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Mathematical problem posing (MPP) has been at the forefront of discussion for the 
past few decades, and a wide range of problem-posing topics have been studied. 
However, problem posing is still not a widespread activity in mathematics classrooms, 
and there is not yet a general problem-posing analogue to well-established 
frameworks for problem solving. This paper presents the state of the art on the effort to 
understand the cognitive and affective processes of problem posing as well as task 
variables of problem posing at the individual, group, and classroom levels. We end this 
paper by proposing a number of research questions for future studies related to task 
variables and processes of problem posing. 
POSING A PROBLEM ABOUT PROBLEM POSING – PROMPT DESIGN 
To open the floor for a discussion about problem posing, we invite readers to engage 
with a problem-posing activity. Consider the initial Situation A and several related 
prompts for problem posing below. How would the different prompts impact your 
problem posing based on Situation A?   
Situation A: ABC is an equilateral triangle. D, E, and F are midpoints of the sides of 
DABC. Show that the area of DDEF is ¼ the area of DABC.  
Prompt 1A: Based on the above problem, use the “what if not” strategy to pose two 
mathematical problems.  
Prompt 2A: Based on the above problem, use the “what if not” strategy to pose as many 
mathematical problems as you can.  
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Prompt 3A: Based on the above problem, use the “what if not” strategy to pose two 
“easy” mathematical problems and two “difficult” mathematical problems, where the 
relative difficulty takes into account the levels of students.  
Five of us independently responded to the question (How would the different prompts 
impact your problem posing based on Situation A?). A clear difference between the 
prompts is in the request for the number of posed problems: two in Prompt 1A, two 
easy and two difficult in Prompt 3A, and “as many as you can” in Prompt 2A. Further, 
the addition of “relative difficulty” and “levels of students” in Prompt 3A is 
appropriate for a problem-posing activity with teachers and can be omitted in work 
with students. However, the reference to difficulty may entice problem posers to 
consider a greater variety of problems and attend to what can make a problem easy or 
difficult. Moreover, problem posers’ interpretation of “difficulty” can be a fruitful 
venue for investigation.  
Common to Prompts 1A, 2A, and 3A is the reference to the “what if not” strategy. As 
such, the expected variations in problem posing can attend to any of the problem 
attributes:   
V1: What if ABC is a not-equilateral (right angle, isosceles, scalene) triangle? What 
then is the ratio of the areas of DABC and DDEF? 
V2: What if D, E, and F are not midpoints but divide the sides in some common ratio.  
What then is the ratio of the areas of DABC and DDEF? 
V3: What if the ratio of the areas of DABC and DDEF is a given R. How then should 
we place points D, E, and F on the sides of ABC to obtain the given ratio of the triangle 
areas? 
V4: What if we are not considering DABC and DDEF? What other triangles are 
determined in Situation A? What is the relationship between their areas? 
V5: What if the starting figure is not a triangle but a quadrilateral (or a special 
quadrilateral, like a square) and the “inner” quadrilateral is constructed by connecting 
mid points (or points placed on the sides of that quadrilateral) using a given ratio. What 
then is the relationship between the starting areas and the inner quadrilaterals? What if 
it is not a quadrilateral but any polygon? 
V6: What if we aren’t looking for areas? Can you determine any relationship between 
the attributes of DABC and DDEF?   
 
Situation A mentions the relationship between areas. As such, five of the six examples 
above explicitly mention areas of triangles. But a particular focus can be on the prompt 
rather than on the situation. Consider Situation B and several related prompts below. 
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Situation B: D, E, and F are midpoints of the sides of equilateral triangle DABC. 
 
Prompt 1B: Consider the (ratio of) areas of DABC and DDEF. Use the “what if not” 
strategy to pose two mathematical problems. 
Prompt 2B: Consider the (ratio of) areas of DABC and DDEF. Use the “what if not” 
strategy to pose as many mathematical problems as you can. 
Prompt 3B: Consider the (ratio of) areas of DABC and DDEF. Use the “what if not” 
strategy to pose two “easy” mathematical problems and two “difficult” mathematical 
problems, where the relative difficulty takes into account the levels of students.   
 
The focus on areas appears in the theme itself in the case of Situation A and in the 
prompts in the case of Situation B. This is the main difference between the two 
situations so far. The problem-posing variations V1 to V6 responding to prompts 1B, 
2B, and 3B are not expected to be different from those resulting from Prompts 1A, 2A, 
and 3A. However, Situation B is more open and can be followed up with more 
open-ended prompts: 
 
Prompt 4B: Based on the described Situation B, pose two mathematical problems 
related to ratios of measures of the attributes in the problem. 
Prompt 5B: Based on the described Situation B, pose two mathematical problems 
related to ratios of measures (e.g., area, lengths, perimeter) of the attributes (e.g., 
segments, areas) in the problem. 
Prompt 6B: What can you say about the described Situation B? Formulate this as 
questions about the different attributes and the relationships among them.   
 
Prompts 4B and 5B both specify the number of problems as well as the focus on ratios 
of measures of the attributes. However, Prompt 5B explicitly suggests what measures 
and what attributes are to be considered. We consider Prompt 6B to be very open in 
terms of attributes in the focus and the number of problems to be considered. The 
choice to use a more open or a more specific prompt can depend on the population of 
problem posers and on their previous experience. Furthermore, the last three prompts 
(4B, 5B, and 6B) do not mention the “what if not” or any other particular strategy. 
Although the “what if not” strategy is a good tool for starting a problem-posing 
activity, other formulations can open the task for creative adventures. 
For example, Prompt 6B can be modified to appeal to the affective domain of problem 
posing.  
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Prompt 7B: What can you say about the described Situation B? Formulate this as 
questions about the different attributes and the relationships among them that for YOU 
would be interesting to answer. 
 
Prompt 7B can be used with either teachers or students. Here are several examples of 
what was “prompted” by Prompt 7B for us. 
 
