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1 Introduction25

A major goal of proof complexity is to show limits on the types of reasoning formalizable with26

concepts of small computational complexity, usually formalized as circuits from small circuit27

classes. This makes results in proof complexity analogous to (and often building on) results in28

circuit complexity. However, despite having strong lower bounds for the class AC0[p] since the29

1980’s, ([18, 19] ) it is still an open problem in proof complexity to establish superpolynomial30

(or even quadratic) lower bounds for the corresponding proof system AC0[p]-Frege.31

Motivated by the lack of progress towards proving AC0[p]-Frege lower bounds, [4] defined32

the Nullstellensatz (Nullsatz) proof system for refuting systems of unsolvable polynomial33

equations. Given a system of polynomial equations P = {P1 = 0, . . . , Pm = 0} in Boolean34

variables x1, . . . , xn (where we enforce the Boolean condition by adding the equations x2
i−xi =35

0 to P), a Nullsatz refutation of P over a field F is a set of polynomials Q = {Q1, . . . , Qm}36

such that
∑

i PiQi = 1. The degree of the refutation is the maximum degree of the PiQi’s,37

and the size is the sum of the sizes of the polynomials in P,Q. A dynamic version of Nullsatz,38

called the Polynomial Calculus (PC) was later defined in [10].39

While these and later papers showed strong lower bounds for these proof systems, often40

these lower bounds were brittle in that the tautologies where lower bounds were proved41

also had small upper bounds under changes of variables. Our work is intended to address42

the issue of proving algebraic proof lower bounds that are more robust under changes of43

variables. This can be viewed as a small but significant step towards proving lower bounds44

for AC0[p]-Frege, since the latter can simulate such changes of variables.45

One reason for the brittleness of many of the earlier lower bounds is that these lower bounds46

were highly sensitive to the initial encoding. The known PC lower bounds hold for unsatisfiable47

CNF formulas which are converted to a corresponding system of unsolvable polynomial48

equations. Previous works established exponential PC lower bounds assuming a Boolean49

encoding, where the variables are Boolean, enforced by the initial equations x2
i − xi = 0.50

Another natural encoding is the “Fourier” encoding which represents the constraints by51

polynomials over {−1, 1}-valued variables (by applying the linear transformation xi = 1−2xi52

to the Boolean encoding). However under this second encoding, the size lower bounds all53

break down. This is due to the proof method, where size lower bounds were obtained from54

degree lower bounds. Over {0, 1}-valued variables, this can be accomplished by applying55

known size-degree tradeoffs for PC or by a random restriction argument to kill off all large56

monomials. But over {−1, 1}-valued variables, these methods no longer work: a generic size-57

degree tradeoff no longer holds (there are polynomial sized proofs of the Tseitin tautologies,58

although they require linear degree [8]), and since the monomials now correspond to parity59

equations, they are resilient to random restrictions.60

However, recently, Sokolov [20] broke this barrier, and managed to prove exponential size61

lower bounds for PC refutations over the {−1, 1} encoding. We note that while this may seem62

like a minor improvement over the known lower bounds which held for the {0, 1}-encoding,63

Sokolov had to invent a new and ingenious technique for proving size lower bounds. In this64

work, we generalize the methods of Sokolov to prove exponential PC lower bounds with up to65

M = N2−ϵ extension variables which can depend on up to κ = O(log N) original variables66

(where N is the number of variables in the tautology). This shows that the Sokolov method67

can be used to prove highly robust lower bounds, that are not sensitive to local changes of68

variables. We state our result more precisely for two different choices of parameters, one69

that maximizes the size lower bound, and the other that maximizes the number of allowable70

extension variables.71
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7:2 Lower bounds for Polynomial Calculus with extension variables over finite fields

▶ Theorem 1 (high-end). For n sufficiently large, there is a family of CNF tautologies72

F SEL on O(n log n) variables with poly(n) clauses of width O(log n) such that for any73

M = npolylog(n) and κ = O(log log n), any PC refutation over Fp of F SEL, together with74

M κ-local extension axioms, requires size 2Ω(n/polylog(n)).75

▶ Theorem 2 (low-end). For the same family of tautologies as above, there are 0 < α, β, γ < 176

so that, for M = n1+α, κ = βlogn, any PC refutation of F SEL together with any M κ-local77

extensions over Fp requires size 2Ω(nγ ).78

We remark that our extension variables are only allowed to depend on the original79

variables, and not on previously defined extension variables. (In the more general case where80

extension variables are defined recursively, the proof system corresponds to AC0[p]-Frege,81

where the level of recursion corresponds to the AC0[p] circuit depth.) Thus our lower bound82

can be (roughly) seen as proving exponential lower bounds for the following restricted class of83

depth-2.5 PC refutations. First, the refutation is given a new set of M variables, z1, . . . , zM ,84

and is allowed to define a corresponding set of M κ-local polynomials Q1, . . . , QM (where85

each Qi can only depend on κ original variables). Lines in the refutation are polynomials86

over the original variables, plus the new extension variables (which are placeholders for the87

Qi’s). Substituting the Qi’s for the new variables gives a set of depth 2.5 algebraic circuits88

using a pre-specified set of κ-local functions at the bottom layer of the circuit.89

1.1 Related Work90

The work that inspired us and that is most related to our result is the recent paper by91

Sokolov [20], proving exponential lower bounds on the size of PC refutations of CNF formulas,92

where the variables take on values in {1,−1}. We generalize Sokolov’s result to hold over any93

finite field, even with the addition of superlinear many extension variables, each depending94

arbitrarily on a small number of original variables. Thus our result can be alternatively viewed95

as making progress towards proving exponential lower bounds for depth-3 AC0[p]-Frege, for96

a family of CNF formulas.97

We note that for systems of polynomial equations over the rationals, a body of recent98

work establishes much stronger lower bounds. First, [13] proved lower bounds for subsystems99

of IPS over the rationals by restricted classes of circuits, including low-depth formulas,100

multilinear formulas and read-once oblivious branching programs. Secondly, Alekseev [2]101

proved exponential lower bounds on the bit complexity of PC proofs with an arbitrary number102

of extension variables of unbounded depth over the rationals. Andrews and Forbes [3] prove103

quasipolynomial lower bounds on the circuit size of constant-depth IPS proofs for a different104

family of polynomials over the rationals; however, their hard instances do not have small-size105

constant-depth circuits. Finally, [14] establish a similar lower bound as [3], but for hard106

instances that have small constant-depth circuits.107

We remark that these lower bounds are incomparable to ours for several reasons. First,108

they do not hold for finite fields, and secondly, the choice of hard polynomials are inherently109

nonboolean: [13, 2, 14] use the subset sum principle which when translated to a propositional110

statement is no longer hard, and the hard polynomials in [3] have logarithmic depth. Thus111

on the one hand they establish superpolynomial lower bounds for much stronger subsystems112

of IPS, but on the other hand, they do not translate to lower bounds for propositional proofs113

in the sense of Cook-Reckhow [11]. In particular, they don’t imply lower bounds for proof114

systems dealing with Boolean formulae.115
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1.2 Our Result: Proof Overview116

The standard way of proving size lower bounds for PC for an unsatisfiable formula F for117

Boolean-valued variables dates back to the celebrated superpolynomial lower bounds for118

Resolution [15, 7], where the basic tool is to reduce size lower bounds to degree lower bounds119

(or in the case of Resolution, size to clause-width) by way of either a general size-depth120

tradeoff, or by a more general random restriction argument. At a high level, both methods121

iteratively select a variable that occurs in a lot of high-degree terms, set this variable to122

zero (to kill off all high-degree terms containing it), while also ensuring (possibly by setting123

additional variables) that F remains hard to refute after applying the partial restriction.124

After applying this size-to-degree reduction, the main technical part is to prove degree lower125

bounds for the restricted version of F .126

As mentioned in the Introduction, over the {−1, 1} basis, the size to degree reduction127

breaks down. In fact, no generic reduction to degree can exist since random XOR instances128

over this basis require linear degree but have polynomial size PC refutations. Moreover,129

we lacked any method for proving PC lower bounds for unsatisfiable CNFs over the basis130

{−1, 1}, and more generally over an arbitrary linear transformation of the variables. In [16],131

we highlighted this as an open problem, noting that it is a necessary step toward proving132

superpolynomial AC0[2]-Frege lower bounds, a major open problem in proof complexity.133

Recently, Sokolov [20] made significant progress by proving exponential lower bounds for134

PC (as well as for SOS) for random CNF formulas over the domain {−1, 1}, by developing135

new formula-specific techniques to reduce size to degree over this domain. As this is the136

starting point for our work, we begin by describing the main method in [20] for reducing size137

to degree for certain families of formulas over {−1, 1}.138

Let Π be an alleged PC refutation of F of small size which includes the axioms w2 = 1 for139

all variables w. The first step in Sokolov’s argument is to show how to remove all high degree140

terms containing a particular variable w, provided that w is irrelevant – meaning that it141

does not occur in any of the initial polynomials other than the equation w2 = 1. Intuitively,142

we want to show that if our unsatisfiable system of polynomial equations doesn’t contain143

w, then we should be able to eliminate high degree terms containing w altogether from the144

refutation. To show this, Sokolov introduced a new operation termed Split where he writes145

each line q in the refutation as q0 + q1w, and proves by induction that if we replace each line146

q by the pair of lines q0, q1, then it is still a valid refutation of F (and no longer contains w).147

While the Split operation removes w from the proof, it doesn’t kill off high degree terms.148

The crucial insight is that although this doesn’t directly kill off high degree terms, a slightly149

different measure of degree (called Quadratic degree) can be used instead, since removing150

w via the Split operation removes all high Quadratic degree terms that w contributed to,151

and secondly low Quadratic degree implies low ordinary degree. The second and easier step152

in Sokolov’s argument uses specific expansion properties of F to show that for any variable153

w, there exists a small restriction ρ (to some of the other variables) such that w becomes154

irrelevant under ρ.155

Our main theorem significantly generalizes Sokolov’s lower bound by proving exponential156

lower bounds for an unsatisfiable CNF formulas F , even when we allow the axioms P to157

contain superlinear many extension axioms, provided that each extension axiom depends158

on a small number of original variables. Note that the variables of F are Boolean, but the159

extension variables are not restricted to being Boolean. In particular, it may be the case that160

zero is not in the support of an extension variable (i.e. the set of all possible values that can161

be assigned to it without violating any Boolean axioms), for example if extension variable162

z is defined by the equation z = x− 2, then z cannot be set to zero without falsifying the163

