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ABSTRACT

Simple closed-form upper and lower bounds are developed
for the security of the Nakamoto consensus as a function of
the confirmation depth, the honest and adversarial block min-
ing rates, and an upper bound on the block propagation delay.
The bounds are exponential in the confirmation depth and
apply regardless of the adversary’s attack strategy. The gap
between the upper and lower bounds is small for Bitcoin’s
parameters. For example, assuming an average block interval
of ten minutes, a network delay bound of ten seconds, and
10% adversarial mining power, the widely used 6-block confir-
mation rule yields a safety violation between 0.11% and 0.35%
probability.
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1 INTRODUCTION

The famed Bitcoin white paper presented a novel Byzantine
fault tolerant consensus algorithm that is now known as the
Nakamoto consensus [9]. A notable property of the Nakamoto
consensus is that the deeper a transaction is in a longest
blockchain, the safer it is to commit the transaction. In fact,
the probability that a transaction’s safety is violated decreases
essentially exponentially with the number of ªconfirmationsº.
A latency-security analysis of the Nakamoto consensus aims
at deriving upper bounds on the safety violation probability of
a given confirmation rule, under all possible attacks allowed
in a formally described model.

While the Nakamoto consensus protocol is simple and ele-
gant, rigorously analyzing its latency and security turns out to
be quite challenging. The Bitcoin white paper did not provide
a formal model or rigorous analysis; instead, it only consid-
ered one specific attack. Garay et al. [3] provided the first
latency-security analysis for the Nakamoto consensus against
all possible attacks. Follow-up works extended their analy-
sis from a lockstep synchrony model to the more realistic
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non-lockstep synchrony model [6, 10±12]. The fundamental
fault tolerance limit of the Nakamoto consensus has also been
obtained [2, 4].

Most existing latency-security analysis of the Nakamoto
consensus focused on asymptotic results. This means they
showed that transactions in the Nakamoto consensus even-
tually become permanent (also called committed, decided,
finalized, or immutable in the literature), but do not provide
concrete results on when that happens. Several recent works
give concrete analysis [5, 7, 8] but their methods are quite
complex. In particular, [7, 8] resort to a stochastic analysis of
races between renewal processes and focus on confirmation
by time rather than the more practically relevant confirmation
by depth. Reference [5] involves an complicated analysis of
forkable strings and an iterative dynamic programming algo-
rithm to numerically evaluate a Markov chain, and the results
are not in a closed form.

In this paper, we develop two sets of simple upper and
lower bounds on the security of the Nakamoto consensus as
a function of the confirmation depth, the mining rates, and
a block propagation delay upper bound. One set of upper
and lower bounds are essentially exponential functions in the
confirmation depth. A second set of closed-form bounds are
numerically closer and still easy to compute using finite sums
of geometric and binomial distribution functions.

The gap between the upper and lower bounds is small
for the Bitcoin parameters. For example, assuming on aver-
age one block is mined every ten minutes, the delay bound
is ten seconds, and 10% of the mining power is adversar-
ial, the probability of safety violation of the 6-block rule of
thumb is bounded between 0.11% and 0.35%. If the adver-
sarial mining power increases to 25%, one needs a 20-block
rule to achieve similar bounds. For the Bitcoin parameters and
relatively small confirmation depths, our new upper bound is
tighter than the best existing result in [5].

In this paper, we introduce a new reduction technique to an-
alyze Nakamoto consensus protocols. We describe a ªriggedº
model in which some selected blocks mined by honest nodes
are converted into adversarial blocks. Such conversion can
only make the adversary more powerful. We judiciously se-
lect those blocks for conversion such that the sequence of
honest/adversarial blocks remains memoryless in the rigged
model. We show that the well-understood private-mining
attack is a best attack in the rigged model. Finally, we ob-
tain simple upper and lower bounds on the safety violation
probability for the original model by analyzing the success
probability of the private-mining attack in the rigged model.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the canonical model for the Nakamoto



consensus. The main theorems are given in Section 3. In Sec-
tion 4, we show that the well-known private-mining attack is
optimal under a special condition. In Section 5, we construct a
rigged model which on one hand makes the adversary more
powerful, and on the other hand makes the private-mining
attack optimal. Two sets of upper and lower bounds on the
probability of safety violation are then obtained in Sections 5
and 6. Numerical results are given in Section 7.

2 THE CANONICAL MODEL

We assume the readers are familiar with how the Nakamoto
consensus protocol works. We briefly describe the protocol be-
low only to introduce notation. The protocol builds a growing
sequence of transaction-carrying blocks where every block is
chained to its predecessor block by a solution to a computa-
tional puzzle (i.e., a proof of work). At any point in time, every
honest node attempts to ªmineº a new block that extends a
longest chain of blocks (blockchain) to its knowledge; once a
new longest blockchain is mined or received, an honest node
sends it to other nodes through a gossip network. We will use
chains and blockchains interchangeably in this paper. A node
commits a block when at least 𝑘 − 1 blocks are mined on top of
it as part of a longest blockchain known to that node, where
𝑘 is a natural number chosen by the node. We call this the
𝑘-confirmation commit rule.

We now define the blockchain data structure. Let us num-
ber all the blocks in the time order they are mined. The 𝑗-th
block in this numbering is called block 𝑗 for short. We de-
note a blockchain using a sequence of block numbers, e.g.,
in blockchain (𝑏0, 𝑏1, 𝑏2, . . . , 𝑏𝑚), the 𝑖-th block in the chain is
block 𝑏𝑖 . A blockchain always starts with the Genesis block
𝑏0 = 0 that is known to all nodes by time 0, when the protocol
starts. Each subsequent block 𝑏𝑖 must contain a proof of work
that binds it to the predecessor block 𝑏𝑖−1. The last block, 𝑏𝑚 in
the above example, uniquely identifies the entire blockchain,
so we will also refer to the above blockchain as blockchain 𝑏𝑚
or chain 𝑏𝑚 . The position of a block in the blockchain is called
its height. We will use ℎ𝑏 to denote the height of block 𝑏. In the
above example, block 𝑏𝑖 is on height 𝑖, i.e., ℎ𝑏𝑖 = 𝑖 (the Genesis
block is on height 0).