V7: A turtle walks along the sides of an outer DABC and the inner DDEF, beginning at 
point A and finishing at the same point. Can it walk so that every segment would be 
walked only once? If yes, suggest as many as possible trails for the turtle. If not, why 
not? 
V8: DABC is an equilateral triangle. D, E, and F are points of the sides ofDABC that 
divide the sides in the same ratio. That is, AD:DB = BE:EC = CF:FA = x:y. What 
should the ratio x:y be so that DADF, DBDE, and DCEF would become: (1) an acute 
angle; (2) a right angle; and (3) obtuse?   
V9:  DABC is an equilateral triangle. D, E, and F are points of the sides of DABC that 
divide the sides in ratios X, Y, and Z. Suppose AD:DB = X; BE:EC = Y; and CF:FA = Z. 
Is there a relationship between the ratios X, Y, and Z and the ratio of the areas of DABC 
and DDEF (where X = Y = Z it is a variation of V8)? 
V10: DABC is an equilateral triangle. D, E, and F are midpoints of the sides of triangle 
ABC. 

1. Show that the area of DDEF is ¼ the area of DABC and the perimeter of DEF is 
1/3 the perimeter of DABC.  

2. Consider the following process: The middle triangle DEF is removed, midpoints 
of the sides of three remaining triangles (DAFE, DFBD, and DEDC) are drawn, 
and each of these three triangles is split into four triangles as has been done for 
the initial triangle ABC. Then, again, the middle triangle in each of the three 
triangles is removed. What would be the area and the perimeter of the figure 
resulting from all the remaining triangles? 

3. Imagine that the above process is repeated many times. Approximate the area 
and the perimeter of the figure consisting of all the remaining triangles after 100 
iterations.  

4. What would be the area and the perimeter when the number of iterations 
approaches infinity?  
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V11: What transformation(s) can map DABC to DDEF? 
V12:  Reverse construction: Given DDEF, which is the “inner” triangle? Construct 
DABC such that points D, E, and F are midpoints of AB, BC, and CA. Easy: Start with 
equilateral DDEF. Harder: Start with scalene DDEF. Very hard: Construct DABC such 
that points D, E, and F divide the sides of DABC in the given ratio.  
 