CCC 2023



7:4 Lower bounds for Polynomial Calculus with extension variables over finite fields

Boolean axiom x2 − x = 0 for x. Intuitively we will handle extension variables z that cannot164

be set to zero in a similar manner to Sokolov, by first isolating z, and then generalizing the165

Split operation in order to kill off all large Quadratic degree terms that contain z. However,166

dealing with a general set of extension axioms presents new technical challenges that we167

address next.168

Our first idea is to design the unsatisfiable formula F carefully so that we can force169

variables to be irrelevant in a more modular way. Specifically, let F (x1, . . . , xn) be an170

expanding unsatisfiable k-CSP formula with m = O(n) constraints, such that any subset of171

m′ = ϵm constraints is unsatisfiable and requires proofs of large PC degree. We define an172

unsatisfiable formula F SEL (based on F ) that intuitively states that there is a subset S of173

m′ = ϵm constraints of F (as chosen by new selector variables y) that is satisfiable. We will174

prove lower bounds on the set of constraints F SEL even with the addition of an arbitrary set175

of extension axioms satisfying the conditions mentioned earlier. In order to make a variable176

of F SEL irrelevant, we will simply make sure that our eventual assignment to the selector177

variables (y) avoids constraints of F that contain this variable (we can also make a selector178

variable irrelevant in a slightly more complicated way, details are left to the relevant section).179

A second challenge that we face (that doesn’t come up in Sokolov’s proof) is that extension180

variables may be defined so that originally they can be consistently set to zero, but can181

change status after applying a restriction. For example, suppose the proof uses the extension182

axiom z = x1x2 + x1. Then zero is in the support of z (since we can set x1 = x2 = 0),183

but if we set x1 = 1, then zero is no longer in the support of z. In order to deal with this184

dynamically changing status of variables, our notion of Quadratic degree must pay attention185

to which category each of the extension variables is in at any particular time, and make186

sure that we do not lose progress that was made earlier due to variables changing from187

initially containing zero to disallowing zero in their support. Fortunately we observe that188

variables can only change unidirectionally, (since the support of a variable cannot increase189

under a restriction) and this is crucial for arguing that our measure of Quadratic degree190

always decreases so that we continually make progress.191

Finally, we also have to generalize Sokolov’s Split operation, which was previously defined192

only for {−1, 1} variables. We give a generalization of how to do the Split for arbitrary193

valued variables.194

2 Preliminaries195

▶ Definition 1 (Polynomial Calculus/Polynomial Calculus Resolution). Let Γ = {P1 . . . Pm}196

be an unsolvable system of polynomials in variables {x1 . . . xn} over F. A PC (Polynomial197

Calculus) refutation of Γ is a sequence of polynomials {R1 . . . Rs} such that Rs = 1 and for198

every ℓ ∈ [s], Rℓ ∈ Γ, Rℓ is either a polynomial from Γ, or is obtained from two previous199

polynomials Rj , Rk, j, k < ℓ by one of the following derivation rules:200

Rℓ = αRj + βRk for α, β ∈ F201

Rℓ = xiRk for some i ∈ [n]}202

The size of the refutation is
∑s

ℓ=1 |Rℓ|, where |Rℓ| is the number of monomials in the203

polynomial Rℓ. The degree of the refutation is maxℓ deg(Rℓ).204

A PCR (Polynomial Calculus Resolution) refutation is a PC refutation over the set of205

Boolean variables {x1 . . . xn, x̄1 . . . x̄n} where {x̄1 . . . x̄n} are twin variables of {x1 . . . xn} i.e.206

the equations x2
i − xi = 0, x̄i

2 − x̄i = 0 and xix̄i = 0 are treated as axioms.207

▶ Definition 2 (PC plus Extension Axioms). Let Γ = {P1 . . . Pm} be a set of polynomials208

in variables {x1 . . . xn} over a field F. We will refer to the polynomials in Γ as (initial)209
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axioms. Let z = z1 . . . zM be new extension variables with corresponding extension axioms210

zj −Qj(x1 . . . xn). A PC + Ext (PC plus extension) refutation of Γ with M extension axioms211

Ext = {zj −Qj(x1 . . . xn)} is a PC refutation of the set of polynomials Γ′ = {P1 . . . Pm, z1 −212

Q1 . . . zM −QM}. An extension axiom zj = Qj(x1 . . . xn) is κ-local if Qj is a κ-junta; that213

is, if the polynomial Qj defining zj involves at most κ of the x-variables. We say that Π214

is a (M, κ)− PC + Ext refutation of Γ if it is a PC + Ext refutation of Γ with M extension215

axioms, each of which are κ-local. The size of the refutation is total size of all lines in the216

refutation, including the polynomials in Γ plus the extension axioms (where the size of a line217

P ∈ Π is the number of monomials in P ).218

We note that our definition of extension axioms is more limited than the general notion219

of extension axioms. Here we only allow the extension variables to depend on the original220

variables from Γ; the more general definition allows the extension variables to depend on the221

original x-variables, and also on other extension variables.222

▶ Definition 3 (k-local CSPs). A constraint Ci over Boolean variables {x1, . . . , xn} is simply223

a Boolean formula over these variables. Ci is a k-local constraint if Ci depends on at most224

k variables. A k-CSP C = C1 ∧ . . . ∧ Cm over {x1, . . . , xN} is the conjunction of a set of225

k-local constraints.226

We translate a k-CSP formula into a system of polynomial equations using the standard227

PCR translation which we define next.228

▶ Definition 4 (Converting k-CSPs into Polynomial Equations). Let C be a k-local constraint229

over variables xi1 , . . . , xik
. We convert C to a polynomial equation, p(C), using the trans-230

lations p(xij
) = 1 − xij

, p(¬A) = 1 − p(A), p(A ∨ B) = p(A) · p(B). It is easy to check231

that for any Boolean assignment α to the underlying variables, C(α) = 1↔ p(α) = 0, and232

C(α) = 0↔ p(α) = 1.233

A k-CSP C = C1 ∧ . . . ∧ Cm over {x1, . . . , xn} converts to a set of polynomial equations234

{Ej | j ∈ [m]} ∪ {Bi | i ∈ [n]} over {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} where Ej is the polynomial235

equation p(Cj) In addition, we add the Boolean axioms {Bi | i ∈ [n]}, where Bi = {x2
i −xi =236

0, x̄i
2 − x̄i = 0, xix̄i = 0} which force xi, x̄i to be zero-one valued, and force exactly one of237

xi, x̄i to be one.238

3 The Hard Formulas239

We distinguish between the case p = 2 and the case p > 2, and concentrate on the latter.240

This is because the case p = 2 does not require any new technical ideas, and we can pick from241

a large number of known hard tautologies for this case, such as random CNF ’s. Over F2,242

every extension variable is zero-one valued, and so standard size-degree tradeoffs pertain even243

with respect to extension variables. Also, κ-local extension variables can change the degree by244

at most a factor of κ, therefore a degree lower bound of Ω(n) for the original tautology over245

n variables implies a degree lower bound of Ω(n/κ) after adding κ-local extension variables.246

Known size-degree tradeoffs imply that the degree must be at least square root of the number247

of variables in order to obtain exponential size lower bounds, this immediately gives a lower248

bound tolerating close to n2/κ2 many κ-local extension variables [10, 6, 17].249

Over any field, there are unsatisfiable families of k-CNF formulas (e.g. the Tseitin250

tautologies as well as random parity equations) that require linear degree but have polynomial251

sized proofs with a linear number of extension variables [8, 6]. Therefore formulas that252

require high PC degree are not sufficient. Instead we will create our hard examples by taking253
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7:6 Lower bounds for Polynomial Calculus with extension variables over finite fields

a hard instance and then using selector variables to pick out a subset of the constraints.254

Similar ideas were used earlier (e.g., [12]). In more detail, our underlying hard unsatisfiable255

formulas, {F SEL
n,k }, will be constructed from a family of k-CSP formulas, Fn,k, that have the256

property that any sufficiently large subset of the constraints of Fn,k is unsatisfiable and still257

requires large PC degree.258

▶ Definition 5. Let Fn,k = {Ej | j ∈ [m]} ∪ {Bi | i ∈ [n]} be the system of degree-k259

polynomial equations over x = {xi, x̄i | i ∈ [n]}, obtained by converting a size-m k-CSP as260

given by Definition 4. For convenience, we will index the polynomial equations Ej in binary261

notation, so for example if b1 . . . blog m ∈ {0, 1}log m is the binary notation for j ∈ [m], we will262

write Ej as Eb1...blog m
. We define a new set of polynomial equations F SEL

n,k with parameters263

m, m′ as follows. The variables are x ∪ y, where x are the original variables of Fn,k and264

y = {yi,j , yi,j | i ∈ [m′], j ∈ [log m]} are new “pigeon" variables. Let ESEL be the following265

set of equations, where yi ̸= b1 . . . blog m abbreviates the monomial
∏

bj=1 yi,j

∏
bj=0 yi,j:266

(i) ∀i ∈ [m′], ∀b1 . . . blog m ∈ {0, 1}log m, (yi ̸= b1 . . . blog m) · Eb1...blog m
= 0;267

(ii) ∀i, i′ ∈ [m′], i ̸= i′, ∀b1 . . . blog m ∈ {0, 1}log m, (yi ̸= b1 . . . blog m) · (yi′ ̸= b1 . . . blog m) = 0.268

F SEL
n,k consists of the polynomial equations ESEL together with the Boolean axioms269

Bi,j = {y2
i,j − yi,j = 0, yi,j

2 − yi,j = 0, yi,jyi,j = 0} for all i ∈ [m′], j ∈ [m].270

Intuitively we think of the y variables as a mapping from m′ pigeons to m holes, where271

the holes correspond to the m axioms/constraints from E. For i ∈ [m′], the ith “pigeon” yi272

selects a hole (an equation from E).273

The first set of polynomial equations in ESEL states that if pigeon yi selects the equation274

Eb1...blog m
, then this equation must be satisfied; the second set of equations in ESEL states275

that the mapping is one-to-one and thus altogether the y selector variables choose a subset276

E′ of exactly m′ equations from E. Thus F SEL
n,k asserts that there exists a subset of m′

277

constraints of Fn,k (chosen by the y-variables) that are satisfiable.278

Throughout this paper, the x-variables are the variables that underly Fn,k; the y-variables279

are the selector/pigeon variables described above that choose a subset of m′ constraints from280

Fn,k, and the extension variables used in the PC + Ext refutation will be the z-variables.281