We adopt a natural continuous-time model and model
proof-of-work mining as a homogeneous Poisson point pro-
cess. Let 𝜆 be the total mining rate of the network (honest and

adversarial nodes combined). Let 𝜌 ∈ ( 12 , 1] be the fraction
of honest mining rate and 1 − 𝜌 be the fraction of adversarial
mining rate. Note that the model allows some of the nodes
to have zero mining rate, hence capturing light nodes. In the
canonical model, a block is said to be honest (resp. adversar-
ial) if it is mined by an honest (resp. adversarial) node. One
can think of honest block arrivals and adversarial blocks as
two independent Poisson processes with rates 𝜌𝜆 and (1− 𝜌)𝜆,
respectively. Due to the Poisson merging and splitting proper-
ties, it is equivalent to think of all blocks arrivals as a single
Poisson process with rate 𝜆 where each block is honest with
probability 𝜌 and adversarial with probability 1 − 𝜌 .

𝑘 confirmation depth
𝜆 total mining rate
𝜌 fraction of honest mining rate
Δ block propagation delay upper bound
ℎ𝑏 height of block 𝑏

𝑡𝑏 mining time of block 𝑏

𝑝 = 𝜌𝑒−𝜆Δ fraction of honest blocks in the rigged model

Table 1: Some frequently used notations.

We use 𝑡 𝑗 to denote the time block 𝑗 is mined. Evidently,
0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ . . . . If block 𝑗 is mined by an honest node, it
must extend a longest blockchain to that node’s knowledge
immediately before 𝑡 𝑗 . Ties are broken arbitrarily or by the ad-
versary at will. The honest node will also immediately publish
the newly mined block 𝑗 through a gossip network.

Without loss of generality, we assume a single adversary
controls all adversarial mining power. If the adversary mines
block 𝑗 , the block may extend any blockchain mined by time
𝑡 𝑗 and may be presented to each individual honest node at any
time from 𝑡 𝑗 onward at will. The adversary in practice cannot
predict the arrival times of future blocks but our results hold
even against an omniscient adversary that sees the arrival
times of all future blocks.

We assume the standard (non-lockstep) synchrony model.
We abstract away the topology and operations of the gossip
network by assuming a universal block propagation delay
upper bound, denoted as Δ ≥ 0. Applying it to the Nakamoto
consensus, if any honest node mines or receives a new longest
blockchain 𝑏 at time 𝑡 , then all nodes receive blockchain 𝑏 by
time 𝑡 + Δ.

A block may contain an arbitrary number of transactions.
A transaction may appear in multiple chains but it can appear
at most once in any given chain. The adversary’s goal is to
attack the safety of a target transaction [9], as defined below.

DEFINITION 1 (SAFETY VIOLATION OF A TARGET TRANSAC-
TION). A target transaction’s safety is violated if a block containing
the target transaction is committed and a different block (which may
or may not contain the target transaction) is also committed on the
same height.

In this paper, we assume the target transaction appears
in every node’s view at time 𝜏 . We also assume all honest
nodes adopt the 𝑘-confirmation commit rule with the same 𝑘 .
Our goal is to obtain tight bounds on the probability that the
adversary violates the safety of the target transaction.

Table 1 illustrates frequently used notations in this paper.

3 MAIN RESULTS

THEOREM 1. Given the confirmation depth 𝑘 as a natural num-
ber, the delay bound Δ ≥ 0, the total mining rate 𝜆 > 0, and the
fraction of honest mining power 𝜌 ∈ (0, 1], as long as

𝑝 = 𝜌𝑒−𝜆Δ >

1

2
, (1)
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a target transaction’s safety can be violated with probability no
greater than

(

2 + 2

√︂

𝑝

1 − 𝑝

)

(4𝑝 (1 − 𝑝))𝑘 (2)

regardless of the adversary’s attack strategy.
Conversely, there exists an attack that violates the target transac-

tion’s safety with probability at least

1
√
𝑘
(4𝜌 (1 − 𝜌))𝑘 . (3)

Interestingly, both the upper bound (2) and the lower
bound (3) can be expressed in the exponential form using
a simple equality:

(4𝑝 (1 − 𝑝))𝑘 = 𝑒−2𝑘𝑑 (
1
2 ∥ 𝑝) (4)

where 𝑑 (𝑝 ∥ 𝑞) = 𝑝 log
𝑝
𝑞 + (1 − 𝑝) log 1−𝑝

1−𝑞 denotes the relative

entropy between the Bernoulli(𝑝) and the Bernoulli(𝑞) distri-
butions. As we shall see, the safety violation event is tied in
some ways to the event that 𝑘 or more out of 2𝑘 independent
Bernoulli trials are successful. For large 𝑘, the probability of
this event decays exponentially in 𝑘 , where the exponent takes
the form of a relative entropy, as is expected from the per-
spective of large deviations. We emphasize that the bounds in
Theorem 1 apply to all adversarial mining strategies and all
choices of the confirmation depth.

We also provide another pair of upper and lower bounds
that are tighter than the bounds in Theorem 1. The second
set of bounds take somewhat more complicated form as fi-
nite series sums, but are still very easy to evaluate using the
probability mass function (pmf) and cumulative distribution
function (cdf) of the binomial and geometric distributions.
Specifically, we use the following variant of the geometric

distribution with parameter 𝑝 = 1 − 𝑞 >
1
2 . For 𝑖 = 1, 2, . . . , its

pmf is expressed as

𝑃1 (𝑖;𝑝) =
(

𝑞

𝑝

)𝑖−1 (
1 − 𝑞

𝑝

)

, (5)

and its complementary cdf is expressed as

𝐹 1 (𝑖;𝑝) =
(

𝑞

𝑝

)𝑖

. (6)

We also denote the pmf of the binomial distribution with
parameters (𝑛, 𝑞) as

𝑃2 ( 𝑗 ;𝑛, 𝑞) =
(

𝑛

𝑗

)

𝑞 𝑗 (1 − 𝑞)𝑛− 𝑗 (7)

and the corresponding complementary cdf as

𝐹 2 ( 𝑗 ;𝑛, 𝑞) =
𝑛
∑︁

𝑙=𝑗+1
𝑃2 (𝑙 ;𝑛, 𝑞). (8)

THEOREM 2. Given the confirmation depth 𝑘 as a natural num-
ber, the delay bound Δ ≥ 0, the total mining rate 𝜆 > 0, and the frac-

tion of honest mining power 𝜌 ∈ (0, 1], as long as 𝑝 = 𝜌𝑒−𝜆Δ >
1
2 , a

target transaction’s safety can be violated with probability no greater
than

𝐹 1 (𝑘 ;𝑝) +
𝑘
∑︁

𝑖=1

𝑃1 (𝑖;𝑝) ·
(

𝐹 2 (𝑘 − 𝑖; 2𝑘 + 1 − 𝑖, 1 − 𝑝)

