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—— Abstract

For every prime p > 0, every n > 0 and k = O(logn), we show the existence of an unsatisfiable

system of polynomial equations over O(nlogn) variables of degree O(log n) such that any Polynomial
Calculus refutation over [F, with M extension variables, each depending on at most x original variables
requires size exp (Q(nQ)/w“ (M + nlog n))
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1 Introduction

A major goal of proof complexity is to show limits on the types of reasoning formalizable with
concepts of small computational complexity, usually formalized as circuits from small circuit
classes. This makes results in proof complexity analogous to (and often building on) results in
circuit complexity. However, despite having strong lower bounds for the class ACO[p] since the
1980’s, ([18, 19] ) it is still an open problem in proof complexity to establish superpolynomial
(or even quadratic) lower bounds for the corresponding proof system AC°[p]-Frege.

Motivated by the lack of progress towards proving AC°[p]-Frege lower bounds, [4] defined
the Nullstellensatz (Nullsatz) proof system for refuting systems of unsolvable polynomial
equations. Given a system of polynomial equations P = {P; =0,..., P, = 0} in Boolean
variables 21, . .., z,, (where we enforce the Boolean condition by adding the equations 27 —z; =
0 to P), a Nullsatz refutation of P over a field F is a set of polynomials Q = {Q1,...,Qm}
such that ), P;Q; = 1. The degree of the refutation is the maximum degree of the P;Q;’s,
and the size is the sum of the sizes of the polynomials in P, Q. A dynamic version of Nullsatz,
called the Polynomial Calculus (PC) was later defined in [10].

While these and later papers showed strong lower bounds for these proof systems, often
these lower bounds were brittle in that the tautologies where lower bounds were proved
also had small upper bounds under changes of variables. Our work is intended to address
the issue of proving algebraic proof lower bounds that are more robust under changes of
variables. This can be viewed as a small but significant step towards proving lower bounds
for ACY[p]-Frege, since the latter can simulate such changes of variables.

One reason for the brittleness of many of the earlier lower bounds is that these lower bounds
were highly sensitive to the initial encoding. The known PC lower bounds hold for unsatisfiable
CNF formulas which are converted to a corresponding system of unsolvable polynomial
equations. Previous works established exponential PC lower bounds assuming a Boolean
encoding, where the variables are Boolean, enforced by the initial equations z7 — z; = 0.
Another natural encoding is the “Fourier” encoding which represents the constraints by
polynomials over {—1, 1}-valued variables (by applying the linear transformation z; = 1 — 2x;
to the Boolean encoding). However under this second encoding, the size lower bounds all
break down. This is due to the proof method, where size lower bounds were obtained from
degree lower bounds. Over {0, 1}-valued variables, this can be accomplished by applying
known size-degree tradeoffs for PC or by a random restriction argument to kill off all large
monomials. But over {—1, 1}-valued variables, these methods no longer work: a generic size-
degree tradeoff no longer holds (there are polynomial sized proofs of the Tseitin tautologies,
although they require linear degree [8]), and since the monomials now correspond to parity
equations, they are resilient to random restrictions.

However, recently, Sokolov [20] broke this barrier, and managed to prove exponential size
lower bounds for PC refutations over the {—1,1} encoding. We note that while this may seem
like a minor improvement over the known lower bounds which held for the {0, 1}-encoding,
Sokolov had to invent a new and ingenious technique for proving size lower bounds. In this
work, we generalize the methods of Sokolov to prove exponential PC lower bounds with up to
M = N?2~¢ extension variables which can depend on up to x = O(log N) original variables
(where N is the number of variables in the tautology). This shows that the Sokolov method
can be used to prove highly robust lower bounds, that are not sensitive to local changes of
variables. We state our result more precisely for two different choices of parameters, one
that maximizes the size lower bound, and the other that maximizes the number of allowable
extension variables.
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Lower bounds for Polynomial Calculus with extension variables over finite fields

» Theorem 1 (high-end). For n sufficiently large, there is a family of CNF tautologies
FSFL on O(nlogn) variables with poly(n) clauses of width O(logn) such that for any
M = npolylog(n) and k = O(loglogn), any PC refutation over F, of FSEL together with
M k-local extension azioms, requires size 29n/polylog(n))

» Theorem 2 (low-end). For the same family of tautologies as above, there are 0 < a, §,v < 1
so that, for M = n't* k = Blogn, any PC refutation of FSFL together with any M k-local
extensions over T, requires size 22",

We remark that our extension variables are only allowed to depend on the original
variables, and not on previously defined extension variables. (In the more general case where
extension variables are defined recursively, the proof system corresponds to AC°[p]-Frege,
where the level of recursion corresponds to the ACP[p] circuit depth.) Thus our lower bound
can be (roughly) seen as proving exponential lower bounds for the following restricted class of
depth-2.5 PC refutations. First, the refutation is given a new set of M variables, 21, ..., zas,
and is allowed to define a corresponding set of M k-local polynomials Q1,...,Qn (where
each @; can only depend on « original variables). Lines in the refutation are polynomials
over the original variables, plus the new extension variables (which are placeholders for the
Q;’s). Substituting the @;’s for the new variables gives a set of depth 2.5 algebraic circuits
using a pre-specified set of k-local functions at the bottom layer of the circuit.

1.1 Related Work

The work that inspired us and that is most related to our result is the recent paper by
Sokolov [20], proving exponential lower bounds on the size of PC refutations of CNF formulas,
where the variables take on values in {1, —1}. We generalize Sokolov’s result to hold over any
finite field, even with the addition of superlinear many extension variables, each depending
arbitrarily on a small number of original variables. Thus our result can be alternatively viewed
as making progress towards proving exponential lower bounds for depth-3 AC°[p]-Frege, for
a family of CNF formulas.

We note that for systems of polynomial equations over the rationals, a body of recent
work establishes much stronger lower bounds. First, [13] proved lower bounds for subsystems
of IPS over the rationals by restricted classes of circuits, including low-depth formulas,
multilinear formulas and read-once oblivious branching programs. Secondly, Alekseev [2]
proved exponential lower bounds on the bit complexity of PC proofs with an arbitrary number
of extension variables of unbounded depth over the rationals. Andrews and Forbes [3] prove
quasipolynomial lower bounds on the circuit size of constant-depth IPS proofs for a different
family of polynomials over the rationals; however, their hard instances do not have small-size
constant-depth circuits. Finally, [14] establish a similar lower bound as [3], but for hard
instances that have small constant-depth circuits.

We remark that these lower bounds are incomparable to ours for several reasons. First,
they do not hold for finite fields, and secondly, the choice of hard polynomials are inherently
nonboolean: [13, 2, 14] use the subset sum principle which when translated to a propositional
statement is no longer hard, and the hard polynomials in [3] have logarithmic depth. Thus
on the one hand they establish superpolynomial lower bounds for much stronger subsystems
of IPS, but on the other hand, they do not translate to lower bounds for propositional proofs
in the sense of Cook-Reckhow [11]. In particular, they don’t imply lower bounds for proof
systems dealing with Boolean formulae.
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1.2 Our Result: Proof Overview

The standard way of proving size lower bounds for PC for an unsatisfiable formula F' for
Boolean-valued variables dates back to the celebrated superpolynomial lower bounds for
Resolution [15, 7], where the basic tool is to reduce size lower bounds to degree lower bounds
(or in the case of Resolution, size to clause-width) by way of either a general size-depth
tradeoff, or by a more general random restriction argument. At a high level, both methods
iteratively select a variable that occurs in a lot of high-degree terms, set this variable to
zero (to kill off all high-degree terms containing it), while also ensuring (possibly by setting
additional variables) that F' remains hard to refute after applying the partial restriction.
After applying this size-to-degree reduction, the main technical part is to prove degree lower
bounds for the restricted version of F.

As mentioned in the Introduction, over the {—1, 1} basis, the size to degree reduction
breaks down. In fact, no generic reduction to degree can exist since random XOR instances
over this basis require linear degree but have polynomial size PC refutations. Moreover,
we lacked any method for proving PC lower bounds for unsatisfiable CNFs over the basis
{-=1,1}, and more generally over an arbitrary linear transformation of the variables. In [16],
we highlighted this as an open problem, noting that it is a necessary step toward proving
superpolynomial AC°[2]-Frege lower bounds, a major open problem in proof complexity.

Recently, Sokolov [20] made significant progress by proving exponential lower bounds for
PC (as well as for SOS) for random CNF formulas over the domain {—1,1}, by developing
new formula-specific techniques to reduce size to degree over this domain. As this is the
starting point for our work, we begin by describing the main method in [20] for reducing size
to degree for certain families of formulas over {—1,1}.

Let II be an alleged PC refutation of F' of small size which includes the axioms w? = 1 for
all variables w. The first step in Sokolov’s argument is to show how to remove all high degree
terms containing a particular variable w, provided that w is irrelevant — meaning that it
does not occur in any of the initial polynomials other than the equation w? = 1. Intuitively,
we want to show that if our unsatisfiable system of polynomial equations doesn’t contain
w, then we should be able to eliminate high degree terms containing w altogether from the
refutation. To show this, Sokolov introduced a new operation termed Split where he writes
each line ¢ in the refutation as ¢y + g1w, and proves by induction that if we replace each line

g by the pair of lines qg, ¢1, then it is still a valid refutation of F' (and no longer contains w).

