use mij = θi − βj in the construction.
While for each i ∈ SNφ(j), applying Condition 2, there must exist 1 ≤ ii1, ii2, ..., iik ≤ N
and 1 ≤ ji1, ji2, ..., jik ≤ J such that

zi,ji1 = zii1,ji1 = zii1,ji2 = zii2,ji2 = ... = ziik,jik = ziik,j = 1,

with

mi,ji1 −mii1,ji1 +mii1,ji2 −mii2,ji2 + ...−miik,jik +miik,j

=(θi − βji1)− (θii1 − βji1) + (θii1 − βji2)− (θii2 − βji2) + ...− (θiik − βjik) + (θiik − βj)
=θi − βj .
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Therefore, the solution for βj is simply

βj =− 1

N

{ ∑
i∈SN (j)

mij

+
∑

i∈SNφ (j)

(
mi,ji1 −mii1,ji1 +mii1,ji2 −mii2,ji2 + ...−miik,jik +miik,j

)}
.

To find solution for θi,

θi =
1

|SJ(i)|
∑

j∈SJ (i)

[
mij −

1

N

{ ∑
i′∈SN (j)

mi′j

+
∑

i′∈SNφ (j)

(
mi′,ji′1

−mi′
i′1,ji′1

+mi′
i′1,ji′2

−mi′
i′2,ji′2

+ ...−mi′
i′k,ji′k

+mi′
i′k,j

)}]
,

where |SJ(i)| denotes the cardinality of Sj(i). This concludes the proof for the first part of
the proposition.

We can view the row parameters and column parameters as a bipartite graph G, with one
part consisting of row parameters as nodes (denoted as {i = 1, ..., N} for simplicity) and the
other consisting of column parameters as nodes (denoted as {j = 1, ..., J} for simplicity). If
zij = 1, then there is an edge connecting i and j in G. For the second part of the proposition,
note if Condition 2 is not satisfied, then there exists at least one pair of (i, j) such that there
does not exist a path connecting them in graph G. This means (claim): G can be separated
into at least two sub-graphs. Denote the two sub-graphs by G1 and G2 respectively. The
above claim can be proved by a contradiction argument as follows. Suppose not, then there
exist either i′1 ∈ G1 and j′2 ∈ G2 with zi′1j′2 = 1, or j′1 ∈ G1 and i′2 ∈ G2 with zi′2j′1 = 1.
By assumption there must exist a path connecting any two nodes within each of the two
sub-graphs, otherwise we could split G into two sub-graphs. Therefore, there must exist a
path connecting the pair (i, j). A contradiction.

Now, denote {θi1 , βj1 : 1 ≤ i1 ≤ N, 1 ≤ j1 ≤ J} and {θi2 , βj2 : 1 ≤ i2 ≤ N, 1 ≤ j2 ≤ J}
as the values associated with the nodes in G1 and in G2 respectively and together also serving
as a solution set satisfying

∑N
i=1 θi = 0 and θi − βj = mij , i = 1, ..., N, j = 1, ..., J, zij = 1.

Let ni1 and ni2 denote the number of row parameters in G1 and in G2 respectively. Let τ =
ni1/ni2 . For any constant a, let θ̃i1 = θi1 +a, β̃j1 = βj1 +a and θ̃i2 = θi2−τa, β̃j2 = βj2−τa.
We can check easily that (θ̃, β̃) is also a solution to the system but (θ̃, β̃) 6= (θ, β). To show
mij is not identifiable for zij = 0, we consider the same construction as above. Note that
for any θi1 ∈ G1 and βj2 ∈ G2 so that zi1,j2 = 0, θ̃i1 − β̃j2 = θi1 − βj2 + (1 + τ)a 6= θi1 − βj2
unless a = 0. Therefore, mij is not identifiable for zij = 0. This concludes the proof for the
second part of the proposition.

Appendix B: Proofs of Supporting Lemmas

Appendix B includes the proofs of the supporting lemmas used in the proofs of the theorems
and the proposition developed in the main article.
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To begin with, we first give some intuition on how to obtain the approximation formula
for σ2(g), as summarized in Lemmas 20, 21 and 22 below. Specifically, Lemmas 20, 21 and
22 hold under all conditions 1—4 and will be used in the proofs of other supporting lemmas,
which will be given later in Appendix B.

First note that it is a property of the exponential family that σ(g) = supx∈ΩN {|g(x)| :
‖x‖2σ ≤ 1} (see e.g. page 823 of Haberman (1977)). σ2(g) can be viewed as the solution to
a constrained quadratic programming problem, i.e.

max
θ,β

{ N∑
i=1

∑
j∈SJ (i)

wij(θi − βj)
}2

such that
N∑
i=1

∑
j∈SJ (i)

σ2
ij(θi − βj)2 ≤ 1,

N∑
i=1

θi = 0. (27)

An explicit form is often difficult to derive, so an approximation is desired for both imple-
mentation and inference purposes. We consider a three-way decomposition of the coefficients
of g that lies in the constrained solution space, and convert this quadratic programming to
a linear system from which σ2(g) can be solved. The results are summarized in Lemma 20
below.

Lemma 20. Define a vector d(g) =
{
dij(g) : i = 1, ..., N, j = 1, ..., J, zij = 1, dij(g) ∈ R

}
with a three-way decomposition dij(g) = b(g) +fi(g) +mj(g), such that [d(g), x]σ = g(x) for
x ∈ ΩN and fi(g),mj(g) satisfying

N∑
i=1

σ2
i+fi(g) = 0, (28)

J∑
j=1

σ2
+jmj(g) = 0. (29)

Then, we have

σ2(g) = b2(g)σ2
++ +

N∑
i=1

σ2
i+f

2
i (g) +

J∑
j=1

σ2
+jm

2
j (g) + 2

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g). (30)

Proof [Proof of Lemma 20] Note σ2(g) is a solution to the quadratically constrained
quadratic programming problem (27). From Haberman (1977, pages 835-837), the con-
struction of d(g) in the lemma lies in the required solution space of (27). As a result, σ2(g)
can be expressed directly as σ2(g) = ‖d(g)‖2σ. We just need to find an explicit expression
of ‖d(g)‖2σ in terms of b(g), fi(g),mj(g).

37



Chen, Li, Ouyang and Xu

First consider x ∈ ΩN such that xij = y are identical for all i = 1, ..., N, j = 1, ..., J, zij =
1. Then in such cases,

g(x) = [d(g), x]σ

=
N∑
i=1

∑
j∈SJ (i)

{
b(g) + fi(g) +mj(g)

}
σ2
ijy

= b(g)σ2
++y +

N∑
i=1

( ∑
j∈SJ (i)

σ2
ij

)
fi(g)y +

J∑
j=1

( ∑
i∈SN (j)

σ2
ij

)
mj(g)y

= b(g)σ2
++y +

N∑
i=1

σ2
i+fi(g)y +

J∑
j=1

σ2
+jmj(g)y

= b(g)σ2
++y, (31)

where the last step follows from (28) and (29). Also by the original definition of g, we have

g(x) =

N∑
i=1

∑
j∈SJ (i)

wijy = w++y. (32)

Since (31) and (32) hold for any y, we must have

b(g) = (σ2
++)−1w++. (33)

Next consider x ∈ ΩN such that xij = yi, yi ∈ R, for any i = 1, ..., N, j = 1, ..., J, zij = 1,
then

g(x) = [d(g), x]σ =

N∑
i=1

∑
j∈SJ (i)

dij(g)σ2
ijyi =

N∑
i=1

yi

( ∑
j∈SJ (i)

dij(g)σ2
ij

)
. (34)

From the original definition of g,

g(x) =
N∑
i=1

∑
j∈SJ (i)

wijyi =
N∑
i=1

yi

( ∑
j∈SJ (i)

wij

)
. (35)

Since (34) = (35) for any yi, it follows that∑
j∈SJ (i)

dij(g)σ2
ij =

∑
j∈SJ (i)

wij = wi+, i = 1, ..., N. (36)

Consider

fi(g) +mj(g) = dij(g)− b(g)∑
j∈SJ (i)

{
fi(g) +mj(g)

}
σ2
ij =

∑
j∈SJ (i)

{
dij(g)− b(g)

}
σ2
ij

σ2
i+fi(g) +

∑
j∈SJ (i)

σ2
ijmj(g) =

∑
j∈SJ (i)

dij(g)σ2
ij − σ2

i+b(g)

σ2
i+fi(g) +

∑
j∈SJ (i)

σ2
ijmj(g) = wi+ − (σ2

++)−1w++σ
2
i+, i = 1, ..., N, (37)
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where the last line follows from (33) and (36). Similarly, we consider x ∈ ΩN such that
xij = yj , yj ∈ R for any i = 1, ..., N, j = 1, ..., J, zij = 1, then

g(x) = [d(g), x]σ =
J∑
j=1

∑
i∈SN (j)

dij(g)σ2
ijyj

=
J∑
j=1

yj

( ∑
i∈SN (j)

dij(g)σ2
ij

)
. (38)

Again by the original definition of g,

g(x) =
J∑
j=1

∑
i∈SN (j)

wijyj =
J∑
j=1

yj

( ∑
i∈SN (j)

wij

)
. (39)

Since (38) = (39) for any yj ∈ R, it follows∑
i∈SN (j)

dij(g)σ2
ij =

∑
i∈SN (j)

wij = w+j . (40)

Similarly,

fi(g) +mj(g) = dij(g)− b(g)∑
i∈SN (j)

{
fi(g) +mj(g)

}
σ2
ij =

∑
i∈SN (j)

{
dij(g)− b(g)

}
σ2
ij

σ2
+jmj(g) +

∑
i∈SN (j)

σ2
ijfi(g) =

∑
i∈SN (j)

dij(g)σ2
ij − σ2

+jb(g)

σ2
+jmj(g) +

∑
i∈SN (j)

σ2
ijfi(g) = w+j − (σ2

++)−1w++σ
2
+j , j = 1, ..., J, (41)

where the last line follows from (33) and (40). Note that all b(g), fi(g),mj(g) can be
obtained by solving a system of N + J + 1 linear equations from (33), (37) and (41). Now
we seek to derive a simplified expression for ‖d(g)‖2σ in terms of b(g), fi(g),mj(g).