Our hard instances will be F SEL
n,k , with m = 10n, m′ = (1 − ϵ)m, where Fn,k is (the282

polynomial translation of) an unsatisfiable k-CSP formula with m = 10n k-local constraints283

over variables x = x1 . . . xn, satisfying the follow property:284

Property 1: Every subset of (1− ϵ)m′ constraints is unsatisfiable and requires linear PC285

degree286

287

The following Theorem shows that for sufficiently large n, such formulas exist. Similar288

proofs have appeared in several papers (e.g., [5]) but we give a proof in the Appendix for289

completeness.290

▶ Theorem 3. Let m = 10n. Then there exists constants k > 0, 0 < ϵ < 1 such that for291

sufficiently large n, there exists k-CSP formulas {Fn,k} with m constraints such that Property292

1 holds with m′ = (1− ϵ)m.293
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4 The Lower Bound294

4.1 Technical Proof Overview.295

Conventionally, proof size lower bounds are reduced to degree lower bounds, a single step of296

which involves finding a heavy variable that occurs in a large fraction of high degree terms297

of the proof and setting it to zero. In our setting, if the heavy variable turns out to be an298

extension variable, z with extension axiom z = Q(x, y), it may be Nonsingular meaning299

that we cannot set z = 0 (without falsifying the extension axiom or a Boolean axiom), as300

opposed to Singular variables which can be set to zero in a consistent way1. In this case, we301

cannot simply eliminate the high degree terms containing z by setting z = 0. Sokolov [20]302

focused on the case where variables are over the ±1 basis instead of the usual Boolean one,303

which is the simplest case where all variables are Nonsingular. Sokolov introduced Quadratic304

degree as a measure to be used instead of degree. Quadratic degree essentially measures the305

maximal degree of the square of each polynomial P occurring in the proof. For a ±1 variable306

z, z2 = 1, so squaring a polynomial P on ±1 variables removes the contribution of a term307

t ∈ P as it gets squared out, and what remain are the terms t1t2 for t1, t2 ∈ P . Since any308

variable that appears in both terms gets squared out, the degree of these terms measures the309

symmetric difference between such terms, and this turns out to be a key complexity measure310

while dealing with Nonsingular variables. Sokolov showed that a refutation of low Quadratic311

degree can be turned into one of low degree. Thus the presence of Nonsingular variables312

is not necessarily a problem as long as the Quadratic degree of each line is low. Sokolov313

also introduced an operation Split that acts on a proof line by line in order to remove the314

contribution to Quadratic degree of any particularly heavy Nonsingular variable z, in the315

special case where they always take on values in ±1, by replacing a line P = P1z + P0 in the316

refutation with the lines P1 and P0. Sokolov managed to show that for some well chosen317

tautologies, the new Split lines still form a valid refutation of a hard subset of axioms. The318

crucial observation here is that this splitting of lines has eliminated from the square of the319

proof all pairs of terms whose product contained z. Thus, repeated application of Split would320

lead to contradiction of known degree lower bounds.321

The first step for us was to generalize the notions of Quadratic degree and Split to any322

finite field. Motivated by the above definition of Quadratic degree, we generalize it as follows.323

Given two terms t1 and t2, a Nonsingular variable z contributes to the Quadratic degree324

between t1 and t2 if and only if it appears with different exponents in them, i.e. zi ∈ t1 and325

zj ∈ t2, for i ̸= j. A Singular variable z contributes if and only if it appears in one of the326

terms with a nonzero exponent. The Quadratic degree of t1 and t2 is the total number of such327

variables z that contribute. Generalizing the Split operation proved a bit more difficult. We328

first focus on the case over Fp analogous to Sokolov’s, where we have a variable z such that329

the identity (z − a)(z − b) = 0 holds for some constants a, b ̸= 0 in the field. Note that a line330

P (z) of the proof is of the form Pp−2zp−2 + · · ·+ P1z + P0. In the case of ±1 variables, p = 3331

and thus the contribution by z to Quadratic degree comes just from the interaction between332

two polynomials P1 and P0. Therefore separating P1 and P0 into different lines removes this333

contribution entirely. In the general case, however, the contribution by z to Quadratic degree334

is the sum total of interactions between polynomials Pi and Pj for every pair i, j < p − 1335

such that i and j are distinct. We show how to separate P into two lines R1, R0 such that336

the interaction between Pi and Pj is completely removed, for any i, j satisfying ai−j ̸= bi−j ,337

1 This terminology is taken from singular and nonsingular matrices, since the key property we use is that
a variable z is Nonsingular if and only if zp−2 is a “multiplicative inverse" of z, i.e. zp−1 = 1
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7:8 Lower bounds for Polynomial Calculus with extension variables over finite fields

or in other words, zi and zj are linearly independent over the two values that z takes. Let338

R(z) = R1zi + R0zj be a polynomial such that R agrees with P for each possible value of339

z, i.e. R(a) = P (a) and R(b) = P (b). Since zi and zj are linearly independent over values340

{a, b}, these two equations can be solved for their coefficients R1, R0, expressed in terms of341

Pp−2 . . . P0. On closer observation, we find that Pi does not occur in the expression for R1342

and similarly Pj does not occur in R0, and therefore we have successfully broken P into lines343

R1 and R0 while separating Pi and Pj . It is straightforward to show that this new set of344

lines forms a valid refutation, but an essential assumption we make here is that the initial345

axioms are free of z, except for (z − a)(z − b) = 0.346

We now move to dealing with the case of a more general extension variable z with the347

extension axiom z−Q, where Q(x, y) is a polynomial that can depend on at most κ variables.348

Let H be the set of all pairs of terms (t1, t2) in a line of a given refutation that have high349

Quadratic degree between them. We would like to emulate Sokolov’s strategy of eliminating350

this set of pairs from the refutation to drop its Quadratic degree. If an extension variable z351

which is Singular appears heavily in H, we apply the restriction that sets it to zero (which352

exists by the definition of Singular). In the case that z is Nonsingular, our goal is to reduce353

it to the above case in order to apply Split. But first, we will have to choose a “good" pair of354

indices ℓ1, ℓ0 such that Splitting them is effective in reducing H. We observe that for any355

pair of indices i, j, the set of pairs (t1, t2) in H such zi ∈ t1 and zj ∈ t2 is disjoint from the356

similar set defined for a distinct pair i′, j′. Therefore by averaging we can pick a good pair357

ℓ1, ℓ0 that covers at least a 1/p2 fraction of z’s appearances in H. We now have to reduce358

z to take on two distinct values a, b in order to apply Split, but these values need to be359

such that aℓ1−ℓ0 ≠ bℓ1−ℓ0 . We show that there is a decision tree process (Lemma 10) that360

queries the variables underlying Q such that it is always possible to reduce z to the form361

(b− a)w∗ + a, where a, b are useful to separate the indices ℓ1, ℓ0. It is fairly easy to see as a362

result of the discussion so far that if we are able to apply Split on z with indices ℓ1, ℓ0 at363

this stage, it causes a sizable reduction in H.364

We are now almost ready to apply Split, but we still have to meet the requirement that365

the axioms are free of z. Since z is an extension variable it appears only in the extension366

axiom which has now been reduced to the form (b− a)w∗ + a, and so the only way to remove367

this axiom is to make a substitution for w∗ = (z − a)/(b− a) in terms of z. This would get368

rid of this extension axiom and take the Boolean axiom for w∗ to (z − a)(z − b) = 0 just369

like we need, but if w∗ appears in any of the other axioms this substitution just creates new370

copies of z. Therefore we need to remove w∗ from all the other axioms before we try to make371

this substitution. Here is where we make use of the structure of our tautology F SEL
n,k by372

defining an operation Cleanup which can remove any Boolean variable w∗ from the axioms373

without actually setting it to a constant value. Cleanup also restores the structure of our374

tautology so that we are always working with a subset of equations and pigeons from F SEL
n,k375

that are untouched by previous restrictions. We describe this operation in detail in Section376

4.5.1.377

Once we perform the above cleanup operations we are ready to make the substitution for378

w∗ = (z − a)/(b− a) in terms of z to satisfy the requirements for Split. We are met with a379

final hurdle here: this substitution can potentially increase the number of pairs of terms in380

H. Fortunately it can be resolved by a simple case analysis: if the blowup is too large it381

must have been the case that w∗ appeared frequently in H, and so setting it to zero will382

reduce H without the need for Split. Otherwise, Split is able to offset this blowup.383

Therefore we have demonstrated above how to reduce the size of the high Quadratic degree384

set H by a constant fraction. Performing this for sufficiently many iterations would remove385
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H entirely and lower the Quadratic degree of any refutation. We then use a generalized386

version of Sokolov’s argument that low Quadratic degree implies low degree in order to switch387

to a low degree refutation. For a small sized refutation, the number of iterations needed is388

bounded and thus we are able to keep most of the pigeons and equations alive at the end.389

We then select a hard subset of equations by assigning all remaining pigeons, and expand any390

remaining extension variables in order to obtain a low degree refutation of these equations,391

towards a contradiction.392

4.2 Singular and Nonsingular variables393

Let us fix the finite field Fp, p > 2 for the rest of the article. We also fix a set of unsatisfiable394

polynomials F over Boolean variables x ∪ y, and a set of extension axioms Ext of the form395

z−Q over variables z. Whenever we refer to a refutation Π, we assume that it is a PC + Ext396

refutation of F ∪ Ext.397

▶ Definition 6 (Support of a variable). Let z−Q(wi1 , . . . , wiκ) = 0 be a κ-local extension axiom398

associated with z. We define the set vars(Q) = {wi1 , . . . , wiκ
} and sometimes write vars(z) to399

denote vars(Q), the set of variables that z depends on. The support of z, supp(z) ⊆ [0, p− 1],400

is equal to the set of all values a ∈ [0, p− 1] such that there exists a Boolean assignment α to401

the variables of Q such that Q(α) = a. Sometimes we also indicate this by supp(Q).402

We extend the definition of support also to Boolean variables. For a Boolean variable w,403

supp(w) = {0, 1} as enforced by the Boolean axiom w2 = w.404

▶ Definition 7 (Singular and Nonsingular variables w.r.t. Ext). Let Ext be a set of extension405

axioms and let z be an extension variable with an axiom in Ext. We say that z is Singular406

w.r.t. Ext iff 0 ∈ supp(z); otherwise we say that z is Nonsingular w.r.t. Ext. Any Boolean407

variable is considered Singular by default, independent of the set Ext, since zero always408

belongs to its support. For a term t, let sing(t) be the subterm of t containing the Singular409

variables in t, and let nsing(t) be the subterm of t containing the Nonsingular variables.410