We invite readers to examine the suggested prompts and consider which ones, if any, 
they will choose when working with students or teachers in their respective 
environments. What considerations determine your preference? What task variables 
are featured? Further, will the choice of a prompt be different if it is intended to be used 
for research data collection? What additional or different considerations will determine 
your choice? We also invite readers to engage in prompt design, considering Situation 
B as a prelude to the forthcoming discussion of processes and variables of problem 
posing at individual, group, and classroom levels. In the following sections, we discuss 
problem-posing research with regard to processes and task variables. 
PROBLEM-POSING PROCESSES: PROGRESS 
Mathematical problem posing (MPP) has been at the forefront of discussion for the 
past few decades (Brown & Walter, 1983; Cai, 1998; Ellerton, 1986; English, 1998; 
Kilpatrick, 1987; Silver, 1994; Silver & Cai, 1996). Recent years have seen increased 
research activity in the domain of problem posing as reflected in journal special issues 
(Cai & Hwang, 2020; Cai & Leikin, 2020; Singer, Ellerton, & Cai, 2013), books (e.g., 
Felmer, Pehkonen, & Kilpatrick, 2016; Singer, Ellerton, & Cai, 2015), and 
conferences (e.g., ICME-14: TSG 17). This increased research on problem posing has 
also been reflected in the wide range of problem-posing topics studied (see Cai, 
Hwang, Jiang, & Silber, 2015, and Singer et al., 2013, for examples of such topics) and 
review papers (e.g., Baumanns & Rott, 2021; Cai & Leikin, 2020; Cai et al., 2015).  
One of the important topics studied is the processes of problem posing as experienced 
by students and teachers. Although we know that students and teachers are capable of 
posing mathematical problems, we have a considerably less fine-grained 
understanding of how they go about posing those mathematical problems in any given 
situation. Some researchers have identified general strategies students may use to pose 
problems (e.g., Brown & Walter, 1983; Cai & Cifarelli, 2005; Christou, Mousoulides, 
Pittalis, & Pitta-Pantazi, 2005; Cifarelli & Cai, 2005; English, 1998; Koichu, 2020; 
Koichu & Kontorovich, 2013; Pittalis, Christou, Mousoulides, & Pitta-Pantazi, 2004; 
Rott, Specht, & Knipping, 2021; Silver & Cai, 1996). Others have explored some of 
the variables that may influence students’ problem posing (e.g., Kontorovich, Koichu, 
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Leikin, & Berman, 2012; Leung & Silver, 1997; Silber & Cai, 2017). Still others have 
explored the affective processes of mathematical problem posing (e.g., Schindler & 
Bakker, 2020).  
However, there is not yet a general problem-posing analogue to well-established 
frameworks for problem solving such as Pólya’s (1945) four phases of problem 
solving, Garofalo and Lester’s (1985) cognitive-metacognitive processes of problem 
solving, and Schoenfeld’s (1985) problem-solving attributes. More research is needed to 
develop a broadly applicable understanding of the fundamental processes and 
strategies of mathematical problem posing. For now, we remain in the beginning 
stages of understanding the cognitive and affective processes of problem posing, and 
this is one of the reasons for which this activity is implemented in mathematics 
instruction in a rather cursory way (Cai & Hwang, 2020; Cai & Leikin, 2020).    
Even though the products of problem posing (i.e., new problems) are important as they 
constitute the heart of mathematical activities, problem-posing processes are equally 
important because it is in the processes that problem posers come up with ideas for new 
problems, evaluate those ideas, and develop or reject them (Baumanns, in press). 
Earlier attempts at understanding problem-posing processes 
In several earlier studies (e.g., Cai & Hwang, 2002; English, 1998; Silver & Cai, 1996), 
researchers have tried to use students’ posed problems as a base for examining 
problem-posing processes. For example, Cai and Hwang (2002) used pattern situations 
to examine students’ problem posing and problem solving. They observed that the 
sequence of pattern-based problems posed by students appeared to reflect a common 
sequence of thought when solving pattern problems (gathering data, analyzing the data 
for trends, making predictions). Silver and Cai (1996) found that students tend to pose 
related and parallel problems when they were asked to pose three problems. They 
observed a clear tendency of students to pose later problems by varying a single 
element in earlier problems, which is known as the “what if not” strategy (Brown & 
Walter, 1983) referred to in several of the prompts considered in the previous section.  
Earlier studies have also tried to identify problem-posing strategies as a way to 
understand problem-posing processes. There are consistent findings about the use of 
the “what if not” strategy in problem posing (Cai & Ciffarelli, 2005; Cifarelli & Cai, 
2005; Lavy & Bershadsky, 2003; Song, Yim, Shin, & Lee, 2007). For example, Lavy 
and Bershadsky (2003) identified two stages to pose problems. In the first stage, all the 
attributes included in the statement of the original problem are listed. In the second 
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stage, each of the listed attributes is negated by asking “what if not attribute k?” and 
alternatives are proposed. Each of the alternatives could yield a new problem. 
Phases of the problem-posing process 
For problem solving, several models of the problem-solving process have been 
developed, initiated by reflections on their processes by mathematicians, most notably 
Poincaré (1908) and Pólya (1945). Later, researchers from mathematics education 
picked up this topic; important representatives of such research are Mason, Burton, and 
Stacey (1982), Fernandez, Hadaway, and Wilson (1994), and Schoenfeld (1984; see 
Rott et al., 2021, for an overview). For problem posing, on the other hand, as stated 
above, there is no well-known and generally accepted phase model (cf. Cai et al., 2015, 
p. 14). Some researchers argue that both problem solving and problem posing are 
strongly related and that there might be no need for a specific problem-posing-process 
model; however, we argue that cognitive processes in both kinds of processes are 
different enough to warrant individual models (cf. Baumanns & Rott, 2022; Pelczer & 
Gamboa, 2009). 
Before going into detail regarding research on problem-posing models, we ponder the 
question of why such models are important. Process models can be used for normative 
and descriptive purposes (Rott et al., 2021). On the one hand, normative models sketch 
a (more or less) ideal process, stripped of unnecessary detours, that can be used in 
teaching and instruction. For example, Pólya’s four-step problem-solving model is a 
rather simple model that in its sequence of steps does not account for errors, being 
stuck, or realizing that the problem formulation needs to be read again. However, it 
was never intended to map real processes in their “non-smooth” nature but to instruct 
problem solvers in what steps to do and how to become a better problem solver or 
poser, respectively. On the other hand, descriptive models are designed to account for 
non-ideal sequences of steps in processes. Such models are used by researchers (or 
educators) to interpret processes they have observed, make sense of their observations, 
look for patterns, compare processes by experts and novices, and so on. Reviews of the 
literature reveal that for problem solving, mostly normative and only very few 
descriptive models have been developed (Rott et al., 2021) and, for problem posing, 
only a handful of models has been developed at all (Baumanns & Rott, 2022). In their 
review, Baumanns and Rott (2022) identified three models of the problem-posing 
process and added their own—all of which are descriptive phase models. These five 
models will now be described briefly.  
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The first model identified by Baumanns and Rott is that of Cruz (2006), who described 
the process of problem posing in teaching-learning situations and, thus, included 
educational needs and goals (see Figure 1). After setting a goal, a teacher formulates a 
problem and tries to solve it, which might fail or lead to regressions. After the problem 
has been solved, the problem is reflected upon, possibly improved to meet the goals, 
and then selected or rejected. This is a normative model of the problem-posing process 
intended to guide teachers; actually, it is based on a professional development program 
for teachers. 

Figure 1. Problem-posing phase model by Cruz (2006) 
The second model, based on an analysis of problem-posing processes, is that by 
Pelczer and Gamboa (2009), who developed a descriptive phase model with five 
phases, namely setup, transformation, formulation, evaluation, and final assessment. 
The setup phase is the starting point, including a reflection about the context of a given 
situation and the required knowledge. In the transformation phase, the given situation 
is analyzed and possible modifications are reflected upon and then executed. During 
the formulation phase, problem formulations and possible alterations are explored. In 
the next phase, the posed problem is evaluated to see whether it satisfies the initial 
conditions. In the final phase, much like Pólya’s looking-back phase, the whole 
process is reflected upon. 
Koichu and Kontorovich (2013) also developed a descriptive model. Based on two 
activities by prospective mathematics teachers called “success stories,” they identified 
four phases of problem posing. The first phase is called warming-up, in which 
spontaneous ideas and typical problems regarding a given situation are posed. The next 
phase is called searching for an interesting mathematical phenomenon, in which the 
initially posed problems are critically considered and modified. In the next phase, 
problem posers are hiding the problem-posing process in the problem formulation, 
which was a behavior that had not been observed before (Koichu & Kontorovich, 
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2013, p. 82). In the final reviewing phase, the posed problems are evaluated and 
possibly tested with peers. 
Zhang et al. (2022) described the problem-posing process as comprised of the 
following three major steps: (a) understanding the task (i.e., the context of the 
problem-posing task); (b) constructing the problem involving selecting and 
determining which elements to be used and recognizing the relationships among them 
to construct a new problem space; and (c) expressing the problem which involves 
organizing the language to express the problem space obtained in the previous stage. 
Baumanns and Rott (2022) then developed their own descriptive phase model, the 
development of which was based on the problem-posing processes of 64 preservice 
mathematics teachers (see Figure 2). After an initial situation analysis, the model 
allows for differentiation between activities of variation, in which a given problem is 
altered, and generation, in which a new problem is generated—a differentiation that 
had been proposed by Silver (1994) but that had not been made in an operationalized 
way with empirical data. The duplication of Figure 2 aims to denote that after one 
problem has been posed, the process can be repeated for posing the second problem, 
third problem, and so on. 