While the Split operation removes w from the proof, it doesn’t kill off high degree terms.
The crucial insight is that although this doesn’t directly kill off high degree terms, a slightly
different measure of degree (called Quadratic degree) can be used instead, since removing
w via the Split operation removes all high Quadratic degree terms that w contributed to,
and secondly low Quadratic degree implies low ordinary degree. The second and easier step
in Sokolov’s argument uses specific expansion properties of F' to show that for any variable
w, there exists a small restriction p (to some of the other variables) such that w becomes
irrelevant under p.

Our main theorem significantly generalizes Sokolov’s lower bound by proving exponential
lower bounds for an unsatisfiable CNF formulas F', even when we allow the axioms P to
contain superlinear many extension axioms, provided that each extension axiom depends
on a small number of original variables. Note that the variables of F' are Boolean, but the
extension variables are not restricted to being Boolean. In particular, it may be the case that
zero is not in the support of an extension variable (i.e. the set of all possible values that can
be assigned to it without violating any Boolean axioms), for example if extension variable
z is defined by the equation z = x — 2, then 2z cannot be set to zero without falsifying the
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2 _ 2 =0 for z. Intuitively we will handle extension variables z that cannot

be set to zero in a similar manner to Sokolov, by first isolating z, and then generalizing the
Split operation in order to kill off all large Quadratic degree terms that contain z. However,
dealing with a general set of extension axioms presents new technical challenges that we

Boolean axiom x

address next.

Our first idea is to design the unsatisfiable formula F' carefully so that we can force
variables to be irrelevant in a more modular way. Specifically, let F(z1,...,2,) be an
expanding unsatisfiable k-CSP formula with m = O(n) constraints, such that any subset of
m’ = em constraints is unsatisfiable and requires proofs of large PC degree. We define an
unsatisfiable formula FSFL (based on F) that intuitively states that there is a subset S of
m’ = em constraints of F' (as chosen by new selector variables y) that is satisfiable. We will

FSEL even with the addition of an arbitrary set

prove lower bounds on the set of constraints
of extension axioms satisfying the conditions mentioned earlier. In order to make a variable
of FSFL jrrelevant, we will simply make sure that our eventual assignment to the selector
variables (y) avoids constraints of F' that contain this variable (we can also make a selector
variable irrelevant in a slightly more complicated way, details are left to the relevant section).

A second challenge that we face (that doesn’t come up in Sokolov’s proof) is that extension
variables may be defined so that originally they can be consistently set to zero, but can
change status after applying a restriction. For example, suppose the proof uses the extension
axiom z = x1x9 + x1. Then zero is in the support of z (since we can set 1 = xo = 0),
but if we set z1 = 1, then zero is no longer in the support of z. In order to deal with this
dynamically changing status of variables, our notion of Quadratic degree must pay attention
to which category each of the extension variables is in at any particular time, and make
sure that we do not lose progress that was made earlier due to variables changing from
initially containing zero to disallowing zero in their support. Fortunately we observe that
variables can only change unidirectionally, (since the support of a variable cannot increase
under a restriction) and this is crucial for arguing that our measure of Quadratic degree
always decreases so that we continually make progress.

Finally, we also have to generalize Sokolov’s Split operation, which was previously defined
only for {—1,1} variables. We give a generalization of how to do the Split for arbitrary
valued variables.

2 Preliminaries

» Definition 1 (Polynomial Calculus/Polynomial Calculus Resolution). Let I' = {P; ... Py}
be an unsolvable system of polynomials in variables {x; ...x,} over F. A PC (Polynomial
Calculus) refutation of T' is a sequence of polynomials {R; ... Rs} such that Ry = 1 and for
every ¢ € [s], Ry € T, Ry is either a polynomial from T, or is obtained from two previous
polynomials Rj, Ry, j, k < £ by one of the following derivation rules:

Ry =aR; + 3Ry fora, B €F

Ry = z; Ry, for some i € [n]}

The size of the refutation is Y ,_, |Re|, where |Ry| is the number of monomials in the
polynomial Ry. The degree of the refutation is max, deg(Ry).

A PCR (Polynomial Calculus Resolution) refutation is a PC refutation over the set of
Boolean variables {x1 ...z, T1 ... %} where {ZT1...%,} are twin variables of {x1...x,} i.e.
the equations xf —2; =0, 5;2 —&; =0 and x;%; = 0 are treated as azioms.

» Definition 2 (PC plus Extension Axioms). Let I' = {Py... Py} be a set of polynomials
in variables {xy...x,} over a field F. We will refer to the polynomials in T as (initial)
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arioms. Let z = z1 ...z be new extension variables with corresponding extension axioms
z; —Qj(x1...2,). APCH+Ext (PC plus extension) refutation of ' with M extension azioms
Ext ={z; — Qj(z1...2y)} is a PC refutation of the set of polynomials I = {Py ... Py, 21 —
Q1...2m — Qu}. An extension axiom z; = Qj(x1 ... xy,) is k-local if Q; is a k-junta; that
is, if the polynomial Q; defining z; involves at most k of the x-variables. We say that I1
is a (M, k) — PC+ Ext refutation of ' if it is a PC + Ext refutation of T’ with M extension
azioms, each of which are k-local. The size of the refutation is total size of all lines in the
refutation, including the polynomials in T plus the extension axioms (where the size of a line
P €11 is the number of monomials in P).

We note that our definition of extension axioms is more limited than the general notion
of extension axioms. Here we only allow the extension variables to depend on the original
variables from I'; the more general definition allows the extension variables to depend on the
original x-variables, and also on other extension variables.

» Definition 3 (k-local CSPs). A constraint C; over Boolean variables {x1,...,x,} is simply
a Boolean formula over these variables. C; is a k-local constraint if C; depends on at most
k variables. A k-CSP C = Cy A...NCy, over {x1,...,xN} is the conjunction of a set of
k-local constraints.

We translate a k-CSP formula into a system of polynomial equations using the standard
PCR translation which we define next.

» Definition 4 (Converting k-CSPs into Polynomial Equations). Let C be a k-local constraint
over variables x;,, ..., x;, . We convert C to a polynomial equation, p(C), using the trans-
lations p(x;;) = 1 — x;,, p(mA) = 1 —p(A), p(AV B) = p(A) - p(B). It is easy to check
that for any Boolean assignment « to the underlying variables, C(a) = 1 < p(a) =0, and
Cla) =0+ p(a) =1.

Ak-CSPC=CyN...NCp over{z1,...,x,} converts to a set of polynomial equations
{Ej | jem]}U{B;|iecn]} over {z1,...,2,} U{Z1,...,Zn} where E; is the polynomial
equation p(C;) In addition, we add the Boolean azioms {B; | i € [n]}, where B; = {2} —x; =
0, 2 —3; =0, z;@ = 0} which force x;, T; to be zero-one valued, and force exactly one of
x;, T; to be one.

3 The Hard Formulas

We distinguish between the case p = 2 and the case p > 2, and concentrate on the latter.
This is because the case p = 2 does not require any new technical ideas, and we can pick from
a large number of known hard tautologies for this case, such as random CN F’s. Over F,
every extension variable is zero-one valued, and so standard size-degree tradeoffs pertain even
with respect to extension variables. Also, x-local extension variables can change the degree by
at most a factor of «, therefore a degree lower bound of Q(n) for the original tautology over
n variables implies a degree lower bound of Q(n/k) after adding s-local extension variables.
Known size-degree tradeoffs imply that the degree must be at least square root of the number
of variables in order to obtain exponential size lower bounds, this immediately gives a lower
bound tolerating close to n?/k? many k-local extension variables [10, 6, 17].

Over any field, there are unsatisfiable families of k-CNF formulas (e.g. the Tseitin
tautologies as well as random parity equations) that require linear degree but have polynomial
sized proofs with a linear number of extension variables [8, 6]. Therefore formulas that
require high PC degree are not sufficient. Instead we will create our hard examples by taking
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a hard instance and then using selector variables to pick out a subset of the constraints.
Similar ideas were used earlier (e.g., [12]). In more detail, our underlying hard unsatisfiable
formulas, {F;?EL }, will be constructed from a family of k-CSP formulas, F,, j, that have the
property that any sufficiently large subset of the constraints of F;, ;, is unsatisfiable and still

requires large PC degree.

» Definition 5. Let F,,, = {E; | j € [/m]} U{B; | i € [n]} be the system of degree-k
polynomial equations over x = {x;, T; | i € [n]}, obtained by converting a size-m k-CSP as
given by Definition 4. For convenience, we will index the polynomial equations E; in binary
notation, so for example if by ... biogm € {0, 1}°e™ js the binary notation for j € [m], we will
write Ej as By, b, We define a new set of polynomial equations FSEL with parameters
m,m’ as follows. The variables are x Uy, where x are the original variables of F,  and
y ={yij, Ui | i € [m'], j € [logm]} are new “pigeon” variables. Let ESEL be the following
set of equations, where y; # b1 ... bogm abbreviates the monomial Hbjzl Yij Hb]:O Vi<

(Z) Vi € [m’],Vbl . blogm (S {0, l}logm; (yz 7& b1 .. ~b10gm) . Ebl--~blogm = O,‘

(ii) Yi,i' € [m'], i £ 4, ¥y .. bogm € {0, 1H8™ (y; £ by .. biogm) - (Yir # b1 .- - biogm) = 0.

F;?‘EL consists of the polynomial equations ESFL together with the Boolean azioms

Bij=A{yl; —vi; =0, Vijo — Vi =0, yi¥i; = 0} for all i € [m/],j € [m].

Intuitively we think of the y variables as a mapping from m’ pigeons to m holes, where
the holes correspond to the m axioms/constraints from E. For i € [m/], the i'" “pigeon” y;
selects a hole (an equation from FE).

