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Abstract

While differential privacy (DP) offers strong theoretical privacy guarantees, implementa-
tions of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks.
When sampling methods such as MCMC or rejection sampling are used to implement a
privacy mechanism, the runtime can leak private information. We characterize the addi-
tional privacy cost due to the runtime of a rejection sampler in terms of both (ϵ, δ)-DP
as well as f -DP. We also show that unless the acceptance probability is constant across
databases, the runtime of a rejection sampler does not satisfy ϵ-DP for any ϵ. We show that
there is a similar breakdown in privacy with adaptive rejection samplers. We propose three
modifications to the rejection sampling algorithm, with varying assumptions, to protect
against timing attacks by making the runtime independent of the data. The modification
with the weakest assumptions is an approximate sampler, introducing a small increase in
the privacy cost, whereas the other modifications give perfect samplers. We also use our
techniques to develop an adaptive rejection sampler for log-Hölder densities, which also
has data-independent runtime. We give several examples of DP mechanisms that fit the
assumptions of our methods and can thus be implemented using our samplers.

Keywords: differential privacy, side-channel, timing attack, perfect sampler, exponential
mechanism

1. Introduction

As more data is collected, analyzed, and published by researchers, companies, and gov-
ernment agencies, concerns about the privacy of the participating individuals have become
more prominent (Lane et al., 2014). While there have been many methods of statistical
disclosure control to combat this problem (Hundepool et al., 2012), differential privacy
(DP) (Dwork et al., 2006) has arisen as the state-of-the-art framework for privacy protec-
tion, and is currently being implemented by Google (Erlingsson et al., 2014), Apple (Tang
et al., 2017), Microsoft (Ding et al., 2017), and the US Census (Abowd, 2018). Differen-
tial privacy is based on a notion of plausible deniability, and requires the introduction of
additional noise, beyond sampling, into the analysis procedure. Given the output of a DP
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mechanism, an adversary cannot determine with high probability whether any particular
individual participated in the dataset (Wasserman and Zhou, 2010).

Because of the formal nature of DP, implementations of the mechanisms must be very
careful to prevent unintentional privacy leaks through side-channels. Side-channel attacks
have been a long-standing problem in computer systems, and may consist of the execution
time, power consumption, or memory usage of the system, to name a few (Joy Persial et al.,
2011; Nilizadeh et al., 2019). With differential privacy, the system can be made black-box
to remove some of these side-channels, but may still be susceptible to timing attacks. Such
a side-channel may be present if the DP mechanism is part of a query-response framework,
where users submit queries and the curator replies with a DP response; in this model, the
adversary may measure the time between submitting the query and receiving the answer,
and use this information as part of their attack. PINQ (McSherry, 2009) and Airavat (Roy
et al., 2010) were two of the earliest DP implementations, but were shown by Haeberlen
et al. (2011) to be vulnerable to timing attacks. FUZZ (Haeberlen et al., 2011) and GUPT
(Mohan et al., 2012) avoid timing attacks by working with simple queries for which the
worst-case computational time can be determined. This solution works for simple DP
tasks, but is nontrivial for complex DP mechanisms.

One of the most common and powerful DP mechanisms is the exponential mecha-
nism (McSherry and Talwar, 2007) which results in an unnormalized density of the form
exp(gD(x)) that must be sampled from, where gD is some function that depends on the
database D. The exponential mechanism has been widely used to tackle problems such as
principal component analysis (Chaudhuri et al., 2013; Kapralov and Talwar, 2013; Awan
et al., 2019), K-means clustering, (Feldman et al., 2009), convex optimization (Bassily et al.,
2014a,b), robust regression (Asi and Duchi, 2020b), linear and quantile regression (Reimherr
and Awan, 2019), synthetic data (Snoke and Slavković, 2018), and Bayesian data analysis
(Wang et al., 2015; Minami et al., 2016; Zhang et al., 2016; Dimitrakakis et al., 2017) to
name a few.

A challenge however is that for functions gD(x) encountered in practice, the unnormal-
ized density exp(gD(x)) is often difficult to sample from. In statistics and machine learning,
there are many computational techniques to produce either exact or approximate samples
from such distributions, including Markov chain Monte Carlo (MCMC), rejection sampling,
and approximate Bayesian computing. However, there are two sources of privacy leaks
when using these computational sampling methods: 1) when using approximate samplers,
the resulting sample does not exactly follow the target distribution, with the error in the
approximation resulting in an increased privacy risk, 2) with either an approximate or exact
sampler, if the runtime of the algorithm depends on the database, then this side-channel
may leak private information (Haeberlen et al., 2011).

We will consider the runtime of the algorithm as an additional output accessible to an
adversary, and we will require that both the official output and the runtime jointly satisfy
differential privacy. As Haeberlen et al. (2011) point out, the simplest solution is to make the
runtime independent of the dataset. In this paper we propose different modifications, under
different assumptions, which produce rejection samplers with data-independent runtime,
and are thus immune to timing attacks.

Contributions First, we quantify the privacy risk of rejection and adaptive rejection sam-
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pling without any privacy-preserving modifications. As a properly implemented rejection
sampler results in samples with distribution equal to the target, the only privacy concern
is the runtime, which varies for different databases. We characterize the privacy risk due to
the runtime of a simple rejection sampler in terms of both (ϵ, δ)-DP and f -DP (Dong et al.,
2022). We also show that the runtime of a simple rejection sampler does not satisfy ϵ-DP
for any finite ϵ unless the acceptance rate is constant across databases. We similarly show
that the runtime of an adaptive rejection sampler does not satisfy ϵ-DP unless acceptance
probabilities across databases converge in terms of a certain series.

Given the increased privacy risk due to the runtime, we propose several modifications
to rejection samplers, which make the runtime independent of the database: 1) choose the
number of iterations to run the sampler ahead of time, based on a lower bound on the
acceptance probability, 2) introduce an additive wait-time based on a worst-case dataset, 3)
use squeeze functions to add an implicit wait-time. We also propose an adaptive rejection
sampler with data-independent runtime, which can be applied to any log-Hölder density.
The adaptive sampler is a modification of the (nearly) minimax optimal sampler from
Achddou et al. (2019), using the technique of squeeze functions. Finally, we give examples
of the exponential mechanism which satisfy the assumptions of our methods.

Related work Often side-channels are handled using more relaxed metrics than DP, such
as min-entropy (Smith, 2009). However, the point of view of this paper is that if the dataset
in question is judged to require the protection of differential privacy, then we must ensure
that all channels are protected in the DP framework. Thus, while for other applications it
may be appropriate to use a weaker protection for side channels, in DP applications, the
runtime must also satisfy DP. See Haeberlen et al. (2011) for a similar discussion.

Besides timing side-channels, there are other notable side-channel attacks that have been
effective against DP implementations. Haeberlen et al. (2011) showed that when the privacy
budget is chosen based on the database, that the budget is another side-channel. Wagh et al.
(2018) consider the privacy cost of RAM access, and propose a differential privacy regime
to formally protect the RAM access. Dodis et al. (2012) and Garfinkel and Leclerc (2020)
explore the concerns of using pseudo-random number generators in the implementation
of DP systems. Mironov (2012) showed that when implementing DP mechanisms with
floating point arithmetic, privacy can be arbitrarily compromised by the artifacts in the least
significant bit. Ilvento (2020) provide an implementation of the exponential mechanism on
finite state spaces that is immune to the floating point attacks, but which is admitted to be
susceptible to timing attacks.

A different approach to sampling the exponential mechanism is using MCMC tech-
niques, and there have been some prior works characterizing the additional privacy cost of
these approximate samplers. Usually convergence of MCMC methods is characterized in
terms of total variation distance, and Minami et al. (2016) showed that these guarantees
can be imported to produce approximate DP samples with an increased ‘delta’ in a fixed
number of iterations. Ganesh and Talwar (2020) expanded upon the results of Vempala
and Wibisono (2019) to show that Langevin MCMC converges in Rényi divergence, which
allows for the quantification of the privacy loss by sampling in terms of Rényi DP. Rényi
divergences are much stronger than total variation, and have been used in various defi-
nitions of DP (Mironov, 2017; Bun and Steinke, 2016; Bun et al., 2018). Minami et al.
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(2016) also study Langevin MCMC, but characterize the privacy cost in terms of (ϵ, δ)-DP.
Seeman et al. (2021) develop an exact sampler for the exponential mechanism based on
an MCMC procedure with artificial atoms, however, they acknowledge that their approach
does not protect against timing side-channels. To our knowledge, there has been no prior
work quantifying the privacy risk of rejection sampling, or proposing rejection samplers
with data-independent runtime.

2. Background and notation

In this section, we review the necessary background on differential privacy and rejection
sampling. We also set the notation for the rest of the paper.

Let X and Y be random variables on a measurable space (Y ,F ), with correspond-
ing probability measures µX and µY . The max-divergence of Y with respect to X is

D∞(Y ||X) = supB∈F log
(

µY (B)
µX(B)

)
. If µX dominates µY , thenD∞(Y ||X) = supy∈Y log dµY

dµX
(y),

where dµY

dµX
is the Radon-Nikodym derivative of µY with respect to µX . The symmetric max-

divergence is DS
∞(X,Y ) := max{D∞(X||Y ), D∞(Y ||X)}.

For a distribution M , we typically write π̃(x) for an unnormalized density of M , π(x) =
π̃(x)/

∫
π̃(x) dx, and g = log(π̃) (equivalently, π̃(x) = exp(g(x)). We write U(x) to denote

a density that upper bounds π̃ as π̃(x) ≤ cUU(x) for some constant cU . Similarly, we write
L(x) for a density that lower bounds π̃ as cLL(x) ≤ π̃(x) for a constant cL. In rejection
sampling, U is called the proposal distribution, and L is the squeeze function.

2.1 Differential privacy

Differential privacy (DP), introduced in Dwork et al. (2006), is a framework to characterize
the privacy risk of a given algorithm, and offers techniques to design mechanisms which
limit privacy loss. DP methods require the introduction of additional randomness, beyond
sampling, in order to offer a notion of plausible deniability. Given the output of a DP
mechanism, it is difficult for an adversary to determine whether a particular individual
participated in the dataset or not. While an idealized algorithm may be proven to be
differentially private, to characterize the actual privacy cost of a given implementation, one
must consider all side-channels such as the runtime as part of the DP output (Haeberlen
et al., 2011).