σ2(g) =‖d(g)‖2σ

=
N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + fi(g) +mj(g)

}2

=b(g)
N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + fi(g) +mj(g)

}
(42)

+

N∑
i=1

∑
j∈SJ (i)

fi(g)σ2
ij

{
b(g) + fi(g) +mj(g)

}
(43)

+

N∑
i=1

∑
j∈SJ (i)

mj(g)σ2
ij

{
b(g) + fi(g) +mj(g)

}
. (44)
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Let us consider each of these three terms separately,

(42) = b2(g)σ2
++ + b(g)

N∑
i=1

fi(g)
( ∑
j∈SJ (i)

σ2
ij

)
+ b(g)

J∑
j=1

mj(g)
( ∑
i∈SN (j)

σ2
ij

)

= b2(g)σ2
++ + b(g)

N∑
i=1

σ2
i+fi(g) + b(g)

J∑
j=1

σ2
+jmj(g)

= b2(g)σ2
++.

(43) = b(g)
N∑
i=1

fi(g)
( ∑
j∈SJ (i)

σ2
ij

)
+

N∑
i=1

f2
i (g)

( ∑
j∈SJ (i)

σ2
ij

)
+

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

= b(g)

N∑
i=1

fi(g)σ2
i+ +

N∑
i=1

σ2
i+f

2
i (g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

=

N∑
i=1

σ2
i+f

2
i (g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).

(44) = b(g)

J∑
j=1

mj(g)
( ∑
i∈SN (j)

σ2
ij

)
+

J∑
j=1

m2
j (g)

( ∑
i∈SN (j)

σ2
ij

)
+

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

= b(g)

J∑
j=1

σ2
+jmj(g) +

J∑
j=1

σ2
+jm

2
j (g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

=

J∑
j=1

σ2
+jm

2
j (g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).

Combining three terms together, the result of the lemma follows with

σ2(g) = ‖d(g)‖2σ = b2(g)σ2
++ +

N∑
i=1

σ2
i+f

2
i (g) +

J∑
j=1

σ2
+jm

2
j (g) + 2

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).

As in the proof of Lemma 20, we can solve a system of N + J + 1 linear equations
from (33), (37) and (41) for fi(g), i = 1, ..., N , mj(g), j = 1, ..., J and b(g). Then an exact
expression for σ2(g) can be obtained by substituting these values into (30). However, when
N and J are large, it is difficult to solve this large system of linear equations. Furthermore,
to study the order of σ2(g), we need an analytical form for analysis. The following set-ups
are used to find an approximation for σ2(g). Define γN > 0 to be the largest number such
that for all i = 1, ..., N, j = 1, ..., J, zij = 1,

x2σ2
ij ≥ γN

( 1

|SJ(i)|
x2σ2

i+ +
1

|SN (j)|
x2σ2

+j

)
, x ∈ R, (45)
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where |SJ(i)| and |SN (j)| are the cardinalities of SJ(i) and SN (j) respectively. Note that
there exist some γ > 0 such that γN > γ for all N. For i = 1, ..., N and j = 1, ..., J , further
define

f ′i(g) = (σ2
i+)−1wi+ − (σ2

++)−1w++, (46)

m′j(g) = (σ2
+j)
−1w+j − (σ2

++)−1w++, (47)

f ′′i (g) = fi(g)− f ′i(g), (48)

m′′j (g) = mj(g)−m′j(g), . (49)

Then for i = 1, ..., N, j = 1, ..., J with zij = 1, define

σ̌2
ij = σ2

ij − γN
( 1

|SJ(i)|
σ2
i+ +

1

|SN (j)|
σ2

+j

)
, (50)

d′ij(g) = b(g) + f ′i(g) +m′j(g), (51)

d′′ij(g) = f ′′i (g) +m′′j (g) = dij(g)− d′ij(g). (52)

By triangle inequality, (52) then implies

‖d′(g)‖σ − ‖d′′(g)‖σ ≤ ‖d(g)‖σ ≤ ‖d′(g)‖σ + ‖d′′(g)‖σ.

We seek to use ‖d′(g)‖σ as an approximation to σ(g) = ‖d(g)‖σ while showing ‖d′′(g)‖σ
is a negligible term asymptotically under certain conditions. The analytical expression for
‖d′(g)‖σ is given in Lemma 21 below.

Lemma 21. If d′(g) is defined as in (51), then

‖d′(g)‖2σ =
N∑
i=1

w2
i+(σ2

i+)−1 +
J∑
j=1

w2
+j(σ

2
+j)
−1

+ 2

N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)−1(σ2

+j)
−1 − 3w2

++(σ2
++)−1.

Proof [Proof of Lemma 21] Following from the definition of d′(g), we can write
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‖d′(g)‖2σ =
N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + (σ2

i+)−1wi+ + (σ2
+j)
−1w+j − 2(σ2

++)−1w++

}2

= b(g)
N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + (σ2

i+)−1wi+ + (σ2
+j)
−1w+j − 2(σ2

++)−1w++

}
(53)

+
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
i+)−1wi+

{
b(g) + (σ2

i+)−1wi+ + (σ2
+j)
−1w+j − 2(σ2

++)−1w++

}
(54)

+
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
+j)
−1w+j

{
b(g) + (σ2

i+)−1wi+ + (σ2
+j)
−1w+j − 2(σ2

++)−1w++

}
(55)

− 2

N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
++)−1w++

{
b(g) + (σ2

i+)−1wi+ + (σ2
+j)
−1w+j − 2(σ2

++)−1w++

}
.

(56)

We evaluate each of these four terms separately. For the first term,

(53) =b2(g)σ2
++ + b(g)

N∑
i=1

( ∑
j∈SJ (i)

σ2
ij

)
(σ2
i+)−1wi+ − b(g)w++ + b(g)

J∑
j=1

w+j − b(g)w++

=b2(g)σ2
++

=(σ2
++)−1w2

++,

where the last line follows from (33). Now consider the second term,

(54) =b(g)w++ +

N∑
i=1

w2
i+(σ2

i+)−1 +

N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
i+)−1wi+(σ2

+j)
−1w+j − 2(σ2

++)−1w2
++

=− (σ2
++)−1w2

++ +

N∑
i=1

w2
i+(σ2

i+)−1 +

N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)−1(σ2

+j)
−1.

Now consider the third term,

(55) =b(g)w++ +

N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
+j)
−1w+j(σ

2
i+)−1wi+ +

J∑
j=1

w2
+j(σ

2
+j)
−1 − 2(σ2

++)−1w2
++

=− (σ2
++)−1w2

++ +

J∑
j=1

w2
+j(σ

2
+j)
−1 +

N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)−1(σ2

+j)
−1.
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Now consider the last term,

(56) = −2b(g)w++ − 2(σ2
++)−1w2

++ − 2(σ2
++)−1w2

++ + 4b(g)w++

= −2(σ2
++)−1w2

++ − 2(σ2
++)−1w2

++ − 2(σ2
++)−1w2

++ + 4(σ2
++)−1w2

++

= −2w2
++(σ2

++)−1.

Combining all these four terms together, we obtain

‖d′(g)‖2σ =
N∑
i=1

w2
i+(σ2

i+)−1 +
J∑
j=1

w2
+j(σ

2
+j)
−1

+ 2

N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)−1(σ2

+j)
−1 − 3w2

++(σ2
++)−1.

Hence the result of the lemma follows.

Lemma 22 below gives an analytical upper bound for ‖d′′(g)‖σ so that we can show it
is a negligible term under certain conditions. Define

li = −
∑

j∈SJ (i)

w+jσ
2
ij(σ

2
+j)
−1 + w++σ

2
i+(σ2

++)−1, i = 1, ..., N, (57)

vj = −
∑

i∈SN (j)

wi+σ
2
ij(σ

2
i+)−1 + w++σ

2
+j(σ

2
++)−1, j = 1, ..., J. (58)

Lemma 22. If li and vj are defined as in (57) and (58), respectively, then

‖d′′(g)‖σ ≤γ−1
N

[ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
j=1

v2
j (σ

2
+j)
−1
]
.