ESEL states that if pigeon y; selects the equation

then this equation must be satisfied; the second set of equations in ESFL states

The first set of polynomial equations in
Ey,.
that the mapping is one-to-one and thus altogether the y selector variables choose a subset

.blog m >

E’ of exactly m’ equations from E. Thus F;?EL asserts that there exists a subset of m’
constraints of F,, ; (chosen by the y-variables) that are satisfiable.

Throughout this paper, the x-variables are the variables that underly F;, ; the y-variables
are the selector/pigeon variables described above that choose a subset of m’ constraints from
F, i, and the extension variables used in the PC 4 Ext refutation will be the z-variables.

Our hard instances will be FffL, with m = 10n, m’ = (1 — €)m, where F, ;, is (the
polynomial translation of) an unsatisfiable k-CSP formula with m = 10n k-local constraints
over variables x = z1 ... x,, satisfying the follow property:

Property 1: Every subset of (1 — €)m’ constraints is unsatisfiable and requires linear PC
degree

The following Theorem shows that for sufficiently large n, such formulas exist. Similar
proofs have appeared in several papers (e.g., [5]) but we give a proof in the Appendix for
completeness.

» Theorem 3. Let m = 10n. Then there exists constants k > 0, 0 < € < 1 such that for

sufficiently large n, there exists k-CSP formulas {F), ;} with m constraints such that Property
1 holds with m' = (1 — €)m.
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4 The Lower Bound

4.1 Technical Proof Overview.

Conventionally, proof size lower bounds are reduced to degree lower bounds, a single step of
which involves finding a heavy variable that occurs in a large fraction of high degree terms
of the proof and setting it to zero. In our setting, if the heavy variable turns out to be an
extension variable, z with extension axiom z = Q(x,y), it may be Nonsingular meaning
that we cannot set z = 0 (without falsifying the extension axiom or a Boolean axiom), as
opposed to Singular variables which can be set to zero in a consistent way'. In this case, we
cannot simply eliminate the high degree terms containing z by setting z = 0. Sokolov [20]
focused on the case where variables are over the +1 basis instead of the usual Boolean one,
which is the simplest case where all variables are Nonsingular. Sokolov introduced Quadratic
degree as a measure to be used instead of degree. Quadratic degree essentially measures the
maximal degree of the square of each polynomial P occurring in the proof. For a 41 variable
z, 22 =1, so squaring a polynomial P on +1 variables removes the contribution of a term
t € P as it gets squared out, and what remain are the terms 1ty for ¢1, t3 € P. Since any
variable that appears in both terms gets squared out, the degree of these terms measures the
symmetric difference between such terms, and this turns out to be a key complexity measure
while dealing with Nonsingular variables. Sokolov showed that a refutation of low Quadratic
degree can be turned into one of low degree. Thus the presence of Nonsingular variables
is not necessarily a problem as long as the Quadratic degree of each line is low. Sokolov
also introduced an operation Split that acts on a proof line by line in order to remove the
contribution to Quadratic degree of any particularly heavy Nonsingular variable z, in the
special case where they always take on values in +1, by replacing a line P = Py z 4+ Py in the
refutation with the lines P; and FPy. Sokolov managed to show that for some well chosen
tautologies, the new Split lines still form a valid refutation of a hard subset of axioms. The
crucial observation here is that this splitting of lines has eliminated from the square of the
proof all pairs of terms whose product contained z. Thus, repeated application of Split would
lead to contradiction of known degree lower bounds.

The first step for us was to generalize the notions of Quadratic degree and Split to any
finite field. Motivated by the above definition of Quadratic degree, we generalize it as follows.
Given two terms t; and ts, a Nonsingular variable z contributes to the Quadratic degree
between t; and t, if and only if it appears with different exponents in them, i.e. 2z € t; and
2J € ty, for i # j. A Singular variable z contributes if and only if it appears in one of the
terms with a nonzero exponent. The Quadratic degree of ¢; and ¢5 is the total number of such
variables z that contribute. Generalizing the Split operation proved a bit more difficult. We
first focus on the case over F, analogous to Sokolov’s, where we have a variable z such that
the identity (z —a)(z —b) = 0 holds for some constants a,b # 0 in the field. Note that a line
P(z) of the proof is of the form P,_22P~2+ .-+ Piz+ Py. In the case of &1 variables, p = 3
and thus the contribution by z to Quadratic degree comes just from the interaction between
two polynomials P; and Py. Therefore separating P; and Py into different lines removes this
contribution entirely. In the general case, however, the contribution by z to Quadratic degree
is the sum total of interactions between polynomials F; and P; for every pair 4,5 < p —1
such that ¢ and j are distinct. We show how to separate P into two lines R;, Ry such that
the interaction between P; and P; is completely removed, for any i, j satisfying a’=7 # b'J,

! This terminology is taken from singular and nonsingular matrices, since the key property we use is that
a variable z is Nonsingular if and only if zP~2 is a “multiplicative inverse" of z, i.e. 2P~1 =1
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or in other words, 2’ and 27 are linearly independent over the two values that z takes. Let
R(z) = Rz + Ro2’ be a polynomial such that R agrees with P for each possible value of
z, i.e. R(a) = P(a) and R(b) = P(b). Since 2% and 27 are linearly independent over values
{a, b}, these two equations can be solved for their coefficients Ry, Ry, expressed in terms of
P,_5...Py. On closer observation, we find that P; does not occur in the expression for R;
and similarly P; does not occur in Ry, and therefore we have successfully broken P into lines
R, and Ry while separating P; and P;. It is straightforward to show that this new set of
lines forms a valid refutation, but an essential assumption we make here is that the initial
axioms are free of z, except for (z —a)(z — b) = 0.

We now move to dealing with the case of a more general extension variable z with the
extension axiom z — @, where Q(x,y) is a polynomial that can depend on at most x variables.
Let H be the set of all pairs of terms (¢1,¢2) in a line of a given refutation that have high
Quadratic degree between them. We would like to emulate Sokolov’s strategy of eliminating
this set of pairs from the refutation to drop its Quadratic degree. If an extension variable z
which is Singular appears heavily in H, we apply the restriction that sets it to zero (which
exists by the definition of Singular). In the case that z is Nonsingular, our goal is to reduce
it to the above case in order to apply Split. But first, we will have to choose a “good" pair of
indices ¢4,y such that Splitting them is effective in reducing H. We observe that for any
pair of indices i, j, the set of pairs (t1,t2) in H such 2° € t; and 27 € t, is disjoint from the
similar set defined for a distinct pair ¢/, j. Therefore by averaging we can pick a good pair
¢1, 0o that covers at least a 1/p? fraction of z’s appearances in H. We now have to reduce
z to take on two distinct values a,b in order to apply Split, but these values need to be
such that a“t =% 2 b1~ We show that there is a decision tree process (Lemma 10) that
queries the variables underlying @ such that it is always possible to reduce z to the form
(b — a)w* + a, where a, b are useful to separate the indices ¢1, ¢y. It is fairly easy to see as a
result of the discussion so far that if we are able to apply Split on z with indices (1, ¢y at
this stage, it causes a sizable reduction in H.

We are now almost ready to apply Split, but we still have to meet the requirement that
the axioms are free of z. Since z is an extension variable it appears only in the extension
axiom which has now been reduced to the form (b — a)w* + a, and so the only way to remove
this axiom is to make a substitution for w* = (z — a)/(b — a) in terms of z. This would get
rid of this extension axiom and take the Boolean axiom for w* to (z — a)(z — b) = 0 just
like we need, but if w* appears in any of the other axioms this substitution just creates new
copies of z. Therefore we need to remove w* from all the other axioms before we try to make
this substitution. Here is where we make use of the structure of our tautology FSEL by
defining an operation Cleanup which can remove any Boolean variable w* from the axioms
without actually setting it to a constant value. Cleanup also restores the structure of our
tautology so that we are always working with a subset of equations and pigeons from F;? BL
that are untouched by previous restrictions. We describe this operation in detail in Section
4.5.1.

Once we perform the above cleanup operations we are ready to make the substitution for
w* = (z —a)/(b—a) in terms of z to satisfy the requirements for Split. We are met with a
final hurdle here: this substitution can potentially increase the number of pairs of terms in
H. Fortunately it can be resolved by a simple case analysis: if the blowup is too large it
must have been the case that w* appeared frequently in H, and so setting it to zero will
reduce H without the need for Split. Otherwise, Split is able to offset this blowup.

Therefore we have demonstrated above how to reduce the size of the high Quadratic degree
set H by a constant fraction. Performing this for sufficiently many iterations would remove
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H entirely and lower the Quadratic degree of any refutation. We then use a generalized
version of Sokolov’s argument that low Quadratic degree implies low degree in order to switch
to a low degree refutation. For a small sized refutation, the number of iterations needed is
bounded and thus we are able to keep most of the pigeons and equations alive at the end.
We then select a hard subset of equations by assigning all remaining pigeons, and expand any
remaining extension variables in order to obtain a low degree refutation of these equations,
towards a contradiction.

4.2 Singular and Nonsingular variables

Let us fix the finite field IF,, p > 2 for the rest of the article. We also fix a set of unsatisfiable
polynomials F' over Boolean variables x Uy, and a set of extension axioms Ext of the form
z — @ over variables z. Whenever we refer to a refutation II, we assume that it is a PC + Ext
refutation of F'U Ext.