Definition 1 (Privacy mechanism) Given a metric space (D , d), which represents the
set of possible databases, a set of probability measures {MD | D ∈ D} on a common space
Y is called a privacy mechanism.

The space D represents the space of possible databases, and it is common to take D = X n

for some set X , with X representing the possible contributions of one individual in the
database. In that case, the metric d is often chosen to be the Hamming distance, so
that d(D,D′) ≤ 1 represents that D and D′ are adjacent databases, differing in only one
individual’s contribution.

When implementing a privacy mechanism, we publish one sample from MD, which
satisfies some form of privacy.
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Definition 2 ((ϵ, δ)-DP:Dwork et al., 2006) Given a metric space (D , d), ϵ ≥ 0 and
δ ∈ [0, 1], a privacy mechanism {MD} on the space Y satisfies (ϵ, δ)-differential privacy
if for all measurable sets B ∈ Y and all d(D,D′) ≤ 1,

MD(B) ≤ exp(ϵ)MD′(B) + δ.

The values ϵ and δ are called the privacy parameters, which capture the privacy risk for
the given mechanism. Smaller values of ϵ and δ give stronger privacy guarantees. Typically, ϵ
is chosen to be a small constant such as 1 or 0.1, whereas usually δ ≪ 1/n. In the case where
δ = 0, we call (ϵ, 0)-DP “pure differential privacy,” and write ϵ-DP. A privacy mechanism
satisfying ϵ-DP is equivalent to requiring that DS

∞(MD||MD′) ≤ ϵ for all d(D,D′) ≤ 1,
where DS

∞ is the symmetric max-divergence.

While we phrase most of our results in terms of (ϵ, δ)-DP, another useful formulation
of DP is f -DP (Dong et al., 2022), which is expressed in terms of hypothesis tests. f -
DP is based on bounding the receiver-operator curve (ROC) or tradeoff function when
testing between two adjacent databases, given the output of a privacy mechanism. For two
probability distributions P and Q, the tradeoff function is the smallest type-II error as a
function of the type-I error. Formally, the tradeoff function for P and Q is T (P,Q) : [0, 1] →
[0, 1], which is defined as T (P,Q)(α) = infϕ{1− EQ(ϕ) | EP (ϕ) ≤ α}, where the infinimum
is over all possible tests ϕ. Being equivalent to ROC, the tradeoff function captures the
difficulty of distinguishing between P and Q. A function f : [0, 1] → [0, 1] is a tradeoff
function if and only if f is convex, continuous, decreasing, and f(x) ≤ 1−x for all x ∈ [0, 1]
(Dong et al., 2022, Proposition 1).

Definition 3 (f-DP: Dong et al., 2022) Let f be a tradeoff function. A privacy mech-
anism M on the metric space (D , d) satisfies f -DP if

T (MD,MD′)(α) ≥ f(α) ∀α ∈ [0, 1],

for all D,D′ ∈ D such that d(D,D′) ≤ 1.

See Figure 1a for examples of tradeoff functions which do and do not satisfy f -DP for a
particular f . Without loss of generality we can assume that f is symmetric: f(α) = f−1(α),
where f−1(α) = inf{t ∈ [0, 1] | f(t) ≤ α}. This is due to Dong et al. (2022, Proposition 2),
which states that for a given f and a mechanism M that is f -DP, there exists a symmetric
f∗ ≥ f such that M is f∗-DP.

It turns out that (ϵ, δ)-DP is a special case of f -DP, where f is taken to be a par-
ticular piecewise linear function. Specifically, let ϵ ≥ 0 and δ ∈ [0, 1], and define fϵ,δ(α) =
max{0, 1−δ−exp(ϵ)α, exp(−ϵ)(1−δ−α)}. Then a privacy mechanismM satisfies (ϵ, δ)-DP
if and only if it satisfies fϵ,δ-DP (Dong et al., 2022, Proposition 3). The following proposi-
tion, based on Dong et al. (2022, Propositions 5 and 6), gives a simple conversion between
f -DP and (ϵ, δ)-DP, by determining the linear functions which lower bound f .

Proposition 4 Let f be a symmetric tradeoff function. If a privacy mechanism satisfies
f -DP, then it satisfies (ϵ, δ)-DP provided that (1− δ)− exp(ϵ)α ≤ f(α) for all α ∈ [0, 1].
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(a) A plot of three examples of
T (M(D),M(D′)). Only the red, dashed
tradeoff curve satisfies f -DP.
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(b) A tradeoff function, as well as its conversion
to (1, δ)-DP, where δ ≈ 0.127.

Figure 1: Examples of tradeoff functions, and the relation between f -DP and (ϵ, δ)-DP.

Proof We need to show that fϵ,δ(α) ≤ f(α) for all α ∈ [0, 1]. By symmetry of f and fϵ,δ,
the condition stated is sufficient.

If the tradeoff function f makes the inequalities of Definition 3 tight, then by Proposition
4 the tightest (ϵ, δ)-DP guarantee takes a tangent line of f and sets (1 − δ) to be the y-
intercept and − exp(ϵ) to be its slope. This approach gives a precise conversion from f -DP
to (ϵ, δ)-DP, which we use in Theorem 10. In fact, there is a stronger duality between f -DP
and a family of (ϵ, δ(ϵ))-DP characterizations, described in Dong et al. (2022, Propositions
5 and 6). Figure 1b illustrates the conversion from f -DP to (ϵ, δ)-DP.

An important property of both (ϵ, δ)-DP and f -DP is that it is robust to post-processing.
That is, if a privacy mechanism satisfies DP, then applying any deterministic or randomized
algorithm to the output cannot degrade the DP guarantee. This property is related to data
processing inequalities.

Proposition 5 (Post-processing: Dwork et al., 2014; Dong et al., 2022) LetM be
a privacy mechanism with output space Y , f a tradeoff function, ϵ ≥ 0, and δ ∈ [0, 1]. Let
Proc be a potentially randomized mapping from Y to Z . Then

1. if M satisfies (ϵ, δ)-DP, then Proc ◦M satisfies (ϵ, δ)-DP;

2. if M satisfies f -DP, then Proc ◦M satisfies f -DP.

2.2 Exponential mechanism

Having established the definitions of both (ϵ, δ)-DP and f -DP, there remains the ques-
tion of how to construct a privacy mechanism for a given statistical task. A general and
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powerful technique, and one that will be the focus of this paper, is the exponential mecha-
nism (McSherry and Talwar, 2007). Given a utility function gD, where large values of gD
indicate higher utility, the exponential mechanism samples from the unnormalized density
π̃D(x) = exp(gD(x))π0(x), where π0 is a base measure. This mechanism satisfies (2/∆, 0)-
DP where ∆ is the sensitivity of gD:

∆ ≥ sup
d(D,D′)≤1

sup
x

|gD(x)− gD′(x)|.

Often π0 is chosen to be Lebesgue measure, but it can also be chosen to be a probability
measure similar to a prior (Wang et al., 2015; Minami et al., 2016; Dimitrakakis et al.,
2017). In infinite-dimensional function spaces, there is no translation-invariant measure, so
a nontrivial base measure must be used (Awan et al., 2019). Many statistical tasks can
be expressed as finding the solution to a minimization or maximization problem of some
objective function (e.g., log-likelihood function, sum of squared error, or a general empirical
risk function). For these tasks, it is natural to choose the utility function in the exponential
mechanism to be some transformation of such an objective function. For example, Reimherr
and Awan (2019) show that when an objective function ξD(x) is strongly convex, sampling
from the exponential mechanism with utility function g(x) = −∥∇ξD(x)∥ results in an esti-
mator which satisfies x∗ = argminx ξD(x) + Op(n

−1). Though the exponential mechanism
was designed with (ϵ, 0)-DP in mind, it has been shown that when the utility function sat-
isfies additional assumptions such as concavity, Lipschitz continuity, or strong concavity,
the exponential mechanism may satisfy (ϵ, δ)-DP (Minami et al., 2016; Dimitrakakis et al.,
2017), even when the sensitivity ∆ is infinite.

While the exponential mechanism is very flexible and offers high utility guarantees,
sampling exp(gD(x)) exactly is generally very challenging. While specific implementations
of the exponential mechanism sometimes have efficient sampling schemes (e.g., Bassily et al.,
2014a,b; Asi and Duchi, 2020a,b), in general, more sophisticated computational sampling
techniques are needed. For example, Chaudhuri et al. (2012, 2013) and Awan et al. (2019)
use a Gibbs sampler to implement the exponential mechanism in the application of principal
component analysis, using heuristics to argue convergence. Reimherr and Awan (2019) use
MCMC implementations of their proposed K-norm gradient (KNG) mechanism, but leave
considerations of the cost of the implementation for future work. Snoke and Slavković
(2018) propose an instance of the exponential mechanism for synthetic data, which they
sample using the Metropolis algorithm, without considering the privacy cost of the sampler.

2.3 Rejection sampling

Given the structure of the unnormalized density, sampling from exp(gD(x)) is often well
suited to rejection sampling. Given an unnormalized target density π(x) ∝ π̃(x) = exp(g(x)),
which is difficult to sample from, and a simpler proposal density U(x) which satisfies
π̃(x) ≤ cU(x) for some c and all x, a rejection sampler draws X ∼ U(x) and accepts
the sample with probability π̃(X)/(cU(X)). This process is repeated until a sample is ac-
cepted, and it is easy to show that the accepted sample is distributed as X ∼ π(x). The
requirements to implement a rejection sampler are that we can evaluate π̃(x), and determine
U(x) and c which satisfy the above inequality. We will call these samplers simple rejection
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samplers when we need to distinguish these from adaptive rejection samplers, which we in-
troduce later in this section. See Martino (2018) for an extensive introduction to rejection
samplers.