Note that for a Singular extension variable z, it is possible to set z to zero, However,411

we note that this may falsify other polynomial equations in F . For example, if xy = 0 is412

a polynomial equation in F , and the extension axiom for z is z − 1 + xy = 0, then setting413

x = y = 1 forces z = 0, but this falsifies xy = 0.414

▶ Definition 8. Let A ⊆ [1, . . . , p− 1], A ̸= ∅. Define ℓ(A) to be the least ℓ ∈ [1, p− 1] such415

that the set {aℓ | a ∈ A} is singleton. For a Nonsingular z, define ℓ(z) = ℓ(supp(z)).416

▶ Lemma 4. Let z be a Nonsingular extension variable with extension axiom z − Q = 0.417

Then the following polynomial equations are implied by (and therefore derivable from) the418

extension axiom for z plus the Boolean axioms for all variables in vars(Q), in degree at most419

|vars(Q)|.420

1. z −Q′ = 0, where Q′ is the multilinear version of Q;421

2. For any A′ ⊆ [0, p− 1] such that supp(z) ⊆ A′, Πa∈A′(z − a) = 0;422

3. zℓ(z) − c = 0 for some c ∈ F∗
p.423

In particular, if z is Nonsingular, then the polynomial equation zp−1 − 1 = 0 is implied424

by z −Q = 0 together with the Boolean axioms for vars(Q).425

Proof. Let z − Q(wi1 , . . . , wiκ
) = 0 be the extension axiom for z, and let supp(z) = A ⊆426

A′ ⊆ [1, p−1]. First, we can derive the multilinear version of Q, Q′, from Q together with the427

Boolean axoms w2 −w = 0 for all w ∈ vars(Q). Secondly, by definition, supp(z) = A means428
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that the allowable values for z over Boolean assignments to vars(Q) are the values in A.429

Therefore, z−Q = 0 together with the Boolean axioms w2−w = 0 for all w ∈ vars(Q) implies430

Πa∈A(z − a) = 0. Furthermore, this polynomial has a PC derivation, by the derivational431

completeness of PC. Since A ⊆ A′, Πa∈A′(z − a) = 0 is a weakening of Πa∈A(z − a) = 0432

and is therefore derivable from Πa∈A(z = a) = 0. Lastly, we will argue that there exists433

some constant c ∈ F∗
p such that zℓ(A) − c = 0 is semantically implied by z −Q = 0 plus the434

Boolean axioms for vars(z) and therefore is derivable from these axioms. Since the only435

allowable values for z under the Boolean axioms are the values in A, and since by definition436

of ℓ(A), for every a ∈ A, aℓ(A) = c for some c ∈ F∗
p, it follows that zℓ(A) − c = 0.437

◀438

▶ Definition 9. For a term t and a variable w, deg(t, w) is equal to the degree of w in t. If439

w is Nonsingular, then wp−1 = 1 mod p, so deg(t, w) < p− 1. On the other hand if w is440

Singular then we have wp = w mod p and therefore deg(t, w) < p. For a term t the degree441

of t, deg(t), equals
∑

w∈vars(t) deg(t, w).442

4.3 Quadratic degree443

The next definition is a generalization/modification of Sokolov’s definition of Quadratic444

degree for the more general scenario where the proof contains extension variables that are445

Singular as well as ones that are Nonsingular.446

▶ Definition 10 (Quadratic degree). Let V be a set of variables and let S be a subset of447

V . For a pair of terms t1, t2 over V , and a variable w ∈ V , we define QdegS(t1, t2, w) as448

follows. If w ∈ S, then QdegS(t1, t2, w) = 1 if w occurs in at least one of t1 or t2; if w ̸∈ S,449

then QdegS(t1, t2, w) = 1 if and only if deg(t1, w) ̸= deg(t2, w). The overall quadratic degree450

of the pair t1, t2, QdegS(t1, t2), is equal to
∑

w∈V QdegS(t1, t2, w). The quadratic degree of451

a polynomial P is equal to the maximum quadratic degree over all pairs (t1, t2) such that452

t1, t2 ∈ P . For a proof Π, the quadratic degree of Π is the maximum quadratic degree over453

all polynomials P ∈ Π.454

We usually instantiate the above definition with V = x ∪ y ∪ z and with S being the455

set of Singular variables as defined by the extension axioms corresponding to z. However456

since QdegS is a different measure for every S, and our set of Singular variables can change457

under the application of a restriction ρ to the variables in V , we must make sure that our458

measure of Quadratic degree does not change significantly under a restriction2. Fortunately,459

we can show that for any two sets S and T such that T ⊆ S, QdegT ≤ QdegS . Along with460

the simple observation that the set of Singular extension variables can only shrink under461

a restriction, this implies that our measure of Quadratic degree can only decrease under a462

restriction. We make this formal below.463

▶ Lemma 5. Let V be a set of variables and let S and T be subsets of V such that T ⊆ S.464

Then for any two terms t1, t2 over V , QdegT (t1, t2) ≤ QdegS(t1, t2).465

Proof. Note that for a variable w ∈ S − T , QdegS(t1, t2, w) = 1 when w has a nonzero466

exponent in one of t1 or t2, otherwise zero. However, QdegT (t1, t2, w) = 1 if and only if the467

2 If the set S does not change under a restriction, QdegS can still change under the restriction as terms
can shrink or disappear when variables are set by the restriction. However, this is no different from
how the usual notion of degree changes under a restriction, and it is trivial to show that QdegS always
decreases. Therefore we ignore this for the sake of simplicity.
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previous condition is satisfied and the exponents of w in t1 and t2 are not equal. Thus the468

claim follows. ◀469

Henceforth, when we refer to Quadratic degree, we always fix the set S to be the set of470

Singular variables w.r.t. the underlying extension axioms. We have the following important471

corollary that this measure always decreases under a restriction to the underlying variables.472

▶ Corollary 6. Let F be a set of unsatisfiable polynomials over variables x ∪ y and let473

Ext be a set of extension axioms of the form z − Q(wi1 , . . . , wiκ
) for variables z ∈ z and474

wi1 , . . . , wiκ
∈ x ∪ y. Let ρ be a restriction to x ∪ y and let Ext|ρ be the axioms given by475

z − Q|ρ for each axiom z − Q ∈ Ext. The Quadratic degree w.r.t. Ext|ρ is at most the476

Quadratic degree w.r.t. Ext.477

Proof. Since supp(Q|ρ) ⊆ supp(Q) for any polynomial Q, we have that the set of Singular478

variables under Ext|ρ is a subset of those under Ext. Therefore our claim follows from the479

previous lemma. ◀480

▶ Lemma 7 (Quadratic degree upper bounds degree of Singular variables). For any term t,481

deg(sing(t)) ≤ pQdeg(t, t)482

Proof. For any Singular variable w, Qdeg(t, t, w) = 1 if and only if w occurs in t. Since w483

can occur in t with degree at most p− 1, the claim follows. ◀484

▶ Definition 11 (High quadratic degree terms). For a proof Π and d ≥ 0, let Hd(Π) denote485

the set of unordered pairs (t1, t2) of quadratic degree at least d. That is, Hd(Π) is the set of486

unordered pairs of terms (t1, t2) such that t1, t2 both occur in P for some polynomial P ∈ Π,487

and Qdeg(t1, t2) ≥ d.488

▶ Lemma 8. Let Π be a PC + Ext refutation of F and let z be a Nonsingular variable. Let489

Π′ be the proof obtained from Π by reducing each line of Π by zℓ(z) − c = 0 for some c ∈ F∗
p.490

Then |Hd(Π′)| ≤ |Hd(Π)| for any d ≥ 0.491

Proof. Consider a polynomial P ∈ Π and a pair of terms (t1, t2) that occur in P . For any492

variable w distinct from z, Qdeg(t1, t2, w) is unaltered when P is reduced by zℓ(z) = c. On the493

other hand, if z does not contribute to the Quadratic degree of (t1, t2) i.e. Qdeg(t1, t2, z) = 0,494

then it will still be 0 after reducing by zℓ(z) = c. Therefore Qdeg(t1, t2) never increases for495

any pair (t1, t2) and thus |Hd(Π′)| ≤ |Hd(Π)|. ◀496

The following is a generalized version of the argument from [20] that shows how to convert497

a proof with low Quadratic degree to one with low degree.498

▶ Lemma 9. Let F be a set of unsatisfiable polynomials of degree d0 with a PC refutation of499

Quadratic degree at most d ≥ d0 over Fp. Then F has a PC refutation of degree at most 3pd.500

Proof. The proof of this lemma is largely based on (a slightly cleaner version of) Sokolov’s501

argument ([20], Lemma 3.6) that low Quadratic degree over {±1} variables implies low502

degree. Our first observation is that Sokolov’s argument can be applied to any refutation of503

low Quadratic degree over Fp such that every term contains only Nonsingular variables. In504

particular if {Pj} is a refutation that only contains Nonsingular terms, then we can use his505

argument to show that {tp−2
j Pj} is also a valid refutation for some carefully chosen term506

tj ∈ Pj . Moreover, the degree of the latter refutation is bounded by a constant times the507

Quadratic degree of the former one. To see this, first note that for two Nonsingular terms508

t1 and t2, we have that deg(t1tp−2
2 ) ≤ (p− 1) ·Qdeg(t1, t2), because of the following. For a509
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variable z that is Nonsingular such that z occurs in t1 and t2 with deg(t1, z) = deg(t2, z), we510

have deg(t1tp−2
2 , z) = Qdeg(t1, t2, z) = 0 since it would appear in t1tp−2

2 with an exponent511

that is a multiple of p − 1, and zp−1 = 1 holds for Nonsingular variables. Any other512

Nonsingular z that occurs in at least one of t1 and t2 has deg(t1tp−2
2 , z) < p − 1 and513

Qdeg(t1, t2, z) = 1. Therefore the degree of t1tp−2
2 is at most p ·Qdeg(t1, t2) when t1 and t2514

contain only Nonsingular variables. This implies that the lines in the new refutation {tp−2
j Pj}515

have degree at most p times the Quadratic degree of the original refutation {Pj}. Sokolov516

additionally showed that each line in the new refutation can be derived from previous lines517

without exceeding degree equal to 2p times the Quadratic degree of the original refutation,518

completing the argument.519

In our case we deal with terms containing both Singular and Nonsingular variables. The520

above argument cannot be applied directly to our case, since it crucially depends on the fact521

that Nonsingular variables can be raised to the power p−1 to make them vanish. Fortunately522

by Lemma 7, the degree of Singular variables in any term is at most p times the Quadratic523

degree with itself. Given this bound, we can ignore for each term the part that contains524