+
𝑘−𝑖
∑︁

𝑗=0

𝑃2 ( 𝑗 ; 2𝑘 + 1 − 𝑖, 1 − 𝑝) · 𝐹 1 (2𝑘 + 1 − 2𝑖 − 2 𝑗 ;𝑝)
)

(9)

regardless of the adversary’s attack strategy.
Conversely, there exists an attack that violates the target transac-

tion’s safety with probability at least

𝐹 1 (𝑘 ; 𝜌) +
𝑘
∑︁

𝑖=1

𝑃1 (𝑖; 𝜌) ·
(

𝐹 2 (𝑘 − 𝑖; 2𝑘 + 1 − 𝑖, 1 − 𝜌)

+
𝑘−𝑖
∑︁

𝑗=0

𝑃2 ( 𝑗 ; 2𝑘 + 1 − 𝑖, 1 − 𝜌) · 𝐹 1 (2𝑘 + 2 − 2𝑖 − 2 𝑗 ; 𝜌)
)

. (10)

The proofs of these bounds are relegated to Sections 4±6.
The exponential bounds in Theorem 1 can be thought of as the
large deviations approximations of those in Theorem 2. As we
shall see in Section 7, the bounds in Theorem 2 are numerically
closer than the bounds in Theorem 1.

4 THE PRIVATE-MINING ATTACK IS
CONDITIONALLY OPTIMAL

Let us introduce the simple private-mining attack. Its general
structure was mentioned explicitly in [15] and even earlier
works.

DEFINITION 2 (PRIVATE-MINING ATTACK AGAINST A TAR-
GET TRANSACTION 𝑡𝑥 ). Starting from time 0, every adversarial
block extends a longest blockchain that does not contain 𝑡𝑥 . The
propagation of every honest block is maximally delayed (i.e., by Δ).
All adversarial blocks are kept private until the the adversary can
violate the safety of 𝑡𝑥 by publishing all blocks.

Throughout this section, we assume the following simple
condition on block heights is always upheld:

CONDITION 3. All honest blocks are on different heights. Also,
honest blocks mined after time 𝜏 (when the target transaction ap-
pears) are higher than honest blocks mined by time 𝜏 .

Condition 3 always holds if the delay bound Δ = 0. With
Δ > 0, honest nodes may mine multiple blocks on the same
height. But Condition 3 can be upheld by keeping no more
than one honest block on each height. This changes the mining
statistics and we relegate this discussion to Section 5, where
we use this technique along with a reduction argument to
bound the safety violation probability. In this section, we will
prove that under Condition 3, the private-mining attack is one
best attack in the following sense:

THEOREM 3. Under Condition 3, if any attack succeeds in vio-
lating the target transaction’s safety, then the private-mining attack
also succeeds in violating the target transaction’s safety.

Theorem 3 holds for any given honest and adversarial block
mining times; in other words, as long as Condition 3 holds,

3



the private-mining attack is a best attack for every sample path,
regardless of statistics. It was claimed in [2, Appendix F] that
the private-mining attack is optimal in violating the safety of
a predetermined target block in the special case of Δ = 0, but
the proof therein does not apply to the case when the target
block is mined by an adversary. Thus, the optimality of the
private-mining attack has not been fully established thus far
even in the case of Δ = 0.

Before proving the theorem, we establish some additional
terminology and simple facts. The private-mining attack con-
sists of two stages. In the first stage, between time 0 to 𝜏 , the
adversary tries to build a ªleadº, formally defined as follows:

DEFINITION 4 (LEAD). The lead (of the adversary) at time 𝑡 is
the height of the highest block mined by time 𝑡 minus the height of
the highest honest block mined by 𝑡 .

By definition, the lead is never negative. In the private-
mining attack up to time 𝜏 , if a highest (private) adversarial
block is higher than any honest block (the lead is positive),
the adversary mines on this highest adversarial block to try to
increase the lead; otherwise, the lead is zero, and the adversary
mines on a highest honest block to try to obtain a positive lead.
We can show that this strategy maximizes the lead.

LEMMA 5. Under condition 3, the private-mining attack maxi-
mizes the lead at all times up to 𝜏 .

PROOF. Let 𝑙𝑡 denote the lead at time 𝑡 . The lead may only
change upon block arrivals. Upon the mining of every adver-
sarial block, the lead advances by at most 1. Upon the mining
of every honest block, the lead decreases by at least 1 unless
it stays 0. Under the private-mining attack up to 𝜏 , the lead
advances by exactly 1 upon the mining of every adversarial
block; the lead decreases by exactly 1 unless it stays 0 upon
the mining of every honest block. Hence, the private-mining
attack achieves the maximum lead at all times up to 𝜏 . □

The second stage of the private-mining attack starts at time
𝜏 . Honest nodes will include 𝑡𝑥 in the next block on the honest
chain. The adversary tries to build a private chain that does
not contain the target transaction 𝑡𝑥 . If there ever comes a
time after an honest node commits the target transaction, that
the adversary’s private chain is as long as the public chain,
then the adversary publishes its private chain and the attack
succeeds in violating the safety of 𝑡𝑥 . If such an instance never
occurs, then the private-mining attack on 𝑡𝑥 fails.

For convenience, we define the following notions:

DEFINITION 6 (PUBLIC). A blockchain is public at time 𝑡 if it
is included in all honest nodes’ views at time 𝑡 . We say block 𝑏 is
public if and only if blockchain 𝑏 is public.

DEFINITION 7 (CREDIBLE). A blockchain is credible at time 𝑡
if it is no shorter than any public blockchain at time 𝑡 .

Equivalently, a credible blockchain at time 𝑡 must be no
shorter than at least one honest node’s longest blockchain at
time 𝑡 . Under the 𝑘-confirmation rule, a credible blockchain
can be used to convince at least one honest node to commit
blocks that are 𝑘 deep in this blockchain. Furthermore, an
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Figure 1: Illustrations of blockchains 𝑐 and 𝑑. Illustrations
of the two cases in the proof of Lemma 9: ℎ𝑎 ≥ ℎ𝑏 − 1 (left)
and ℎ𝑎 < ℎ𝑏 − 1 (right).

honest node attempts to extend only credible blockchains. A
block mined by an honest node must be credible at its mining
time; it then loses its credibility at a later time, and cannot
regain credibility afterward.