The marginal probability of accepting a sample at any particular iteration from a simple
rejection sampler is p = c−1

∫
π̃(x) dx, so that the number of iterations T needed to obtain

an accepted sample follows a geometric distribution: T ∼ Geom(p). In this paper we assume
that the geometric distribution has support 1, 2, 3, . . ., with pmf P (T = k) = (1− p)k−1(p)
for k = 1, 2, 3, . . ..

While rejection samplers allow exact samples to be drawn from an intractable target
distribution, the acceptance probability p typically decays exponentially with dimension,
making them suitable only for low-dimensional problems. Adaptive rejection samplers at-
tempt to address this shortcoming, and proceed by producing a sequence of upper bounds
Un(x) and constants cn such that π̃(x) ≤ cnUn(x) and such that the acceptance proba-
bility increases with n. Just like a simple rejection sampler, conditional on acceptance,
adaptive rejection samplers produce samples X ∼ π(x). Typically, the upper bounds are
updated stochastically, using the information from the previously rejected samples. While
this minimizes the number of evaluations of π, the acceptance probabilities update in a
manner depending on the target π, making the runtime difficult to analyze. Alternatively,
the upper bound can be updated in a deterministic manner such as in Leydold et al. (2002),
which makes understanding the runtime much simpler. While deterministic updates require
more evaluations of π, they can potentially result in upper bounds that converge to π much
faster, resulting in a tradeoff.

With adaptive rejection sampling, the marginal probability of accepting a sample at
iteration n is pn = 1

cn

∫
π(x) dx. However, as the acceptance probability changes over time,

the runtime T to accept one sample is no longer geometric, but has pmf P (T = k) =
pt
∏k−1

i=1 (1− pi), for k = 1, 2, 3, . . ..

3. Privacy risk of rejection sampling

In this section, we characterize the privacy cost of a rejection sampler when we allow the
adversary to have access to both the accepted sample as well as the runtime. Recall that if a
rejection sampler is run until acceptance, then the accepted sample is an exact sample from
the target distribution. Thus, the only increased privacy risk from using this algorithm is
due to the runtime. We will measure the privacy risk of this side-channel in terms of ϵ-DP,
(ϵ, δ)-DP, and f -DP. We show that for the exponential mechanism, the privacy cost of a
rejection sampler’s runtime is non-negligible.

Assumption 6 For a rejection sampler, we assume that along with the published accepted
sample, the runtime is also available to an attacker. We assume that for all databases D
and for all x in the domain, the evaluations gD(x) take the same time to evaluate. As such,
the runtime is proportional to the number of iterations in the sampler. Thus for the rest of
the paper, the runtime will simply refer to the number of iterations in the sampler.

Note that while the proposal distribution UD(x), target exp(gD(x)), and threshold cD
may all depend on D, none are directly available to the attacker.
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Remark 7 Many utility functions used in the exponential mechanism can be expressed as
empirical risks (Bassily et al., 2014a,b; Reimherr and Awan, 2019; Wang et al., 2019).
In this case, assuming that the database size n is fixed, ensuring that the time to evaluate
gD(x) is constant is equivalent to ensuring that the contributions to the empirical risk from
each individual take constant time. This is in line with the techniques used in Haeberlen
et al. (2011) who split each query into sub-queries which are evaluated on each member of
the dataset.

First we will study the privacy cost of the rejection sampling runtime in terms of ϵ-
DP. Proposition 9 states that the runtime of a rejection sampler violates ϵ-DP unless the
probability of acceptance is constant across databases. To prove this, recall that ϵ-DP
is measured by the max-divergence. Lemma 8 shows that the symmetric max-divergence
between two geometric random variables is unbounded whenever the parameters differ, and
the proposition follows easily from this.

Lemma 8 Let p, q ∈ (0, 1) and let X ∼ Geom(p) and Y ∼ Geom(q). Then

D∞(X||Y ) =

{
log(p/q) if p ≥ q

∞ if p < q.

Thus, DS
∞(X,Y ) = ∞ whenever p ̸= q.

Proof As all geometric random variables, with parameter in (0, 1), are equivalent measures

on the positive integers, it suffices to determine an upper bound on log P (X=k)
P (Y=k) for k ∈

{1, 2, . . .}. This quantity can be expressed as

log
P (X = k)

P (Y = k)
= log

(1− p)k−1p

(1− q)k−1q
= log

(
p(1− q)

q(1− p)

)
+ k log

(
1− p

1− q

)
.

We see that this quantity is linear in k. The slope is non-positive if and only if p ≥ q, in
which case the maximum value is achieved at k = 1, giving the value log(p/q). When p < q,
the slope is positive, and as k → ∞, the quantity is unbounded.

Proposition 9 Let {MD | D ∈ D} be a privacy mechanism, let pD be the probability of
acceptance for a rejection sampler run on MD, call TD the runtime of the rejection sampler
which is distributed Geom(pD), and call X the accepted sample. If there exists D,D′ ∈ D

such that d(D,D′) ≤ 1 and pD ̸= pD′, then the mechanism that releases (X,T ) does not
satisfy ϵ-DP for any ϵ > 0.

Proof By post-processing (Proposition 5), we get a lower bound on the privacy cost by
only considering T . If there exists D and D′ such that d(D,D′) ≤ 1 and pD ≤ pD′ , then by
Lemma 8 the symmetric max-divergence is unbounded, and the result follows.

Theorem 10 gives a more precise characterization of the privacy loss due to rejection
sampling as measured by f -DP and (ϵ, δ)-DP. For the former, we bound the tradeoff function
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Figure 2: The tradeoff functions of T (Geom(p),Geom(q)) and T (Geom(q),Geom(p)), along
with fR from Theorem 10. We fix R = 2. In the left plot q = .1 and in the right q = .6.
p = 1− (1− q)R > q. We see that the approximation fR is more accurate for smaller q.

of the geometric variables with the tradeoff function for exponential variables, which allows
for a simpler formula. This bound is tighter for small acceptance probabilities. We use
the likelihood ratio property of the exponential distribution along with some properties of
convex functions to get the formula in equation (1). We then use Proposition 5 to convert
the f -DP guarantee to (ϵ, δ)-DP guarantees.

Theorem 10 Let (D , d) be a metric space of databases, and let TD be the runtime of a
rejection sampler for database D which has acceptance probability pD. Note that TD ∼
Geom(pD). Call R = supd(D,D′)≤1

log(1−pD)
log(1−pD′ )

. The mechanism that releases the runtime TD

1. satisfies fR-DP, where

fR(α) =





1− α1/R α ≤ RR/(1−R)

−α+RR/(1−R) + 1−R1/(1−R) RR/(1−R) < α < 1−R1/(1−R)

(1− α)R α ≥ 1−R1/(1−R),

(1)

2. satisfies (ϵ, δ(ϵ))-DP for all ϵ ≥ 0, where δ(ϵ) = (1− 1/R) exp
(
−ϵ−log(R)

R−1

)
,

3. satisfies (ϵ(δ), δ)-DP for all 0 < δ ≤ (R − 1)RR/(1−R), where ϵ(δ) = log(1/R) + (R −
1)(log(1/δ) + log(1− 1/R)).

Proof We begin by establishing the form of fR, and then use Proposition 4 to produce
(ϵ, δ)-DP guarantees. We first show that by bounding the tradeoff function of the exponen-
tial distribution, we get bounds for geometric variables as well. Call λD = − log(1 − pD).
Recall that if XD ∼ Exp(λD), then ⌊XD⌋+1 ∼ Geom(pD). By Proposition 5, we have that

10
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T (Exp(λD),Exp(λD′)) = T (XD, XD′) ≤ T (⌊XD⌋+1, ⌊XD′⌋+1) = T (Geom(pD),Geom(pD′)),
where T (·, ·) represents the tradeoff function.

Next, we will derive the tradeoff function T (Exp(λD),Exp(λD′)) assuming that λD >
λD′ . Let pλD

(x) be the pdf of Exp(λD). Note that (pλD′
(x)/pλD

(x)) = (λD′/λD) exp(x(λD−
λD′)) is an increasing function of x. By the Neyman Pearson Lemma, the most powerful
test has a rejection region of the form x ≥ τ . The type I error is α = exp(−λDτ) and type
II is β = 1−exp(−λD′τ). Expressing β as a function of α gives β = 1−αλD′/λD ≥ 1−α1/R.
Thus, we have that T (XD, XD′) ≥ 1− α1/R. We also need a lower bound on T (XD′ , XD).
Note that T (XD′ , XD) is the inverse of T (XD, XD′). By taking the inverse of 1− α1/R, we
have T (XD′ , XD) ≥ (1− α)R.

To get a single bound on both T (XD, XD′) and T (XD′ , XD), we take the convex hull of
min{1 − α1/R, (1 − α)R}, which we claim has the form fR(α) as stated in 1. To this end,
we first verify that

1− α1/R ≤ 1−Rα ≤ (1− α)R, (2)

for all 0 ≤ α ≤ RR/(1−R), so that over this range of α, the convex hull just equals 1−α1/R as
required by the first line of Equation (1). To establish the first inequality of Equation (2),
note that f(α) = 1− α1/R is a convex function; this can be seen either by differentiating it
twice, or from the fact that it is a tradeoff function. The straight line 1−Rα intersects this
curve at α = 0 and α = RR/1−R, and for intermediate values of α, forms a chord segment.
From convexity, this chord lies above the curve. For the second inequality of Equation (2),
observe that (1−α)R is also convex. We can easily verify that the line 1−Rα is the tangent
at α = 0. The second inequality then follows from the fact that a convex function is lower
bounded by its tangent. This justifies the first line of fR(α) in Equation (1). By symmetry,
we also have that the third line is correct.

For the middle inequality, we note that the curves 1−α1/R and (1−α)R have slope −1
at the points RR/(1−R) and 1− R1/(1−R) respectively. It is easily verified that the straight
line g(α) = −α + RR/(1−R) + 1 − R1/(1−R) intersects the two curves at these two points,
and has slope −1. It is thus tangent to both curves, and from convexity, lies below both of
them. Altogether, we conclude that fR(α) is the appropriate convex hull.