Figure 2. Problem-posing phase model by Baumanns and Rott (2022) 
As is the case for different problem-solving models, different problem-posing models 
serve different goals. For example, Koichu and Kontorovich described a 
problem-posing process in which one high-quality problem gradually emerges from 
the pool of initial problem-posing ideas, whereas Baumanns and Rott’s (2022) model 
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attends to problem posing as a sequence of repeated problem-posing cycles where each 
problem posed is considered to be a separate product. 
Affective processes of problem posing 
Regarding research on problem solving, the whole affective dimension, ranging from 
emotions to attitudes to beliefs (Philipp, 2007), with a focus on beliefs, has proven very 
useful and important (Schoenfeld, 1992). Regarding research on problem posing, 
however, the affective dimension has only recently been systematically addressed by 
means of a special issue in Educational Studies in Mathematics (Cai & Leikin, 2020). 
This special issue, encompassing for example studies dealing with teachers’ beliefs 
(Li, Song, Hwang, & Cai, 2020) or students’ motivation and self-efficacy (Voica, 
Singer, & Stan, 2020), can only be the starting point of systematic research on affect in 
mathematical problem posing. In our initial example, Prompt 7B capitalizes on affect 
in problem posing. 
TASK VARIABLES IN STUDYING PROBLEM POSING  
Focusing on task variables 
There are many ways in which mathematics education research might investigate the 
cognitive and affective processes of problem posing in an effort to better incorporate 
problem posing in the teaching and learning of mathematics (Cai et al., 2015). In this 
paper, we focus on task variables to explore the affective and cognitive processes of 
problem posing as has been successfully done in research on problem solving. There 
are two main reasons for such a focus. The first is that we have prior research to draw 
from on task variables in problem solving (Goldin & McClintock, 1984). The second 
reason is that we have prior research to draw from on how specific characteristics of 
mathematical tasks of different natures can affect teachers’ and students’ responses, in 
terms of both thinking and instruction (e.g., Koichu & Zazkis, 2021; Liljedahl, 
Chernoff, & Zazkis, 2007; Zazkis & Mamolo, 2018).    
In mathematical problem-solving research conducted over the past several decades, 
researchers have explored the effects of various task variables on students’ problem 
solving. For example, several classifications of task variables related to problem 
solving are considered in Goldin and McClintock (1984): syntax variables, content and 
context variables, structure variables, and heuristic behavior variables. Syntax 
variables are factors dealing with how problem statements are written. These factors, 
such as problem length as well as numerical and symbolic forms within the problem, 
may contribute to ease or difficulty in reading comprehension. Content variables refer 
to the semantic elements of the problem, such as the mathematical topic or the field of 
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application, whereas context variables refer to the problem representation and the 
format of information in the problem. Structure variables refer to factors involved in 
the solution process, such as problem complexity and factors related to specific 
algorithms or solution strategies. Finally, heuristic process variables refer to the 
interactions between the mental operations of the problem solver and the task. 
Considering heuristic variables separately from subject variables (factors that differ 
between the individuals solving the problem) is difficult because heuristic processes 
involve the problem solver’s interactions with the task. However, the interaction 
between heuristic processes and the other task variables can have a significant impact 
on problem-solving ability. 
Problem-posing tasks 
Just as there are many types of problems and problem-solving tasks, there are many 
types of problem-posing tasks. Although researchers have proposed categorization 
schemes for problem posing (e.g., Baumanns & Rott, 2021; Stoyanova & Ellerton, 
1996), in this paper, we adopt the idea of a problem-posing task as consisting of two 
parts: situations and prompts (Cai & Hwang, in press), as exemplified in the first 
section by means of an example in the context of geometry. The problem situation is 
what provides the context and data that the students may draw on (in addition to their 
own life experiences and knowledge) to craft problems. Figure 3 shows the various 
types of problem situations (Cai & Hwang, in press).  
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Figure 3. Types of problem situations in problem-posing tasks (Cai & Hwang, in 
press). 

In addition to a problem situation that provides context and data for students to use in 
their posed problems, a problem-posing task must include a prompt that lets posers 
know what they are expected to do (Cai & Hwang, in press). Depending on the goal of 
the task, for the same problem-posing situation, there can be many kinds of prompts. 
Some possible prompts include: 

• Pose as many mathematical problems as possible 

• Pose problems of different levels of difficulty (e.g., “Pose one easy problem, one 
moderately difficult problem, and one difficult problem.”) 

• Given a sample problem, pose similar problems (or problems that are 
structurally different) 