We are now ready to prove Theorem 3.

PROOF OF THEOREM 3. Let us first consider the hypothet-
ical attack that violates the safety of the target transaction
𝑡𝑥 . Let block 𝑐 and 𝑑 be a pair of blocks that minimize
ℎ+ = max(ℎ𝑐 , ℎ𝑑 ) and satisfy the following conditions (see
Figure 1 for illustrations):

(1) Blockchain 𝑐 is credible at time 𝑡𝑐 , contains the target
transaction in a block 𝑏, and has height ℎ𝑐 ≥ ℎ𝑏 + 𝑘 − 1,
and

(2) Blockchain 𝑑 is credible at time 𝑡𝑑 , has height ℎ𝑑 ≥ ℎ𝑏 +
𝑘 − 1, does not contain block 𝑏, and does not contain the
target transaction on heights up to ℎ𝑏 − 1.

Blocks 𝑐 and 𝑑 as defined must exist in order for some honest
node to commit the target transaction in a block and some
honest node (possibly the same one) to commit a different
block on the same height. Since chains 𝑐 and 𝑑 are credible at
their respective mining times, and higher and higher honest
blocks are mined over time, such a pair is determined by the
time a block on some height greater than ℎ+ becomes public.

Since ℎ𝑐 ≥ ℎ𝑏 + 𝑘 − 1 and ℎ𝑑 ≥ ℎ𝑏 + 𝑘 − 1, we have

ℎ+ = max(ℎ𝑐 , ℎ𝑑 ) ≥ ℎ𝑏 + 𝑘 − 1. (11)

We further define

𝜏+ = max(𝑡𝑐 , 𝑡𝑑 ). (12)

Under the hypothetical attack, let block 𝑢 be the highest
honest block mined by time 𝜏 , let 𝑙𝜏 be the lead at time 𝜏 , and
let block 𝑎 be the highest block on chain 𝑑 at time 𝜏 . Note that
𝑙𝜏 +ℎ𝑢 is the height of the highest block at time 𝜏 while 𝑎 is one
block at time 𝜏 . Thus,

𝑙𝜏 + ℎ𝑢 ≥ ℎ𝑎 . (13)

Let 𝐻𝑡,𝑠 be the number of honest blocks mined during (𝑡, 𝑠].
Let 𝐴𝑡,𝑠 be the number of adversarial blocks mined during
(𝑡, 𝑠].

LEMMA 8. 𝐻𝜏,𝜏+−Δ ≤ ℎ+ − ℎ𝑢 .

PROOF. Since block 𝑢 is an honest block mined by time 𝜏 ,
all honest blocks mined after 𝜏 will have height at least ℎ𝑢 + 1

(Condition 3). Since one of 𝑐 or 𝑑 is credible at time 𝜏+ and
has height at most ℎ+, all honest blocks mined before 𝜏+ − Δ
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Figure 2: Illustrations of the two cases in the proof of
Lemma 10: ℎ𝑎 ≥ ℎ𝑢 (left) and ℎ𝑎 < ℎ𝑢 (right). (While block
𝑢 is included in blockchain 𝑐 in the graphs, block 𝑢 can be
found in either chain 𝑐 or chain 𝑑 or neither. In the ℎ𝑎 < ℎ𝑏
case, though ℎ𝑎 is illustrated to be larger than ℎ𝑏 in the graph,
we can have ℎ𝑎 ≤ ℎ𝑏 .)

must have height at most ℎ+. Finally, since honest blocks do
not share a height (Condition 3), the lemma is proved. □

LEMMA 9. Every height fromℎ𝑎+1 toℎ+ contains an adversarial
block mined during (𝜏, 𝜏+].

PROOF. We first show every height fromℎ𝑎+1 to min(ℎ𝑐 , ℎ𝑑 )
contains an adversarial block mined during (𝜏, 𝜏+]. First, all
blocks in blockchain 𝑐 on height ℎ𝑏 and above are mined after
during (𝜏, 𝜏+]; so are all blocks in blockchain 𝑑 on height ℎ𝑎 + 1
and above. We consider two cases as illustrated in Figure 1. If
ℎ𝑎 ≥ ℎ𝑏 − 1, there exist two blocks on every height from ℎ𝑎 + 1

to min(ℎ𝑐 , ℎ𝑑 ) that are mined during (𝜏, 𝜏+]. Given condition 3,
one block on every height from ℎ𝑎 + 1 to min(ℎ𝑐 , ℎ𝑑 ) must be
an adversarial block mined during (𝜏, 𝜏+]. If ℎ𝑎 < ℎ𝑏 − 1, by
the same argument, one block on every height from ℎ𝑏 to
min(ℎ𝑐 , ℎ𝑑 ) must be an adversarial block mined during (𝜏, 𝜏+].
Furthermore, blocks extending 𝑎 from height ℎ𝑎 + 1 to ℎ𝑏 − 1

do not contain the target transaction 𝑡𝑥 due to the definition of
blockchain 𝑑 . These must be adversarial blocks because honest
nodes would have included 𝑡𝑥 .

Next, we show every height from min(ℎ𝑐 , ℎ𝑑 ) + 1 to
max(ℎ𝑐 , ℎ𝑑 ) also contains an adversarial block mined during
(𝜏, 𝜏+]. If ℎ𝑐 = ℎ𝑑 , the statement is vacuous. If ℎ𝑑 > ℎ𝑐 , we can
show that blocks on chain 𝑑 between height ℎ𝑐 + 1 to ℎ𝑑 are
adversarial blocks. Suppose for the sake of contradiction that
one of these blocks, say block 𝑓 , is an honest block. Then block
𝑓 ’s parent, denoted as block 𝑒, must be credible at time 𝑡𝑒 , does
not contain 𝑡𝑥 up to height ℎ𝑏 − 1, and has height

ℎ𝑒 = ℎ𝑓 − 1 ≥ ℎ𝑐 ≥ ℎ𝑏 + 𝑘 − 1. (14)

Thus, max(ℎ𝑐 , ℎ𝑒 ) = ℎ+ − 1. This contradicts with ℎ+ being
minimized by the pair of blocks 𝑐 and 𝑑 . The case of ℎ𝑐 > ℎ𝑑 is
similar.