To get the formulas in 2. and 3., recall that the mechanism satisfies (ϵ, δ)-DP if the line
(1− δ)− exp(ϵ)α is a lower bound for the tradeoff function fR(α). To get the tightest (ϵ, δ)-
DP guarantees, we characterize the supporting linear functions. By symmetry, it suffices
to determine the tangent lines of 1 − α1/R for values 0 ≤ α ≤ RR/(1−R). We calculate the
derivative as d

dα(1 − α1/R) = −1
R α

1/R−1. Set − exp(ϵ) = −1
R α

1/R−1, which has the solution
ϵ = log(1/R) + (1/R− 1) logα.

The line with slope − exp(ϵ) = −1
R α

1/R−1 that passes through (α, 1 − α1/R) is y −

(1 − α1/R) = −1
R α

1/R−1(x − α), which has y-intercept 1 − δ = 1 − α1/R(1 − 1/R), giving

δ = α1/R(1 − 1/R). Eliminating α from the equations ϵ = log(1/R) + (1/R − 1) logα and
δ = α1/R(1− 1/R) gives the expressions in parts 2. and 3. in the theorem statement. Note
that δ(0) = (R − 1)RR/(1−R), so for any δ > δ(0), the mechanism satisfies (0, δ)-DP, but
this is a strictly weaker guarantee than (0, δ(0))-DP.

The approximation in Theorem 10 improves for smaller probabilities of acceptance, as
seen in Figure 2. Intuitively, this is because the approximation of a geometric variable as an
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δ = .1 .01 .001 10−4 10−5 10−6

R = 2 .916 3.22 5.52 7.82 10.13 12.43
R = 1.1 0 .125 .356 .59 .82 1.05

Table 1: The (ϵ(δ), δ)-DP guarantee for a simple rejection sampler, where R (defined in
Theorem 10) is either 2 or 1.1. The values ϵ(δ) appear in the table for each combination of
δ and R.

exponential is more accurate for smaller probabilities of acceptance. As rejection samplers
typically have small rejection probabilities, the privacy guarantees of Theorem 10 are quite
accurate for rejection samplers of interest. In Table 1, we give a few examples converting
the quantity R to (ϵ, δ)-DP guarantees. We see that even with a small R of 1.1, there is
a nontrivial privacy cost. In Example 13, we explore what values of R we may expect in
practice.

Corollary 11 Let (D , d) be a metric space of databases, MD a privacy mechanism which
satisfies f -DP and TD the runtime of a rejection sampler for MD which has acceptance
probability pD. Call R = supd(D,D′)≤1

log(1−pD)
log(1−pD′ )

. Then the privacy cost of MD along with

the runtime is fR ⊗ f , where fR is defined in Theorem 10 and ⊗ is the tensor product of
two tradeoff functions (Dong et al., 2022, Definition 5).

In Corollary 11, the tensor product f ⊗ g, where f = T (P,Q) and g = T (P ′, Q′) is
defined as f ⊗g = T (P ×P ′, Q×Q′), where P ×P ′ is the product distribution (Dong et al.,
2022, Definition 5). In general, it is challenging to derive a closed form of f ⊗ g.

Remark 12 (Rejection sampling is trivial for location-scale) For some distributions,
it is easy to build a rejection sampler, with constant acceptance probability. For example,
suppose that the mechanism {MD | D ∈ D} is location-scale (e.g., K-norm mechanisms:
Hardt and Talwar, 2010; Awan and Slavković, 2020). In this case, we build a rejection
sampler for a default distribution in the family, and transform after sampling. Then we
have a rejection sampler where the acceptance rate is independent of the dataset.

While Theorem 10 describes the privacy cost of a rejection sampler’s runtime, it is
phrased in terms of the quantity R, which may be unintuitive. In the following exam-
ple, we show that for a generic exponential mechanism, with an arbitrary set of proposal
distributions, R is lower bounded by exp(ϵ), and may even be infinite.

Example 13 (Exponential mechanism) As shown in McSherry and Talwar (2007), the
exponential mechanism results in a target distribution of the form π̃D = exp(gD(x)), which

usually satisfies exp(−ϵ/2) ≤
π̃D′ (x)
π̃D(x) ≤ exp(ϵ/2) for adjacent databases D and D′ (the inte-

grating constants may also differ by a factor of at most exp(±ϵ/2)). Let U be a family of
proposal distributions, and for each database D, let cD and UD be the optimal proposal dis-
tribution from U such that π̃D ≤ cDUD(x), where by optimal, we mean that the acceptance

probability pD =
∫
π̃D(x) dx

cD
is maximized; or equivalently cD is minimized. Then, from the
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following inequality,

π̃D′(x) ≤ exp(ϵ/2)π̃D(x) ≤ exp(ϵ/2)cDUD(x),

we see that exp(ϵ/2)cD and UD offer a (potentially inferior) proposal distribution for π̃D′.
Using this relationship between the proposal distributions of D and D′, we can give a bound
for the acceptance probability for D′ based on the acceptance probability for D:

pD′ =

∫
π̃D′(x) dx

cD′

≥

∫
π̃D′ dx

exp(ϵ/2)cD
≥

exp(−ϵ/2)
∫
π̃D dx

exp(ϵ/2)cD
= exp(−ϵ)pD.

Call p∗ the highest acceptance probability over all possible databases D. Then the quantity
R that appears in Theorem 10 can be expressed as

R =
log(1− p∗)

log(1− exp(−ϵ)p∗)
. (3)

Note that as p∗ → 1 in Equation (3), R diverges to infinity. We can also get a lower bound
on R:

R =
log(1− p∗)

log(1− exp(−ϵ)p∗)
≥ lim

p→0

log(1− p)

log(1− exp(−ϵ)p)

L′H
= lim

p→0

1− exp(−ϵ)p

exp(−ϵ)(1− p)
= exp(ϵ), (4)

where
L′H
= indicates the use of L’Hôpital’s rule, and we used the fact that log(1−p)/ log(1−

exp(−ϵ)p) is increasing in p for all p ∈ (0, 1) and ϵ > 0; to see this, we compute the
derivative with respect to p:

(1− p) log(1− p)− (exp(ϵ)− p) log(1− p exp(−ϵ))

(exp(ϵ− p)(1− p)(log(1− p exp(−ϵ)))2
. (5)

We see in (5) that the denominator is positive so long as 0 < p < 1. The numerator of (5)
can be expressed as

∞∑

n=2

pn
(

1

n(n− 1)

)
(1− exp(−ϵ(n− 1))) ,

which we can see is positive and finite for all ϵ > 0 and p ∈ (0, 1).

Remark 14 (Parallelization and batching) Suppose that we have a simple rejection
sampler targeting π̃D with acceptance probability pD. We could consider a parallelized im-
plementation as follows: run the sampler on k nodes; when the first sample is accepted,
return the sample and the runtime and abort the other instances of the sampler. In this
scheme, the runtime is distributed as min{G1, . . . , Gk} ∼ Geom(1 − (1 − pD)

k), where Gi

are independent Geom(pD) random variables. Now, suppose for two adjacent databases D
and D′ that

log(1− pD)

log(1− pD′)
= R,

which is the quantity in Theorem 10 that governs the privacy cost of the runtime. Then, in
the parallelized scheme, we have

log(1− [1− (1− pD)
k])

log(1− [1− (1− pD′)k])
=

log((1− pD)
k)

log((1− pD′)k)
=
k log(1− pD)

k log(1− pD′)
= R.

13
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We see that parallelization does not affect the privacy cost of the runtime.
Similarly, one could decide to run the rejection sampler for a fixed number of iterations,

say m before checking if one of the samples is accepted, and then repeating if necessary. This
may be useful in combination with parallelization, since communication between the nodes
could be a bottleneck. With batching, the runtime until a sample is accepted is Geom(1 −
(1 − pD)

m), which is the same runtime as in the parallelization. By the same reasoning,
batching also does not affect the privacy cost of the runtime.

In Section 4, we develop samplers with data-independent runtime. As such, parallelizing
or batching the samplers in the manner described above maintains the property that the
runtime is data-independent, while potentially giving a significant speed up.

3.1 Privacy risk of adaptive rejection sampling

In this section, we analyze the privacy risk of adaptive rejection samplers. Often adaptive
rejection samplers update the proposal in a stochastic manner, based on the target value at
previously rejected samples. In this section, we consider the setting where the proposal is
updated in a deterministic manner, such as in Leydold et al. (2002). We show that unless
the acceptance probabilities converge in a strong sense, an adaptive rejection sampler will
not satisfy ϵ-DP for any finite ϵ.

Proposition 15 Let D be the space of databases and {MD | D ∈ D} a privacy mechanism
which satisfies ϵ-DP. Let (pDi )

∞
i=1 be the weakly-increasing sequence of acceptance probabili-

ties for an adaptive rejection sampler for MD. Call TD the runtime of the adaptive sampler
for MD, which has pmf P (TD = t) = pDt

∏t−1
i=1(1− pDi ). Then releasing a sample from MD

as well as the runtime TD satisfies (ϵ+ ϵT )-DP, where

ϵT ≥ log(pDt /p
D′

t ) +
t−1∑

i=1

log

(
1− pDi
1− pD

′

i

)
,

for all t ≥ 1 and all d(D,D′) ≤ 1. If there exists a constant c such that pD1 ≥ c > 0 for all

D, then the value ϵT is finite if and only if the sequence

(∑t
i=1 log

1−pDi
1−pD

′

i

)∞

t=1

is universally

bounded for all d(D,D′) ≤ 1.

Proof For readability, we set pi := pDi and qi := pD
′

i . We require that log P (TD=t)
P (TD′=t) ≤ ϵT

for all d(D,D′) ≤ 1 and all t = 1, 2, . . .. A little algebra gives the expression for ϵT .

Next, ϵT is finite if and only if log P (TD=t)
P (TD′=t) is bounded above and below for all d(D,D′) ≤

1. Equivalently, this requires log
pt

∏t−1
i=1(1−pi)

qt
∏t−1

i=1(1−qi)
= log

(
pt
qt

∏t−1
i=1

(
1−pi
1−qi

))
be universally bounded

above and below for all t. Since pt
qt

is bounded below by c and above by 1/c, the previous

quantity is bounded if and only if log
(∏t−1

i=1

(
1−pi
1−qi

))
=

∑t−1
i=1 log

(
1−pi
1−qi

)
is bounded for all

t. Relabelling t− 1 to t gives the final result.

