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ABSTRACT
The notion of replicable algorithms was introduced by Impagliazzo,
Lei, Pitassi, and Sorrell (STOC’22) to describe randomized algo-
rithms that are stable under the resampling of their inputs. More
precisely, a replicable algorithm gives the same output with high
probability when its randomness is fixed and it is run on a new i.i.d.
sample drawn from the same distribution. Using replicable algo-
rithms for data analysis can facilitate the verification of published
results by ensuring that the results of an analysis will be the same
with high probability, even when that analysis is performed on a
new data set.

In this work, we establish new connections and separations be-
tween replicability and standard notions of algorithmic stability. In
particular, we give sample-efficient algorithmic reductions between
perfect generalization, approximate differential privacy, and replica-
bility for a broad class of statistical problems. Conversely, we show
any such equivalence must break down computationally: there
exist statistical problems that are easy under differential privacy,
but that cannot be solved replicably without breaking public-key
cryptography. Furthermore, these results are tight: our reductions
are statistically optimal, and we show that any computational sep-
aration between DP and replicability must imply the existence of
one-way functions.

Our statistical reductions give a new algorithmic framework for
translating between notions of stability, which we instantiate to

∗All section, theorem, and lemma references are to the full version on arXiv (v2). The
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answer several open questions in replicability and privacy. This
includes giving sample-efficient replicable algorithms for various
PAC learning, distribution estimation, and distribution testing prob-
lems, algorithmic amplification of 𝛿 in approximate DP, conversions
from item-level to user-level privacy, and the existence of private
agnostic-to-realizable learning reductions under structured distri-
butions.
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1 INTRODUCTION
Replicability is the principle that the findings of an empirical study
should remain the same when it is repeated on new data. Despite
being a pillar of the scientific method, replicability is extremely
difficult to ensure in today’s complex data generation and analysis
processes. Questionable research practices including misapplica-
tion of statistics, selective reporting of only the findings that appear
most statistically significant, and the formulation of research hy-
potheses after the results are already known have been identified
as causes of an ongoing “crisis of replicability” across the empirical
sciences. Toward formulating solutions in the context of machine
learning and algorithmic data analysis, Impagliazzo, Lei, Pitassi,
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and Sorrell [23] recently put forth a new definition of replicability
for statistical learning algorithms.1

Definition 1.1. A randomized algorithm 𝐴 : X𝑛 → Y is 𝜌-
replicable if for every distribution 𝐷 over X, we have

Pr[𝐴(𝑆1; 𝑟 ) = 𝐴(𝑆2; 𝑟 )] ≥ 1 − 𝜌,

where 𝑆1, 𝑆2 ∈ X𝑛 are independent sequences of i.i.d. samples from
𝐷 , and 𝑟 represents the coin tosses of the algorithm 𝐴.

That is, an algorithm (capturing an end-to-end data analysis
process) is replicable if with high probability over the choice of
two independent samples from the same distribution, it produces
exactly the same output. If one research team shares both their
replicable analysis process (𝐴) and the random choices made along
the way (𝑟 ), then another research team can independently ver-
ify their conclusions by performing the same analysis on a fresh
dataset.

Replicability is an extremely strong stability constraint to place
on an algorithm. Informally, an algorithm is stable if its output is
insensitive to small changes to its input. Nevertheless, replicability
is achievable for many fundamental data analysis tasks, including
statistical query learning, heavy hitter identification, approximate
median finding, and large-margin halfspace learning [20, 23].

Replicability is not the first definition of algorithmic stability
aimed at ensuring the utility and safety of modern data analysis.
Others have played central roles in relatively mature areas such as
differential privacy and adaptive data analysis. Some of the afore-
mentioned replicable algorithms were, in fact, motivated or inspired
by differentially private counterparts. Is there a systematic explana-
tion for this?What can we learn about the capabilities and limitations
of replicable algorithms by relating replicability to other notions of
algorithmic stability?

Let us briefly recall the types of algorithmic stability that arise
in these other areas:

Differential privacy. A randomized algorithm is differentially pri-
vate [16] if changing a single input record results in a small change
in the distribution of the algorithm’s output. When each input
record corresponds to one individual’s datum, differential privacy
guarantees that nothing specific to any individual can be learned
from the output of the algorithm. (See Section 2.4.) Differential
privacy comes with a rich algorithmic toolkit and understanding
of the feasibility of fundamental statistical tasks in query estima-
tion, classification, regression, distribution estimation, hypothesis
testing, and more.