The choice of prompt can influence both the mathematical focus for the students and 
the level of challenge or affective engagement that the posing task presents. Indeed, 
from a research perspective, it is not yet well understood what prompts are best to pair 
with a given problem situation or what prompts are most suited to achieving a desired 
degree of challenge or to address particular learning goals. That is, research has not yet 
illuminated the connections between different kinds of problem-posing prompts and 
different cognitive processes in problem posers.  
Admittedly, there are many different levels with which to approach research related to 
task variables and their associated processes in problem posing. In this paper, we 
describe three such levels: the individual level, group level, and classroom level.    
Problem-posing prompts at the individual level  
The first level with which we approach problem-posing research described in this 
paper is the individual level. Research on problem-solving tasks has established that 
different prompts can elicit different cognitive processes and impact students’ 
problem-solving performance (Goldin & McClintock, 1984). Thus, it is reasonable to 
expect that the prompt in a problem-posing task also shapes students’ engagement with 
the task. A few studies have investigated how different prompts in problem-posing 
tasks impact students’ or teachers’ problem-posing performance and processes (e.g., 
Silber & Cai, 2017). Silber and Cai (2017) compared preservice teachers’ problem 
posing using structured prompts and free prompts, finding that the preservice teachers 
in the structured-posing condition more closely attended to the mathematical concepts 
in each task. Moreover, the effect of the prompt depends, in part, on the setup of the 
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task. For example, in their review of problem posing in textbooks, Cai and Jiang (2017) 
identified four common types of problem-posing tasks: posing a problem that matches 
the given/specific kinds of arithmetic operations, posing variations of a question with 
the same mathematical relationship or structure, posing additional questions based on 
the given information and a sample question, and posing questions based on given 
information. A similar prompt (e.g., “Pose a mathematical problem.”) could be used 
with many of these types of tasks, but its meaning to the student could be different for 
each type.  
Leung and Silver (1997) developed and analyzed a Test of Arithmetic Problem Posing 
(TAPP) which they then used to examine how the presence of numerical information 
affected preservice teachers’ problem-posing abilities. The instructions, which are the 
prompts we are focusing on, include: “(1) Consider possible combinations of the 
pieces of information given and pose mathematical problems related to the contexts; 
(2) Do not ask questions that are not mathematical problems; (3) Set up as many 
problems as you can think of; (4) Think of problems with a variety of difficulty levels. 
Do not solve them; (5) Set up a variety of problems rather than many problems of the 
same kind; (6) Include unusual problems that your peers might not be able to create; (7) 
You can change the given information and/or supply more information” (Leung & 
Silver, 1997, p. 8). The first prompt seems to be advice for the participants on how to 
pose problems. The second prompt emphasizes that the problem posed should be 
accepted by the community of mathematicians. The third through sixth prompts are 
related to the “many,” “different kinds” or unusual, and “different difficulty levels” 
mentioned earlier. The last prompt tells the participants what they can do with the data 
(either change the given information or add more information). Responses were 
analyzed along two dimensions: quality and complexity. With respect to quality, the 
responses were classified as mathematical or nonmathematical, as plausible or 
implausible, and as containing sufficient or insufficient information. With respect to 
complexity, the responses were classified according to the arithmetic complexity of the 
solution of the posed problem (i.e., the number of steps to answer the question). 
Results from the TAPP indicated that the teachers performed better on tasks that 
included specific numerical information than on tasks without specific numerical 
information. This might “be due to their being able to ‘use the numbers’ in the given 
information rather than having to supply their own numbers or rather than engaging in 
the generation of qualitative reasoning problems which would not need to contain 
numerical information” (Leung & Silver, 1997, p. 20). This result provides some 
insight into how task variables can impact problem posing. Adapting the TAPP to 
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examine how different characteristics of problem situations affect subjects’ problem 
posing could offer a way to study the effect of other task variables on problem posing. 
Zhang et al. (2022) replicated and extended the study by Leung and Silver (1997), 
focusing on elementary school students’ problem posing.  They examined the 
cognitive process of mathematical problem posing in three stages: a) 
input—understanding the task, b) processing—constructing the problem, and c) 
output—expressing the problem. They also found that the provision of specific 
numerical information in the problem-posing situation was associated with better 
problem-posing performance but only in the stages of understanding the task and 
constructing the problem stages. Students’ performance in the stage of expressing 
posed problems did not show a significant difference with respect to provision of 
specific numerical information. A similar pattern was revealed for the problem-posing 
situations with or without contexts, favoring the task format with contexts. Students 
performed better in all three problem-posing stages on the problem-posing situations 
with contexts.  
English (1998) compared third-grade children’s problem-posing performance in 
formal and informal contexts. In the formal context, children were first asked to make 
up a story problem to given number sentences like 12 – 8 = 4 and were then asked to 
think of a completely different problem that could also be solved by the number 
sentences. Three kinds of informal contexts were presented to the children. The first 
informal context was a real-life situation presented in pictures. A photograph of 
children playing with sets of colored items was shown to the participants, then they 
were asked to make up story problems about something that could be seen in the 
photographs. The second informal text was a real-life situation presented in 
words—for example, a card with a statement like “Sarah has five dolls on one shelf and 
four toy cars on another.” Then, the participants were asked to make the statement into 
a problem they could solve. The third informal context was a piece of literature 
supported with a list of numbers of native animals. English found that all children 
offered a significantly greater number of basic change/part-part-whole problems for 
their first attempt in the formal context, but many of them had difficulty creating a 
second problem for the given number sentence. Comparatively, they generated more 
compare problems in the informal context. Encouragingly, several participants even 
posed multistep problems in the informal context.         
Silber and Cai (2021) presented two kinds of problem-posing tasks to undergraduate 
students taking a noncredited developmental mathematics course so they could be 
ready to take the foundational mathematics courses required for their major. One kind 
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of problem-posing task consisted of a purely mathematical context presented in a linear 
graph (i.e., the Graph of a Line posing task). The other was a real-life context described 
in words only (i.e., Handshakes and Making Change) or in words and pie charts (i.e., 
Food Drive). Students were required to pose three problems for each context. The 
problems posed were categorized as mathematical questions, mathematical statements, 
or nonmathematical responses. The mathematical questions were further analyzed 
based on their solvability. Among the three real-life contexts, the Food Drive context 
seemed to be the most familiar context for the participants because they possibly had 
experienced it when they learned percentages and pie charts. The Making Change 
context seemed to be the second most familiar because it was often used as a model for 
addition and subtraction (cost + change = pay) and the model for the system of linear 
equations (e.g., ten coins [dimes and half-dollars] to pay $2.20). The Handshakes 
problem, which involves modelling (using points or circles to represent people and the 
line between any two points as a handshake), is usually used for patterns in algebra. 
The results obtained in Silber and Cai’s (2021) study revealed that the percentages of 
problems that were solvable mathematical problems for Food Drive, Making Change, 
Handshakes, and Graph of a Line were 98%, 90%, 88%, and 52%, respectively. Thus, 
the familiarity level of the contexts might need to be taken into consideration in future 
studies. 
Effect of problem-posing prompts at the group level  
The second level with which to approach research related to task variables in problem 
posing is the group level, that is, how a small group poses mathematical problems and 
how the task variables affect group problem posing (e.g., Kontorovich et al., 2012).  
As early as 1987, Kilpatrick pointed out that group work can provide a fruitful setting 
for mathematical problem posing because the dialogue between problem posers may 
have a synergetic effect. In his words,  