Singular variables, and apply the above argument only with respect to the Nonsingular part525

of each term, to reduce the degree of Nonsingular variables in each term of the refutation.526

Since we now have a bound on the degree of both Singular and Nonsingular variables in each527

term, we have bounded its degree. We describe this in full technical detail below.528

Let {Pj} be a refutation of F with Quadratic degree bounded by d. For any term t529

recall that nsing(t) denotes the subterm of t containing only Nonsingular variables. Note530

that nsing(t)p−1 = 1 for any t. For every line Pj in the refutation, we pick a term531

tj ∈ Pj and define P ′
j = nsing(tj)p−2Pj . Note that by the arguments outlined above, for532

any two terms t1 and t2 in Pj , we have deg(nsing(t1)p−2nsing(t2)) ≤ pd and thus the533

degree of Nonsingular variables in any term of P ′
j is bounded by pd. Since the Singular534

variables in any term remain unchanged under multiplication by nsing(tj)p−2, the Singular535

degree of P ′
j the same as that of Pj and is bounded by pd (Lemma 7) and therefore536

deg(P ′
j) ≤ pd + pd = 2pd. We now show that the set {P ′

j} forms a valid refutation of F and537

each P ′
j can be derived from previous lines in degree 3pd. If Pj is one of the axioms, we538

multiply by nsing(tj)p−2 to get P ′
j for an arbitrary tj ∈ Pj , and this takes degree pd0 ≤ pd.539

If Pj = wPj1 for j1 < j and some variable w, we choose tj ∈ Pj such that tj = wtj1540

where tj1 ∈ Pj1 was chosen earlier. If w is Singular, we have nsing(tj) = nsing(tj1) and541

therefore P ′
j = nsing(tj)p−2Pj = w · nsing(tj1)p−2Pj1 = wP ′

j1
. On the other hand, if w542

is Nonsingular, we have nsing(tj) = w · nsing(tj1) and therefore P ′
j = nsing(tj)p−2Pj =543

wp−1 ·nsing(tj1)p−2Pj1 = P ′
j1

. Finally, let Pj = Pj1 +Pj2 for j1, j2 < j. We pick an arbitrary544

term tj ∈ Pj . Note that since nsing(t)p−1 = 1 for any term t, Pj1 = nsing(tj1)P ′
j1

and Pj2 =545

nsing(tj2)P ′
j2

and thus we have P ′
j = nsing(tj)p−2nsing(tj1)P ′

j1
+nsing(tj)p−2nsing(tj2)P ′

j2
546

for tj1 ∈ Pj1 and tj2 ∈ Pj2 chosen earlier. We now show that deg(nsing(tj)p−2nsing(tj1)) ≤547

pd and deg(nsing(tj)p−2nsing(tj2)) ≤ pd to conclude the proof. Since every term in Pj548

appears in one of Pj1 , Pj2 , let tj ∈ Pj1 without loss of generality. Then we have that549

tj , tj1 both appear in Pj1 and thus deg(nsing(tj)p−2nsing(tj1)) ≤ pd. If tj2 ∈ Pj i.e. it550

is not cancelled in the sum Pj1 + Pj2 , then we have tj , tj2 both appear in Pj and hence551

deg(nsing(tj)p−2nsing(tj2)) ≤ pd. If tj2 ̸∈ Pj , this implies that it was cancelled in the sum552

Pj1 + Pj2 and therefore tj2 ∈ Pj1 and deg(nsing(tj)p−2nsing(tj2)) ≤ pd.553

◀554
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4.4 The Split Operation555

In this section we will show how to apply a restriction and then use an operation Split556

(motivated by [20]) in order to eliminate high quadratic degree terms. Our main focus will557

be to handle the case where the variable to be set is an extension variable with extension558

axiom z −Q = 0 where z is Nonsingular, since in the other case we can potentially just set559

z = 0 to eliminate terms. We start by showing how to apply a small Boolean restriction ρ560

such that Q|ρ is a simple linear function of just one variable.561

▶ Lemma 10. Let z be an extension variable with extension axiom z −Q(w1, . . . , wk), for562

k ≤ κ. Assume that z is Nonsingular (i.e. supp(Q) ⊆ [1, . . . , p − 1]) and |supp(Q)| ≥ 2.563

Then for every l ∈ [0, . . . , ℓ(supp(Q)) − 1], there exists a variable w∗ in vars(Q), and a564

restriction δ to vars(Q)− w∗ such that:565

(1) Q|δ = (b − a)w∗ + a, where b, a ∈ supp(Q). Thus Q|δ is a linear function of w∗ and566

supp(Q|δ) = {a, b};567

(2) al ̸= bl (mod p)568

Proof. We will create a decision tree that will query vars(Q) one-by-one. Associated with569

the root r is the set of values Sr = {al | a ∈ supp(Q)}. That is, we label the root with the570

set of all possible values that zl can take on. Since l < ℓ(supp(z)), it follows that |Sr| ≥ 2571

(since otherwise we would have l = ℓ(supp(z))). At the root we query the first variable w1,572

with left edge labelled by w1 = 0 and right edge labelled by w1 = 1. Now we label the left573

vertex with the set {al | a ∈ supp(Q|w1=0)}, of all values that zl can take on under the574

restriction w1 = 0. Similarly we label the right vertex with the set {al | a ∈ supp(Q|w1=1)}.575

We continue recursively, querying the next variable at each vertex v of the decision tree, as576

long as the set of allowable values for zl under the partial restriction ρv associated with v is577

greater than one. Now consider the longest path, ξ in T . The partial restriction ρ associated578

with ξ sets the first k′ variables, where k′ ≥ 1 since initially zl takes on at least two values.579

Also since ξ is a complete path, the associated set {al | a ∈ supp(Q|ρ)} contains exactly one580

element, call it q.581

Now consider the twin path ξ′ with associated restriction ρ′, where ρ′ is obtained from ρ582

by toggling the value of the last variable, wk′ , queried. Again since ξ′ is a complete path,583

the associated set {al | a ∈ supp(Q|ρ′)} contains exactly one element, call it q′. Note that584

q, q′ must be distinct.585

Let δ be the following assignment to vars(Q) − wk′ : for 1 ≤ j < k′, we set δ(wj) =586

ρ(wj) = ρ′(wj), and for k′ < j ≤ k, we set δ(wj) = 0. Setting w∗ = wk′ , Q|δ is a linear587

equation of the form (b− a)w∗ + a, where b, a ∈ supp(Q). Finally, by construction, al ̸= bl
588

(since otherwise the two paths corresponding to ρ, ρ′ would be the same).589

◀590

In the remainder of this subsection, we will be interested in the case where we want to591

eliminate some Nonsingular extension variable z from the refutation, and we have already592

applied the above Lemma so that the extension axiom for z is of the form z−((b−a)w+a) = 0,593

where w is some variable in x∪y. Thus, supp(z) = {a, b}. The next two Lemmas generalizes594

a similar argument due to Sokolov, and show how to remove Quadratic degree pairs of the595

form (t1zi, t2zj) for a carefully chosen pair i, j from the refutation via the Split operation.596

▶ Lemma 11. Let z be an extension variable such that supp(z) = {a, b}, where a ≠ b and597

a, b ∈ F∗
p and let P be any polynomial. Then, for any two distinct numbers ℓ0, ℓ1 where598

ℓ0 < ℓ1 and aℓ1−ℓ0 ̸= bℓ1−ℓ0 , there exists a unique polynomial R = R0zℓ0 + R1zℓ1 such that599
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R = P mod (z − a)(z − b). That is, R(a) = P (a) and R(b) = P (b), where P (a) denotes the600

polynomial P under the substitution z = a.601

Proof. Let z−Q = 0 be the extension axiom for z, where supp(z) = {a, b}. Then by Lemma602

4 the polynomial (z − a)(z − b) = 0 is implied by (and derivable from) the extension axiom603

for z plus the Boolean axioms. We can assume without loss of generality that P has the604

form P0 + zP1 + . . . + zp−2Pp−2.605

Now we want to argue that there exists a polynomial R = zℓ0R0 + zℓ1R1, where R0, R1606

are polynomials over vars(P ) − z, and such that R(a) = P (a), and R(b) = P (b). We can607

find R0 and R1 by solving the following system of equations, where we view R0, R1 as the608

underlying variables, and treating P (a), P (b) as constants:609

aℓ0R0 + aℓ1R1 = P (a)

bℓ0R0 + bℓ1R1 = P (b)

This has a (unique) solution since the determinant of the associated matrix is
∣∣∣∣aℓ0 aℓ1

bℓ0 bℓ1

∣∣∣∣ =610

aℓ0bℓ0(bℓ1−ℓ0 − aℓ1−ℓ0). By our assumption, this matrix is non-singular over Fp and therefore611

the above system of equations has a unique solution over Fp, given by:612 (
R0
R1

)
=

(
aℓ0 aℓ1

bℓ0 bℓ1

)−1 (
P (a)
P (b)

)
Abbreviating aℓ0 , aℓ1 , bℓ0 , bℓ1 by a0, a1, b0, b1 respectively, we have by definition of the613

inverse:614

(
R0
R1

)
=

(
a0 a1
b0 b1

)−1 (
P (a)
P (b)

)
615

= 1
a0b1 − a1b0

(
b1 −a1
−b0 a0

) (
P (a)
P (b)

)
616

Solving for R0 we have:617

R0 = b1

a0b1 − a1b0
P (a)− a1

a0b1 − a1b0
P (b)618

= b1

a0b1 − a1b0
(a0Pℓ0 + a1Pℓ1 +

∑
i̸=ℓ0,ℓ1

aiPi)−
a1

a0b1 − a1b0
(b0Pℓ0 + b1Pℓ1 +

∑
i̸=ℓ0,ℓ1

biPi)619

= a0b1

a0b1 − a1b0
Pℓ0 + a1b1

a0b1 − a1b0
Pℓ1 + b1

a0b1 − a1b0
(

∑
i̸=ℓ0,ℓ1

aiPi)620

− a1b0

a0b1 − a1b0
Pℓ0 −

a1b1

a0b1 − a1b0
Pℓ1 −

b1

a0b1 − a1b0
(

∑
i̸=ℓ0,ℓ1

biPi)621

= Pℓ0 +
∑

i̸=ℓ0,ℓ1

c0iPi622

for some constants c0i ∈ Fp. And similarly solving for R1, it has the following form:623