» Definition 6 (Support of a variable). Let z—Q(w;,, ..., w;_ ) = 0 be a k-local extension axiom
associated with z. We define the set vars(Q) = {w;,, ..., w;,} and sometimes write vars(z) to
denote vars(Q), the set of variables that z depends on. The support of z, supp(z) C [0,p—1],
is equal to the set of all values a € [0,p — 1] such that there exists a Boolean assignment « to
the variables of @ such that Q(a) = a. Sometimes we also indicate this by supp(Q).

We extend the definition of support also to Boolean variables. For a Boolean variable w,

supp(w) = {0,1} as enforced by the Boolean aziom w? = w.

» Definition 7 (Singular and Nonsingular variables w.r.t. Ext). Let Ext be a set of extension
azioms and let z be an extension variable with an axiom in Ext. We say that z is Singular
w.r.t. Ext iff 0 € supp(z); otherwise we say that z is Nonsingular w.r.t. Ext. Any Boolean
variable is considered Singular by default, independent of the set Ext, since zero always
belongs to its support. For a term t, let sing(t) be the subterm of t containing the Singular
variables in t, and let nsing(t) be the subterm of t containing the Nonsingular variables.

Note that for a Singular extension variable z, it is possible to set z to zero, However,
we note that this may falsify other polynomial equations in F. For example, if zy = 0 is
a polynomial equation in F', and the extension axiom for z is z — 1 + zy = 0, then setting
x =1y =1 forces z = 0, but this falsifies xy = 0.

» Definition 8. Let A C [1,...,p— 1], A# 0. Define £(A) to be the least £ € [1,p — 1] such
that the set {a* | a € A} is singleton. For a Nonsingular z, define £(z) = £(supp(z)).

» Lemma 4. Let z be a Nonsingular extension variable with extension axiom z — @Q = 0.
Then the following polynomial equations are implied by (and therefore derivable from) the
extension aziom for z plus the Boolean axzioms for all variables in vars(Q), in degree at most
lvars(Q)].

1. 2 — Q' =0, where Q' is the multilinear version of Q;

2. For any A" C[0,p — 1] such that supp(z) C A’, Mzea/(z — a) = 0;

3. 2t — ¢ =0 for some c € Fy.

In particular, if z is Nonsingular, then the polynomial equation zP~! — 1 = 0 is implied
by z — @Q = 0 together with the Boolean axioms for vars(Q).

Proof. Let z — Q(w;,,...,w;, ) = 0 be the extension axiom for z, and let supp(z) = A C
A’ C [1,p—1]. First, we can derive the multilinear version of @, @', from @ together with the
Boolean axoms w? —w = 0 for all w € vars(Q). Secondly, by definition, supp(z) = A means
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that the allowable values for z over Boolean assignments to vars(Q) are the values in A.
Therefore, z—@Q = 0 together with the Boolean axioms w? —w = 0 for all w € vars(Q) implies
Muea(z — a) = 0. Furthermore, this polynomial has a PC derivation, by the derivational
completeness of PC. Since A C A, Tca/(2 —a) = 0 is a weakening of Iyea(z —a) =0
and is therefore derivable from Il,c4(z = a) = 0. Lastly, we will argue that there exists

t4) — ¢ = 0 is semantically implied by z — Q = 0 plus the

some constant ¢ € F)) such that z
Boolean axioms for vars(z) and therefore is derivable from these axioms. Since the only
allowable values for z under the Boolean axioms are the values in A, and since by definition
of £(A), for every a € A, a*)) = ¢ for some ¢ € Iy, it follows that A — e =0.

<

» Definition 9. For a term t and a variable w, deg(t,w) is equal to the degree of w in t. If
w is Nonsingular, then wP~! =1 mod p, so deg(t,w) < p— 1. On the other hand if w is
Singular then we have w? = w mod p and therefore deg(t,w) < p. For a term t the degree

of t, deg(t), equals -, c,qrs(r) deg(t, w).

4.3 Quadratic degree

The next definition is a generalization/modification of Sokolov’s definition of Quadratic
degree for the more general scenario where the proof contains extension variables that are
Singular as well as ones that are Nonsingular.

» Definition 10 (Quadratic degree). Let V be a set of variables and let S be a subset of
V. For a pair of terms t1,ty over V, and a variable w € V, we define Qdeg® (t1,t2,w) as
follows. If w € S, then Qdeg®(t1,ta,w) =1 if w occurs in at least one of t1 or ta; if w & S,
then Qdeg® (t1,to,w) = 1 if and only if deg(t1,w) # deg(to, w). The overall quadratic degree
of the pair t1,ts, Qdeg®(t1,ts), is equal to > wev Qdeg® (t1,tz,w). The quadratic degree of
a polynomial P is equal to the maximum quadratic degree over all pairs (t1,ts) such that
t1,to € P. For a proof 11, the quadratic degree of 11 is the mazimum quadratic degree over
all polynomials P € II.

We usually instantiate the above definition with V' = x Uy Uz and with S being the
set of Singular variables as defined by the extension axioms corresponding to z. However
since Qdeg® is a different measure for every S, and our set of Singular variables can change
under the application of a restriction p to the variables in V', we must make sure that our
measure of Quadratic degree does not change significantly under a restriction?. Fortunately,
we can show that for any two sets S and T such that T C S, Qdeg” < Qdeg®. Along with
the simple observation that the set of Singular extension variables can only shrink under
a restriction, this implies that our measure of Quadratic degree can only decrease under a
restriction. We make this formal below.

» Lemma 5. Let V be a set of variables and let S and T be subsets of V' such that T C S.
Then for any two terms ty,ty over V., Qdeg™ (t1,t2) < Qdeg® (t1,ts).

Proof. Note that for a variable w € S — T, Qdeg®(t1,ts,w) = 1 when w has a nonzero
exponent in one of ¢; or to, otherwise zero. However, Qdeg” (t1,t2,w) = 1 if and only if the

2 If the set S does not change under a restriction, Qdeg® can still change under the restriction as terms
can shrink or disappear when variables are set by the restriction. However, this is no different from
how the usual notion of degree changes under a restriction, and it is trivial to show that Qdeg® always
decreases. Therefore we ignore this for the sake of simplicity.
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previous condition is satisfied and the exponents of w in t; and ¢y are not equal. Thus the
claim follows. |

Henceforth, when we refer to Quadratic degree, we always fix the set .S to be the set of
Singular variables w.r.t. the underlying extension axioms. We have the following important
corollary that this measure always decreases under a restriction to the underlying variables.

» Corollary 6. Let F be a set of unsatisfiable polynomials over variables x Uy and let
Ext be a set of extension axioms of the form z — Q(wi,, ..., w;, ) for variables z € z and
Wiy, ..., w;, €xXUYy. Let p be a restriction to x Uy and let Ext|, be the azioms given by
z — Q|, for each aziom z — Q € Ext. The Quadratic degree w.r.t. Ext|, is at most the
Quadratic degree w.r.t. Ext.

Proof. Since supp(Q|,) € supp(Q) for any polynomial @), we have that the set of Singular
variables under Ext|, is a subset of those under Ext. Therefore our claim follows from the
previous lemma. <

» Lemma 7 (Quadratic degree upper bounds degree of Singular variables). For any term t,
deg(sing(t)) < pQdeg(t,1)

Proof. For any Singular variable w, Qdeg(t,t,w) = 1 if and only if w occurs in ¢. Since w
can occur in ¢t with degree at most p — 1, the claim follows. <

» Definition 11 (High quadratic degree terms). For a proof Il and d > 0, let H4(IT) denote
the set of unordered pairs (t1,t2) of quadratic degree at least d. That is, Hq(II) is the set of
unordered pairs of terms (t1,ta) such that tq,ts both occur in P for some polynomial P € 11,
and Qdeg(t1,t2) > d.

» Lemma 8. Let I be a PC + Ext refutation of F' and let z be a Nonsingular variable. Let
II' be the proof obtained from I by reducing each line of II by z°*) — ¢ =0 for some ¢ € F7.
Then [Hqa(Il")| < [Hq(IT)| for any d > 0.

Proof. Consider a polynomial P € I and a pair of terms (¢1,t3) that occur in P. For any
variable w distinct from z, Qdeg(t1, t2, w) is unaltered when P is reduced by 2(2) = ¢. On the
other hand, if z does not contribute to the Quadratic degree of (t1,t2) i.e. Qdeg(t1,t2,2) =0,
then it will still be 0 after reducing by 2¢(*) = ¢. Therefore Qdeg(t1,t2) never increases for
any pair (t1,t2) and thus [Hq(IT')| < |Hq(ID)]. <

The following is a generalized version of the argument from [20] that shows how to convert
a proof with low Quadratic degree to one with low degree.

» Lemma 9. Let F' be a set of unsatisfiable polynomials of degree dy with a PC refutation of
Quadratic degree at most d > dy over F,,. Then F' has a PC refutation of degree at most 3pd.