When students work together, they often identify problems that would be missed 
if they were working alone. A poorly formulated idea brought up by one student 
can be tossed around the group and reformulated to yield a fruitful problem. 
Students participate in a dialogue with others that mirrors the kind of internal 
dialogue that good problem formulators appear to have with themselves. 
(Kilpatrick, 1987, pp. 141-142) 

Despite the broad attention that this seminal article has attracted in the mathematics 
education research community, research on problem posing in groups is still relatively 
rare. A Google Scholar search using the key words “group problem posing” + 
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“mathematics,” “collaborative problem posing” + “mathematics,” and “collective 
problem posing” + “mathematics” returns dozens of results (50, 137, and 95, 
respectively) as compared to the thousands of results returned by a parallel search in 
which “problem posing” is replaced with “problem solving.” Furthermore, in many of 
the studies identified in the search, “group,” “collaborative,” or “collective” problem 
posing are mentioned merely as potential counterparts of “group,” “collaborative,” or 
“collective” problem solving, with the main attention given to the latter rather than to 
the former activity.   
Armstrong (2014) alluded to collective problem posing as an emergent phenomenon in 
school discourse. She argued that the insufficient attention paid to group problem 
posing thus far could partially be explained by specific features of the mainstream line 
of research on problem posing as it had been developed since the 1990s. Namely, many 
of the problem-posing studies operate with written products of problem posing as a 
focus of analysis and value large-size pools of participants and large collections of 
problems posed that can be categorized in a variety of ways. Arguably, this focus, as 
useful as it is, leaves aside problem-posing processes and in turn leaves aside 
phenomena related to the dynamics of group work on problem-posing tasks, as has 
been suggested by Kilpatrick (1987). Indeed, Kilpatrick’s provisional argument was 
about group processes that can lead inexperienced problem posers to formulating 
fruitful ideas rather than about the quantity of the resulting problems posed. 
However, it is safe to say that research on problem posing at the group level is 
gradually growing. While recognizing that the critical mass of studies that would 
enable us to clearly identify trends has not yet accumulated, we can (tentatively) 
identify four different approaches to treating group work as a variable in 
problem-posing research.     
In the first approach, the fact that students work on problem posing in small groups is 
provided as contextual information, but the findings are reported in an aggregated 
manner that hides within-group processes. A study by English and Watson (2015) 
serves as a characteristic example. The study explores the problem-posing products of 
20 groups of fourth-grade students working in groups of four in the context of 
statistical literacy. The main results are reported per group, as the following quotation 
shows: “Of the 20 groups, 9 posed three or four different types of questions, 10 created 
two types, and 1 group, just one type” (English & Watson, 2015, p. 11). The 
between-group differences in this study are attributed to individual differences 
between students’ pre-existing knowledge and preferences but not to the dynamic 
processes in the groups. Another example comes from Leung and Wu (1999), who first 
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reflected on two problem-posing lessons as if each group was an individual student 
(e.g., “the six groups changed the problem in three ways”; p. 113) and then stopped on 
ideas of a particular student expressed in front of the class (of note is that this study can 
also be considered in the section on problem posing at the classroom level).    
The second approach focuses on individual students in the context of small-group 
problem posing. For instance, one of the results of the study by Headrick et al. (2020) is 
that even when students are organized in small groups, they tend to individually pose 
problems to the teacher as opposed to their groupmates. Another study, by Koichu 
(2020), showed that students in small groups who face a multistage task including 
problem solving, exploration, and problem posing tend to distribute the load and work 
separately on different parts of the task so that problem posing essentially turns into an 
individual enterprise. These results do not contradict but rather complement the 
findings by Schindler and Bakker (2020), who found that a group setting can play a 
positive role in shaping an affective field of individual problem posers. In their case 
study of one student working in a small group on a series of problem-posing and 
problem-solving tasks, the student overcame the initial anxiety rooted in her prior 
experiences, increased her interest in problem posing, and became an open-minded and 
active participant in the project due to the group collaboration that provided her with 
the feeling of safety and appreciation. Furthermore, Ellerton (2015) pointed out that 
working in groups may either support or hinder the problem-posing progress of 
individuals. Her study suggests the importance of keeping a delicate balance between 
the collective and the individual in problem posing as well as the importance of 
learning how to give and take feedback on the problem-posing ideas of others in 
productive ways. 
The third approach attends to the richness of problem-posing performance in small 
groups working on the same task while featuring summative rather than dynamic 
descriptions. Armstrong (2014) developed an original methodology (called 
“tapestries”) that blurs the data but provides visual representations of collective 
patterns of problems posed. This methodology was used in a study with four groups of 
12-year-old students to compare the across-group problem-posing products as related 
to the group problem-posing strategies and tactics. Armstrong introduced the term 
“group’s personality” (p. 62) and compared the groups in the following manner: For 
example, a group that tended to deeply explore concepts and connect participants’ 
ideas posed more problems than another group that tended to argue about every 
problem’s formulation, aiming at reaching a consensus. In contrast, Cai (2012) 
compared two groups of preservice teachers working on a task in the context of 
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numerical sequences by summarizing the main mathematical ideas developed in each 
group. Despite methodological differences, both studies converge to conclusions about 
the opportunities embedded in well-chosen problem-posing tasks that trigger rich 
mathematics discussions and learning. 
Finally, the fourth approach is heavily informed by sociocultural perspectives on 
teaching and learning mathematics and therefore considers within-group 
problem-posing interactions as the main data to be analyzed as opposed to the written 
problems as the main data. For example, English,  Fox, and Watters (2005) argued for 
the potential of problem posing and solving with mathematical modelling while 
systematically demonstrating how problem-solving and problem-posing ideas emerge 
and evolve in small-group discussions. In this study, the argument for the usefulness of 
combining problem posing, problem solving, and modelling relies not only on the 
demonstrated benefits of the chosen types of tasks for student learning of mathematics 
but also for the development of their collaborative learning skills. Meanwhile, an 
in-depth analysis of student interactions of low-track eighth-grade students who were 
engaged in small-group work on a problem-posing task in the context of geometry is 
the focus of a study by Agarwal (2020). The analysis of six groups revealed how the 
students shifted their actions and restructured their activity towards organizing for 
collective agency in mathematical problem solving while balancing risk-taking 
behaviors (e.g., there is a risk to be misunderstood or mocked) and agency-driven 
behaviors in favor of emotional courage and productive participation. 
We conclude this section by reviewing a study by Kontorovich, Koichu, Leikin, and 
Berman (2012) that has an explicit focus on handling the complexity of problem 
posing in small groups. These authors present a confluence exploratory framework that 
aims to explain the emergence of problem-posing products from problem-posing 
processes as shaped by five facets: task organization, students’ knowledge base, 
problem-posing heuristics and schemes, group dynamics and interactions, and 
individual considerations of aptness. The framework is presented in Figure 4.  
This framework was used to make sense of the work of two groups of tenth-grade 
students who were given the Billiard Ball Mathematics Task (adapted from Silver, 
Mamona-Downs, Leung, & Kenney, 1996, and used in several additional studies). The 
analysis attempted to explain the quantity and quality of the resulting problems posed 
in each group by systematically attending to all the facets included in the framework. 
In particular, the analysis showed the role of group dynamics captured in terms of 
normalization, conformity, and innovation—three social processes well-known from 
the literature on group interaction and development in the context of coping with 
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challenging (though not necessarily mathematical) tasks (e.g., Wit, 2007). The analysis 
also shed light on the importance of functional roles that group members assumed in a 
small-group discussion. 