Proof [Proof of Lemma 22] From the definitions of f ′′i ,m
′′
j , li and vj as in (48), (49), (57)

and (58), respectively, it can be easily verified that

σ2
i+f
′′
i +

∑
j∈SJ (i)

σ2
ijm
′′
j = li, i = 1, ..., N,

σ2
+jm

′′
j +

∑
i∈SN (j)

σ2
ijf
′′
i = vj , j = 1, ..., J.
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It can be shown ‖d′′(g)‖2σ =
∑N

i=1 f
′′
i li +

∑J
j=1m

′′
j vj , which can be seen as follows,

N∑
i=1

f ′′i li +
J∑
j=1

m′′j vj =
N∑
i=1

f ′′i
(
σ2
i+f
′′
i +

∑
j∈SJ (i)

σ2
ijm
′′
j

)
+

J∑
j=1

m′′j
(
σ2

+jm
′′
j +

∑
i∈SN (j)

σ2
ijf
′′
i

)
=

N∑
i=1

σ2
i+f
′′2
i +

J∑
j=1

σ2
+jm

′′2
j + 2

N∑
i=1

∑
j∈SJ (i)

f ′′i m
′′
jσ

2
ij

=
N∑
i=1

∑
j∈SJ (i)

(f ′′i +m′′j )
2σ2
ij

= ‖d′′(g)‖2σ.

Furthermore, by Rao (1973, page 60),
∑N

i=1 f
′′
i li+

∑J
j=1m

′′
j vj is the largest value of

(∑N
i=1 xili+∑J

j=1 yjvj
)2
, for xi ∈ R, i = 1, ..., N and yj ∈ R, j = 1, ..., J such that

∑
i∈SN (j)

1

|SJ(i)|
σ2
i+xi = 0, j = 1, ..., J,

∑
j∈SJ (i)

1

|SN (j)|
σ2

+jyj = 0, i = 1, ..., N,

D(x, y) =
N∑
i=1

∑
j∈SJ (i)

σ2
ij(xi + yj)

2 ≤ 1.

Note

N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2σ̌2
ij

=

N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2
{
σ2
ij − γN

( 1

|SJ(i)|
σ2
i+ +

1

|SN (j)|
σ2

+j

)}

=D(x, y)− γN
N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2
{ 1

|SJ(i)|
σ2
i+ +

1

|SN (j)|
σ2

+j

}

=D(x, y)− γN
{ N∑
i=1

(
x2
iσ

2
i+ +

∑
j∈Sj(i)

1

|SN (j)|
x2
iσ

2
+j

)
+

J∑
j=1

(
y2
jσ

2
+j +

∑
i∈SN (j)

1

|SJ(i)|
y2
jσ

2
i+

)}

− 2γN

J∑
j=1

yj

{ ∑
i∈SN (j)

1

|SJ(i)|
σ2
i+xi

}
− 2γN

N∑
i=1

xi

{ ∑
j∈SJ (i)

1

|SN (j)|
σ2

+jyj

}

=D(x, y)− γN
{ N∑
i=1

(
x2
iσ

2
i+ +

∑
j∈Sj(i)

1

|SN (j)|
x2
iσ

2
+j

)
+

J∑
j=1

(
y2
jσ

2
+j +

∑
i∈SN (j)

1

|SJ(i)|
y2
jσ

2
i+

)}
.
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Re-arranging the above expression gives,

D(x, y) =γN

{ N∑
i=1

(
x2
iσ

2
i+ +

∑
j∈Sj(i)

1

|SN (j)|
x2
iσ

2
+j

)
+

J∑
j=1

(
y2
jσ

2
+j +

∑
i∈SN (j)

1

|SJ(i)|
y2
jσ

2
i+

)}

+
N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2σ̌2
ij

≥ γN
{ N∑
i=1

x2
iσ

2
i+ +

J∑
j=1

y2
jσ

2
+j

}
.

It follows that

‖d′′(g)‖σ ≤ γ−1
N

[ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
j=1

v2
j (σ

2
+j)
−1
]
.

Next, we give proofs for the supporting lemmas used in the proofs of Proposition 3 and
the proofs of Theorems 5 and 8.

Lemma 10. Assume Conditions 1—3 hold. If Ap = {fij : i = 1, ..., N, j = 1, ..., J, zij =
1} such that fij(x) = xij for x ∈ ΩN . Let CN = |Ap|, the cardinality of Ap. There exist
sequences fN > 0 and dN ≥ 0 satisfying the followings.
(a). As N →∞, f2

N/ logCN →∞.
(b). As N →∞, f2

N (N−1
∗ + J−1

∗ )→ 0.
(c). If y, v ∈ ΩN and ‖y−M∗N‖σ(Ap) ≤ fN , then there exists n <∞ such that for all N > n,
‖UN (y, v)‖σ(Ap) ≤ dN‖y −M∗N‖σ(Ap)‖v‖σ(Ap). Furthermore, dNfN → 0 as N →∞.
Proof Condition 3(a) assumes J−1

∗ logN → 0, which implies that logN∗ � J∗. Then
there must exist a sequence fN > 0 such that logN∗ � f2

N � J∗.

f2
N/ logCN ≥

f2
N

log(J∗N∗)

=
f2
N

log J∗ + logN∗

≥
f2
N

2 logN∗
→∞ as N →∞.

The first inequality follows from the fact that J∗N∗ ≤ CN ≤ J∗N∗. The last line follows
from logN∗ � f2

N . Therefore, the result of part (a) is satisfied. We further note

f2
N (N−1

∗ + J−1
∗ ) ≤

2f2
N

J∗
→ 0 as N →∞. (59)

The last line follows from f2
N � J∗. Therefore, part (b) of the lemma follows. To verify

part (c), first note by Lemma 13, for any point maps fij ∈ Ap, there exist 0 < τ1, τ2 < ∞
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such that for all N > n,

τ−1
1

(
N∗−1 + J∗−1

) 1
2 < σ(fij) < τ−1

2

(
N−1
∗ + J−1

∗
) 1

2 . (60)

By the definition of ‖ · ‖σ(Ap), we have for any y ∈ ΩN , fij ∈ Ap,

|fij(y)| ≤ ‖y‖σ(Ap)σ(fij). (61)

It follows from (60) and (61) that for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|yij | ≤ τ−1
2 ‖y‖σ(Ap)

(
N−1
∗ + J−1

∗
) 1

2 . (62)

Since |σ2(yij)−σ2
ij | ≤ 1, note that there exists a positive τ3 <∞ such that for any y ∈ ΩN ,

one has for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|σ2(yij)− σ2
ij | ≤ τ3|yij −m∗ij |. (63)

Since Ap consists of point maps only, by the definition of ‖·‖σ(Ap), we have ‖UN (y, v)‖σ(Ap)
is the maximum value of |fij

{
UN (y, v)

}
|/σ(fij) over fij ∈ Ap. Therefore, upper bounding

‖UN (y, v)‖σ(Ap) is equivalent to upper bounding all |Uij(y, v)|/σ(fij). Note that for any
i = 1, ..., N, j = 1, ..., J, zij = 1,

|Uij(y, v)| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

[
di′j′(fij)

{
σ2(yi′j′)− σ2

i′j′
}
vi′j′

]∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

{
|di′j′(fij)|

}{
|σ2(yi′j′)− σ2

i′j′ |
}{
|vi′j′ |

}
≤

N∑
i′=1

∑
j′∈SJ (i′)

{
|di′j′(fij)|

}{
τ3|yi′j′ −m∗i′j′ |

}{
|vi′j′ |

}
≤ τ−2

2 τ3

(
N−1
∗ + J−1

∗
){
‖y −M∗N‖σ(Ap)‖v‖σ(Ap)

}{ N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(fij)|
}
,

where the second last line follows from (63) and the last line follows from (62). Further
note that

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(fij)| ≤
N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(fij)|+
N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(fij)|.

By definition, d′i′j′(g) = (σ2
i′+)−1wi′+ + (σ2

+j′)
−1w+j′ − (σ++)−1w++ for any g ∈ Ω∗N . When

g = fij , wi′+ = 0 if i′ 6= i, and wi′+ = 1 if i′ = i, w+j′ = 0 if j′ 6= j, and w+j′ = 1 if j′ = j,
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and w++ = 1. Therefore, we can rewrite

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(fij)| =
N∑
i′=1

∑
j′∈SJ (i′)

∣∣∣(σ2
i′+)−1wi′+ + (σ2

+j′)
−1w+j′ − (σ++)−1w++

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

(σ2
i′+)−1|wi′+|+

N∑
i′=1

∑
j′∈SJ (i′)

(σ2
+j′)

−1|w+j′ |

+
N∑
i′=1

∑
j′∈SJ (i′)

(σ++)−1|w++|

=
∑

j′∈SJ (i)

(σ2
i+)−1 +

∑
i′∈SN (j)

(σ2
+j)
−1 +

N∑
i′=1

∑
j′∈SJ (i′)

(σ++)−1 ≤ τ4,

where τ4 is some positive constant such that τ4 < ∞. Note also that there exists τ5 < ∞
such that

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(fij)| ≤ (J∗N∗)
1
2 ‖d′′(fij)‖σ ≤ τ5.

where the last inequality is from (69) that ‖d′′(fij)‖σ = o(N∗−1). As a result,

‖UN (y, v)‖σ(Ap) ≤ τ1τ
−2
2 τ3(τ4 + τ5)

(
N−1
∗ + J−1

∗
) 1

2

{
‖y −M∗N‖σ(Ap)‖v‖σ(Ap)

}
.