Proposition 15 shows that unless the acceptance probabilities are very closely related,
it is not guaranteed that an adaptive rejection sampler will satisfy ϵ-DP for any finite ϵ. In
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the following example, we explore a few special cases to highlight when we can or cannot
expect the condition in Proposition 15 to hold.

Example 16 • If there exists i such that pi = 1 whereas qi < 1 or vice versa, then
ϵT = ∞.

• Suppose that (1−qi) = α(1−pi) where α ∈ (0, 1). Then the above series is
∑t

i=1 log
1−pi
1−qi

=
∑t

i=1 logα→ ∞.

• To see that it is not sufficient for limi→∞
1−pi
1−qi

= 1, consider the following: let (1−pi)
be any decreasing sequence with values in (0, 1). Set (1 − qi) = exp(−1/i)(1 − pi).

Then log
(
1−pi
1−qi

)
= 1/i and so 1−pi

1−qi
→ 1. However, the sequence of partial sums

∑t
i=1 log

(
1−pi
1−qi

)
=

∑t
i=1 1/i diverges, and so the max-divergence is infinite.

Remark 17 In Proposition 15, convergence of the series
∑∞

i=1 log
1−pi
1−qi

is sufficient but not
necessary. It is possible that the sequence of partial sums is bounded but does not converge.

Note that for most adaptive rejection samplers, it is difficult to derive expressions for
pi, so it may not even be possible to verify whether the condition in Proposition 15 holds
or not. The takeaway is that in general, an adaptive rejection sampler is not guaranteed to
preserve privacy unless it is carefully designed to do so.

4. Rejection samplers with data-independent runtime

The previous section showed that a rejection sampler (either simple or adaptive) can result
in an arbitrary amount of privacy loss through the runtime. The most direct way to avoid
this is to ensure that the runtime does not depend on the dataset. Haeberlen et al. (2011)
propose making the runtime a constant, though this is not strictly necessary. Rather, when
the runtime is a random variable (as with rejection sampling), we simply need that its
distribution does not depend on the dataset.

In this section we propose three modifications of the rejection sampling algorithm to en-
sure data-independent runtime. The first method, which requires the weakest assumptions,
fixes the number of iterations independent of the dataset, based on a worst-case acceptance
probability. This method has a constant runtime, but there is a small probability that a
sample is not accepted, and we quantify the additional privacy cost. The second method is
based on the memoryless property of the geometric distribution, and introduces an additive
random wait-time. This approach however requires the integrating constant of the target
distribution corresponding to the current database, as well as the acceptance probability
of a worst-case database, which is often not realistic. The third method avoids this by
using instead upper and lower bounds for the target densities of all databases, chosen so
that the ratio of the area for the upper and lower bounds is constant across databases.
Finally, we propose an adaptive rejection sampler with data-independent runtime, which
is a modification of the (nearly) minimax optimal sampler of Achddou et al. (2019). Our
adaptive sampler is entirely automated, and only requires that the family of target densities
is log-Hölder with fixed and known parameters
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We show in Section 5 that many commonly studied privacy mechanisms satisfy the
assumptions of our methods allowing for our privacy-preserving rejection samplers to be
applied.

4.1 Constant runtime, truncated rejection sampling

One clear way to remove the privacy leak due to the runtime is to choose a number of
iterations independent of the database, based on a worst-case estimate of the acceptance
probability across all databases. We then run the sampler for that many iterations, and
publish one of the accepted samples. In this case, the runtime is fixed, and does not leak
any privacy. However, it is not guaranteed that an accepted sample is found within the
pre-determined number of iterations, and the probability of this event does depend on the
database. This probability can be reduced by increasing the number of iterations, but this
also increases the runtime of the algorithm.

Of the methods we propose, the algorithm in Proposition 18 requires the weakest as-
sumptions in that the only knowledge we require is a lower bound on the acceptance prob-
ability across the databases. However, there is a small probability that no samples are
accepted in the prescribed number of iterations, which negatively impacts both the privacy
and the utility of the mechanism. Proposition 18 characterizes the increased cost to privacy
of the truncated sampler in terms of (ϵ, δ)-DP.

Proposition 18 Let {MD | D ∈ D} be a family of privacy mechanisms satisfying (ϵ0, δ0)-
DP and (UD, cD) be such that π̃D ≤ cDUD where π̃D is an unnormalized density for MD.
Assume that α0 ≤ 1/cD

∫
π̃D(x) dx for all D, that is, α0 is a lower bound on the acceptance

probability in the rejection sampler across all databases. Given δ > 0, run the sampler for
N = log(1/δ)

log(1/(1−α0))
iterations. If there is an accepted proposal, publish the first one; if not,

publish an arbitrary output (such as one more draw from the proposal). Releasing the output
as well as the runtime of this algorithm satisfies (ϵ0, δ0 + δ)-DP.

Proof First note that the runtime is constant for all D, so there is no privacy leak there.
Next, note that conditional on the event that an accepted proposal is found, there is no
additional privacy leak. So, we need to determine the probability that an accepted proposal
is not found:

P (none accepted) = (1− P (accept))N ≤ (1− α0)
N = (1− α0)

log(δ)
log(1−α0) = δ.

By itself, simply publishing whether a sample is accepted or not satisfies (0, δ)-DP. By post-
processing (Proposition 5), we can upper bound the privacy cost by instead considering if we
observe both an output from MD as well as whether the algorithm has accepted or rejected
a sample. This is a composition of an (ϵ0, δ0)-DP mechanism with a (0, δ)-DP mechanism.
By composition (Dwork et al., 2014, Theorem 3.16) the result satisfies (ϵ0, δ0 + δ)-DP.

A benefit of the algorithm in Proposition 18 is that it can be vectorized and is easily
parallelized. Another benefit is that N grows only in the log of 1/δ. By increasing the
number of iterations N , the increased δ can be reduced exponentially. The two major
downsides are that the algorithm must be run much longer than a simple rejection sampler,
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and that it is not guaranteed that an accepted sample is found, which reduces both the
privacy and utility. If no samples are accepted, then the output does not follow the correct
distribution, introducing error in the sampling approximation. We see that we are able to
remove the runtime side-channel, but at the cost of a small “delta” and loss of utility. In
the next two subsections, we show that with slightly stronger assumptions, we are able to
obtain both perfect sampling as well as data-independent runtime.

4.2 Additive geometric wait-time

In this section, we use the memoryless property of the geometric distribution to introduce
an additive wait time based on a lower bound on the acceptance probability. The result is
that the runtime of the algorithm is geometric with acceptance rate equal to the worst-case
dataset (or a lower bound on the acceptance probability).

The benefit of this method over the truncated rejection sampler is that a sample from the
correct distribution is guaranteed, and the runtime is still independent of the database. The
downside is that the acceptance probability (or equivalently the integrating constant) for
the present database is required as well as a bound on the worst-case acceptance probability.
Typically, rejection samplers do not assume that the integrating constant is known, however
for low dimensional problems (e.g., ≤ 3), it may be possible to numerically evaluate the
integral.

Lemma 19 illustrates the memoryless property of the geometric distribution. Given a
simple rejection sampler with acceptance probability q, we can add a random wait time to
result in a total runtime that is distributed as Geom(p) for p ≤ q. So, across databases, we
can make all of the runtimes equal in distribution, calibrated to a worst-case acceptance
probability.

Lemma 19 Let 0 < p ≤ q < 1. Given X2 ∼ Geom(q), set X1 = X2 with probability p/q
and otherwise X1 = X2 +∆, where ∆ ∼ Geom(p). Then X1 ∼ Geom(p).

Proof Let t ∈ {1, 2, . . . ,∞}. Then

P (X1 = t) =
p

q
P (X2 = t) + (1− p/q)P (X2 +∆ = t)

=
p

q
(1− q)t−1q +

q − p

q

t−1∑

x=1

P (X2 = x)P (∆ = t− x)

= p(1− q)t−1 +
q − p

q

t−1∑

x=1

(1− q)x−1q(1− p)t−x−1p

= p(1− p)t−1,

which is the pmf of Geom(p), as desired. To achieve the last line in the equations, we used
the partial sum formula for a geometric series, and simplified the result.

Theorem 20 Let D ∈ D be a database and {πD | D} be the normalized target densities.
Assume that for each πD, we have normalized densities UD(x) as well as constants cD such
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Figure 3: Example implementation of Algorithm 1. See Example 25 for details. The sample
x2 is accepted, but not published until x5.

that for all x, πD(x) ≤ cDUD(x). Suppose we know a constant c satisfying c ≥ supD cD.
Consider the following scheme:

1. Run a rejection sampler, proposing from UD(x) and targeting πD(x) until acceptance

2. Call the accepted sample X. Also draw Y ∼ Unif(0, 1).

3. If Y < cD/c, publish X, else wait for Geom(1/c) cycles before publishing X.

Then X ∼ πD, and the wait time follows Geom(1/c), which does not depend on D.

As compared to the truncated rejection sampler of Section 4.1, Theorem 20 offers a
perfect sampler with data independent runtime. This is ideal as there is no loss to either
privacy or utility through either approximate samples or a runtime side-channel. However,
the downside of this method is that the acceptance probability for the current database
must be known. Assuming that the proposal is normalized, this is equivalent to know-
ing the integrating constant for the target . While this may not be too cumbersome for
low-dimensional settings, it becomes computationally intractable for high-dimensional dis-
tributions. In the next section, we give an alternative set of assumptions to remove the
requirement of the integrating constant.

Remark 21 A similar alternative to Theorem 20 is as follows: during each step of the
rejection sampler, if a sample is accepted, then with probability cD/c report the sample, and
with probability 1 − cD/c do not report the sample. This results in the same runtime as
Theorem 20.