 
Figure 4. A confluence framework of problem posing in small groups (Kontorovich et 

al., 2012). 
Along with the aforementioned studies by English et al. (2005) and Agarwal (2020), a 
study by Kontorovich et al. (2012) supports and empirically substantiates Kilpatrick’s 
(1987) vision of group work as a fruitful but immensely complex pedagogical setting 
for further promoting problem posing in school. Needless to say, more research on 
problem posing at the group level is needed.    
Effect of problem-posing prompts at the classroom level  
Finally, the third level with which to approach research related to task variables in 
problem posing is the classroom level. Mathematics can be taught through engaging in 
problem posing, and researchers have begun to explore what teaching mathematics 
through problem posing looks like and to develop problem-posing cases to illustrate 
problem-posing instruction (Cai & Hwang, 2020; Ellerton, 2015; Zhang & Cai, 2021). 
However, it is not yet clear how we should design the problem-posing tasks used in 
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such instruction so as to create greater learning opportunities for students. For 
example, for a given situation in the classroom, students could be asked to pose three 
mathematical problems or to pose three problems with different difficulty levels such 
as easy, moderately difficult, and difficult (Cai & Hwang, 2002). How would such 
different prompts impact classroom instruction and students’ learning?   
The past two decades and especially recent years have seen increased research on 
implementing problem posing into classrooms (Cai & Hwang, 2020; Cai et al., 2015).  
Researchers have begun to explore what teaching mathematics through problem 
posing looks like (Çakır  & Akkoç, 2020; Cai, 2022; Chen & Cai, 2020; Crespo & 
Sinclair, 2008; Ellerton, 2013; Christou et al., 2005; Klaassen & Doorman, 2015; 
Stoyanova & Ellerton, 1996; Zhang & Cai, 2021), develop problem-posing teaching 
cases to illustrate problem-posing instruction (e.g., Chen & Cai, 2020; Zhang & Cai, 
2021), and examine the impact of problem-posing instruction on students and teachers 
(Akben, 2020; Bevan & Capraro, 2021; English, 1997, 1998; Li et al., 2020; Klaassen 
& Doorman, 2015; Kopparla et al., 2019; Suarsana, Lestari, & Mertasari, 2019; Yang 
& Xin, 2021).   
In teaching through problem posing, students are encouraged to pose problems that 
may be meaningful to them personally or socially. Thus, classroom activity around 
problem posing involves the negotiation of socio-mathematical norms, such as in 
determining criteria for what counts as a mathematically interesting problem (Çakır & 
Akkoç, 2020; Crespo & Sinclair, 2008).   
Cai (2022) proposed a problem-posing task-based instructional model (see Figure 5).  
In a lesson, there might be more than one problem-posing task or a combination of 
problem-solving and problem-posing tasks. This model describes using one 
problem-posing task to teach mathematics. The first step is to present a 
problem-posing situation (see specifics in Figure 3), the second step is to provide a 
problem-posing prompt, and the third step is for students to pose problems either 
individually or in group. The later steps in Figure 5 show how teachers can handle the 
posed problems based on the learning goals. 
Zhang and Cai (2021) analyzed 22 problem-posing teaching cases based on the work 
of Merseth (2016) and Stein, Henningsen, Smith, and Silver (2009). They described a 
teaching case as the following:  

A teaching case includes major elements of a lesson and related analysis, but it is 
not a transcribed lesson. Teaching cases include narratives describing 
instructional tasks and related instructional moves for the tasks. Cases also 
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include information about the underlying thinking of major instructional 
decisions as well as reflections on and discussions of those decisions. The 
development of teaching cases is based on real lessons and typical instructional 
events from the lessons. (Zhang & Cai, 2021, p. 962) 

!