Therefore, we can set dN = τ1τ
−2
2 τ3(τ4 + τ5)

(
N−1
∗ + J−1

∗
) 1

2 . By (59), we have fN (N−1
∗ +

J−1
∗ )1/2 → 0 as N →∞. Therefore, it follows

dNfN = τ1τ
−2
2 τ3(τ4 + τ5)

(
N−1
∗ + J−1

∗
) 1

2 fN → 0, as N →∞.

Hence, the result of part (c) is also satisfied.

Lemma 11. Let A ⊂ Ω∗N . Let CN denote the cardinality of A. If there exist sequences
fN > 0 and dN ≥ 0 satisfying (a). 0 < CN < ∞ and f2

N/ logCn → ∞ as N → ∞,
(b). If y, v ∈ ΩN and ‖y − M∗N‖σ(A) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(A) ≤ dN‖y −M∗N‖σ(A)‖v‖σ(A), (c). dNfN → 0 as N → ∞. Then
pr
(
‖RN‖σ(A) < 1

2fN
)
→ 1 as N →∞.

Proof Denote A = {gk : k = 1, ..., CN} and let wk ∈ ΩN be defined for k = 1, ..., CN by
gk(x) = [wk, x]σ, x ∈ ΩN . Let Wk = ‖wk‖−1

σ

∑N
i=1

∑
j∈SJ (i)wijk(Yij − Eij) for k = 1, ..., CN

so that ‖RN‖σ(A) = maxk=1,...,CN |Wk|. We consider the log moment generating function of

47



Chen, Li, Ouyang and Xu

Wk, denoted as logGk(t). Write w′k = wk/‖wk‖σ, k = 1, ..., CN , for simplicity, and we have

logGk(t) = logE[etWk ]

= logE
[

exp
{ t

‖wk‖σ

N∑
i=1

∑
j∈SJ (i)

wijk(Yij − Eij)
}]

= −t
N∑
i=1

∑
j∈SJ (i)

w′ijkEij + log

N∏
i=1

∏
j∈SJ (i)

E
{

exp(tw′ijkYij)
}
, by independence

= −t
N∑
i=1

∑
j∈SJ (i)

w′ijkEij +

N∑
i=1

∑
j∈SJ (i)

logE
{

exp(tw′ijkYij)
}

=

N∑
i=1

∑
j∈SJ (i)

[
log{1 + exp(m∗ij)}−1 − log{1 + exp(tw′ijk +m∗ij)}−1 − tw′ijkEij

]

=
N∑
i=1

∑
j∈SJ (i)

[
log{h(m∗ij)} − log{h(tw′ijk +m∗ij)} − tw′ijkEij

]
, (64)

where we have denoted h(x) = {1+exp(x)}−1. We apply Taylor expansion to log{h(tw′ijk+
m∗ij)} with respect to m∗ij . For some t′ = αt with 0 < α < 1, we have,

log{h(tw′ijk +m∗ij)} = log h(m∗ij)− Eijtw′ijk −
t2

2
w′2ijkσ

2
(
m∗ij + t′w′ijk

)
.

Substitute into (64),

logGk(t) =
t2

2

N∑
i=1

∑
j∈SJ (i)

w′2ijkσ
2
(
m∗ij + t′w′ijk

)
, |t| ≤ fN .

Applying Markov inequality, we have

pr
(
Wk ≥

1

2
fN

)
= pr

{
exp(fNWk/2) ≥ exp(f2

N/4)
}

≤ E{exp(fNWk/2)}

exp
(
f2
N/4

)
= exp

(
− 1

4
f2
N

)
Gk

(1

2
fN

)
, k = 1, ..., CN ,

and similarly we get

pr
(
−Wk ≥

1

2
fN

)
≤ exp

(
− 1

4
f2
N

)
Gk

(
− 1

2
fN

)
, k = 1, ..., CN .

Furthermore note that,

logGk

(1

2
fN

)
, logGk

(
− 1

2
fN

)
≤ 1

8
f2
N

(
1 +

dNfN
2

)
k = 1, ..., CN .
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Applying the Bonferroni inequality,

pr
{
‖RN‖σ(A) ≥ 1

2
fN

}
≤ 2CN exp

{
− 1

8
f2
N

(
1− dNfN

2

)}
= 2 exp

{
logCN −

1

8
f2
N

(
1− dNfN

2

)}
→ 0 as N →∞,

where the last step follows from the assumption f2
N/ logCN → ∞ as N → ∞. Hence the

result of the lemma follows.

Lemma 12. Assume Conditions 1—3 hold. Let A ⊂ Ω∗N . If there exist sequences fN > 0
and dN ≥ 0 satisfying (a). pr

(
‖RN‖σ(A) < 1

2fN
)
→ 1 as N → ∞, (b). If y, v ∈ ΩN and

‖y −M∗N‖σ(A) ≤ fN , then there exists n < ∞ such that for all N > n, ‖UN (y, v)‖σ(A) ≤
dN‖y −M∗N‖σ(A)‖v‖σ(A), (c). dNfN → 0 as N →∞. Then, as N →∞, with probability
approaching 1 that,∣∣∣‖M̂N −M∗N‖σ(A)

‖RN‖σ(A)
− 1
∣∣∣ ≤ d 1

2
N → 0 and ‖M̂N −M∗N −RN‖σ(A) ≤ dN‖RN‖2σ(A).

Proof Write zN = ‖RN‖σ(A) for simplicity. Consider a sequence {hNk : k = 0, 1, ...}, with
hN0 = 0 and hN(k+1) = zN + dNh

2
Nk/2 for k = 0, 1, 2, . . . . Define another sequence

lN =
2zN

1 + (1− 2zNdN )
1
2

.

By Kantorovich and Akilov (1964, pages 695-711), if zN < 1
2fN and zNdN < 1

2 (which hold
with probability tending to 1 by (a), (b) and (c)), it follows

‖tNk − M̂N‖σ(A) ≤ lN − hNk, k = 0, 1, 2, ..., (65)

where {tNk : k = 0, 1, ...} is the sequence constructed in the proof of Theorem 5. When
k = 0, (65) implies ‖M∗N − M̂N‖σ(A) ≤ lN . When k = 1, (65) implies

‖M∗N +RN − M̂N‖σ(A) ≤ lN − zN . (66)

It follows that
∣∣‖M∗N − M̂N‖σ(A)− ‖RN‖σ(A)

∣∣ ≤ lN − zN , where

lN − zN =
zN{1− (1− 2zNdN )

1
2 }

1 + (1− 2zNdN )
1
2

.

If we view x = zNdN and f(x) = {1 − (1 − 2x)1/2}/{1 + (1 − 2x)1/2}. We note f(0) = 0,
f(1/2) = 1 and f ′(0) = 1/4 < 1 and f ′′(x) > 0 for all x < 1/2. Therefore, f(x) < x for
all x < 1/2. Hence, whenever dNzN < 1/2, we must have lN − zN ≤ dNz

2
N . We know that

with probability tending to 1 that dNzN < 1/2. Hence the second part of the lemma follows
from (66). Also as N →∞, with probability approaching 1 that,∣∣∣‖M̂N −M∗N‖σ(A)− ‖RN‖σ(A)

∣∣∣2 ≤ dN‖RN‖2σ(A). (67)
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Re-write (67), the result of the first part of the lemma then follows.

Lemma 13. Assume Conditions 1—3 hold and
∑N

i=1 θi = 0, the asymptotic variance of
the maximum likelihood estimator of m∗ij , var(m̂ij), for any i = 1, ..., N and j = 1, ..., J ,
takes the form,

var(m̂ij) = (σ2
i+)−1 + (σ2

+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

Proof If zij = 1, then we can simply use a linear function fij with fij(x) = xij . We
apply ‖d′(fij)‖2σ to approximate σ2(fij). With wi+ = 1, wk+ = 0, for all k = 1, ..., i− 1, i+
1, ..., N,w+j = 1, w+l = 0 for all l = 1, ..., j − 1, j + 1, ..., J and w++ = 1. We obtain

‖d′(fij)‖2σ = (σ2
i+)−1 + (σ2

+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

If zij = 0, then we can apply Condition 2, there must exist 1 ≤ i1, i2, ...., ik ≤ N and
1 ≤ j1, j2, ...., jk ≤ J such that zij1 = zi1j1 = zi1j2 = zi2j2 = ... = zikjk = zikj = 1. Consider
a linear function g2 defined as

gij(x) = xij1 − xi1j1 + xi1j2 − xi2j2 + ...+ xik−1jk − xikjk + xikj

= θi − βj .