Thus, we have that every height from ℎ𝑎 + 1 to ℎ+ contains
an adversarial block mined during (𝜏, 𝜏+]. □

LEMMA 10. 𝐴𝜏,𝜏+ ≥ ℎ+ − ℎ𝑎 +max(ℎ𝑢 − ℎ𝑏 + 1, 0).

PROOF. In the case of ℎ𝑢 − ℎ𝑏 + 1 ≤ 0, this lemma becomes
𝐴𝜏,𝜏+ ≥ ℎ+ − ℎ𝑎 , which follows directly from Lemma 9. It
remains to prove 𝐴𝜏,𝜏+ ≥ (ℎ+ −ℎ𝑎) + (ℎ𝑢 −ℎ𝑏 + 1) in the case of
ℎ𝑢 ≥ ℎ𝑏 . In this case, block 𝑏 and its successors in chain 𝑐 up
to height ℎ𝑢 must be adversarial, because honest nodes will

only mine on heights higher than ℎ𝑢 after time 𝜏 . We consider
two cases as illustrated in Figure 2.

If ℎ𝑎 ≥ ℎ𝑢 , then there is an adversarial block mined dur-
ing (𝜏, 𝜏+] on every height from ℎ𝑏 to ℎ𝑢 ≤ ℎ𝑎 , and (due to
Lemma 9) on every height from ℎ𝑎 + 1 to ℎ+, giving 𝐴𝜏,𝜏+ ≥
(ℎ+ − ℎ𝑎) + (ℎ𝑢 − ℎ𝑏 + 1).

If ℎ𝑎 < ℎ𝑢 , then the successors of block 𝑎 in chain 𝑑 up
to height ℎ𝑢 must also be adversarial, because honest nodes
will only mine on heights higher than ℎ𝑢 after time 𝜏 . Also
note block 𝑏 and its successors are not in chain 𝑑. Thus, at
least (ℎ𝑢 − ℎ𝑏 + 1) + (ℎ𝑢 − ℎ𝑎) adversarial blocks mined during
(𝜏, 𝜏+] on heights no greater than ℎ𝑢 . Furthermore, at least one
adversarial block is mined during (𝜏, 𝜏+] on every height from
ℎ𝑢 + 1 to ℎ+ (as a consequence of Lemma 9). Thus, 𝐴𝜏,𝜏+ ≥
(ℎ𝑢 − ℎ𝑏 + 1) + (ℎ𝑢 − ℎ𝑎) + (ℎ+ − ℎ𝑢 ) = (ℎ+ − ℎ𝑎) + (ℎ𝑢 − ℎ𝑏 + 1)
as desired. □

The following corollary is straightforward from Lemma 10:

COROLLARY 11. 𝐴𝜏,𝜏+ ≥ ℎ+−ℎ𝑎 and𝐴𝜏,𝜏+ ≥ ℎ+−ℎ𝑎+ℎ𝑢−ℎ𝑏+1.

Let us now consider the private-mining attack. Under this
attack, let block 𝑢′ be the highest honest block at time 𝜏 and
let 𝑙 ′𝜏 be the lead at time 𝜏 . The first honest block after 𝜏 will be
on height ℎ𝑢′ + 1 and it will contain the target transaction. At
time 𝜏+, the public honest chain has length ℎ𝑢′ + 𝐻𝜏,𝜏+−Δ and
the adversary’s private chain has length ℎ𝑢′ + 𝑙 ′𝜏 + 𝐴𝜏,𝜏+ . The
private-mining attack succeeds as long as the following two
conditions hold:

(i) the adversary’s private chain is no shorter than the pub-
lic honest chain, i.e., 𝑙 ′𝜏 +𝐴𝜏,𝜏+ ≥ 𝐻𝜏,𝜏+−Δ;

(ii) the adversary’s private chain is at least 𝑘 − 1 higher than
the target transaction, i.e., 𝑙 ′𝜏 +𝐴𝜏,𝜏+ ≥ 𝑘 .

Both conditions follow directly from the results we just
established. For (i),

𝑙 ′𝜏 +𝐴𝜏,𝜏+ − 𝐻𝜏,𝜏+−Δ ≥ 𝑙𝜏 + (ℎ+ − ℎ𝑎) − (ℎ+ − ℎ𝑢 ) (15)

= 𝑙𝜏 + ℎ𝑢 − ℎ𝑎 (16)

≥ 0 (17)

where (15) is due to Lemma 5, Lemma 8 and Corollary 11, and
(17) is due to (13). For (ii),

𝑙 ′𝜏 +𝐴𝜏,𝜏+ ≥ 𝑙𝜏 + ℎ+ − ℎ𝑎 + ℎ𝑢 − ℎ𝑏 + 1 (18)

≥ 𝑙𝜏 + 𝑘 − ℎ𝑎 + ℎ𝑢 (19)

≥ 𝑘 (20)

where (18) is due to Lemma 5 and Corollary 11, (19) is due to
(11), and (20) is due to (13). Hence the proof of Theorem 3. □

5 THE SAFETY VIOLATION PROBABILITY:
PROOF OF THEOREM 2

In this section, we differentiate the notion of blocks mined by
honest (resp. adversarial) nodes and honest (resp. adversarial) blocks.
In particular, we modify the canonical model of Section 2 to
define a rigged model: We convert selected blocks mined by
honest nodes into adversarial blocks, in addition to blocks
mined by adversarial nodes. Only the remaining blocks mined
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by honest nodes are honest blocks. We let the adversary be
informed of which blocks are converted. The rigged model
makes the adversary strictly more powerful because the adver-
sary has the option of behaving honestly with these converted
blocks.

We judiciously select blocks for conversion so that all honest
blocks are always on different heights. Theorem 3 now guaran-
tees that the private-mining attack is a best attack in the rigged
model. We then upper bound the safety violation probability
of the private-mining attack in the rigged model, which will
serve as an upper bound on any attack in the canonical model.

In order to specify blocks for conversion, we introduce the
following notions:

DEFINITION 12 (TAILGATERS AND LAGGERS). Let block 𝑗 be
mined at time 𝑡 𝑗 . If no other block is mined during (𝑡 𝑗 − Δ, 𝑡 𝑗 ], then
block 𝑗 is a lagger; otherwise, block 𝑗 is a tailgater.