R1 = Pℓ1 +
∑

i̸=ℓ0,ℓ1

c1iPi
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for some constants c1i ∈ Fp.624

◀625

▶ Definition 12 (Split). Let z be an extension variable with extension axiom z−Q = 0 such626

that supp(z) = {a, b} ⊆ [1, . . . , p− 1]. For any polynomial P and for every ℓ0 < ℓ1 such that627

aℓ1−ℓ0 ̸= bℓ1−ℓ0 , let R = R0zℓ0 + R1zℓ1 be the unique polynomial given by Lemma 11 such628

that R = P mod (z − a)(z − b). Then Splitz,ℓ1,ℓ0(P ) is defined to be the pair of polynomials629

{R0, R1}. For a proof Π, and an extension variable z such that supp(z) = {a, b}, we define630

Splitz,ℓ0,ℓ1(Π) to be the sequence of lines Splitz,ℓ0,ℓ1(P ), over all P ∈ Π.631

▶ Lemma 12. Let Π be a refutation of a set of unsatisfiable polynomials F . Let z be a632

variable that occurs in Π such that the polynomials in F do not contain z except for the633

axiom (z − a)(z − b) = 0 for some a, b ∈ F∗
p. Then for any ℓ0, ℓ1 such that ℓ0 < ℓ1 and634

aℓ1−ℓ0 ̸= bℓ1−ℓ0 , Π′ = Splitz,ℓ0,ℓ1(Π) forms a valid refutation of F modulo (z − a)(z − b)635

Proof. Fix an extension variable z in Π such that it does not occur in any axioms except636

(z − a)(z − b) = 0, and let ℓ0, ℓ1 be such that ℓ0 < ℓ1 and aℓ1−ℓ0 ̸= bℓ1−ℓ0 . We will show by637

induction on the number of lines in Π that Splitz,ℓ0,ℓ1(Π) is a valid derivation that meets638

the conditions of the lemma. For the base case, note that all of the axioms are either free639

of z or eliminated as a result of reducing by (z − a)(z − b), and hence their Split versions640

are derivable. Now suppose that the Lemma holds for the first j − 1 lines of Π; that is,641

Splitz,ℓ0,ℓ1(Πj−1) is a valid derivation, where Πj−1 denotes the first j − 1 lines of Π.642

The first case is where Pj is a linear combination of two previously derived lines, so643

Pj = αPj1 +βPj2 for some j1 and j2 less than j and α, β ∈ Fp. Using the inductive hypothesis,644

we have:645

Pj = α(zℓ0Rj10 + zℓ1Rj11) + β(zℓ0Rj20 + zℓ1Rj21) mod (z − a)(z − b)646

= zℓ0(αRj10 + βRj20) + zℓ1(αRj11 + βRj21) mod (z − a)(z − b)647

By the uniqueness of the polynomial Rj = zℓ0Rj0 + zℓ1Rj1 that is equivalent to Pj mod648

(z − a)(z − b) (by Lemma 11), this implies that Rj0 = αRj10 + βRj20 and similarly Rj1 =649

αRj11 + βRj21, and thus Rj0 can be derived from a linear combination of Rj10 and Rj20 and650

similarly for Rj1.651

The second case is when Pj is derived from a previously derived line Pj′ by multiplying652

Pj′ by a variable w. That is, Pj = wPj′ for some j′ < j. If w ≠ z, then we have that653

Rj1 = wRj′1 (similarly for Rj0). If w = z then we have:654 (
Rj′1
Rj′0

)
=

(
aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
Pj′(a)
Pj′(b)

)
from which we need to derive655

(
Rj1
Rj0

)
=

(
aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
Pj(a)
Pj(b)

)
656

=
(

aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
aPj′(a)
bPj′(b)

)
657

=
(

aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
a 0
0 b

) (
aℓ1 aℓ0

bℓ1 bℓ0

) (
Rj′1
Rj′0

)
.658

659

Thus, Rj1 can be derived as a linear combination of Rj′1 and Rj′0, and similarly for Rj0.660

◀661
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4.5 Proof of Main Theorem662

The proof of our lower bound for the tautology F SEL
n,k with extension axioms Ext proceeds663

by choosing a variable in the given refutation Π that contributes to a lot of high quadratic664

degree pairs of terms in Π. If this variable is Singular, we apply the restriction that sets it to665

zero. On the other hand, if it is Nonsingular and therefore an extension variable z, we first666

reduce it to depend on a single variable w∗ by applying a restriction chosen from Lemma667

10, and then use a more complicated case analysis (see Lemma 15) in order to apply the668

Split operation from Lemmas 11 and 12 on z. In both of these cases we are able to remove a669

small fraction of high Quadratic degree terms, and thus after sufficiently many iterations we670

obtain a refutation of low Quadratic degree. We convert this to a refutation of low (usual)671

degree using Lemma 9, and then substitute for the pigeon variables y to select a subset of672

equations from Fn,k that require high degree, obtaining a contradiction.673

4.5.1 Cleanup operations674

In order to get the contradiction at the end of the above argument, we need to ensure that675

our process above is always working with a subset of equations of Fn,k that are untouched,676

i.e. unaffected by earlier restrictions to variables. We also need to eliminate any partially677

assigned pigeons so that we have full choice over the equations we are able to pick at the end.678

Additionally, a key requirement of the Split lemmas (Lemmas 11 and 12) is that the variable679

z we Split on must not appear in any axioms except for one of the form (z − a)(z − b) = 0,680

which indicates that it takes two distinct values. In particular, we cannot set z or the681

underlying variable w∗ described above in order to eliminate them from the refutation. This682

presents us with a unique requirement: for any choice of a variable w∗ ∈ x ∪ y, we need to683

be able to eliminate all axioms containing w∗ without actually setting it. We show how to684

perform these operations by making use of the structure of our tautology F SEL
n,k .685

We first show how to “ban” an equation Eb1...blog m
from Fn,k by switching to a set of686

axioms that prevent any pigeon from being assigned to b1 . . . blog m.687

▶ Lemma 13. Let Π be a refutation of F SEL
n,k |ρ for some restriction ρ and let (yi ̸=688

b1 . . . blog m) · Eb1...blog m
= 0 be one of its axioms. Then there exists another valid refutation689

Π′ with the latter axiom replaced by the axiom (yi ̸= b1 . . . blog m) ≡
∏

bj=1 yi,j

∏
bj=0 yi,j,690

such that the quadratic degree of Π′ is at most that of Π.691

Proof. Note that the axiom (yi ̸= b1 . . . blog m) ·Eb1...blog m
= 0 can be derived from the axiom692

(yi ̸= b1 . . . blog m) ≡
∏

bj=1 yi,j

∏
bj=0 yi,j by multiplying by the polynomial Eb1...blog m

. Since693

this derivation involves only singular variables, the degree can never drop and therefore the694

quadratic degree of this derivation is at most that of the final polynomial. We construct Π′
695

as follows. We first derive the former axiom from the latter in Π′. Besides this derivation, Π′
696

involves the same steps as Π. ◀697

▶ Definition 13. An equation Eb1...blog m
is said to be banned when the previous lemma is698

applied repeatedly to eliminate all occurrences of it from the axioms.699

▶ Definition 14. A clean version of F SEL
n,k is any subset of axioms of F SEL

n,k along with700

axioms that ban some subset of equations of the form Eb1...blog m
.701

4.5.1.1 Cleanup(ρ)702

We now describe how to perform the cleanup operations, which we collectively call Cleanup(ρ),703

that takes as input an “unclean” version of F SEL
n,k derived by applying a restriction ρ to a704
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clean version, and outputs another clean version that is in some sense a subset of the input.705

Suppose that we are given a restriction ρ that has been applied to a clean version of F SEL
n,k ,706

with a variable w∗ ∈ ρ possibly set to ⋆, indicating that it must remain unset. To eliminate707

an axiom that has been affected by a x variable in ρ not set to ⋆, we simply obtain the708

refutation that bans the corresponding equation Eb1...blog m
as described in the above lemma.709

Note that since we are eliminating the axiom without setting any variables in it, we can710

also do this in case our variable w∗ ∈ x. Suppose that yij is a y variable in ρ not set to ⋆.711

We first note that any axiom that contained yij before the application of ρ contains all the712

variables yi1 . . . yi log m corresponding to the ith pigeon yi. We first make sure that this ith
713

pigeon does not contain our variable w∗ that must remain unset. If it doesn’t, we proceed714

as follows. We set all the other variables in this pigeon to select some equation Eb1...blog m
715

that has not been banned. Such an equation exists provided that the number of banned716

equations so far is bounded, and the size of the restriction ρ is also bounded (we formalize717

this in the lemma below). We then apply an additional restriction to the x variables that718

satisfies this equation Eb1...blog m
picked above. We then ban all the equations affected by719

this additional restriction, like we did above for the part of ρ containing x variables. This720

eliminates the pigeon yi. We are left with the case where our variable w∗ belongs to some721

pigeon yj . We set all the variables in the pigeon yj except for w∗, such that neither of the722

two equations Eb1...blog m
and Eb′

1...b′
log m

that would be selected if w∗ is set to zero or one723

are banned (again, these exist under the same conditions as above). We then proceed as724

before, i.e. apply an additional restriction to satisfy both these equations, and then ban any725

other equations that have been affected by this additional restriction. With this we have726

eliminated the axioms of pigeon yj which select an equation, but we are still left with the727

axioms that prevent yj from colliding with any other pigeon, which are now of the form728

w∗ · (yj′ ̸= b1 . . . blog m) and w∗ · (yj′ ̸= b′
1 . . . b′

log m) indicating that any pigeon yj′ distinct729

from yj must not be mapped to the equations Eb1...blog m
and Eb′

1...b′
log m

if one of them is730

selected by setting w∗ to zero or one. To remove the latter axioms we do something similar731

to the process of banning an equation, where we simply replace these axioms by the axioms732

(yj′ ̸= b1 . . . blog m) and (yj′ ̸= b′
1 . . . b′

log m), effectively banning the equations Eb1...blog m
and733

Eb′
1...b′

log m
for the remaining pigeons.734

4.5.1.2 Correctness of Cleanup(ρ)735

We note that the above cleanup operations over y variables terminate successfully only when736

there are enough equations that have not been banned by prior calls to cleanup, and also the737

size of the restriction ρ is bounded. We make this formal by the below lemma.738

▶ Lemma 14 (Correctness of Cleanup(ρ)). Let ρ be a restriction of size κ. If the number of739

banned equations (from previous calls to Cleanup) is ≪ m/2κ, then Cleanup(ρ) terminates740

correctly. Moreover, it bans at most O(κ) additional equations and removes at most O(κ)741

pigeons in its run.742

Proof. In Cleanup(ρ), note that we can remove the axioms that contain x variables743

unconditionally. When we remove a pigeon yi = yi1 . . . yi log m, we rely on having an equation744

it can be set to that is not already banned. Since the size of ρ is bounded by κ, note that at745

most κ variables from yi1 . . . yi log m can be set by ρ. Therefore there are at least log m− κ746

of them unset, corresponding to selecting m/2κ many equations. Since we assume that the747

number of banned equations is much less than this, we can always find one that is not banned748

to assign this pigeon to.749

CCC 2023



7:18 Lower bounds for Polynomial Calculus with extension variables over finite fields