Proof. The proof of this lemma is largely based on (a slightly cleaner version of) Sokolov’s
argument ([20], Lemma 3.6) that low Quadratic degree over {£1} variables implies low
degree. Our first observation is that Sokolov’s argument can be applied to any refutation of
low Quadratic degree over IF), such that every term contains only Nonsingular variables. In
particular if {P;} is a refutation that only contains Nonsingular terms, then we can use his
argument to show that {t? _2Pj} is also a valid refutation for some carefully chosen term
t; € P;. Moreover, the degree of the latter refutation is bounded by a constant times the
Quadratic degree of the former one. To see this, first note that for two Nonsingular terms
t1 and t,, we have that deg(t,t5 %) < (p — 1) - Qdeg(t1, t2), because of the following. For a
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variable z that is Nonsingular such that z occurs in ¢; and ¢y with deg(t1, z) = deg(ts, z), we
have deg(tltg_Z, z) = Qdeg(t1,ta, z) = 0 since it would appear in t1t§_2 with an exponent
that is a multiple of p — 1, and 2?~! = 1 holds for Nonsingular variables. Any other
Nonsingular z that occurs in at least one of ¢; and ¢y has deg(t1t§_27z) < p—1and
Qdeg(t1,te,z) = 1. Therefore the degree of t1t§_2 is at most p - Qdeg(t1,t2) when t; and to
contain only Nonsingular variables. This implies that the lines in the new refutation {¢/ _2Pj}
have degree at most p times the Quadratic degree of the original refutation {P;}. Sokolov
additionally showed that each line in the new refutation can be derived from previous lines
without exceeding degree equal to 2p times the Quadratic degree of the original refutation,
completing the argument.

In our case we deal with terms containing both Singular and Nonsingular variables. The
above argument cannot be applied directly to our case, since it crucially depends on the fact
that Nonsingular variables can be raised to the power p —1 to make them vanish. Fortunately
by Lemma 7, the degree of Singular variables in any term is at most p times the Quadratic
degree with itself. Given this bound, we can ignore for each term the part that contains
Singular variables, and apply the above argument only with respect to the Nonsingular part
of each term, to reduce the degree of Nonsingular variables in each term of the refutation.
Since we now have a bound on the degree of both Singular and Nonsingular variables in each
term, we have bounded its degree. We describe this in full technical detail below.

Let {P;} be a refutation of F' with Quadratic degree bounded by d. For any term ¢
recall that nsing(t) denotes the subterm of ¢ containing only Nonsingular variables. Note
that nsing(t)P~' = 1 for any t. For every line P; in the refutation, we pick a term
tj € Pj and define P} = nsing(t;)?P~?P;. Note that by the arguments outlined above, for
any two terms ¢; and to in Pj, we have deg(nsing(t1)P~?nsing(t2)) < pd and thus the
degree of Nonsingular variables in any term of P]’- is bounded by pd. Since the Singular
variables in any term remain unchanged under multiplication by nsing(t;)?~2, the Singular
degree of P the same as that of P; and is bounded by pd (Lemma 7) and therefore
deg(P}) < pd + pd = 2pd. We now show that the set {P;} forms a valid refutation of I and
each Pj( can be derived from previous lines in degree 3pd. If P; is one of the axioms, we
multiply by nsing(t;)?~2 to get Pj for an arbitrary ¢; € P;, and this takes degree pdo < pd.
If P, = wP;, for ji < j and some variable w, we choose t; € P; such that t; = wt;,
where t;, € P;, was chosen earlier. If w is Singular, we have nsing(t;) = nsing(t;,) and
therefore P; = nsing(t;)P~2P; = w - nsing(t;,)P72P;, = wP} . On the other hand, if w
is Nonsingular, we have nsing(t;) = w - nsing(t;,) and therefore P} = nsing(t;)P~2P; =
wP™ nsing(t;, )P 2P, = P; . Finally, let P; = Pj, + P}, for ji, j2 < j. We pick an arbitrary
term t; € P;. Note that since nsing(t)?~* = 1 for any term ¢, P;, = nsing(t;, )P} and Pj, =

nsing(t;,) P}, and thus we have P = nsing(t;)*~*nsing(t;,) P}, +nsing(tj)p’gnjgmg(th)P]fz
for t;, € P;, and tj, € P}, chosen earlier. We now show that deg(nsing(t;)P~?nsing(t;,)) <
pd and deg(nsing(t;)P~?nsing(t;,)) < pd to conclude the proof. Since every term in P;
appears in one of P; , Pj,, let t; € P;, without loss of generality. Then we have that
tj,t;, both appear in P;, and thus deg(nsing(t;)? 2nsing(t;,)) < pd. If t;, € P; ie. it
is not cancelled in the sum P;, + Pj,, then we have t;,¢;, both appear in P; and hence
deg(nsing(t;)P~*nsing(t;,)) < pd. If t;, & P;, this implies that it was cancelled in the sum

Pj, 4+ P}, and therefore t;, € P;, and deg(nsing(t;)?*nsing(t;,)) < pd.
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4.4 The Split Operation

In this section we will show how to apply a restriction and then use an operation Split
(motivated by [20]) in order to eliminate high quadratic degree terms. Our main focus will
be to handle the case where the variable to be set is an extension variable with extension
axiom z — @@ = 0 where z is Nonsingular, since in the other case we can potentially just set
z = 0 to eliminate terms. We start by showing how to apply a small Boolean restriction p
such that Q|, is a simple linear function of just one variable.

» Lemma 10. Let z be an extension variable with extension axiom z — Q(wy, ..., wg), for
k < k. Assume that z is Nonsingular (i.e. supp(Q) C [1,...,p —1]) and [supp(Q)| > 2.
Then for every l € [0,...,0(supp(Q)) — 1], there exists a variable w* in vars(Q), and a
restriction § to vars(Q) — w* such that:
(1) Qls = (b — a)w* + a, where b,a € supp(Q). Thus Q|5 is a linear function of w* and
supp(Qls) = {a, b};
(2) a' # b (mod p)

Proof. We will create a decision tree that will query vars(Q) one-by-one. Associated with
the root r is the set of values S, = {a' | a € supp(Q)}. That is, we label the root with the
set of all possible values that 2! can take on. Since I < ¢(supp(z)), it follows that |S,| > 2
(since otherwise we would have [ = £(supp(z))). At the root we query the first variable wy,
with left edge labelled by w; = 0 and right edge labelled by w; = 1. Now we label the left
vertex with the set {a' | a € supp(Q|w,=0)}, of all values that 2! can take on under the

restriction w; = 0. Similarly we label the right vertex with the set {a' | a € supp(Q|w,=1)}-

We continue recursively, querying the next variable at each vertex v of the decision tree, as
long as the set of allowable values for z! under the partial restriction p, associated with v is
greater than one. Now consider the longest path, £ in T. The partial restriction p associated
with ¢ sets the first &’ variables, where k' > 1 since initially 2! takes on at least two values.
Also since € is a complete path, the associated set {a' | a € supp(Q|,)} contains exactly one
element, call it q.

Now consider the twin path £ with associated restriction p’, where p’ is obtained from p
by toggling the value of the last variable, wy/, queried. Again since &’ is a complete path,
the associated set {a' | a € supp(Q)|,/)} contains exactly one element, call it ¢’. Note that
q,q must be distinct.

Let § be the following assignment to vars(Q) — wy: for 1 < j < k', we set é(w;) =
p(w;) = p'(w;), and for k' < j < k, we set 0(w;) = 0. Setting w* = wy/, Qls is a linear
equation of the form (b — a)w* + a, where b,a € supp(Q). Finally, by construction, a’ # b
(since otherwise the two paths corresponding to p, p’ would be the same).

<

In the remainder of this subsection, we will be interested in the case where we want to
eliminate some Nonsingular extension variable z from the refutation, and we have already
applied the above Lemma so that the extension axiom for z is of the form z—((b—a)w+a) =0,
where w is some variable in x Uy. Thus, supp(z) = {a,b}. The next two Lemmas generalizes
a similar argument due to Sokolov, and show how to remove Quadratic degree pairs of the
form (t;2%,t227) for a carefully chosen pair 4,j from the refutation via the Split operation.

» Lemma 11. Let z be an extension variable such that supp(z) = {a,b}, where a # b and
a,b € Fy, and let P be any polynomial. Then, for any two distinct numbers Lo, 1 where
by < 1 and a®*—% £ bt there exists a unique polynomial R = Ryz" 4+ Ry 2" such that

7:13

CCC 2023



7:14

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

616

617

618

619

620

621

622

623

Lower bounds for Polynomial Calculus with extension variables over finite fields

R =P mod (2 —a)(z—1b). That is, R(a) = P(a) and R(b) = P(b), where P(a) denotes the
polynomial P under the substitution z = a.

Proof. Let z — @ = 0 be the extension axiom for z, where supp(z) = {a,b}. Then by Lemma
4 the polynomial (z — a)(z — b) = 0 is implied by (and derivable from) the extension axiom
for z plus the Boolean axioms. We can assume without loss of generality that P has the
form Py + zP, + ...+ zp’QPp_g.

Now we want to argue that there exists a polynomial R = 2% Ry + 2% Ry, where Ry, R;
are polynomials over vars(P) — z, and such that R(a) = P(a), and R(b) = P(b). We can
find Ry and R; by solving the following system of equations, where we view Ry, R as the
underlying variables, and treating P(a), P(b) as constants:

a Ry + a"* R, = P(a)
bRy + b Ry = P(b)

Lo 12

a a
blo ph

This has a (unique) solution since the determinant of the associated matrix is

aloblo(br=to — gf1=f0) By our assumption, this matrix is non-singular over F,, and therefore
the above system of equations has a unique solution over [, given by:

(=G o) (%)

Abbreviating a0, a’*,b% b by ag, a1, by, by respectively, we have by definition of the
inverse:

Ry _ ap a1 ! P(a)
Ry N by b1 P(b)
B 1 by —a1\ (Pla)
B a0b1 — a1b0 —b() ag P(b)
Solving for Ry we have:

b1 a1
Ry = — 2 pla)——" _p@
0 aogby — aibo (@) aogby — a1by ®)
by .
= —(aoP, P g 'P;) —
aob1 — axbe (agPyy + a1 Py, + a'P;)

a .
— L (boPy + 1Py, + )
, aobr — aibo ,
’L;ﬁéo,zl 7/7£Z07€1

apby arby b .
- P, P o
P —— (s aoby — a1bg ot apb1 — a1bo (#%zl )

aq b() a1by by

B B _ b'P;
aobr — aibg fo apby — aibg “ aob1 — aibo (i;é%:el )

= P+ Y coiP
i#00,1

for some constants cp; € F,. And similarly solving for R, it has the following form:

Ry =P, + Z c1il;
i#Lo 01
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for some constants cy; € Fp-
<

» Definition 12 (Split). Let z be an extension variable with extension axiom z —@Q = 0 such
that supp(z) = {a,b} C [1,...
alr=to £ pir=bo et R = Rz’ + R1z% be the unique polynomial given by Lemma 11 such
that R = P mod (z — a)(z — b). Then Split, ¢, ¢,(P) is defined to be the pair of polynomials
{Ro, R1}. For a proof I, and an extension variable z such that supp(z) = {a,b}, we define
Split, oy.0, (II) to be the sequence of lines Split, ¢, ¢, (P), over all P € II.