In this case, similarly we have wi+ = 1, wk+ = 0, for all k = 1, ..., i − 1, i + 1, ..., N,w+j =
1, w+l = 0 for all l = 1, ..., j − 1, j + 1, ..., J and w++ = 1. Note these values are exactly the
same as those of g1. Therefore,

‖d′(gij)‖2σ = (σ2
i+)−1 + (σ2

+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

In both cases, ‖d′′(g)‖2σ = o(N∗−2). To see this, note that in both cases above,

lp =

{
−σ2

pj(σ
2
+j)
−1 + σ2

p+(σ2
++)−1 if zpj = 1

σ2
p+(σ2

++)−1 if zpj = 0

= O
(
N−1
∗
)

as N →∞, p = 1, ..., N.

vq =

{
−σ2

iq(σ
2
i+)−1 + σ2

+q(σ
2
++)−1 if ziq = 1

σ2
+q(σ

2
++)−1 if ziq = 0

= O
(
J−1
∗
)

as N →∞, q = 1, ..., J.

It follows that

‖d′′(fij)‖2σ = ‖d′′(gij)‖2σ ≤ γ−2
N

{ N∑
p=1

l2p(σ
2
p+)−1 +

J∑
q=1

v2
q (σ

2
+q)
−1
}2

≤ γ−2
{ N∑
p=1

l2p(σ
2
p+)−1 +

J∑
q=1

v2
q (σ

2
+q)
−1
}2

(68)

= o
(
N∗−2

)
as N →∞, (69)
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where (68) is from the definition for γN that there exist some γ > 0 such that γN > γ for
all N . The last equation (69) follows from Condition 3(b)–(c). Since for any g ∈ Ω∗N ,(

‖d′(g)‖σ − ‖d′′(g)‖σ
)2 ≤ σ2(g) ≤

(
‖d′(g)‖σ + ‖d′′(g)‖σ

)2
,

it follows var(m̂ij) = (σ2
i+)−1+(σ2

+j)
−1+O(N−1

∗ J−1
∗ ) as N →∞. Note that the O(N−1

∗ J−1
∗ )

and o(N∗−2) are negligible comparing with the terms (σ2
i+)−1 and (σ2

+j)
−1.

Lemma 14. Assume Conditions 1–4 hold. If Aβ = {gj : j = 1, ..., J} such that gj ∈ Ω∗N
and gj(x) = βj for x ∈ ΩN . Let CN = |Aβ| = J be the cardinality of Aβ. For any positive

sequence fN such that f2
N/ log J →∞ and f2

NN
−1/2
∗ → 0 as N →∞, there exists a sequence

dN ≥ 0 satisfying the followings.
(a). If y, v ∈ ΩN and ‖y −M∗N‖σ(Aβ) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(Aβ) ≤ dN‖y −M∗N‖σ(Aβ)‖v‖σ(Aβ).
(b). dNf

2
N → 0 as N →∞.

Proof First we note we have log J � N
1/2
∗ by Condition 4(b), so the rate requirements

for fN is valid. To find a valid dN , we seek to upper bound ‖UN (y, v)‖σ(Aβ) and then show
that dNfN → 0 as N → ∞ for all fN satisfying the rate requirements f2

N/ log J → ∞ and

f2
NN

−1/2
∗ → 0 as N →∞. For any y, v ∈ ΩN , by the definition of ‖ · ‖σ(Aβ), we have

‖UN (y, v)‖σ(Aβ) = max
gj∈Aβ

|gj{UN (y, v)}|/σ(gj).

First note that by Lemma 15, σ2(gj) = (σ2
+j)
−1 +O

{
(N∗J∗)

−1
}

for any gj ∈ Aβ. Therefore,

there exist positive 0 < c1, c2 <∞ such that for all N > n, c−1
1 N∗−1/2 < σ(gj) < c−1

2 N
−1/2
∗ ,

for all gj ∈ Aβ. So we just need to find an upper bound for |gj{UN (y, v)}| that holds for all
gj ∈ Aβ. Consider

|gj{UN (y, v)}| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

di′j′(gj){σ2(yi′j′)− σ2
i′j′}vi′j′

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gj)| · |σ2(yi′j′)− σ2
i′j′ | · |vi′j′ |.

Note 0 ≤ σ2(yij), σ
2
ij ≤ 1, so |σ2(yij) − σ2

ij | ≤ 1. It can be implied that there exists some

positive c3 < ∞ such that |σ2(yij) − σ2
ij | ≤ c3|gj(y −M∗N )|. Again, by the definition of

‖ · ‖σ(Aβ), we have |gj(y−M∗N )| ≤ ‖y−M∗N‖σ(Aβ)σ(gj). Therefore, for all i = 1, ..., N, j =
1, ..., J, zij = 1,

|σ2(yij)− σ2
ij | ≤ c−1

2 c3N
−1/2
∗ ‖y −M∗N‖σ(Aβ).

On the other hand, using a similar strategy, we can show that there exists a positive c4 <∞
such that for all i = 1, ..., N, j = 1, ..., J, zij = 1,

|vij | ≤ c−1
2 c4N

−1/2
∗ ‖v‖σ(Aβ).
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Further note that

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gj)| ≤
N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gj)|+
N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gj)|.

By definition, we know d′i′j′ = (σ2
i′+)−1wi′+ +(σ2

+j′)
−1w+j′−(σ2

++)−1w++. For any gj ∈ Aβ,
wi′+ = −1/N, for i′ = 1, ..., N, w+j′ = −1 if j′ = j and w+j′ = 0 if j′ 6= j, w++ = −1.
Hence,

d′i′j′(gj) =

{
− 1
N (σ2

i′+)−1 − (σ2
+j′)

−1 + (σ2
++)−1 if j′ = j

− 1
N (σ2

i′+)−1 + (σ2
++)−1 if j′ 6= j.

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gj)| ≤
J∗

N

N∑
i′=1

(σ2
i′+)−1 +N∗(σ2

+j)
−1 +

N∑
i′=1

∑
j′∈SJ (i′)

(σ2
++)−1 ≤ c5,

for some positive c5 <∞. On the other hand,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gj)| ≤ (N∗J∗)
1
2 ‖d′′(gj)‖σ ≤ c6,

for some positive c6 < ∞. The last step follows from Lemma 15 which implies that
‖d′′(gj)‖σ = o

(
N∗−1

)
. Overall,

‖UN (y, v)‖σ(Aβ) = max
gj∈Aβ

|gj{UN (y, v)}|/σ(gj)

≤ max
gj∈Aβ

|gj{UN (y, v)}| · max
gj∈Aβ

{σ−1(gj)}.

≤ c1c
−2
2 c3c4(c5 + c6)N

− 1
2

∗ ‖y −M∗N‖σ(Aβ)‖v‖σ(Aβ).

Note that by taking dN = c1c
−2
2 c3c4(c5 + c6)N

−1/2
∗ , part (a) of the lemma follows. Further-

more, by the rate requirement of fN , for any positive sequence fN such that log J � f2
N �

N
1/2
∗ , it can be seen easily that dNf

2
N → 0 as N → ∞. Therefore, part (b) of the lemma

follows.

Lemma 15. Assume Conditions 1–4 hold and
∑N

i=1 θi = 0. The asymptotic variance of

the maximum likelihood estimator of an individual column parameter, var(β̂j), asymptoti-
cally attains the oracle variance (σ2

+j)
−1 in the sense that

var(β̂j) = (σ2
+j)
−1 +O(N−1

∗ J−1
∗ ) as N →∞. (70)

Proof We seek to construct a linear function gj ∈ Ω∗N such that gj(x) = βj so that we can

use ‖d′(gj)‖2σ defined in Lemma 21 to approximate var(β̂j). To construct such a gj , we may

want to include all xij , i = 1, ..., N , in gj so that we can apply the constraint
∑N

i=1 θi = 0
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to solve for βj . For i ∈ SN (j), we use xij = θi − βj directly. For each i ∈ SNφ(j), by
Condition 2, there must exist 1 ≤ ii1, ii2, ..., iik ≤ N and 1 ≤ ji1, ji2, ..., jik ≤ J such that
zi,ji1 = zii1,ji1 = zii1,ji2 = zii2,ji2 = ... = ziik,jik = ziik,j = 1, with

xi,ji1 − xii1,ji1 + xii1,ji2 − xii2,ji2 + ...− xiik,jik + xiik,j

=(θi − βji1)− (θii1 − βji1) + (θii1 − βji2)− (θii2 − βji2) + ...− (θiik − βjik) + (θiik − βj)
=θi − βj .

Therefore, we can construct g to be

gj(x) =− 1

N

{ ∑
i∈SN (j)

xij

+
∑

i∈SNφ (j)

(
xi,ji1 − xii1,ji1 + xii1,ji2 − xii2,ji2 + ...− xiik,jik + xiik,j

)}

=− 1

N

{( N∑
i=1

θi

)
−Nβj

}
=βj .

Use ‖d′(gj)‖2σ from Lemma 21 to approximate σ2(gj), with wi+ = −1/N, for all i = 1, ..., N ,
w+j = −1, w+l = 0 for all l = 1, ...j − 1, j + 1, ..., J and w++ = −1. It follows

‖d′(gj)‖2σ = (σ2
+j)
−1 +

1

N2

N∑
i=1

(σ2
i+)−1 +

2

N

∑
i∈SN (j)

σ2
ij(σ

2
i+)−1(σ2

+j)
−1 − 3(σ2

++)−1

=
(
σ2

+j

)−1
+O

(
N−1
∗ J−1

∗
)

as N →∞.