We now count the number of new equations banned and the number of pigeons removed750

by this call to Cleanup(ρ). Since each x variable appears in a constant number of equations,751

the number of equations we ban while processing it is a constant. When we process a y752

variable, we pick and satisfy an equation, and ban all other equations affected in the process.753

Since every equation also contains a constant number of variables, satisfying it affects only a754

constant number of other equations. Therefore, for every variable we process we ban only a755

constant number of equations, and thus the total number of equations banned is O(κ). We756

remove only those pigeons with a variable in ρ, so this is also bounded by O(κ). ◀757

4.5.2 The Main Theorem758

We need first the following key lemma that shows how to apply the Split operation to reduce759

high quadratic degree terms.760

Algorithm 1 Algorithm for Lemma 15
Input: A refutation Π, and a nonsingular variable z with extension axiom z −Q = 0

satisfying the pre-conditions of Lemma 15
Output: A refutation Π′ satisfying post-conditions of Lemma 15

1 Let ℓ0 < ℓ1 be such that |Hd(Π, z, ℓ0, ℓ1)| ≥ |Hd(Π, z)|/p2.
2 Apply Lemma 10 with l = ℓ1 − ℓ0 to obtain δ, w∗, a, b satisfying post-conditions of

Lemma 10.
3 Π = Π|δ (and in particular z −Q|δ = z − (b− a)w∗ − a)
4 Cleanup(δ ∪ {w∗ = ⋆}) (Cleanup axioms affected by δ and remove w∗ from all

axioms other than z − (b− a)w∗ − a while keeping it alive.)
5 if w∗ contributes to ≥ ϵ/4p2 fraction of pairs in Hd(Π) then
6 Π = Π|w∗=0
7 end
8 else
9 Apply the substitution (z − a)/(b− a) for w∗ in Π

10 Let Π′ = Splitz,l0,l1(Π)
11 end

▶ Lemma 15. Let F be a system of unsatisfiable polynomials and let z be a nonsingular761

extension variable with the extension axiom z −Q. Let ℓ = ℓ(supp(Q)) so that zℓ = c holds762

for some c ∈ Fp. Let Π be a refutation of F ∪{z−Q} modulo zℓ = c such that for at least an763

ϵ fraction of pairs (t1, t2) in Hd(Π), Qdeg(t1, t2, z) = 1, for some d ≥ 0. Then there exists a764

refutation Π′ of F such that |Hd(Π′)| ≤ (1− ϵ/4p2)|Hd(Π)|765

Proof. We will apply a procedure as described by Algorithm 1 in order to modify the proof766

to satisfy the post-conditions of the Lemma. Here we give a detailed description of the767

algorithm, together with its correctness. Let Hd(Π, z) be the set of all unordered pairs768

(t1, t2) ∈ Hd(Π) that z contributes to. That is, Hd(Π, z) is the set of all unordered pairs769

(t1, t2) ∈ Hd(Π) such that Qdeg(t1, t2, z) = 1. There are many different ways that z can770

contribute to Hd(Π, z): namely, for all i, j such that i < j < ℓ, let Hd(Π, z, i, j) be the set of771

all unordered pairs (t1, t2) ∈ Hd(Π, z), such that the degree of z in t1 is i and the degree of z772

in t2 is j. Note that for any two pairs (i, j) and (i′, j′) such that i ≠ i′ or j ≠ j′, Hd(Π, z, i, j)773

and Hd(Π, z, i′, j′) are disjoint. Therefore, there exists a “good” pair ℓ0 < ℓ1 < ℓ such that774

removing Hd(Π, z, ℓ1, ℓ0) from Hd(Π, z) will remove at least a 1/p2 fraction of Hd(Π, z) and775

therefore a ϵ/p2 fraction of pairs in Hd(Π), since |Hd(Π, z)| ≥ ϵ|Hd(Π)|.776
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We want to apply the Split operation Splitz,ℓ0,ℓ1 to remove all such pairs. But in777

order to do this we have to satisfy the preconditions of Lemmas 11 and 12: we need two778

values a, b such that aℓ1−ℓ0 ≠ bℓ1−ℓ0 and all the axioms should be free of z except for779

(z − a)(z − b) = 0. The first step (Line 2 of 1) is to apply Lemma 10 with l = ℓ1 − ℓ0. This780

gives us w∗ ∈ vars(Q), a, b ∈ supp(Q) and a partial restriction δ to vars(Q)− w∗ such that781

(z −Q)|δ = z − (b− a)w∗ − a, where aℓ1−ℓ0 ̸= bℓ1−ℓ0 mod p. Next, we apply the restriction782

δ to Π (Line 3).783

Now we have a simpler linear extension axiom for z of the form z − (b− a)w∗ − a = 0.784

Next we would like to make the substitution w∗ = (z − a)/(b− a) in Π in order to satisfy785

this extension axiom, towards the goal of eliminating z from the axioms so that we have786

the preconditions of Lemma 12 and therefore are able to apply Splitz,ℓ1,ℓ0 . However, if w∗
787

appears in any of the axioms in F , this would create additional occurrences of z and we788

would not make any progress. Therefore, we have to make sure that none of the axioms of F789

contain w∗. But we also cannot set w∗ to zero or one in an attempt to get rid of it, since790

this would set z to either a or b through the above extension axiom, and Split requires that791

z take on two distinct values. We thus have to get rid of all axioms mentioning w∗ either792

by setting other variables or by replacing these axioms with stronger versions, such that793

the former can be derived from the latter. This is what the subroutine Cleanup does, in794

addition to removing the axioms in F that were affected by our earlier restriction δ, so that795

we have a clean version of F SEL
n,k as defined in the previous section.796

We are now ready to make the substitution w∗ = (z− a)/(b− a). Under this substitution,797

the Boolean axiom w∗2−w = 0 reduces to (z−a)(z−b) = 0, and the original extension axiom798

for z disappears (since under this substitution it becomes 0 = 0.) Thus this substitution799

would satisfy all of the preconditions of Lemmas 11, 12. However, this substitution can create800

a new problem: it can cause a blow up in the size of Hd(Π) since for every pair of terms801

(t1, t2) such that one of them contains w∗, we could have up to four new terms after the802

substitution. In order to deal with this potential blow up we do a simple case analysis: If w∗
803

contributes to at least an ϵ/4p2 fraction of pairs (t1, t2) in Hd(Π), then we set w∗ = 0 (Lines804

4-5). This gives us the required reduction in the size of Hd(Π) (z is also set to a constant805

by setting w∗ = 0, but we don’t care about that since we have obtained a reduction in high806

Quadratic degree terms without needing to use Split). Otherwise, the blowup caused by807

the substitution w∗ = (z − a)/(b− a) adds at most 3ϵ/4p2 fraction of pairs to Hd(Π), and808

thus if we remove all pairs in Hd(Π, z, ℓ0, ℓ1) (after this blowup) then overall we will will809

have reduced the size of Hd(Π) to (1− ϵ/4p2)|Hd(Π)|. So in this latter case, we apply the810

substitution mentioned above (Line 8) which simultaneously removes w∗ from all axioms,811

and replaces the linear axiom for z by (z− a)(z− b) = 0. Now all preconditions for Lemma 8812

hold so we can apply Splitz,ℓ0,ℓ1 (Line 9) to get a valid refutation. It is left to argue that this813

indeed removes the set Hd(Π, z, ℓ1, ℓ0). More precisely, we argue that high Quadratic degree814

pairs of terms in the refutation obtained after applying Split have a one to one mapping to815

the set Hd(Π) − Hd(Π, z, ℓ1, ℓ0). Fix a line P ∈ Π. Since we are working modulo zℓ = c,816

we can assume that P = P0 + zP1 + . . . zℓ−1Pℓ−1. Let R = zℓ0R0 + zℓ1R1 be the unique817

polynomial equivalent to P mod (z − a)(z − b). Splitz,ℓ0,ℓ1(Π) is the refutation with lines818

R1, R0 for all P ∈ Π. By the proof of Lemma 11 R0, R1 have the form:819

R1 = Pℓ1 +
∑

i<ℓ,i ̸=ℓ0

c1iPi

R0 = Pℓ0 +
∑

i<ℓ,i ̸=ℓ1

c0iPi
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for some constants c1i, c0i ∈ Fp.820

For a pair of terms (ti, tj) in R1 such that ti ∈ Pi and tj ∈ Pj and Qdeg(ti, tj) ≥ d,821

we map it to the pair (tiz
i, tjzj) ∈ P , and similarly for R0. Clearly this is a one-one822

mapping, and since Pℓ0 does not occur in R1 and Pℓ1 does not occur in R0, it is a mapping823

to Hd(Π) −Hd(Π, z, ℓ1, ℓ0). Therefore we have that for the refutation Π′ = Splitz,ℓ0,ℓ1(Π)824

whose lines are {R1, R0}, |Hd(Π′)| ≤ |Hd(Π)−Hd(Π, z, ℓ1, ℓ0)| ≤ (1− ϵ/4p2)|Hd(Π)|.825

◀826

▶ Theorem 16. For n sufficiently large, any (M, κ)-PC + Ext refutation of F SEL
n,k has size827

exp
( Ω(n2)

10κ(M+n log n)
)
.828

Algorithm 2 Eliminating high Quadratic degree terms from the proof
Input: A refutation Π of F SEL

n,k with extension axioms Ext

Output: A refutation Π′ with Quadratic degree less than d

1 d← νn/κ, where ν is a sufficiently small constant.
2 M ′ ←M + n log(n). (M ′ upper bounds |x ∪ y ∪ z|, the total number of variables)
3 S ← x ∪ y ∪ z (the current set of singular variables: all Boolean variables are

singular by default and we initialize all extension variables to also be singular. This
could possibly reduce in each iteration.)