,p — 1]. For any polynomial P and for every €y < {1 such that

» Lemma 12. Let 11 be a refutation of a set of unsatisfiable polynomials F. Let z be a
variable that occurs in I such that the polynomials in F do not contain z except for the
aviom (z — a)(z — b) = 0 for some a,b € F. Then for any lo, ¢y such that ly < {1 and
atr=to £ por=to 11" = Split, 4, ¢, (I1) forms a valid refutation of F modulo (z — a)(z — b)

Proof. Fix an extension variable z in II such that it does not occur in any axioms except
(z —a)(z —b) =0, and let £y, /1 be such that £y < ¢; and a“+~%0 = b1=fo We will show by
induction on the number of lines in II that Split, g, ¢, (II) is a valid derivation that meets
the conditions of the lemma. For the base case, note that all of the axioms are either free
of z or eliminated as a result of reducing by (z — a)(z — b), and hence their Split versions
are derivable. Now suppose that the Lemma holds for the first j — 1 lines of II; that is,
Split, g6, (I1;—1) is a valid derivation, where II;_; denotes the first j — 1 lines of II.

The first case is where P; is a linear combination of two previously derived lines, so
Pj = aPj, +BP;, for some j; and jo less than j and «, 8 € F,,. Using the inductive hypothesis,
we have:

Pj = a(z"Rj0+2"Rj1) + B(z"Rjpo + 2" Rjy1) mod (2 —a)(z —b)
= b (aRj 0+ BRj,0) + 24 (aRj; 1+ BRj,1) mod (z—a)(z—b)
By the uniqueness of the polynomial R; = Zto Rjo + 24 j1 that is equivalent to P; mod

(z —a)(z — b) (by Lemma 11), this implies that R;jo = aRj,0 + SR;,0 and similarly R;; =
aRj 1+ BRj,1, and thus R;o can be derived from a linear combination of R;, ¢ and R;,o and
similarly for R;;.

The second case is when P; is derived from a previously derived line P; by multiplying
Pj; by a variable w. That is, P; = wPj for some j* < j. If w # z, then we have that
Rj1 = wRj (similarly for Rjo). If w = z then we have:

Rjm\ alr gl ! Pji(a)
Rj/o —\br b Pj/(b)
from which we need to derive
R\ afr  glo -t P;(a)
R; T\pfr pho P;(b)
~ (af ate - aPj (a)
T \pfr pho bPj:(b)
_ afr  qgto -1 a O afr gl Rjn
T \pfr pho 0 b plr  plo Rjg) "

Thus, R;; can be derived as a linear combination of R;; and R;/o, and similarly for Rq.
<
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4.5 Proof of Main Theorem

The proof of our lower bound for the tautology Ff EL with extension axioms Ext proceeds
by choosing a variable in the given refutation II that contributes to a lot of high quadratic
degree pairs of terms in II. If this variable is Singular, we apply the restriction that sets it to
zero. On the other hand, if it is Nonsingular and therefore an extension variable z, we first
reduce it to depend on a single variable w* by applying a restriction chosen from Lemma
10, and then use a more complicated case analysis (see Lemma 15) in order to apply the
Split operation from Lemmas 11 and 12 on z. In both of these cases we are able to remove a
small fraction of high Quadratic degree terms, and thus after sufficiently many iterations we
obtain a refutation of low Quadratic degree. We convert this to a refutation of low (usual)
degree using Lemma 9, and then substitute for the pigeon variables y to select a subset of
equations from F,,  that require high degree, obtaining a contradiction.

4.5.1 Cleanup operations

In order to get the contradiction at the end of the above argument, we need to ensure that
our process above is always working with a subset of equations of F}, j that are untouched,
i.e. unaffected by earlier restrictions to variables. We also need to eliminate any partially
assigned pigeons so that we have full choice over the equations we are able to pick at the end.
Additionally, a key requirement of the Split lemmas (Lemmas 11 and 12) is that the variable
z we Split on must not appear in any axioms except for one of the form (z —a)(z —b) =0,
which indicates that it takes two distinct values. In particular, we cannot set z or the
underlying variable w* described above in order to eliminate them from the refutation. This
presents us with a unique requirement: for any choice of a variable w* € x Uy, we need to
be able to eliminate all axioms containing w* without actually setting it. We show how to
perform these operations by making use of the structure of our tautology FEEL

We first show how to “ban” an equation Ej, . from F, ; by switching to a set of

~~blogm
axioms that prevent any pigeon from being assigned to b1 ... biogm.

» Lemma 13. Let 11 be a refutation of F;ZELL) for some restriction p and let (y; #
by ... bogm) - Ey,  biogm =0 be one of its axioms. Then there exists another valid refutation
IT" with the latter aziom replaced by the axiom (y; # b1 ... biogm) = Hbjzl Yij Hb]:() Vi
such that the quadratic degree of II' is at most that of 1.

Proof. Note that the axiom (y; # b1 ... blogm) * Eb,...b,,, = 0 can be derived from the axiom
(ys #b1.. . biogm) = Hbj:l Yij Hbj:o ¥Yi; by multiplying by the polynomial Ey, 4, ,,. Since
this derivation involves only singular variables, the degree can never drop and therefore the
quadratic degree of this derivation is at most that of the final polynomial. We construct IT’
as follows. We first derive the former axiom from the latter in IT'. Besides this derivation, IT’
involves the same steps as II. |

» Definition 13. An equation Ey, .. p,,,, is said to be banned when the previous lemma is
applied repeatedly to eliminate all occurrences of it from the axioms.

» Definition 14. A clean version of F;?],?L is any subset of axioms of FHSEL

azioms that ban some subset of equations of the form Ey, .

along with
~~blogm .
4.5.1.1 Cleanup(p)

We now describe how to perform the cleanup operations, which we collectively call Cleanup(p),
that takes as input an “unclean” version of F7¥'* derived by applying a restriction p to a
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clean version, and outputs another clean version that is in some sense a subset of the input.
Suppose that we are given a restriction p that has been applied to a clean version of F;? EL,
with a variable w* € p possibly set to %, indicating that it must remain unset. To eliminate
an axiom that has been affected by a x variable in p not set to x, we simply obtain the
refutation that bans the corresponding equation Ep, . p,, .
Note that since we are eliminating the axiom without setting any variables in it, we can

also do this in case our variable w* € x. Suppose that y;; is a y variable in p not set to x.

We first note that any axiom that contained y;; before the application of p contains all the
variables ¥;1 ... Yilogm corresponding to the it" pigeon 1;. We first make sure that this i*"
pigeon does not contain our variable w* that must remain unset. If it doesn’t, we proceed
as follows. We set all the other variables in this pigeon to select some equation Ep, .,
that has not been banned. Such an equation exists provided that the number of banned
equations so far is bounded, and the size of the restriction p is also bounded (we formalize
this in the lemma below). We then apply an additional restriction to the x variables that
satisfies this equation Ej, 4, picked above. We then ban all the equations affected by
this additional restriction, like we did above for the part of p containing x variables. This
eliminates the pigeon y;. We are left with the case where our variable w* belongs to some
pigeon y;. We set all the variables in the pigeon y; except for w*, such that neither of the

and Ey, by that would be selected if w* is set to zero or one
are banned (again, these exist under the same conditions as above). We then proceed as
before, i.e. apply an additional restriction to satisfy both these equations, and then ban any
other equations that have been affected by this additional restriction. With this we have
eliminated the axioms of pigeon y; which select an equation, but we are still left with the
axioms that prevent y; from colliding with any other pigeon, which are now of the form
w* - (yjr # b1 ... biogm) and w* - (y;r # b ... by, ,,) indicating that any pigeon y;, distinct
from y; must not be mapped to the equations Ey, . and Ej; bl if one of them is
selected by setting w* to zero or one. To remove the latter axioms we do something similar
to the process of banning an equation, where we simply replace these axioms by the axioms
(yjr # b1.. . bogm) and (y; # by ... b, ), effectively banning the equations Ej, |

Ey, by for the remaining pigeons.

two equations Ebl...blog -

.blogm

and

.blogm

4.5.1.2 Correctness of Cleanup(p)

We note that the above cleanup operations over y variables terminate successfully only when
there are enough equations that have not been banned by prior calls to cleanup, and also the
size of the restriction p is bounded. We make this formal by the below lemma.