To see whether ‖d′(gj)‖2σ is a good approximation for σ2(gj), we need to evaluate the order
of ‖d′′(gj)‖2σ from Lemma 22. Note

li =

{
σ2
ij(σ

2
+j)
−1 − σ2

i+(σ2
++)−1 if zij = 1

−σ2
i+(σ2

++)−1 if zij = 0

= O
(
N−1
∗
)

as N →∞, i = 1, ..., N.

vq =
1

N

∑
i∈SN (q)

σ2
iq(σ

2
i+)−1 − σ2

+q(σ
2
++)−1

= O
(
J−1
∗
)

as N →∞, q = 1, ..., J.

Applying Lemma 22, we have

‖d′′(gj)‖2σ ≤ γ−2
N

{ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
q=1

v2
q (σ

2
+q)
−1
}2

≤ γ−2
{ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
q=1

v2
q (σ

2
+q)
−1
}2

= o
(
N∗−2

)
as N →∞,
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where the last equation follows from Condition 3(b)–(c). Since(
‖d′(gj)‖σ − ‖d′′(gj)‖σ

)2 ≤ σ2(gj) ≤
(
‖d′(gj)‖σ + ‖d′′(gj)‖σ

)2
,

It follows that var(β̂j) = (σ2
+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

Lemma 16. Assume Conditions 1–4 hold. If Aθ = {gi : i = 1, ..., N} such that gi ∈ Ω∗N
and gi(x) = θi for x ∈ ΩN . Let CN = |Aθ| = N be the cardinality of Aθ. Then for any
positive sequence fN such that f2

N/ logN → ∞ and J−1
∗ f2

N → 0 as N → ∞, there exists a
sequence dN ≥ 0 satisfying the followings.
(a) If y, v ∈ ΩN and ‖y−M∗N‖σ(Aθ) ≤ fN , then there exists n <∞ such that for all N > n,
‖UN (y, v)‖σ(Aθ) ≤ dN‖y −M∗N‖σ(Aθ)‖v‖σ(Aθ).
(b). dNfN → 0 as N →∞.
Proof We first note that from Condition 3(a), logN � J∗ as N → ∞. Therefore, the
rate requirements for the sequence fN , f2

N/ logN → ∞ and J−1
∗ f2

N → 0 as N → ∞, are
valid. Now we seek to upper bound ‖UN (y, v)‖σ(Aθ) to find a sequence dN and then show
that dNfN → 0 for any fN satisfying f2

N/ logN →∞ and J−1
∗ f2

N → 0 as N →∞. For any
y, v ∈ ΩN , by the definition of ‖ · ‖σ(Aθ),

‖UN (y, v)‖σ(Aθ) = max
gi∈Aθ

|gi{UN (y, v)}|/σ(gi).

Note that by Lemma 17, we know that σ2(gi) = (σ2
i+)−1 + O

{
N−1
∗ J−1

∗
}

for any gi ∈ Aθ.
Hence, there exist positive 0 < γ1, γ2 <∞ such that for any i = 1, ..., N,

γ−1
1 J∗−1/2 < σ(gi) < γ−1

2 J
−1/2
∗ .

So we just need to find an upper bound for |gi{UN (y, v)}| that holds for all gi ∈ Aθ. For
any gi ∈ Aθ, we have

|gi{UN (y, v)}| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

di′j′(gi){σ2(yi′j′)− σ2
i′j′}vi′j′

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gi)| · |σ2(yi′j′)− σ2
i′j′ | · |vi′j′ |.

Since σ2(yij), σ
2
ij < 1, so |σ2(yij) − σ2

ij | ≤ 1. It can be implied that there exists a positive

γ3 < ∞ such that |σ2(yij) − σ2
ij | ≤ γ3|gi(y − M∗N )|. From the definition of ‖ · ‖σ(Aθ),

|gi(y −M∗N )| ≤ ‖y −M∗N‖σ(Aθ)σ(gi) for any gi ∈ Aθ. Then it follows that for any i =
1, ..., N, j = 1, ..., J, zij = 1,

|σ2(yij)− σ2
ij | ≤ γ−1

2 γ3J
−1/2
∗ ‖y −M∗N‖σ(Aθ).

Using a similar strategy, we can also show that there exists a positive γ4 <∞ such that for
any i = 1, ..., N, j = 1, ..., J, zij = 1,

|vij | ≤ γ−1
2 γ4J

−1/2
∗ ‖v‖σ(Aθ).
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Similarly, we have

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gi)| ≤
N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gi)|+
N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gi)|.

By definition, we know d′i′j′ = (σ2
i′+)−1wi′+ +(σ2

+j′)
−1w+j′− (σ2

++)−1w++. For any gi ∈ Aθ,
wi′+ = 1 − 1/N, if i′ = i, and wi′+ = −1/N for i′ 6= i, w+j′ = 0 for all j′ = 1, ..., J and
w++ = 0. Hence,

d′i′j′(gi) =

{
(1− 1

N )(σ2
i′+)−1 if i′ = i

− 1
N (σ2

i′+)−1 if i′ 6= i.

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gi)| =
∑

j′∈SJ (i)

(
1− 1

N

)
(σ2
i+)−1 +

N∑
i′=1,i′ 6=i

∑
j′∈SJ (i′)

1

N
(σ2
i′+)−1 ≤ γ5,

for some positive γ5 <∞. On the other hand,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gj)| ≤ (N∗J∗)
1
2 ‖d′′(gi)‖σ ≤ γ6,

for some positive γ6 < ∞. The last step follows from Lemma 17 which implies that
‖d′′(gj)‖σ = o

(
N∗−1

)
. Overall,

‖UN (y, v)‖σ(Aθ) = max
gi∈Aθ

|gi{UN (y, v)}|/σ(gi)

≤ max
gi∈Aθ

|gi{UN (y, v)}| · max
gi∈Aθ

{σ−1(gi)}

≤ γ1γ
−2
2 γ3γ4(γ5 + γ6)J

− 1
2

∗ ‖y −M∗N‖σ(Aθ)‖v‖σ(Aθ).

So we can set dN = γ1γ
−2
2 γ3γ4(γ5 + γ6)J

− 1
2

∗ . Furthermore, by the rate requirement of fN ,

for any positive sequence fN such that (logN)1/2 � fN � J
1/2
∗ , we must have dNfN → 0

as N →∞. Therefore, both part (a) and part (b) of the lemma are satisfied.

Lemma 17. Assume Conditions 1–4 hold and
∑N

i=1 θi = 0, the asymptotic variance of

an individual row parameter, var(θ̂i), asymptotically attains oracle variance (σ2
i+)−1 in the

sense that

var(θ̂i) = (σ2
i+)−1 +O

(
N−1
∗ J−1

∗
)

as N →∞. (71)

Proof We seek to construct a linear function gi ∈ Ω∗N such that gi(x) = θi so that we can

use ‖d′(gi)‖2σ in Lemma 21 to approximate var(θ̂i). Fix some j ∈ SJ(i), i.e. zij = 1, since
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Condition 2 holds, we can use the linear function gj constructed in the proof of Theorem 5
to represent βj , i.e. gj(x) = βj . Hence, gi can easily be constructed with

gi(x) =
1

|SJ(i)|
∑

j∈SJ (i)

{xij + gj(x)}

=
1

|SJ(i)|
∑

j∈SJ (i)

[
xij −

1

N

{ ∑
i′∈SN (j)

xi′j

+
∑

i′∈SNφ (j)

(
xi′,ji′1 − xi′i′1,ji′1 + xi′

i′1,ji′2
− xi′

i′2,ji′2
+ ...− xi′

i′k,ji′k
+ xi′

i′k,j

)}]
= θi.

We use ‖d′(gi)‖2σ from Lemma 21 to approximate σ2(gi) , with wi+ = 1−N−1, wk+ = −N−1,
for all k = 1, ..., i− 1, i+ 1, ..., N,w+j = 0, for all j = 1, ..., J, w++ = 0, we obtain

‖d′(gi)‖2σ =
(
1− 1

N

)2
(σ2
i+)−1 +

1

N2

N∑
k=1,k 6=i

(σ2
k+)−1

= (σ2
i+)−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

To see whether ‖d′(gi)‖2σ is a good approximation for σ2(gi), we evaluate the order of
‖d′′(gi)‖2σ. Note that in this case

lp = 0, p = 1, ..., N.

vq =

{
1
N

∑
k∈SN (q),k 6=i σ

2
kq(σ

2
k+)−1 − (1− 1

N )σ2
iq(σi+)−1 if ziq = 1

1
N

∑
k∈SN (q) σ

2
kq(σ

2
k+)−1 if ziq = 0

= O
(
J−1
∗
)

as N →∞, q = 1, ..., J.