Now each block has two attributes: whether it is mined
by an honest or an adversarial node, and whether it is a tail-
gater or a lagger. Each block is mined by an honest node with
probability 𝜌 and by an adversarial node with probability
1 − 𝜌. Recall that the inter-arrival times in a Poisson process
are independent and identically distributed and follow an
exponential distribution with the same rate parameter. Thus,

each block is a lagger with probability 𝑔 = 𝑒−𝜆Δ and a tailgater
with probability 1−𝑔. Moreover, whether a block is a lagger or
tailgater is independent of whether it is mined by an honest
or an adversarial node as well as all other blocks’ attributes.

We convert all the tailgaters mined by honest nodes into
adversarial blocks. In other words, only laggers mined by
honest nodes are honest blocks; all other blocks are adversarial
blocks. It is not difficult to see that, in this rigged model, every
block is honest with probability 𝑝 = 𝑔𝜌 and is adversarial with
probability 𝑞 = 1−𝑝, independent of all other blocks. Hence the
sequence of honest/adversarial attributes of all blocks form a
memoryless binary process. Like regular adversarial blocks,
the adversary can decide what predecessor block a converted
block extends, and when it is revealed to honest nodes. A
crucial property is that now every honest block is received
by all honest nodes before the next honest block is mined.
Therefore, every honest block will be on a higher height than
all previous honest blocks, i.e., Condition 3 is always upheld
in the rigged model.

5.1 The Upper Bound

Let 𝐹 denote the event that the private-mining attack violates
the target transaction’s safety in the rigged model. Now that
the conversions make the private-mining attack a best attack
(Theorem 3), it remains to upper bound Pr(𝐹 ).

Let ℎ denote the height of the highest honest block mined
by time 𝜏 . The first honest block mined after 𝜏 (on height ℎ + 1)
includes the target transaction 𝑡𝑥 . Let 𝐿 denote the lead of the
adversary at time 𝜏 , so the private chain’s height is ℎ + 𝐿 at 𝜏 .

If 𝐿 ≥ 𝑘 , the private chain at time 𝜏 is already high enough
to commit the adversarial block on height ℎ + 1. As soon as
the honest chain grows by 𝑘 blocks after 𝜏 to commit 𝑡𝑥 , the
adversary releases its private chain to violate its safety.

If 𝐿 < 𝑘 , the private chain at 𝜏 is not high enough to commit
on height ℎ + 1. Let 𝐵 denote the number of adversarial blocks
out of the first max(2𝑘 − 𝐿, 0) blocks mined after time 𝜏 . Note
that 𝐵 is non-negative for all possible values of 𝐿. If 𝐿 < 𝑘 but
𝐿 + 𝐵 ≥ 𝑘 , then by the time 2𝑘 − 𝐿 blocks are mined after 𝜏 , the
private chain’s height ℎ+𝐿+𝐵 ≥ ℎ+𝑘 is sufficient to commit 𝑡𝑥
at height ℎ + 1, and it is also no shorter than the honest chain,
whose height is ℎ + (2𝑘 − 𝐿 − 𝐵) ≤ ℎ + 𝑘 . Again, the adversary
has been able to violate 𝑡𝑥 ’s safety.

If 𝐿 + 𝐵 < 𝑘, the private chain is still not high enough to
commit on height ℎ + 1 by the time 2𝑘 − 𝐿 blocks are mined
after 𝜏 . At this point, the public honest chain is also higher
than the private chain by at least

(ℎ + (2𝑘 − 𝐿 − 𝐵) − 1) − (ℎ + 𝐿 + 𝐵) = 2(𝑘 − 𝐿 − 𝐵) − 1 (21)

where the ª−1º is because the highest honest block is not nec-
essarily public. A necessary condition for violating the safety
of 𝑡𝑥 is that the adversary gains enough advantage to make up
for this deficit at a later time. (This is not a sufficient condition
because the highest honest block may be public to add one to
the actual deficit.) Let 𝑀 denote the maximum advantage the
adversary ever gains during subsequent mining. Specifically,
𝑀 is the maximum reach of the following simple random walk:
The walk starts at 0; it increments by one upon the mining of
an adversarial block (with probability 𝑞); and it decrements
by one upon the mining of an honest block (with probability
𝑝). The necessary condition is then 𝑀 ≥ 2(𝑘 − 𝐵 − 𝐿) − 1.

In summary, the safety violation event 𝐹 occurs only if one
of the following three mutually exclusive events occurs:

• 𝐿 ≥ 𝑘 ,
• 𝐿 < 𝑘 but 𝐿 + 𝐵 ≥ 𝑘 ,
• 𝐿 + 𝐵 < 𝑘 but 𝑀 ≥ 2(𝑘 − 𝐿 − 𝐵) − 1.

As 𝐿, 𝐵, 𝑀 are all non-negative, the union of the preceding
three events can be concisely written as

2𝐿 + 2𝐵 +𝑀 ≥ 2𝑘 − 1. (22)

In the remainder of this subsection, we analyze the probability
of this event using the joint distribution of (𝐿, 𝐵,𝑀).

By definition, the lead 𝐿 is determined by block mining
times before 𝜏 , 𝐵 is determined by the time max(2𝑘 − 𝐿, 0)
additional blocks are mined after 𝜏 , and 𝑀 is determined by
mining times after that. Due to the memoryless nature of the
rigged mining process, 𝑀 is independent of (𝐿, 𝐵). Under the
condition (1), as the maximum reach of the random walk, the
distribution of 𝑀 is geometric [13, equation (7.3.5)]:

Pr(𝑀 = 𝑙) = 𝑃1 (𝑙 + 1;𝑝) (23)

and

Pr(𝑀 ≥ 𝑙) = 𝐹 1 (𝑙 ;𝑝) (24)

for every 𝑙 = 0, 1, . . . , where 𝑃1 and 𝐹 1 are defined in (5) and (6).
The lead 𝐿 is exactly the state of a (continuous-time) birth-

death process: It starts at state 0; the mining of each adversarial
block corresponds to a birth; and the mining of each honest
block corresponds to a death. The process is bounded by zero
from below. It is fair to assume that 𝜏 is not small to allow suffi-
cient mixing in the Markov process, so that the distribution of
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𝐿 is identical to the stationary distribution of this birth-death
process [13, p. 254] under the condition (1). Interestingly, 𝐿 has
exactly the same geometric distribution as 𝑀 .