» Lemma 14 (Correctness of Cleanup(p)). Let p be a restriction of size k. If the number of
banned equations (from previous calls to Cleanup) is < m/2", then Cleanup(p) terminates
correctly. Moreover, it bans at most O(k) additional equations and removes at most O(k)
pigeons in its run.

Proof. In Cleanup(p), note that we can remove the axioms that contain x variables
unconditionally. When we remove a pigeon y; = ¥;1 - . . ¥ilog m, We rely on having an equation
it can be set to that is not already banned. Since the size of p is bounded by &, note that at
most ~ variables from y;1 ... ¥;10gm can be set by p. Therefore there are at least logm — &
of them unset, corresponding to selecting m/2% many equations. Since we assume that the
number of banned equations is much less than this, we can always find one that is not banned
to assign this pigeon to.

as described in the above lemma.
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We now count the number of new equations banned and the number of pigeons removed
by this call to Cleanup(p). Since each x variable appears in a constant number of equations,
the number of equations we ban while processing it is a constant. When we process a y
variable, we pick and satisfy an equation, and ban all other equations affected in the process.
Since every equation also contains a constant number of variables, satisfying it affects only a
constant number of other equations. Therefore, for every variable we process we ban only a
constant number of equations, and thus the total number of equations banned is O(x). We
remove only those pigeons with a variable in p, so this is also bounded by O(k). |

4.5.2 The Main Theorem

We need first the following key lemma that shows how to apply the Split operation to reduce
high quadratic degree terms.

Algorithm 1 Algorithm for Lemma 15
Input: A refutation I, and a nonsingular variable z with extension axiom z — Q =0
satisfying the pre-conditions of Lemma 15
Output: A refutation I’ satisfying post-conditions of Lemma 15
1 Let £y < ¢1 be such that [Hq(IL, z, o, £1)| > |Ha(I1, 2)| /p?.
2 Apply Lemma 10 with [ = ¢; — ¢y to obtain §, w*, a,b satisfying post-conditions of
Lemma 10.
3 II =105 (and in particular z — Qs = z — (b — a)w* — a)

4 Cleanup(d U {w* = *}) (Cleanup axioms affected by § and remove w* from all
axioms other than z — (b — a)w™ — a while keeping it alive.)

5 if w* contributes to > €/4p? fraction of pairs in Haq(Il) then

6 | M=Tl|y—o

7 end

8 else

9 Apply the substitution (z —a)/(b— a) for w* in II

10 Let II' = Splitz,lo,ll(n)
11 end

» Lemma 15. Let I be a system of unsatisfiable polynomials and let z be a nonsingular
extension variable with the extension aziom z — Q. Let £ = {(supp(Q)) so that z* = c holds
for some ¢ € Fp,. Let 11 be a refutation of FU{z—Q} modulo z* = ¢ such that for at least an
€ fraction of pairs (t1,t2) in Ha(Il), Qdeg(t1,t2,z) =1, for some d > 0. Then there exists a
refutation I of F such that |Hqa(I1')| < (1 — €/4p?)|Hq(10)]

Proof. We will apply a procedure as described by Algorithm 1 in order to modify the proof
to satisfy the post-conditions of the Lemma. Here we give a detailed description of the
algorithm, together with its correctness. Let Hq(II,z) be the set of all unordered pairs
(t1,t2) € Hq(II) that z contributes to. That is, H4(11, z) is the set of all unordered pairs
(t1,t2) € Hq(II) such that Qdeg(t1,ta,2) = 1. There are many different ways that z can
contribute to H4(II, z): namely, for all ¢, j such that i < j < ¢, let H4(II, 2,4, j) be the set of
all unordered pairs (t1,t2) € Hq(II, 2), such that the degree of z in ¢; is 4 and the degree of z
in t5 is j. Note that for any two pairs (7, j) and (i’, j7) such that i # i’ or j # j', Ha(11, 2,4, §)
and Hq(I1, 2,4, j') are disjoint. Therefore, there exists a “good” pair £y < ¢; < ¢ such that
removing Hq(I1, 2, 1, £) from Hy(I1, z) will remove at least a 1/p? fraction of Hy(Il, 2) and
therefore a €/p? fraction of pairs in Hy(I1), since |Hq(I1, 2)| > €|Hq(I1)].
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We want to apply the Split operation Split, ¢, ¢, to remove all such pairs. But in
order to do this we have to satisfy the preconditions of Lemmas 11 and 12: we need two
values a,b such that a®*=% £ bf1=% and all the axioms should be free of z except for
(z —a)(z —b) = 0. The first step (Line 2 of 1) is to apply Lemma 10 with [ = ¢; — {y. This
gives us w* € vars(Q), a,b € supp(Q) and a partial restriction § to vars(Q) — w* such that
(z = Q)ls = z — (b — a)w* — a, where =% # p“s~% mod p. Next, we apply the restriction
d to II (Line 3).

Now we have a simpler linear extension axiom for z of the form z — (b — a)w* —a = 0.

Next we would like to make the substitution w* = (z — a)/(b — a) in II in order to satisfy
this extension axiom, towards the goal of eliminating z from the axioms so that we have
the preconditions of Lemma 12 and therefore are able to apply Split, ¢, ¢,. However, if w*
appears in any of the axioms in F', this would create additional occurrences of z and we
would not make any progress. Therefore, we have to make sure that none of the axioms of F'
contain w*. But we also cannot set w* to zero or one in an attempt to get rid of it, since
this would set z to either a or b through the above extension axiom, and Split requires that
z take on two distinct values. We thus have to get rid of all axioms mentioning w* either
by setting other variables or by replacing these axioms with stronger versions, such that
the former can be derived from the latter. This is what the subroutine Cleanup does, in
addition to removing the axioms in F' that were affected by our earlier restriction ¢, so that
we have a clean version of F;? ’,fL as defined in the previous section.

We are now ready to make the substitution w* = (z —a)/(b— a). Under this substitution,
the Boolean axiom w** —w = 0 reduces to (2 —a)(z —b) = 0, and the original extension axiom
for z disappears (since under this substitution it becomes 0 = 0.) Thus this substitution
would satisfy all of the preconditions of Lemmas 11, 12. However, this substitution can create
a new problem: it can cause a blow up in the size of H4(II) since for every pair of terms
(t1,t2) such that one of them contains w*, we could have up to four new terms after the
substitution. In order to deal with this potential blow up we do a simple case analysis: If w*
contributes to at least an ¢/4p? fraction of pairs (t1,t2) in Hy(I1), then we set w* = 0 (Lines
4-5). This gives us the required reduction in the size of Hq(II) (z is also set to a constant
by setting w* = 0, but we don’t care about that since we have obtained a reduction in high
Quadratic degree terms without needing to use Split). Otherwise, the blowup caused by
the substitution w* = (2 — a)/(b — a) adds at most 3¢/4p? fraction of pairs to Hy(II), and
thus if we remove all pairs in Hq(II, 2, 4o, ¢1) (after this blowup) then overall we will will
have reduced the size of H4(I) to (1 — €/4p?)|Ha(IT)|. So in this latter case, we apply the
substitution mentioned above (Line 8) which simultaneously removes w* from all axioms,
and replaces the linear axiom for z by (2 — a)(z — b) = 0. Now all preconditions for Lemma 8
hold so we can apply Split, 4,0, (Line 9) to get a valid refutation. It is left to argue that this
indeed removes the set H4(IL, z, ¢1, £y). More precisely, we argue that high Quadratic degree
pairs of terms in the refutation obtained after applying Split have a one to one mapping to
the set Hq(I1) — Ha(II, 2,01, £p). Fix a line P € II. Since we are working modulo 2* = ¢,
we can assume that P = Py + 2P, +...27'P,_1. Let R = 2Ry + z* R; be the unique
polynomial equivalent to P mod (z — a)(z — b). Split, ¢, ¢, (II) is the refutation with lines
Ry, Ry for all P € II. By the proof of Lemma 11 Ry, R; have the form:

Ri=Py+ Y cuP;
i<titly

Ry=Py+ Y, cuP;
i<litl
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for some constants cy;, cg; € F,.

For a pair of terms (¢;,¢;) in Ry such that t; € P, and t; € P; and Qdeg(t;,t;) > d,
we map it to the pair (tizi,tjzj) € P, and similarly for Ry. Clearly this is a one-one
mapping, and since Py, does not occur in R; and P, does not occur in Ry, it is a mapping
to Haq(II) — Ha(1L, 2, €1, o). Therefore we have that for the refutation II' = Split, 4, ¢, (II)
whose lines are {R1, Ro}, |Ha(IU')| < [Ha(I1) — Ha(IL, 2,41, 40)| < (1 — €/4p?)|Ha(ID)|.

<

» Theorem 16. For n sufficiently large, any (M, k)-PC + Ext refutation of FSEL has size

77/2
exp (tgerar btz ) -

Algorithm 2 Eliminating high Quadratic degree terms from the proof

Input: A refutation IT of FSEL with extension axioms Euxt
Output: A refutation I’ with Quadratic degree less than d

1 d + vn/k, where v is a sufficiently small constant.

2 M’ <+ M + nlog(n). (M’ upper bounds |x Uy U z|, the total number of variables)

3 S+« xUyUz (the current set of singular variables: all Boolean variables are
singular by default and we initialize all extension variables to also be singular. This
could possibly reduce in each iteration.)