It follows that

‖d′′(gi)‖2σ ≤ γ−2
N

{ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
q=1

v2
q (σ

2
+q)
−1
}2

≤ γ−2
{ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
q=1

v2
q (σ

2
+q)
−1
}2

= o
(
N∗−2

)
as N →∞,

where the last equation follows from Condition 3(b)–(c). Since(
‖d′(gi)‖σ − ‖d′′(gi)‖σ

)2 ≤ σ2(gi) ≤
(
‖d′(gi)‖σ + ‖d′′(gi)‖σ

)2
,

it follows that var(θ̂i) = (σ2
i+)−1 +O(N−1

∗ J−1
∗ ) as N →∞.
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Lemma 18. Assume Conditions 1–4 hold and
∑N

i=1 θi = 0. Consider a linear function

g : ΩN 7→ R with g(M) =
∑N

i=1 hiθi+
∑J

j=1 h
′
jβj . If there exists a positive C <∞ such that∑N

i=1 |hi| < C and
∑J

j=1 |h′j | < C, then

σ2(g) =
N∑
i=1

h2
i (σ

2
i+)−1 +

J∑
j=1

h′2j (σ2
+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

Proof By Proposition 3, we can reexpress function g in terms of mij for i = 1, ..., N, j =

1, ..., J, zij = 1 with g(MN ) =
∑N

i=1

∑
j∈SJ (i)wij(g)mij . In particular, we have,

wi+(g) = hi
(
1− 1

N

)
− 1

N

N∑
i′=1,i′ 6=i

hi′ −
1

N

J∑
j=1

h′j i = 1, ..., N,

w+j(g) = −h′j , j = 1, ..., J,

w++(g) = −
J∑
j=1

h′j .

We apply ‖d′(g)‖2σ from Lemma 21 to approximate σ2(g). Note that

‖d′(g)‖2σ =
N∑
i=1

w2
i+(g)(σ2

i+)−1 +
J∑
j=1

w2
+j(g)(σ2

+j)
−1

+ 2

N∑
i=1

∑
j∈Sj(i)

σ2
ij(σ

2
i+)−1wi+(g)(σ2

+j)
−1w+j(g)− 3(σ2

++)−1w2
++(g)

=

N∑
i=1

h2
i (σ

2
i+)−1 +

J∑
j=1

h′2j (σ2
+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞,

where the last step follows from the assumption that
∑N

i=1 |hi| < C and
∑J

j=1 |h′j | < C. To

see whether ‖d′(g)‖2σ is a good approximation for σ2(g), we need to evaluate the order of
‖d′′(g)‖2σ.Note that for i = 1, ..., N,

li = −
∑

j∈SJ (i)

σ2
ij(σ

2
+j)
−1w+j(g) + σ2

i+(σ2
++)−1w++(g)

=
∑

j∈SJ (i)

σ2
ij(σ

2
+j)
−1h′j − σ2

i+(σ2
++)−1

J∑
j=1

h′j = O
(
N−1
∗
)

as N →∞, (72)
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where the last step follows from
∑J

j=1 |h′j | < C. Similarly for j = 1, ..., J,

vj =−
∑

i∈SN (j)

σ2
ij(σ

2
i+)−1wi+(g) + σ2

+j(σ
2
++)−1w++(g)

=−
∑

i∈SN (j)

σ2
ij(σ

2
i+)−1

{
hi
(
1− 1

N

)
− 1

N

N∑
i′=1,i′ 6=i

hi′ −
1

N

J∑
j=1

h′j

}

− σ2
+j(σ

2
++)−1

J∑
j=1

h′j

=O
(
J−1
∗
)

as N →∞, (73)

where the last step follows from
∑J

j=1 |h′j | < C and
∑N

i=1 |hi| < C. Hence, we have

‖d′′(g)‖2σ ≤ γ−2
N

{ N∑
i=1

l2i (σ
2
i+)−1 +

J∑
j=1

v2
j (σ

2
+j)
−1
}2

= o
(
N∗−2

)
as N →∞,

where the last equation follows from (72), (73) and Condition 3(b)–(c). It follows that

σ2(g) =

N∑
i=1

h2
i (σ

2
i+)−1 +

J∑
j=1

h′2j (σ2
+j)
−1 +O

(
N−1
∗ J−1

∗
)

as N →∞.

Hence, the result of the lemma follows.

Lemma 19. Assume Conditions 1– 4 hold. If Aθ,β = {gi, g′j : i = 1, ..., N, j = 1, ..., J}
such that gi, g

′
j ∈ Ω∗N , and gi(x) = θi and g′j(x) = βj for x ∈ ΩN . Let CN = |Aθ,β|, the

cardinality of Aθ,β. Then there exist sequences fN > 0 and dN ≥ 0 satisfying the followings.
(a). As N →∞, f2

N/ logCN →∞.
(b). If y, v ∈ ΩN and ‖y −M∗N‖σ(Aθ,β) ≤ fN , then there exists n < ∞ such that for all
N > n, ‖UN (y, v)‖σ(Aθ,β) ≤ dN‖y −M∗N‖σ(Aθ,β)‖v‖σ(Aθ,β). Furthermore, dNf

2
N → 0 as

N →∞.
Proof From Condition 4(a), we have J−2

∗ N∗(logN)2 → 0 as N → ∞, there must exists

a positive sequence LN such that LN → ∞ but J−1
∗ N

1/2
∗ (logN)LN → 0 as N → ∞.

Furthermore, note that

log(CN ) = log(N + J) ≤ log(2N) = log(2) + log(N) = O(log(N)) as N →∞.

Let f2
N = {log(N)}LN . It is easy to see that the constructed fN satisfies part (a) of the

lemma.
Now we consider part (b). We seek to find an upper bound for ‖UN (y, z)‖σ(Aθ,β) in

order to find dN and then show that dNf
2
N → 0 as N → ∞. For any y, v ∈ ΩN , by the

definition of ‖ · ‖σ(Aθ,β),

‖UN (y, v)‖σ(Aθ,β) = max
f∈Aθ,β

|f{UN (y, v)}|/σ(f).
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First note from (70) and (71), we know that for any f ∈ Aθ,β, there exist 0 < c1, c2 < ∞
such that for all N > n,

c−1
1 N

− 1
2

∗ < σ(f) < c−1
2 J

− 1
2

∗ .

So we just need to find an upper bound for |f{UN (y, v)}| that holds for all f ∈ Aθ,β. Note
that

|f{UN (y, v)}| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

di′j′(f){σ2(yi′j′)− σ2
i′j′}vi′j′

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(f)| · |σ2(yi′j′)− σ2
i′j′ | · |vi′j′ |. (74)

Note 0 ≤ σ2(yij), σ
2
ij ≤ 1, so |σ2(yij) − σ2

ij | ≤ 1. It can be implied that |σ2(yij) − σ2
ij | ≤

c3|f(y −M∗N )| for some positive c3 < ∞. By the definition of ‖ · ‖σ(Aθ,β), we have |f(y −
M∗N )| ≤ ‖y−M∗N‖σ(Aθ,β)σ(f). Hence, it follows that for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|σ2(yij)− σ2
ij | ≤ c−1

2 c3J
−1/2
∗ ‖y −M∗N‖σ(Aθ,β).

Using a similar strategy, we can show that there exists a positive c4 <∞ such that for any
i = 1, ..., N, j = 1, ..., J, zij = 1,

|vij | ≤ c−1
2 c4J

−1/2
∗ ‖v‖σ(Aθ,β).

Further, note also that

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(f)| ≤
N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(f)|+
N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(f)|.

By definition, d′i′j′ = (σ2
i′+)−1wi′+ + (σ2

+j′)
−1w+j′ − (σ2

++)−1w++. For any f ∈ Aθ,β, either
f = g′j or f = gi. When f = g′j , wi′+ = −1/N, for i′ = 1, ..., N, w+j′ = −1 if j′ = j and
w+j′ = 0 if j′ 6= j, w++ = −1. Hence,

d′i′j′(g
′
j) =

{
− 1
N (σ2

i′+)−1 − (σ2
+j′)

−1 + (σ2
++)−1 if j′ = j

− 1
N (σ2

i′+)−1 + (σ2
++)−1 if j′ 6= j

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(g′j)| ≤
J∗

N

N∑
i′=1

(σ2
i′+)−1 +N∗(σ2

+j)
−1 +

N∑
i′=1

∑
j′∈SJ (i′)

(σ2
++)−1 ≤ c5,

for some positive c5 <∞. Furthermore,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(g′j)| ≤ (N∗J∗)
1
2 ‖d′′(g′j)‖σ ≤ c6,
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for some positive c6 < ∞. The last step follows from Lemma 15 which implies that
‖d′′(g′j)‖σ = o(N∗−1). On the other hand, when f = gi, we have wi′+ = 1 − 1/N, if
i′ = i, and wi′+ = −1/N for i′ 6= i, w+j′ = 0 for all j′ = 1, ..., J and w++ = 0. Hence,

d′i′j′(gi) =

{
(1− 1

N )(σ2
i′+)−1 if i′ = i

− 1
N (σ2

i′+)−1 if i′ 6= i.

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gi)| =
∑

j′∈SJ (i)

(
1− 1

N

)
(σ2
i+)−1 −

N∑
i′=1,i′ 6=i

∑
j′∈SJ (i′)

1

N
(σ2
i′+)−1 ≤ c7,

for some positive c7 <∞. Furthermore,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gi)| ≤ (N∗J∗)
1
2 ‖d′′(gi)‖σ ≤ c8,

for some positive c8 < ∞. The last step follows from Lemma 17 which implies that
‖d′′(gi)‖σ = o(N∗−1). Overall,

‖UN (y, v)‖σ(Aθ,β) = max
f∈Aθ,β

|f{UN (y, v)}|/σ(f)

≤ max
f∈Aθ,β

|f{UN (y, v)}| max
f∈Aθ,β

{σ(f)−1}

≤ c1c
−2
2 c3c4 max{c5 + c6, c7 + c8}J−1

∗ N
1
2
∗ ‖y −M∗N‖σ(Aθ,β)‖v‖σ(Aθ,β).