We remark that this alternative algorithm has a similar flavor to the randomized response
mechanism, one of the oldest privacy mechanisms (Warner, 1965). While beyond the scope
of this paper, it may be worth investigating whether there is any deeper connection between
this privacy-aware rejection sampler and randomized response.
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4.3 Implicit wait-time via squeeze function

In this section, we propose another method of producing an exact rejection sampler with
data-independent runtime. Our method, described in Algorithm 1 and Theorem 22, avoids
the need for the normalizing constant as in Theorem 20 by instead using a carefully tailored
squeeze function. In the rejection sampling literature, a squeeze function is a lower bound on
the target density which is assumed to be easy to evaluate, and which is used to speed up the
computational time by avoiding evaluations of the target density when a proposed sample
lies under the squeeze function (i.e. is rejected by the squeeze function, see Example 25).
However, in this section, we will use the squeeze function not to speed up the computational
time, but to slow it down; this will enable us to make the runtime equally distributed as in
a worst-case setting.

For this method, we assume that for each unnormalized target density π̃D, we have
normalized densities UD(x) and LD(x) as well as constants cL,D and cU,D such that for all
x

cL,DLD(x) ≤ π̃D(x) ≤ cU,DUD(x),

and such that the ratio cL,D/cU,D does not depend on D. Note that the latter condition
is easy to enforce: if cL,D and cU,D are two valid constants, then so are c∗L,D < cL,D and
c∗U,D > cU,D. We then choose the value Xs that we publish based on the rejection sampler
that targets π̃D from UD, but do not publish the sample until a value is accepted from LD

(i.e. the proposal lies under the squeeze function cL,DLD: see Example 25). Because of this
modification, the runtime is determined only by the ratio cL/cU , which is assumed to be
constant across databases. Thus, there is no additional privacy cost to using this sampler,
since we get an exact sample with runtime independent of D. This method is similar to
that of Section 4.2 in that there is an additive wait-time, but Algorithm 1 is able to do
this implicitly, without knowing the acceptance probability for the current database. In
Proposition 23, we show that the assumptions of Theorem 22 are strictly weaker than those
of Proposition 20.

Algorithm 1 Privacy-aware rejection sampling via squeeze functions
INPUT: π̃, U , L, cU , and cL such that cLL(x) ≤ π̃(x) ≤ cUU(x) for all x

1: Set anyAccepted=FALSE

2: Sample X ∼ U(x)
3: Sample Y ∼ Unif(0, 1)

4: if Y ≤ π̃(X)
cUU(X)

and anyAccepted==FALSE then

5: Set Xs = X
6: Set anyAccepted=TRUE

7: end if

8: if Y ≤ cLL(X)
cUU(X)

then

9: Publish Xs

10: else

11: Go to 2.
12: end if

OUTPUT: Xs

Theorem 22 Let D ∈ D be a database and {π̃D | D} be the (unnormalized) target densi-
ties. Assume that for each π̃D, we have normalized densities UD(x) and LD(x) as well as
constants cL,D and cU,D such that the ratio cL,D/cU,D does not depend on D and such that
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for all x cL,DLD(x) ≤ π̃D(x) ≤ cU,DUD(x). Then the output of Algorithm 1 with π̃ = π̃D,
U = UD, L = LD, cU = cU,D, cL = cL,D has distribution πD and runtime Geom(cL,D/cU,D),
which does not depend on D.

Proof The published sample is determined by the condition Y ≤ π̃D(X)
cU,DUD(X) , where

X ∼ UD(x) and Y ∼ Unif(0, 1). This is a simple rejection sampler, and so conditional

on acceptance, X ∼ πD. However, a sample is not published until Y ≤
cL,DLD(X)
cU,DUD(X) . This is a

rejection sampler targeting LD(X), using the proposal UD(X) and threshold cU,D/cL,D. As
such, the number of iterations is Geom(cL,D/cU,D), which by assumption does not depend
on D.

While the assumption of the squeeze functions in Theorem 22 may seem unintuitive, it
is in fact strictly weaker than knowing the integrating constant for π̃D, as was required in
Section 4.2, as shown in Proposition 23. In Section 4.4 and 5 we show that there are several
natural instances of the exponential mechanism where the assumptions of Theorem 22 are
satisfied.

Proposition 23 Let D ∈ D be a database and {πD | D} be the normalized target densities.
Assume that for each πD, we have normalized densities UD(x) and constants cU,D such that
πD(x) ≤ cU,DUD(x). Choose a value c ≥ supD cU,D. Then the squeeze function LD = πD,
with constant cL,D = cU,D/c satisfies the assumptions of Theorem 22, and the output of
Algorithm 1 has distribution πD and runtime Geom(1/c).

Proof Since c ≥ cU,D, we have that cL,D = cU,D/c ≤ 1. So, cU,DLD(x) ≤ πD(x) for all x.
Then, the runtime of Algorithm 1 is geometric with parameter (cL,D/cU,D) = 1/c, and the
output of Algorithm 1 has the appropriate distribution as argued in the proof of Theorem
22.

In fact, the application of Algorithm 1 described in Proposition 23 is very similar to the
variation of Theorem 20 described in Remark 21.

Remark 24 Proposition 23 showed that the assumptions for the squeeze functions in Theo-
rem 22 are actually strictly weaker than the assumptions needed in Section 4.2. Furthermore,
it can be seen that the assumptions of Theorem 22 (assuming that we can evaluate the con-
stant cL,D/cU,D) are strictly stronger than knowing the worst-case acceptance probability,
which is needed for the truncated sampler of Section 4.1 – this is because the ratio cL,D/cU,D
is itself a lower bound on the worst-case acceptance probability.

Example 25 Figure 3 is an illustration of how Algorithm 1 works. We see an example of a
target π̃, which satisfies cLL(x) ≤ π̃(x) ≤ cUU(x) for constants cL, cU , a proposal function
U and squeeze function L. The points (xi, yi) are sequentially drawn uniformly within the

area under cUU ; equivalently, xi ∼ U(x) and yi = ui · cUU(x), where ui
iid
∼ Unif(0, 1).

Algorithm 1 processes these samples as follows: For the first pair, y1 > π̃(x1) so the sample
is rejected. The second sample satisfies y2 ≤ π̃(x2) so it is accepted (set Xs = x2), but
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because y2 > cLL(x2) it is not published yet. The third sample is rejected since y3 > π̃(x3).
The fourth sample satisfies y4 ≤ π̃(x4), but since we already accepted x2, we do not update
Xs. Since y4 > cLL(x4) we still do not publish anything yet. Finally, y5 ≤ cLL(x5) so we
publish Xs = x2.

As noted in Theorem 22, the procedure results in Xs ∼ π, but the runtime is distributed
as Geom(cL/cU ), which does not directly depend on π̃.

4.4 Adaptive rejection sampler for log-Hölder densities

The previous three subsections proposed modifications to simple rejection samplers in order
to remove the runtime side-channel. In this section, we use the squeeze method of Section
4.3 to develop an adaptive rejection sampler with data-independent runtime for log-Hölder
densities. Our method, outlined in Algorithm 2, is entirely black box, requiring only Hölder
parameters (s,H) that hold for every database, and is a modification of the (nearly) mini-
max optimal sampler of Achddou et al. (2019). Let πD(x) ∝ exp(gD(x)) be an unnormalized
target density on a bounded convex set C, where gD is (s,H)-Hölder for all datasets D:
|gD(x)−gD(y)| ≤ H∥x−y∥s for all D and for all x, y ∈ C. This setup differs from Achddou
et al. (2019), who assume that the target itself is Hölder, rather than the log-target. This
difference is important in order to derive upper and lower bounds that satisfy a property
similar to Theorem 22. We point out in Remark 29 that the log-Hölder assumption, with
the same s and H across all datasets, is natural for many privacy mechanisms, and many
instances of the exponential mechanism in the literature satisfy this assumption.

At a high-level, given evaluations of gD(x) at a finite set of locations, the log-Hölder
assumption allows us to construct piecewise-constant upper and lower bounds on gD(x)
and therefore the target density. Importantly, these bounds can be constructed so that the
ratio of their associated normalization constants is independent of the database D. Then,
in the fashion of Algorithm 1, by proposing from the upper bound, and stopping only on
accepting from the lower bound, we can have a database-independent runtime. Following
each proposal, we add a new location to our set of evaluations of gD(x), tightening the lower
and upper bounds, and ensuring the acceptance probability increases each iteration. We
describe these steps in detail in Algorithm 2.

Theorem 26 Let D be a space of databases and {π̃D = exp(gD) | D} be the unnormalized
target densities, which have support on a bounded convex set C. Suppose that for all D, gD
is (s,H)-Hölder with norm ∥·∥ on C. Then Algorithm 2 results in N i.i.d. samples from π̃
and has runtime between published samples which does not depend on D. If the mapping PT

and the update procedure to generate Z are chosen in a way that supx∈C∥x− PT (x)∥ → 0,
then the probability of publishing an accepted sample in a given iteration converges to 1.

Proof The quantity r̂ is an upper bound on the maximum difference between gD(x) and
ĝ(x), by the Hölder assumption. So, at any point in the algorithm, since gD is Hölder, and
by the definition of r̂, we have that

exp(ĝ(x)− r̂) ≤ exp(gD(x)) ≤ exp(ĝ(x) + r̂). (6)

Using the notation of Theorem 22, we have that cL,D = exp(−r̂), LD(x) = k exp(ĝ(x)),
cU,D = exp(r̂) and UD(x) = k exp(ĝ(x)), where k = (

∫
C exp(ĝ(x)) dx)−1. Since cL,D/cU,D =
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Algorithm 2 Privacy-aware adaptive rejection
INPUT: g an (s,H)-Hölder function on a bounded convex set C ⊂ R

d for some norm ∥·∥, initial evaluation points
{(x1, g(x1)), . . . , (xn, g(xn))}, and a “nearest neighbor” map PT (·) : C → T for any finite set T ⊂ C, the number N
of i.i.d. samples desired from π(x) ∝ exp(g(x))I(x ∈ C)

1: Set anyAccepted=FALSE, numSamples=0, and publishedSamples= ∅
2: Set S = {(x1, g(x1)), . . . , (xn, g(xn))}, and T = {x | (x, y) ∈ S for some y}
3: while numSamples< N do

4: Define ĝ(x) = g(PT (x)) for all x ∈ C (note that this only requires evaluations of g from S)
5: Set r̂ ≥ supx∈C H∥x− PT (x)∥s

6: Sample X ∼ exp(ĝ(x))/(
∫
C
exp(ĝ(x)) dx)

7: Sample Y ∼ Unif(0, 1)
8: if Y ≤ exp(g(X))/ exp(ĝ(X) + r̂) and anyAccepted=FALSE then

9: Set Xs = X
10: Set anyAccepted=TRUE

11: end if

12: if Y ≤ exp(−2r̂) then

13: Publish Xs and append Xs to publishedSamples

14: Increment numSamples by 1
15: Set anyAccepted=FALSE

16: end if

17: Choose Z ∈ C \ T either randomly or deterministically based on only T , H and s
18: Append (Z, g(Z)) to S
19: Append Z to T
20: end while

OUTPUT: publishedSamples, which can be published in a stream

exp(−2r̂) does not depend on D, by Theorem 22 the published samples are drawn inde-
pendently from πD and the runtime does not depend on D.