4 H « {(t1,ta) | t1,t2 € Il and Qdeg®(t1,t2) > d}  (the set of all pairs of terms of
large Quadratic degree according to S)

5 while H is non empty do

6 for every extension axiom z — Q € FExt do

7 if 0 € supp(Q) then

8 S+ S—{z}

9 Compute ¢ such that z¢(*) = ¢ and reduce II by the latter identity
10 end
11 end

12 H < {(t1,t2) | t1,t2 € Il and Qdeg®(t1,t2) > d}  (update H to reflect changes
due to the above for loop)

13 Pick a variable w that, by an averaging argument, occurs in at least an e fraction
of terms in H, where we choose € = d/M’.

14 if w e S then

15 Let o be a restriction on x Uy such that w|, =0

16 IT « II|,

17 Cleanup(o)

18 end

19 else

20 Apply Algorithm 1, which by Lemma 15 satisfies the post-conditions of
Lemma 15

21 end

22 end

Proof. Let IT be an alleged (M, x)-PC + Ext refutation of F7PL with logarithm of its size
less than yn2/(10%(M + nlogn)), for a small enough constant v. Given II, Algorithm 2
(defined below) will apply a sequence of restrictions and cleanup steps in order to produce
a refutation II' of a clean version of F7 " (see Definition 14) with the property that the
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Quadratic degree of IT' is at most d = vn/k for a small enough constant v > 0. The algorithm
contains a while loop which iteratively removes all pairs of terms of high Quadratic degree.

From IT', we will apply a further restriction to all of the remaining unset y-variables (i.e.

pigeons that select equations from F), j), to extract a refutation of a subset of m' equations
from F,  of low degree, contradicting the degree lower bound given in Lemma 19. Recall
that F), j is defined over variables x and we pick a subset of these equations by matching
pigeons y; to equations in F, ; through a complete bipartite graph.

The algorithm first initializes a few things. Set d = vn/k for a small enough constant
v > 0. Let M’ = M + nlogn, which upper bounds the total number of variables occurring
in the refutation. Let S be the set of all variables that are Singular w.r.t. the current set
of extension axioms. We initialize S to be the set of all variables x Uy U z since this is the
largest possible set we will be dealing with; this will be updated at every iteration of the
while loop, although we note that it can only reduce as we apply restrictions. Henceforth
when we refer to Quadratic degree, we mean Qdeg®. Finally, we initialize H to be the set of
all pairs of terms in II with Quadratic degree greater than d.

In the while loop, we first update the set S by checking which of the extension variables
z have zero in their support according to their current extension axioms, and deleting those
that don’t. For each extension variable z that we delete from S, we reduce the refutation II
by z¢(*) = ¢. Such an identity exists and is derivable by Lemma 4, and does not increase the
size of H by Lemma 8. Once we have updated S, we recompute the set of high Quadratic
degree pairs H with respect to the updated set S. This also does not increase the size of H,
by Lemma 5. We then pick a variable w that contributes to the Quadratic degree of at least
a d/M’ fraction of pairs in H by averaging.

There are two cases depending on whether w € S or not. In the first case (lines 14-18), w
is Singular so we apply the restriction o such that w|, = 0 and call Cleanup(o) to restore to
a clean version of our tautology. This eliminates the contribution to high Quadratic degree
from terms containing w, and hence obtains a (1 — d/M’)-factor reduction in the size of
H. In the second case (lines 19-34), w is Nonsingular so we apply Algorithm 1, which uses
the Split operation non-trivially to reduce the size of H. Lemma 15 proves correctness of
the algorithm, and thus upon termination of one call to Algorithm 1, we have obtained a
(1 — d/(4p*M"))-factor reduction in the number of high Quadratic degree terms.

Repeating the above for —log |H|/log(1 — d/4p* M) ~ 4p> M’ log |H|/d < O(v)kn /10
iterations, we eliminate all terms in H from the proof and thus obtain a refutation of
Quadratic degree less than d. Since we call Cleanup once per iteration, and in each call it
bans at most O(k) many equations and removes at most O(k) many pigeons (by Lemma 14),
we have banned at most O(y)x?n/10" equations and removed at most those many pigeons
in total. Therefore, we always satisfy the invariant that the number of banned equations is
much less than m /2" (where m = 10n), satisfying the required conditions for correctness of
Cleanup from Lemma 14.

Let II denote the modified proof upon termination of Algorithm 2. Note that out of
the m’ = (1 — €)m pigeons, there are at least a 1 — O(v) fraction of pigeons still alive (i.e.
not removed by Cleanup) and a 1 — O(y) fraction of the m equations not banned. We
now substitute for the remaining pigeons y so that we select a subset of at least (1 — 2¢)m
unsatisfiable equations from F), ;, that are not banned and obtain a refutation of them of
Quadratic degree at most d (assuming ~ is small enough). By Lemma 9, we can obtain a
refutation of these equations of degree at most 3pd. Now, for all surviving extension variables
we substitute them with their definitions in terms of the variables x. Note that since each
extension variable is a degree x polynomial this raises the degree to at most 3xpd. Since
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d = vn/k, for sufficiently small v we end up with a refutation of (1 — 2¢) equations from F,
of degree less than con, contradicting Lemma 19.
<

5 Appendix

We will prove Theorem 3, which we state again here for convenience.

» Theorem 17 (Theorem 3). Let m = 10n. Then there exists constants k > 0, 0 < € < 1 such
that for sufficiently large n, there exists k-CSP formulas {F, 1} with m k-local constraints
such that for m’ = (1 —¢e)m, every subset of m’ constraints is unsatisfiable and requires linear
degree PC refutations.

First we’ll show that a random regular bipartite graph has good boundary expansion.
This has been used implicitly in other works ([9], [5]), but for completeness we state and
prove it here. Let G = (L, R, E) be a bipartite graph, and let A C R. The boundary for A,
O(A), is the set of vertices x in L so that |[N(xz) N A| = 1, i.e., vertices with a unique neighbor
in A. A bipartite graph is (d, k) regular if every vertex in L has degree d and every vertex in
R has degree k. In this case, for n = |L|,m = |R|, we have dn = km.

» Theorem 18. Let d, k,n, m be positive integers with dn = km, k > 12 . Then with high
probability for a random (d, k) regular bipartite graph with |L| = n,|R| = m, for all AC R,
|A] < n/(eSk?), we have O(A) > k|A|/2 .

Proof. Let N(A) be all the neighbors of A. Since the total degrees of vertices in A is k| A|, and
each element of N(A)—0(A) is contingent on two such edges, k|A| > 2(|N(A)|—|0(A)|)+|0(A),
or 9(A) > 2|N(A)| — k|A|. We will show that with high probability for all such A, |[N(A)| >
3k|A|/4, and hence O(A) > k|A|/2.

If not, there are sets A C R and B C L so that N(A) C B and |B| = 3k|A|/4. We will
bound the probability that this is true for fixed sets A, B and then take a union bound. We
can view picking a random (d, k) bipartite graph as picking a random matching between d
half-edges adjacent to each x € L and k such half-edges adjacent to each y € R; if a half
edge for = is matched to a half-edge for y, it forms an edge between = and y.

We can form this matching by going through the half edges for nodes in R and for each
randomly selecting an unmatched half-edge for some node in L. We start with the edges
for A in an arbitrary order. If we condition on all previous neighbors for A being in B, the
number of half-edges left still available for B is less than d|B|, whereas the number for B
stays at exactly d(n — |B|). Thus, the conditional probability that the next edge formed is
also in B is at most |B|/n, and we do this for each of k| A| edges, meaning the probability
that all neighbors are in B is at most (| B|/n)*4l.

Now, for a fixed |A| and setting |B| = 3k|A|/4, we take the union bound over all subsets
A and B. This gives a total probability of failure for some set A of size a as :

<7:> (3 kz / 4) (3ka/4n)ka

< (em/a)®(4en/3ka)***/4(3ka/4n)*e
< (em/a)a(€3ka/n)ka/4 _ (ekn/da)a(e3ka/n)ka/4 _ (e?’k/4+1ak/471kk/4+1/dnk/471)a
Since we are assuming a < n/(e5k?), the base in the above expression is at most

eSk/4+1(n/66k2)k/471kk/4+1/dnk/471
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= eT-3k/4p3k/4 /g

which for k£ > 12 is bounded below e~2, meaning the probability of such a bad set existing is
exponentially small in a, and the probability of such a bad set existing for any « is less than
1/2.

<

» Definition 15. For a Boolean vector X = {z1,...,x,}, we define Ly, m i, x(X) to be the
distribution over k-CSP formulas over n variables X = {x1,...,2,} obtained by selecting
m parity equations, where each parity is represented by a node on the right of a randomly
chosen bipartite graph G(L, R, E), with |L| = n, |R| =m, and with left degree bounded by k1
and right degree bounded by k.

» Lemma 19. Let F, i, be a tautology given by the system of parity equations AX = b over
variables X = {x1,...,x,} drawn at random from Ly, m i, x where m = 10n, for large enough
constants k1, k > 0, and b is chosen randomly. Then the following hold with high probability
for a small enough € > 0:

a) Any subset of a (1 — €)-fraction of the equations in F), j is unsatisfiable
b) Any subset of a (1 — €)-fraction of the equations in F, i requires PC degree ca(n) to refute,
for some co > 0.

Proof. a) The probability that a set of (1 — €)10n random parities (i.e. for a random choice
of b) is satisfiable is at most 279" for a small enough e. The probability that any such subset
of F,  is satisfiable is therefore at most 2(—"(9=10H())) 'which is exponentially small for a
small enough e (where H(¢) is the binary entropy function).

b) This follows directly from [1], Theorem 3.8 and Theorem 4.4, since by Theorem 18 the
bipartite graph underlying the system of parity equations A has good boundary expansion
with high probability.

<
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