Note that in this case we can take dN = c1c
−2
2 c3c4 max{c5 + c6, c7 + c8}J−1

∗ N
1/2
∗ . We have

dNf
2
N = c1c

−2
2 c3c4 max{c5 + c6, c7 + c8}J−1

∗ N
1/2
∗ log(N)LN → 0 as N →∞.

Hence both parts (a) and (b) of the lemma are satisfied.

Appendix C: Full Senator Rankings

Appendix C includes additional results for Section 5.2 “Application to Senate Voting” of
the main article. In specific, with the same set-up as in Section 5.2, we give a full list
of rankings for senators serving the 111th, the 112th and the 113th United States senate
according to their conservativeness scores. The results are summarized in Tables 3 and 4
below. We observe from Table 3 that all the top 62 most conservative senators predicted
by the model are Republicans. While the Democrats and the independent politicians are
predicted to have much lower conservativeness scores as presented in Table 4. This aligns
well with the public perceptions about the Republican party and the Democratic party.
Standard errors of the estimated row parameters (i.e. senator’s conservativeness score) are
also included to facilitate inferences.
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Rank Senator State Party θ̂ s.e.(θ̂) Rank Senator State Party θ̂ s.e.(θ̂)

1 Demint SC Rep 5.87 0.157 2 Lee UT Rep 5.73 0.138
3 Cruz TX Rep 5.65 0.195 4 Coburn OK Rep 5.25 0.114
5 Paul KY Rep 5.24 0.129 6 Scott SC Rep 5.17 0.176
7 Bunning KY Rep 4.92 0.204 8 Johnson WI Rep 4.84 0.119
9 Risch ID Rep 4.81 0.102 10 Inhofe OK Rep 4.69 0.103
11 Crapo ID Rep 4.56 0.097 12 Sessions AL Rep 4.48 0.096
13 Enzi WY Rep 4.36 0.094 14 Barasso WY Rep 4.35 0.094
15 Cornyn TX Rep 4.33 0.095 16 Rubio FL Rep 4.25 0.112
17 Ensign NV Rep 4.24 0.166 18 Vitter LA Rep 4.20 0.094
19 Fischer NE Rep 4.14 0.145 20 Toomey PA Rep 4.12 0.109
21 Kyl AZ Rep 4.10 0.115 22 Roberts KS Rep 4.06 0.091
23 Mcconnell KY Rep 4.02 0.089 24 Thune SD Rep 3.95 0.088
25 Burr NC Rep 3.95 0.090 26 Moran KS Rep 3.89 0.109
27 Grassley IA Rep 3.80 0.086 28 Shelby AL Rep 3.78 0.086
29 Boozman AR Rep 3.68 0.105 30 Chambliss GA Rep 3.65 0.087
31 Mccain AZ Rep 3.65 0.086 32 Brownback KS Rep 3.61 0.153
33 Coats IN Rep 3.51 0.101 34 Johanns NE Rep 3.39 0.082
35 Isakson GA Rep 3.38 0.082 36 Hatch UT Rep 3.38 0.083
37 Lemieux FL Rep 3.34 0.188 38 Blunt MO Rep 3.31 0.099
39 Wicker MS Rep 3.29 0.080 40 Portman OH Rep 3.28 0.098
41 Corker TN Rep 3.27 0.080 42 Heller NV Rep 3.26 0.100
43 Hutchison TX Rep 3.25 0.105 44 Graham SC Rep 3.18 0.080
45 Flake AZ Rep 3.03 0.125 46 Ayotte NH Rep 3.02 0.095
47 Hoeven ND Rep 2.97 0.094 48 Bennett UT Rep 2.74 0.127
49 Alexander TN Rep 2.71 0.075 50 Kirk IL Rep 2.67 0.105
51 Cochran MS Rep 2.63 0.075 52 Chiesa NJ Rep 2.61 0.343
53 Gregg NH Rep 2.59 0.127 54 Martinez FL Rep 2.47 0.186
55 Lugar IN Rep 2.29 0.088 56 Bond MO Rep 2.25 0.118
57 Murkowski AK Rep 1.47 0.066 58 Brown MA Rep 1.29 0.103
59 Voinovich OH Rep 1.22 0.102 60 Snowe ME Rep 1.06 0.080
61 Specter PA Rep 1.03 0.192 62 Collins ME Rep 0.82 0.064

Table 3: Ranking of the top 62 most conservative senators predicted by the model. Rep
represents the Republican party and the states are listed in their standard ab-
breviations. θ̂ represents the conservativeness score of senators and s.e.(θ̂) is the
standard error of the estimated conservativeness score.
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Rank Senator State Party θ̂ s.e.(θ̂) Rank Senator State Party θ̂ s.e.(θ̂)
63 Nelson NE Dem -0.05 0.084 64 Bayh IN Dem -0.13 0.104
65 Manchin WV Dem -0.66 0.099 66 Feingold WI Dem -0.92 0.115
67 Lincoln AR Dem -0.96 0.119 68 Mccaskill MO Dem -1.15 0.083
69 Webb VA Dem -1.49 0.108 70 Pryor AR Dem -1.63 0.094
71 Lieberman CT Dem -1.68 0.113 72 Heitkamp ND Dem -1.87 0.183
73 Donnelly IN Dem -1.87 0.182 74 Hagan NC Dem -1.90 0.100
75 Byrd WV Dem -2.00 0.217 76 Warner VA Dem -2.06 0.105
77 Landrieu LA Dem -2.07 0.106 78 Tester MT Dem -2.11 0.105
79 Baucus MT Dem -2.11 0.112 80 Bennet CO Dem -2.16 0.107
81 Klobuchar MN Dem -2.26 0.109 82 Conrad ND Dem -2.29 0.131
83 King ME Ind -2.30 0.208 84 Nelson FL Dem -2.32 0.112
85 Kohl WI Dem -2.34 0.131 86 Carper DE Dem -2.36 0.112
87 Udall CO Dem -2.39 0.113 88 Begich AK Dem -2.43 0.116
89 Dorgan ND Dem -2.44 0.167 90 Reid NV Dem -2.68 0.122
91 Shaheen NH Dem -2.76 0.125 92 Kaine VA Dem -2.80 0.246
93 Casey PA Dem -2.83 0.127 94 Cantwell WA Dem -2.84 0.127
95 Coons DE Dem -2.84 0.170 96 Specter PA Dem -2.84 0.222
97 Walsh MT Dem -2.85 0.395 98 Wyden OR Dem -2.97 0.132
99 Bingaman NM Dem -3.03 0.155 100 Johnson SD Dem -3.09 0.137
101 Stabenow MI Dem -3.11 0.137 102 Cowan MA Dem -3.19 0.439
103 Merkley OR Dem -3.19 0.140 104 Sanders VT Ind -3.23 0.143
105 Feinstein CA Dem -3.24 0.143 106 Kerry MA Dem -3.25 0.165
107 Kaufman DE Dem -3.28 0.219 108 Murray WA Dem -3.29 0.143
109 Heinrich NM Dem -3.30 0.290 110 Menendez NJ Dem -3.32 0.144
111 Inouye HI Dem -3.33 0.169 112 Boxer CA Dem -3.35 0.148
113 Dodd CT Dem -3.38 0.218 114 Warren MA Dem -3.45 0.307
115 Levin MI Dem -3.52 0.152 116 Blumenthal CT Dem -3.52 0.214
117 Kirk MA Dem -3.54 0.716 118 Akaka HI Dem -3.54 0.174
119 Franken MN Dem -3.55 0.166 120 Rockefeller WV Dem -3.56 0.161
121 Mikulski MD Dem -3.60 0.158 122 Leahy VT Dem -3.63 0.158
123 Harkin IA Dem -3.64 0.158 124 Lautenberg NJ Dem -3.65 0.179
125 Schumer NY Dem -3.65 0.159 126 Reed RI Dem -3.67 0.157
127 Gillibrand NY Dem -3.67 0.158 128 Murphy CT Dem -3.68 0.327
129 Markey MA Dem -3.73 0.465 130 Whitehouse RI Dem -3.74 0.163
131 Cardin MD Dem -3.82 0.163 132 Durbin IL Dem -3.83 0.164
133 Udall NM Dem -3.85 0.165 134 Brown OH Dem -3.89 0.168
135 Baldwin WI Dem -3.90 0.352 136 Booker NJ Dem -4.14 0.572
137 Hirono HI Dem -4.17 0.383 138 Burris IL Dem -4.43 0.297
139 Schatz HI Dem -4.74 0.468

Table 4: Ranking of the top 63-139 most conservative senators predicted by the model.
Dem and Ind represent the Democratic party and independent politician, respec-
tively. The states are presented in their standard abbreviations. θ̂ represents the
conservativeness score of senators and s.e.(θ̂) is the standard error of the estimated
conservativeness score.
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