The probability of publishing a sample is exp(−2r̂). So, as long as ∥x−PT (x)∥ decreases
as more samples Z are appended to T , we have r̂ → 0 and thus the probability of publishing
an accepted sample converges to 1.

Because the update step and the rejection step are separated, we can think about the best
way to update the proposal function. Our goal should be to reduce r̂ as quickly as possible.
A simple, but naive solution would be to sample Z uniformly on C. Another approach
would be to choose a sequence of (xi)

∞
i=1 such that for any N , the subset (x1)

N
i=1 consists of

approximately equally spaced points in C. This could be done intelligently using sequential
space-filling experimental designs (e.g., Crombecq and Dhaene, 2010; Pronzato and Müller,
2012). For example, a greedy maximin solution would be to choose z = arg supz∈C H∥z −
PT (z)∥

s (Pronzato and Müller, 2012), which maximizes the publishing probability for the
next iteration. Computing the maximin solution may be possible in low-dimensions, but
becomes expensive in high dimensional spaces.

As in Achddou et al. (2019), we can make the adaptive sampler much easier to implement
by considering the following special case of Algorithm 2: 1) use the ℓ∞ norm in the Hölder
definition, 2) set C = [0, 1]d, 3) approximate the nearest neighbor calculation PT (y) on a
grid, as described in Achddou et al. (2019, Definition 4). These modifications make the
construction, evaluation, and sampling of the proposal exp(ĝ) computationally efficient,
even in high dimensions. The accept-reject steps (lines 6-16) and the update steps (lines
17-19) can be done in batches to avoid updating the function ĝ too often, when it will not
significantly improve the acceptance probability.
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Remark 27 (Relative runtime) We consider how the runtime of Algorithm 2 compares
to a similar sampler without the privacy constraint. Recall that the acceptance probability of
our sampler is exp(−2r̂). If we use the same proposal distribution, but base the acceptance
criteria solely on the target, then the acceptance probability depends on the target. For a
typical target density, we expect that the acceptance probability is approximately exp(−r̂).
If this is the case, then as r̂ → 0, the ratio of the rejection probabilities is

lim
r̂→0

1− exp(−2r̂)

1− exp(−r̂)
= lim

r̂→0

2r̂

r̂
= 2,

where we use a series expansion of exp(−x) about zero to evaluate the limit. This suggests
that the cost of privacy is that the rejection probability is about double that of the non-private
sampler.

Another cost of the privacy-preserving adaptive sampler is the decoupling of the rejection
and update steps. Roughly, we will need to evaluate gD twice as often—one for the update
and one for the accept/reject step—as compared to non-private adaptive samplers, such as
in Achddou et al. (2019). This additional cost is somewhat mitigated by the fact that the
update points can be chosen in a more intelligent manner, potentially improving the rate of
convergence of the proposal.

Example 28 We illustrate Algorithm 2 applied to the target π̃ = exp(g(x)), where g is
the 7-Lipschitz function g(x) = −3|x − 1/2| + (1/5) sin(20x), so H = 7 and s = 1. The
update and sampling steps of Algorithm 2 are run in batches. First, 5 equally spaces points
are used to approximate exp(g(x)) by a piece-wise linear function exp(ĝ(x)). The upper
bound is exp(ĝ(x) + r̂) and the lower bound is exp(ĝ(x) − r̂). The top left plot of Figure
4, illustrates each of these functions. Next, five points (xi, yi) for i = 1, . . . , 5 are sampled
uniformly within the area under exp(ĝ(x)+ r̂), as seen in the top right plot of Figure 4. The
first value y1 is below exp(g(x1)), but not below exp(ĝ(x1)− r̂), so we set Xs = x1 and set
anyAccepted = TRUE, but do not publish Xs yet. We reject x2. Then as y3 ≤ exp(ĝ(x3)−r̂),
we publish Xs = x1, and set anyAccepted = FALSE. We reject both x4 and x5.

After this, we update the approximation ĝ using 15 equally spaced points. This grid is a
superset of the 5-point grid, so we can reuse the previous evaluations. The new approxima-
tion and bounds are shown in the bottom left plot of Figure 4. Then (xi, yi) for i = 6, . . . , 10
are sequentially sampled uniformly from the area under exp(ĝ(x) + r̂), illustrated in the
bottom right plot of Figure 4. As exp(ĝ(x6) − r̂) < y6 ≤ exp(g(x6)), we set Xs = x6 and
anyAccepted = TRUE, but do not publish Xs. Since y7 ≤ exp(ĝ(x7)− r̂), we publish Xs = x6
at this time and set anyAccepted = FALSE. Then since y8 ≤ exp(ĝ(x8)− r̂), we immediately
publish x8. We reject x9. Last, as y10 ≤ exp(ĝ(x10)− r̂), we also publish x10.

Note that by using equally spaced points, r̂ converges to zero rapidly, illustrating the
benefit of using deterministically chosen points in the construction of ĝ.

Remark 29 There are several prior DP works on the exponential mechanism, where the
utility function is assumed to be Lipschitz (a special case of Hölder), and where Algorithm
2 can be applied. Minami et al. (2016) assume Lipschitz and concave utility functions.
Bassily et al. (2014a) and Bassily et al. (2014b) derive optimal DP mechanisms under the
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exp(ĝ(x) − r̂)

Figure 4: Implementation of Algorithm 2, as explained in Example 28. Plots progress in
the normal reading order.

assumption of Lipschitz and convex empirical risk objective functions, as well as a bounded
domain, which result in implementations of the exponential mechanism. In part of their
work, Ganesh and Talwar (2020) assume Lipschitz and L-smooth utility functions in the
exponential mechanism.

5. Application to exponential mechanism sampling

In this section, we explore some instances of the exponential mechanism that satisfy the as-
sumptions of the rejection samplers proposed in Section 4, allowing for a privacy-preserving
implementation.

5.1 Strongly concave and L-smooth log-density

We first consider instances of the exponential mechanism where the utility function gD is
both strongly concave and L-smooth. These are the same properties that Ganesh and Tal-
war (2020) assume. Both Awan et al. (2019) and Minami et al. (2016) assume strongly
concave utility functions in the exponential mechanism. Other private empirical risk mini-
mization works, while not working directly with the exponential mechanism, also commonly
assume L-smooth and strong concavity (Kifer et al., 2012; Bassily et al., 2014a,b).

24



Privacy-Aware Rejection Sampling

Under the strongly concave and L-smooth assumptions, we are able to derive upper and
lower bounds for the target, which satisfy the requirements of Theorem 22.

Lemma 30 Let π̃D(x) ∝ exp(gD(x)) be the (unnormalized) target density, where gD : Rd →
R is twice-differentiable, α-strongly concave, and L-smooth. Call x∗D := argmaxx gD(x).
Using ϕd(x;µ,Σ) to denote the pdf of Nd(µ,Σ), we have for all x,

exp(gD(x
∗
D)) (2π/L)

d/2 ϕd(x;x
∗
D, L

−1I) ≤ exp(gD(x)) ≤ exp(gD(x
∗
D)) (2π/α)

d/2 ϕd(x;x
∗
D, α

−1I).

Furthermore, calling cL,D = exp(gD(x
∗
D)) (2π/L)

d/2 and cU,D = exp(gD(x
∗
D)) (2π/α)

d/2,
we have that cL,D/cU,D = (α/L)d/2, which does not depend on D.

Proof By strong concavity, we have that

−gD(x) ≥ −gD(x
∗)−∇gD(x

∗
D)

⊤(x− x∗D) +
α

2
∥x∗D − x∥22 = gD(x

∗
D) +

α

2
∥x∗D − x∥22,

since ∇gD(x
∗
D) = 0. This implies that

exp(gD(x)) ≤ exp(gD(x
∗
D)) exp

(
−
∥x∗D − x∥22
2(1/α)

)
.

Including the integrating constant for a multivariate normal distribution gives the upper
bound.

Next, since gD is L-smooth, we have that

−gD(x) = −gD(x
∗
D)−∇gD(x

∗
D)

⊤(x− x∗D) +
1

2
(x∗D − x)⊤∇2gD(x̃)(x

∗
D − x)

≤ −gD(x
∗
D) +

L

2
∥x∗D − x∥22,

where x̃ is between x∗D and x, we used the fact that ∇gD(x
∗
D) = 0, and that the eigenvalues

of ∇2gD are upper bounded by L. This implies that

exp(gD(x)) ≥ exp(gD(x
∗
D))

(
2π

L

)d/2

ϕd
(
x;x∗D, L

−1I
)
,

giving the lower bound.

Given the bounds in Lemma 30, we can now implement the squeeze-function rejection
sampler of Section 4.3, since cL,D/cU,D does not depend on D. As discussed in Proposition
23, generating these bounds is strictly easier than computing the integrating constant for
the target, which is not needed in Lemma 30.

We could also implement the truncated sampler of Section 4.1, by using the bound
(α/L)d/2 on the worst-case acceptance probability. However, since Theorem 22 is applicable,
the truncated sampler is strictly worse as it incurs a price both in privacy as well as utility,
whereas the squeeze sampler produces perfect samples.