 

  Figure 5. A problem-posing task-based instructional model (Cai, 2022) 
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In their analysis of problem-posing teaching cases, Zhang and Cai (2021) found that 
teachers used different prompts in their problem-posing tasks, such as posing a 
problem that matches the given or specific kinds of arithmetic operations, posing 
problems based on given information, and posing variations on a question with the 
same mathematical relationship or structure. Their analysis found no teaching case that 
explored the effect of different prompts for the same problem-posing situation. In fact, 
thus far, there are no studies that have studied the effect of different prompts on 
students’ problem posing at the classroom level.  
Using problem posing as an instructional intervention, researchers have found positive 
effects of problem posing not only on teachers’ own development (Li et al., 2020) but 
also on students’ learning along both cognitive and noncognitive measures (e.g., 
Akben, 2020; Bevan & Capraro, 2021). Although such positive effects of problem 
posing on both students and teachers are encouraging, none of these studies include 
information about the effects of problem-posing tasks with different prompts. In fact, 
as Klaassen and Doorman (2015) summarized, there has been no specific investigation 
of the effects of the variety of prompts researchers have used in classrooms, prompts 
such as:  

• Write a problem to the story so that the answer to the problem is a specific one 

• Write an appropriate problem for the specific information, such as the 
expression or picture 

• Ask as many questions as you can, and try to put them in a suitable order 

• Write a problem that you would find difficult to solve 
As part of a larger research project, Cai, Muirhead, Cirillo, and Hwang (2021) began to 
explore how teachers view the impact of different prompts on students’ problem 
posing. Each teacher was presented with three pairs of tasks, each of which uses the 
same problem situation but includes different prompts (Prompt A: Pose three different 
mathematical problems that can be solved using this information; Prompt B: Pose one 
easy mathematical problem, one moderately difficult mathematical problem, and one 
difficult mathematical problem that can be solved using this information). Each teacher 
was asked to anticipate their students’ responses to Prompt A compared to Prompt B 
and to describe how these variations in the wording of the prompts might affect their 
students’ responses. According to one sixth-grade teacher, Prompt A is less wordy and 
more accessible for students. However, the teacher thought that Prompt B engaged 
students more in their thinking because they must think about posing problems with 



Cai, Koichu, Rott, Zazkis, & Jiang 
 
 
 

 
PME 45 – 2022 1 - 23 
 
 
 
 

different difficulty levels. Thus, Prompt B “forces” or “encourages” students to think 
more. The teacher also thought that in implementing problem posing in the classroom, 
teachers can scaffold problem-posing tasks with Prompt A to problem-posing tasks 
with Prompt B. 
In practice, it does seem that encouraging students to pose different difficulty levels of 
problems has some advantages for eliciting deeper student thinking about certain kinds 
of problems (Cai & Hwang, 2002) and adjusting the level of challenge of the task 
relative to each student. For example, the prompt, “Create a problem that would be 
difficult for you to solve,” can challenge each student to stretch toward the edge of 
their own ability. Although each student may still engage in the problem-posing task at 
a level that is appropriate for their existing mathematical understanding, such a prompt 
could result in the overall level of challenge increasing. Ultimately, we believe that the 
choice of problem-posing prompt has the potential to make a difference in how 
students engage with problem-posing tasks in the classroom.  
CONCLUSION 
The purpose of this paper is to summarize some progress in problem-posing research 
related to processes and task variables. We end by presenting some research questions 
for the field of mathematics education.   
As mentioned, problem-solving variables include syntax variables, content and context 
variables, structure variables, and heuristic behavior variables. Can all these types of 
variables be adapted to problem posing?  Should the additional variables be considered 
to pinpoint not only similarity of problem solving and problem posing but also 
characteristic differences between these activities? How can systematic variation of 
problem-posing situations and prompts inform our understanding of the relationship 
between problem-posing processes and products and between problem posing and 
problem solving? How do student-related variables (e.g., knowledge, affect, 
experiences) interact with task-related problem-posing variables?    
In addition, we not only need to continue the effort to examine the cognitive processes 
of problem posing related to task variables but also affective processes of problem 
posing. For example, how do beliefs influence problem-posing processes and posed 
problems? How do problem-posing activities influence students’ (epistemological) 
beliefs regarding mathematics? Do problem-posing activities—used in teaching 
settings—impact students’ sense-making and motivation regarding mathematics? Cai 
and Leikin (2020) provided additional research questions about affect in problem 
posing. 
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The literature offers characterizations of teacher knowledge needed to incorporate 
problem solving in teaching (e.g., Chapman, 2015). Similarly, we can ask: What 
teacher knowledge is needed for successful integration of problem posing in the 
classroom? (In other words, we can think of task-related variables, student-related 
variables, and teacher-related variables.)   
In this paper, we have discussed the impact of task variables (specifically 
problem-posing prompts) on problem posing at the individual, group, and classroom 
levels. In addition to the discussion of the impact at different levels, there is also a need 
to understand how teachers handle posed problems (Cai, 2022; Zhang & Cai, 2021), 
because of its importance in integrating problem posing in mathematics learning and 
instruction. In problem solving, we have more or less clear criteria to measure success 
(i.e., successfully solved problems). In problem posing, it is much harder to determine 
whether a problem-posing process was successful or not (given that posed problems 
could be nonmathematical, repetitive, boring, not challenging, etc.). How do we 
measure “success” in problem posing? Compared to problem solving (where you can 
easily identify whether a problem has been solved), it is often unclear when a 
problem-posing process is finished or whether the posed problems are “good” or not.  
To effectively teach mathematics through problem posing, we have to address these 
questions in general and to develop strategies to deal with students’ posed problems in 
particular. 
Using a clinical interview methodology or a large-sample-size survey, we could 
examine how different types of problem-posing tasks with different situations and 
prompts influence students’ problem-posing processes. Such research requires 
coordination and international collaboration, and the ideas presented in this paper will 
be a step towards establishing it. 
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