4 H ← {(t1, t2) | t1, t2 ∈ Π and QdegS(t1, t2) ≥ d} (the set of all pairs of terms of
large Quadratic degree according to S)

5 while H is non empty do
6 for every extension axiom z −Q ∈ Ext do
7 if 0 ̸∈ supp(Q) then
8 S ← S − {z}
9 Compute c such that zℓ(z) = c and reduce Π by the latter identity

10 end
11 end
12 H ← {(t1, t2) | t1, t2 ∈ Π and QdegS(t1, t2) ≥ d} (update H to reflect changes

due to the above for loop)
13 Pick a variable w that, by an averaging argument, occurs in at least an ϵ fraction

of terms in H, where we choose ϵ = d/M ′.
14 if w ∈ S then
15 Let σ be a restriction on x ∪ y such that w|σ = 0
16 Π← Π|σ
17 Cleanup(σ)
18 end
19 else
20 Apply Algorithm 1, which by Lemma 15 satisfies the post-conditions of

Lemma 15
21 end
22 end

Proof. Let Π be an alleged (M, κ)-PC + Ext refutation of F SEL
n,k with logarithm of its size829

less than γn2/(10κ(M + n log n)), for a small enough constant γ. Given Π, Algorithm 2830

(defined below) will apply a sequence of restrictions and cleanup steps in order to produce831

a refutation Π′ of a clean version of F SEL
n,k (see Definition 14) with the property that the832
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Quadratic degree of Π′ is at most d = νn/κ for a small enough constant ν > 0. The algorithm833

contains a while loop which iteratively removes all pairs of terms of high Quadratic degree.834

From Π′, we will apply a further restriction to all of the remaining unset y-variables (i.e.835

pigeons that select equations from Fn,k), to extract a refutation of a subset of m′ equations836

from Fn,k of low degree, contradicting the degree lower bound given in Lemma 19. Recall837

that Fn,k is defined over variables x and we pick a subset of these equations by matching838

pigeons yi to equations in Fn,k through a complete bipartite graph.839

The algorithm first initializes a few things. Set d = νn/κ for a small enough constant840

ν > 0. Let M ′ = M + n log n, which upper bounds the total number of variables occurring841

in the refutation. Let S be the set of all variables that are Singular w.r.t. the current set842

of extension axioms. We initialize S to be the set of all variables x ∪ y ∪ z since this is the843

largest possible set we will be dealing with; this will be updated at every iteration of the844

while loop, although we note that it can only reduce as we apply restrictions. Henceforth845

when we refer to Quadratic degree, we mean QdegS . Finally, we initialize H to be the set of846

all pairs of terms in Π with Quadratic degree greater than d.847

In the while loop, we first update the set S by checking which of the extension variables848

z have zero in their support according to their current extension axioms, and deleting those849

that don’t. For each extension variable z that we delete from S, we reduce the refutation Π850

by zℓ(z) = c. Such an identity exists and is derivable by Lemma 4, and does not increase the851

size of H by Lemma 8. Once we have updated S, we recompute the set of high Quadratic852

degree pairs H with respect to the updated set S. This also does not increase the size of H,853

by Lemma 5. We then pick a variable w that contributes to the Quadratic degree of at least854

a d/M ′ fraction of pairs in H by averaging.855

There are two cases depending on whether w ∈ S or not. In the first case (lines 14-18), w856

is Singular so we apply the restriction σ such that w|σ = 0 and call Cleanup(σ) to restore to857

a clean version of our tautology. This eliminates the contribution to high Quadratic degree858

from terms containing w, and hence obtains a (1 − d/M ′)-factor reduction in the size of859

H. In the second case (lines 19-34), w is Nonsingular so we apply Algorithm 1, which uses860

the Split operation non-trivially to reduce the size of H. Lemma 15 proves correctness of861

the algorithm, and thus upon termination of one call to Algorithm 1, we have obtained a862

(1− d/(4p2M ′))-factor reduction in the number of high Quadratic degree terms.863

Repeating the above for − log |H|/ log(1− d/4p2M ′) ≈ 4p2M ′ log |H|/d ≤ O(γ)κn/10κ
864

iterations, we eliminate all terms in H from the proof and thus obtain a refutation of865

Quadratic degree less than d. Since we call Cleanup once per iteration, and in each call it866

bans at most O(κ) many equations and removes at most O(κ) many pigeons (by Lemma 14),867

we have banned at most O(γ)κ2n/10κ equations and removed at most those many pigeons868

in total. Therefore, we always satisfy the invariant that the number of banned equations is869

much less than m/2κ (where m = 10n), satisfying the required conditions for correctness of870

Cleanup from Lemma 14.871

Let Π′ denote the modified proof upon termination of Algorithm 2. Note that out of872

the m′ = (1− ϵ)m pigeons, there are at least a 1−O(γ) fraction of pigeons still alive (i.e.873

not removed by Cleanup) and a 1 − O(γ) fraction of the m equations not banned. We874

now substitute for the remaining pigeons y so that we select a subset of at least (1− 2ϵ)m875

unsatisfiable equations from Fn,k that are not banned and obtain a refutation of them of876

Quadratic degree at most d (assuming γ is small enough). By Lemma 9, we can obtain a877

refutation of these equations of degree at most 3pd. Now, for all surviving extension variables878

we substitute them with their definitions in terms of the variables x. Note that since each879

extension variable is a degree κ polynomial this raises the degree to at most 3κpd. Since880

CCC 2023
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d = νn/κ, for sufficiently small ν we end up with a refutation of (1− 2ϵ) equations from Fn,k881

of degree less than c2n, contradicting Lemma 19.882

◀883

5 Appendix884

We will prove Theorem 3, which we state again here for convenience.885

▶ Theorem 17 (Theorem 3). Let m = 10n. Then there exists constants k > 0, 0 < ϵ < 1 such886

that for sufficiently large n, there exists k-CSP formulas {Fn,k} with m k-local constraints887

such that for m′ = (1− ϵ)m, every subset of m′ constraints is unsatisfiable and requires linear888

degree PC refutations.889

First we’ll show that a random regular bipartite graph has good boundary expansion.890

This has been used implicitly in other works ([9], [5]), but for completeness we state and891

prove it here. Let G = (L, R, E) be a bipartite graph, and let A ⊆ R. The boundary for A,892

∂(A), is the set of vertices x in L so that |N(x)∩A| = 1, i.e., vertices with a unique neighbor893

in A. A bipartite graph is (d, k) regular if every vertex in L has degree d and every vertex in894

R has degree k. In this case, for n = |L|, m = |R|, we have dn = km.895

▶ Theorem 18. Let d, k, n, m be positive integers with dn = km, k ≥ 12 . Then with high896

probability for a random (d, k) regular bipartite graph with |L| = n, |R| = m, for all A ⊂ R ,897

|A| < n/(e6k2), we have ∂(A) ≥ k|A|/2 .898

Proof. Let N(A) be all the neighbors of A. Since the total degrees of vertices in A is k|A|, and899

each element of N(A)−∂(A) is contingent on two such edges, k|A| ≥ 2(|N(A)|−|∂(A)|)+|∂(A),900

or ∂(A) ≥ 2|N(A)| − k|A|. We will show that with high probability for all such A, |N(A)| >901

3k|A|/4, and hence ∂(A) ≥ k|A|/2.902

If not, there are sets A ⊂ R and B ⊂ L so that N(A) ⊆ B and |B| = 3k|A|/4. We will903

bound the probability that this is true for fixed sets A, B and then take a union bound. We904

can view picking a random (d, k) bipartite graph as picking a random matching between d905

half-edges adjacent to each x ∈ L and k such half-edges adjacent to each y ∈ R; if a half906

edge for x is matched to a half-edge for y, it forms an edge between x and y.907

We can form this matching by going through the half edges for nodes in R and for each908

randomly selecting an unmatched half-edge for some node in L. We start with the edges909

for A in an arbitrary order. If we condition on all previous neighbors for A being in B, the910

number of half-edges left still available for B is less than d|B|, whereas the number for B911

stays at exactly d(n− |B|). Thus, the conditional probability that the next edge formed is912

also in B is at most |B|/n, and we do this for each of k|A| edges, meaning the probability913

that all neighbors are in B is at most (|B|/n)k|A|.914

Now, for a fixed |A| and setting |B| = 3k|A|/4, we take the union bound over all subsets
A and B. This gives a total probability of failure for some set A of size a as :(

m

a

)(
n

3ka/4

)
(3ka/4n)ka

≤ (em/a)a(4en/3ka)3ka/4(3ka/4n)ka

≤ (em/a)a(e3ka/n)ka/4 = (ekn/da)a(e3ka/n)ka/4 = (e3k/4+1ak/4−1kk/4+1/dnk/4−1)a

Since we are assuming a < n/(e6k2), the base in the above expression is at most

e3k/4+1(n/e6k2)k/4−1kk/4+1/dnk/4−1
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= e7−3k/4k3−k/4/d

which for k ≥ 12 is bounded below e−2, meaning the probability of such a bad set existing is915

exponentially small in a, and the probability of such a bad set existing for any a is less than916

1/2.917

◀918

▶ Definition 15. For a Boolean vector X = {x1, . . . , xn}, we define Ln,m,k1,k(X) to be the919

distribution over k-CSP formulas over n variables X = {x1, . . . , xn} obtained by selecting920

m parity equations, where each parity is represented by a node on the right of a randomly921

chosen bipartite graph G(L, R, E), with |L| = n, |R| = m, and with left degree bounded by k1922

and right degree bounded by k.923

▶ Lemma 19. Let Fn,k be a tautology given by the system of parity equations AX = b over924

variables X = {x1, . . . , xn} drawn at random from Ln,m,k1,k where m = 10n, for large enough925

constants k1, k > 0, and b is chosen randomly. Then the following hold with high probability926

for a small enough ϵ > 0:927

a) Any subset of a (1− ϵ)-fraction of the equations in Fn,k is unsatisfiable928

b) Any subset of a (1− ϵ)-fraction of the equations in Fn,k requires PC degree c2(n) to refute,929

for some c2 > 0.930

Proof. a) The probability that a set of (1− ϵ)10n random parities (i.e. for a random choice931

of b) is satisfiable is at most 2−9n for a small enough ϵ. The probability that any such subset932

of Fn,k is satisfiable is therefore at most 2(−n(9−10H(ϵ))), which is exponentially small for a933

small enough ϵ (where H(ϵ) is the binary entropy function).934

b) This follows directly from [1], Theorem 3.8 and Theorem 4.4, since by Theorem 18 the935

bipartite graph underlying the system of parity equations A has good boundary expansion936

with high probability.937

◀938
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