Conditioned on 𝐿 = 𝑙 < 2𝑘 , 𝐵 is a binomial random variable
with parameters (2𝑘 − 𝑙, 𝑞), hence

Pr(𝐵 = 𝑗 | 𝐿 = 𝑙) = 𝑃2 ( 𝑗 ; 2𝑘 − 𝑙, 𝑞), (25)

and

Pr(𝐵 > 𝑗 | 𝐿 = 𝑙) = 𝐹 2 ( 𝑗 ; 2𝑘 − 𝑙, 𝑞) (26)

for every 𝑙 = 0, 1, . . . , where 𝑃2 and 𝐹 2 are defined in (7) and (8).
Therefore, we have

Pr(𝐹 ) ≤ Pr(2𝐿 + 2𝐵 +𝑀 ≥ 2𝑘 − 1) (27)

= Pr(𝐿 ≥ 𝑘) +
𝑘−1
∑︁

𝑙=0

Pr(𝐿 = 𝑙) · Pr(2𝐿 + 2𝐵 +𝑀 ≥ 2𝑘 − 1 | 𝐿 = 𝑙)

(28)

= Pr(𝐿 ≥ 𝑘) +
𝑘−1
∑︁

𝑙=0

Pr(𝐿 = 𝑙) ·
(

Pr(𝐵 > 𝑘 − 𝑙 − 1 | 𝐿 = 𝑙)

+
𝑘−𝑙−1
∑︁

𝑗=0

Pr(𝐵 = 𝑗 | 𝐿 = 𝑙) · Pr(𝑀 ≥ 2𝑘 − 1 − 2𝑙 − 2 𝑗)
)

(29)

= 𝐹 1 (𝑘 ;𝑝) +
𝑘−1
∑︁

𝑙=0

𝑃1 (𝑙 + 1; 𝑝) ·
(

𝐹 2 (𝑘 − 𝑙 − 1; 2𝑘 − 𝑙, 1 − 𝑝)

+
𝑘−𝑙−1
∑︁

𝑗=0

𝑃2 ( 𝑗 ; 2𝑘 − 𝑙, 1 − 𝑝) · 𝐹 1 (2𝑘 − 1 − 2𝑙 − 2 𝑗 ;𝑝)
)

(30)

which is equal to the upper bound (9) in Theorem 2 (with 𝑙

replaced by 𝑖 − 1).

5.2 The Lower Bound

A lower bound can be obtained by calculating the success
probability of the private-mining attack under Δ = 0. Note
that with a zero delay, Condition 3 holds without any conver-
sion, so the fraction of honest mining power should be the
original 𝜌 instead of 𝑝. Another material difference is that all
honest blocks become public immediately. Let 𝐿′, 𝐵′, and 𝑀′

be identically defined as their counterparts 𝐿, 𝐵, and 𝑀 except
that the probability 𝑝 is replaced with 𝜌. Under zero delay,
the event that the private-mining attack violates the safety
of the target transaction (which appears at time 𝜏) is exactly
2𝐿′ + 2𝐵′ + 𝑀′ ≥ 2𝑘. We denote this event as 𝐹0. Assuming
again 𝜏 is not small, we have the following exact formula for
the probability of safety violation of the target transaction as a
function of 𝑘 and 𝜌 :

Pr(𝐹0) = Pr(2𝐿′ + 2𝐵′ +𝑀′ ≥ 2𝑘) (31)

= 𝐹 1 (𝑘 ; 𝜌) +
𝑘−1
∑︁

𝑙=0

𝑃1 (𝑙 + 1; 𝜌) ·
(

𝐹 2 (𝑘 − 𝑙 − 1; 2𝑘 − 𝑙, 1 − 𝜌)

+
𝑘−𝑙−1
∑︁

𝑗=0

𝑃2 ( 𝑗 ; 2𝑘 − 𝑙, 1 − 𝜌) · 𝐹 1 (2𝑘 − 2𝑙 − 2 𝑗 ; 𝜌)
)

(32)

which is equal to the lower bound (10) in Theorem 2 (with 𝑙

replaced by 𝑖 − 1).

6 THE SAFETY VIOLATION PROBABILITY:
PROOF OF THEOREM 1

To gain additional insights, we evaluate the probability of the
safety violation event using simple bounding techniques.

6.1 The Upper Bound

Recall Pr(𝐹 ) ≤ Pr(2𝐿 + 2𝐵 +𝑀 ≥ 2𝑘 − 1) from (27). The moment
generating function (MGF) of the geometric random variables
𝐿 and 𝑀 can be expressed as

E

{

𝑒𝜈𝐿
}

= E

{

𝑒𝜈𝑀
}

=

𝑝 − 𝑞

𝑝 − 𝑞𝑒𝜈
(33)

which holds for every 𝜈 < log(𝑝/𝑞). Conditioned on 𝐿 = 𝑙 , 𝐵 is
a binomial(2𝑘 −𝑙, 𝑞) random variable, whose MGF is expressed
as

E

{

𝑒𝜈𝐵 |𝐿 = 𝑙
}

=

(

𝑝 + 𝑞𝑒𝜈
)2𝑘−𝑙 (34)

for every real number 𝜈 .
Using the Chernoff bound [14], we have for every 𝜈 > 0:

Pr(2𝐿 + 2𝐵 +𝑀 ≥ 2𝑘 − 1)

= Pr

(

𝐿 + 𝐵 + 𝑀

2
≥ 𝑘 − 1

2

)

(35)

≤ E

{

𝑒
𝜈
(

𝐿+𝐵+𝑀

2 −𝑘+ 1
2

)

}

(36)

= E

{

E

{

𝑒𝜈 (𝐿+𝐵) | 𝐿
}}

E

{

𝑒𝜈
𝑀

2

}

𝑒−𝜈 (𝑘−
1
2 ) (37)

= E

{

𝑒𝜈𝐿
(

𝑝 + 𝑞𝑒𝜈
)2𝑘−𝐿

} 𝑝 − 𝑞

𝑝 − 𝑞𝑒
𝜈

2

𝑒−𝜈 (𝑘−
1
2 ) (38)

=

(

𝑝 + 𝑞𝑒𝜈
)2𝑘 𝑝 − 𝑞

𝑝 − 𝑞 𝑒𝜈

𝑝+𝑞𝑒𝜈

𝑝 − 𝑞

𝑝 − 𝑞𝑒
𝜈

2

𝑒−𝜈 (𝑘−
1
2 ) (39)

=

(

𝑝 + 𝑞𝑒𝜈
)2𝑘

𝑒−𝜈𝑘
(𝑝 − 𝑞)2 (𝑝 + 𝑞𝑒𝜈 )𝑒 𝜈

2

(𝑝2 − 𝑞2𝑒𝜈 ) (𝑝 − 𝑞𝑒
𝜈

2 )
. (40)