There are many natural problem settings that fit the assumptions of Lemma 30, partic-
ularly in empirical risk minimization.
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Example 31 (Strongly convex empirical risk minimization) Suppose that the database
can be written as a vector D = (d1, . . . , dn), where di is the contribution of individual
i. Take as our utility function gD(x) = − (

∑n
i=1 ℓ(x; di) + r(x)), where ℓ(x; d) is a twice-

differentiable convex function which is L-smooth and satisfies supd,d′ supx |ℓ(x; d)−ℓ(x; d
′)| ≤

∆, and r(x) is an α-strongly convex regularizer, which does not depend on the database D.
For instance, we could take r(x) = α

2 ∥x∥
2
2. Then the exponential mechanism samples from

πD(x) ∝ exp( ϵ
2∆gD(x)) and satisfies ϵ-DP.

Note that gD is nL-smooth and α-strongly concave for all D, so it fits the framework of
Lemma 30. Such a setup is common in private empirical risk minimization (Kifer et al.,
2012; Bassily et al., 2014a,b), and in particular for private regression problems (Kifer et al.,
2012; Reimherr and Awan, 2019; Awan and Slavković, 2020).

5.2 K-norm gradient mechanism

An alternative to simply applying the exponential mechanism to a strongly concave util-
ity function is the K-norm gradient mechanism (KNG), proposed in Reimherr and Awan
(2019), also known as the gradient mechanism (Asi and Duchi, 2020a). KNG has been
applied to applications such as geometric median estimation, and linear and quantile regres-
sion (Reimherr and Awan, 2019; Asi and Duchi, 2020a). Given an objective function gD(x),
KNG samples from πD(x) ∝ exp(− ϵ

2∆∥∇gD(x)∥K), where ∆ ≥ supd(D,D′)≤1 supx∥∇gD(x)−
∇gD′(x)∥K , and where ∥·∥K is a chosen norm.

While the exponential mechanism with a strongly concave utility is naturally approxi-
mated by a Gaussian distribution (Awan et al., 2019), KNG is closely related to the K-norm
distributions (Reimherr and Awan, 2019). TheK-norm mechanism was introduced in Hardt
and Talwar (2010), and were also studied in Awan and Slavković (2020).

Definition 32 (K-norm distribution: Hardt and Talwar, 2010) Let ∥·∥K be a norm
on R

d, with associated unit norm ball: K = {x ∈ R
D | ∥x∥K ≤ 1}. The K-norm distribution

with location m and scale s has density

f(x;m, s) = c−1 exp
(
−s−1∥x−m∥K

)
,

where c = (d!)sdVol(K).

Under similar assumptions as those in Reimherr and Awan (2019, Theorem 3.1), Lemma
33 gives upper and lower bounds which satisfy the assumptions required for Theorem 22.

Lemma 33 Let π̃D(x) = exp(−∥∇gD(x)∥2) be the unnormalized target density, where gD :
R
d → R is twice-differentiable, α-strongly convex, and L-smooth. Call x∗D := argminx gD(x).

Write ψd(x;m, s) to denote the pdf of a d-dimensional K-norm distribution with location

m, scale s, and ℓ2 norm. Denote Vold(ℓ2) = 2dΓd(1+1/2)
Γ(1+d/2) the volume of the unit ℓ2 ball in

R
d. Then for all x,

(d!)L−dVold(ℓ2)ψd(x;x
∗
D, 1/L) ≤ exp(−∥∇gD(x)∥2) ≤ (d!)α−dVold(ℓ2)ψd(x;x

∗
D, 1/α).

Furthermore, calling cL,D = (d!)L−dVold(ℓ2) and cU,D = (d!)α−dVold(ℓ2), we have that
the ratio cL,D/cU,D = (α/L)d does not depend on D.
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Proof By strong convexity, we have that

α∥x− x∗D∥
2
2 ≤ ⟨∇gD(x)−∇gD(x

∗
D), x− x∗D⟩ = ⟨∇gD(x), x− x∗D⟩ ≤ ∥∇gD(x)∥2 · ∥x− x∗D∥2,

where we used the fact that ∇gD(x
∗
D) = 0 and Cauchy-Schwartz inequality. This implies

that ∥∇gD(x)∥2 ≥ α∥x− x∗D∥2, which gives the upper bound.
Next, as gD is L-smooth, we have that

∥∇gD(x)∥2 = ∥∇gD(x)−∇gD(x
∗
D)∥2 ≤ L∥x− x∗D∥2,

which gives the lower bound.

Lemma 33 provides bounds that can be used to implement the sampler of Section 4.3.
The acceptance probability when targeting the lower bound is (α/L)d, which is independent
of D, as required. While we could implement the sampler of Section 4.1, as (α/L)d is a
bound on the worst-case acceptance probability, this method is strictly worse than the
squeeze sampler, as discussed in Section 5.1. The empirical risk problems of Example 31
are also applicable to KNG, and offer several natural instances that satisfy the assumptions
of Lemma 33.

Finally, note that for the KNG mechanism, if the underlying utility is L-smooth (not
necessarily strongly concave), then the log-density is L-Lipschitz. As such, we can apply
the adaptive rejection sampler of Section 4.4. If multiple i.i.d. samples are required, this
can provide a very computationally efficient sampling method, while keeping the runtime
data-independent.

6. Discussion

In this paper, we first characterized the privacy cost due to the runtime of both simple
and adaptive rejection samplers in terms of ϵ-DP, (ϵ, δ)-DP, and f -DP. We found that
the runtime of standard rejection samplers can result in an arbitrary increase in the pri-
vacy cost, motivating the need for privacy-aware samplers. We then proposed three novel
modifications to simple rejection samplers with varying assumptions, which all resulted in
data-independent runtime. We also developed a privacy-aware adaptive rejection sampler
for log-Hölder densities.

There are three factors that influence the practicality of our algorithms, (1) the scalability
of rejection sampling: Typically, the acceptance probability of a rejection samplers decays
exponentially with data dimension, making them impractical for very high dimensional
problems. However, imposing additional structure like log-concavity or log-Hölder on the
target density, adaptive rejection samplers (like our proposed one) can be applicable to
higher-dimensional problems. Such structural assumptions, as well as low- to moderate-
dimensional problems are common in differential privacy applications. (2) the additional cost
of our differentially-private modifications of rejection sampling: Our algorithms typically
result in a reduction in the acceptance probability to match the worst-case dataset. This
is unavoidable. However, our adaptive rejection sampler does not require any knowledge
of this worst-case database. As such, the sample complexity of the runtime is the same as
for a regular rejection sampler, but where the acceptance probability is the worst case. (3)
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The additional book-keeping overhead in implementing our differentially private rejection
samplers: All of our algorithms are minor modifications of existing simple or adaptive
rejection samplers, and as such, this overhead is minimal.

Of our proposed modifications to the rejection sampler, the squeeze method of Section
4.3 is the most powerful. We showed in Section 5 that for many instances of the exponen-
tial mechanism, appropriate upper and lower bounds can be generated. Furthermore, our
adaptive sampling scheme is also built on the squeeze sampler. In a way, Algorithm 1 can
be viewed as a coupling of the sampler applied to the present database and a worst-case
database. It is an open question whether similar couplings could be developed with even
weaker assumptions.

An alternative to rejection sampling is coupling from the past (CFP) (Propp and Wilson,
1998), a modified MCMC approach. The benefit of CFP is that it is another perfect sampler,
and could be a useful technique in designing privacy-aware samplers. The techniques used
in this paper may be useful for determining the privacy cost of timing channel attacks
on CFP and developing CFP algorithms with data-independent runtime. A variation on
CFP is perfect tempering, which also results in perfect samplers (Møller and Nicholls, 1999;
Daghofer and von der Linden, 2004; Brooks et al., 2006), and may be an another approach
to developing privacy-aware samplers.

While in this paper we developed samplers whose runtime does not depend on the
dataset, one could instead ask for the runtime to be differentially private by itself. Theorem
10 shows that a naive rejection sampler does have an inherent privacy cost, but one could also
imagine altering the runtime to give a stronger privacy guarantee. A significant challenge
with this approach is that we can only increase, but not reduce, the runtime. Due to this
constraint, many existing DP techniques are not applicable. We leave it for future research
to investigate mechanisms to privatize the runtime.
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pitfalls of the exponential mechanism with applications to Hilbert spaces and functional
PCA. In International Conference on Machine Learning, pages 374–384. PMLR, 2019.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 464–473. IEEE, 2014a.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization,
revisited. rem, 3:19, 2014b.

Stephen P Brooks, Yanan Fan, and Jeffrey S Rosenthal. Perfect forward simulation via
simulated tempering. Communications in Statistics-Simulation and Computation, 35(3):
683–713, 2006.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, exten-
sions, and lower bounds. In Theory of Cryptography Conference, pages 635–658. Springer,
2016.

Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke. Composable and
versatile privacy via truncated CDP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 74–86, 2018.

Kamalika Chaudhuri, Anand Sarwate, and Kaushik Sinha. Near-optimal differentially pri-
vate principal components. Advances in Neural Information Processing Systems, 25:
989–997, 2012.

Kamalika Chaudhuri, Anand D Sarwate, and Kaushik Sinha. A near-optimal algorithm for
differentially-private principal components. Journal of Machine Learning Research, 14,
2013.

Karel Crombecq and Tom Dhaene. Generating sequential space-filling designs using genetic
algorithms and Monte Carlo methods. In Asia-Pacific Conference on Simulated Evolution
and Learning, pages 80–84. Springer, 2010.

Maria Daghofer and Wolfgang von der Linden. Perfect tempering. In AIP Conference
Proceedings, volume 735, pages 355–362. American Institute of Physics, 2004.

Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikateirni Mitrokotsa, and Benjamin
Rubinstein. Differential privacy for Bayesian inference through posterior sampling. Jour-
nal of Machine Learning Research, 18(11):1–39, 2017.

29



Awan and Rao

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
In Advances in Neural Information Processing Systems 30, December 2017.
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