The exponential coefficient for 𝑘 is equal to

2 log(𝑝 + 𝑞𝑒𝜈 ) − 𝜈. (41)

To yield an asymptotic bound, we note that the tightest expo-
nent for 𝑘 is obtained with

𝑒𝜈 = 𝑝/𝑞 (42)

and thus 𝑝 + 𝑞𝑒𝜈 = 2𝑝. (Note that (42) guarantees that the
MGF (33) can be invoked to arrive at (39).) Using (27) and
plugging (42) back into (40), we get the upper bound of

Pr(𝐹 ) ≤ Pr(2𝐿 + 2𝐵 +𝑀 ≥ 2𝑘 − 1) (43)

≤ 2 (4𝑝𝑞)𝑘
(√︂

𝑝

𝑞
+ 1

)

(44)

which is equal to (2).
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6.2 The Lower Bound

According to the discussion in Section 5.2, the safety violation
event 𝐹0 under the private-mining attack in the case of Δ = 0

is expressed exactly as 2𝐿′ + 2𝐵′ +𝑀′ ≥ 2𝑘 . Evidently,

Pr(𝐹0) > Pr(𝐿′ + 𝐵′ ≥ 𝑘). (45)

It is not difficult to see that the larger the pre-mining lead 𝐿′,
the more likely that 𝐿′ + 𝐵′ meets the threshold 𝑘, hence for
every 𝑙 = 0, 1, . . . , 𝑘 ,

Pr(𝐵′ ≥ 𝑘 − 𝑙 | 𝐿′ = 𝑙) ≥ Pr(𝐵′ ≥ 𝑘 | 𝐿′ = 0) . (46)

Let 𝐵0 denote a binomial random variable with parameter
(2𝑘, 𝑞). Equations (45) and (46) imply that

Pr(𝐹0) > Pr(𝐵0 ≥ 𝑘). (47)

Using [1, Lemma 4.7.2], we can write

Pr(𝐹0) >
1
√
𝑘
𝑒−2𝑘𝑑 (

1
2 ∥ 𝜌) (48)

where the relative entropy can be evaluated as

𝑑
( 1

2








 𝜌
)

= −1

2
log(4𝜌 (1 − 𝜌)) . (49)

Hence (48) becomes the lower bound (3) in Theorem 1.

7 NUMERICAL RESULTS

Figure 3 shows the upper and lower bounds of Theorems 1
and 2 for the Bitcoin mining rate of 𝜆 = 1/600 (10 minutes per
block), a block propagation delay bound of Δ = 10 seconds,
and adversarial mining ratios of 10% (𝜌 = 0.9), 25% (𝜌 = 0.75),
and 40% (𝜌 = 0.6). The upper and lower bounds of Theorem 2
are quite close for a wide range of honest-to-adversarial min-
ing power ratios. In addition, the two lower bounds are very
close and their gap does not depend on the absolute mining
rates and the delay bound. We also note that the upper bound
of Theorem 1 can be too loose for very small depths.

Consider the practical rule of thumb of committing a Bit-
coin block or transaction by 6 confirmations (𝑘 = 6). If the
adversary controls 10% of the total mining power, the prob-
ability of safety violation is between 0.11% and 0.35%. If the
confirmation depth is increased to 𝑘 = 14, the probability is
then between 2 × 10−7 and 2 × 10−6. If the adversary controls
25% of the total mining power, similar guarantees are obtained
at approximately 𝑘 = 21 and 𝑘 = 50, respectively.

All the bounds are either exponential or nearly exponential
in the confirmation depth. We also note that the asymptotic
slopes of the bounds of Theorem 2 match those of Theorem 1.
The more mining power the adversary controls, the flatter
the curves are. For the aforementioned Bitcoin parameters,
the fundamental fault tolerance limit is 49.8%, i.e., there is no
safety regardless of the confirmation depth if 𝜌 < 0.502 [2, 4].

We also show in Figure 4 the prior best results from [5]
for comparison. For small confirmation depths, our bounds
are tighter than theirs despite our much simpler method. For
example, with 10% adversary, Δ = 10 seconds delay, and 6-
confirmation, our result upper bounds the safety violation
probability at 0.35%, compare to 0.48% from [5]. As confirma-
tion depths increase, their results eventually become tighter

than ours; the cross-over point for the above parameter occurs
at 𝑘 = 9. With a 20% adversary, the cross-over point has not
occurred within 𝑘 ≤ 11.

Figure 5 shows the upper and lower bounds for Ethereum’s
mining rate of 𝜆 = 1/13, a block propagation delay bound of
Δ = 2 seconds, and adversarial mining ratios of 10% (𝜌 = 0.9)
and 20% (𝜌 = 0.8). It is easy to produce numerical results for
higher adversarial ratios, but we omit them to keep the figure
easy to read. As expected, our bounds are much looser for
Ethereum parameters where the block interval is short relative
to the block propagation delay bound. The methods from [5]
yield tighter bounds for such settings.

Because the lower bounds of both Theorems 1 and 2 depend
only on the ratio of honest and adversarial mining powers, the
gap between the two lower bounds remains small regardless
of the absolute mining rates and delays. This is clearly seen in
Figure 3 for the Bitcoin parameters. (This is also observed for
Ethereum’s parameters, which we omit here.)
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Figure 3: Safety violation probability bounds as a function of the confirmation depth 𝑘. All bounds given in Theorems 1
and (2) are calculated for Bitcoin’s nominal mining rate (𝜆 = 1/600 blocks per second), a block propagation delay bound of
Δ = 10 seconds, and adversarial mining ratios of 10% (𝜌 = 0.9), 25% (𝜌 = 0.75), and 40% (𝜌 = 0.6).

90% honest

80% honest

0 5 10 15 20
10-10

10-7

10-4

0.1

1

confirmation depth k

p
ro
b
a
b
ili
ty
o
f
s
a
fe
ty
v
io
la
ti
o
n

Theorem 2 lower

Theorem 2 upper

[5] upper

Figure 4: Safety violation probability bounds as a function of the confirmation depth 𝑘 . The bounds given in Theorem (2) are
shown along with the bound of [5] for Bitcoin’s nominal mining rate (𝜆 = 1/600 blocks per second), a block propagation delay
bound of Δ = 10 seconds, and honest mining ratios of 90% and 80%.
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