Generalization in adaptive data analysis. Generalization is the
ability of a learning algorithm to reflect properties of a population,
rather than just properties of a specific sample drawn from that
population. Techniques for provably ensuring generalization form
a hallmark of theoretical machine learning. However, generaliza-
tion is particularly difficult to guarantee in settings where multiple
analyses are performed adaptively on the same sample. Traditional
notions of generalization do not hold up to downstream misinter-
pretation of results. For example, a classifier that encodes detailed
information about its training sample in its lower order bits may
1[23] stated this definition under the name “reproducibility.” See Section 2.6 for a
discussion of why we refer to it as “replicability” instead.

generalize well, but can be used to construct a different classifier
that behaves very differently on the sample than it does on the
population. Interactive processes such as exploratory data analysis
or feature selection followed by classification/regression can ruin
the independence between the training sample and the method
used to analyze it, invalidating standard generalization arguments.

Adaptivity in data analysis has been identified as one contribut-
ing factor to the replication crisis, and imposing stability conditions
on learning algorithms offers solutions to this part of the prob-
lem. A variety of such stability conditions have been studied [4–
6, 12, 14, 15, 27, 30, 34, 36], each offering distinct advantages in
terms of the breadth of their applicability and the quantitative pa-
rameters achievable. Two specific notions play a central role in this
work. The first is perfect generalization [4, 12], which ensures that
whatever can be inferred from the output of a learning algorithm
when run on a sample 𝑆 could have been learned just from the
underlying population itself:

Definition 1.2. An algorithm 𝐴 : X𝑛 → Y is (𝛽, 𝜀, 𝛿)-perfectly
generalizing if, for every distribution 𝐷 overX, there exists a distribu-
tion 𝑆𝑖𝑚𝐷 such that, with probability at least 1 − 𝛽 over 𝑆 consisting
of 𝑛 i.i.d. samples from 𝐷 , and every set of outcomes O ⊆ Y,

𝑒−𝜀 (Pr𝑆𝑖𝑚𝐷
[O] − 𝛿) ≤ Pr[𝐴(𝑆) ∈ O] ≤ 𝑒𝜀Pr𝑆𝑖𝑚𝐷

[O] + 𝛿. (1)

The second ismax-information [14] which constrains the amount
of information revealed to an analyst about the training sample:

Definition 1.3. An algorithm 𝐴 : X𝑛 → Y has (𝜀, 𝛿)-max-
information with respect to product distributions if for every set of
outcomes O ⊆ (Y × X𝑛) we have

Pr[(𝐴(𝑆), 𝑆) ∈ O] ≤ 𝑒𝜀Pr[(𝐴(𝑆), 𝑆 ′) ∈ O] + 𝛿,

where 𝑆 and 𝑆 ′ are independent samples of size 𝑛 drawn i.i.d. from
an arbitrary distribution 𝐷 over X.

As with differential privacy, both perfect generalization and
max-information are robust to post-processing.

Each stability definition described above is tailored to model a
distinct desideratum. At first glance, they may all appear technically
incomparable. For instance, differential privacy is stricter than the
other definitions in that it holds in the worst case over all input
datasets without any assumptions on the data-generating procedure.
On the other hand, it is weaker in that it only requires insensitivity
to changing one input record, rather than to resampling the en-
tire input dataset as in max-information, perfect generalization, or
replicability. Meanwhile, differential privacy, max-information, and
perfect generalization quantify the sensitivity of the algorithm’s
output in a weaker way than replicability; the former three notions
only require that the distributions on outputs are similar, whereas
replicability demands that precisely the same output realization is
obtained with high probability.

Nevertheless, the (surprising!) technical connections between
these definitions have enabled substantial progress on the funda-
mental questions in their respective areas. For example, it was ex-
actly the adaptive generalization guarantees of differential privacy
that kickstarted the framework of adaptive data analysis from [15];
the definition of max-informationwas subsequently introduced [14]
to unify existing analyses based on differential privacy and descrip-
tion length bounds. As another illustration, variants of replicability
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were introduced in [9, 19, 20] for purely technical reasons, as it
was observed that such algorithms could be immediately used to
construct differentially private ones. This connection was essential
in proving the characterization of private PAC learnability in terms
of the Littlestone dimension from online learning [2, 9]. In fact,
this characterization shows, that, in principle a private PAC learner
using 𝑛 samples can be converted to a replicable PAC learner using
a number of samples that is an exponential tower of height 𝑛, but it
is non-constructive and does not suggest what such a learner looks
like in general.

1.1 Our Main Results
1.1.1 Equivalences. Our main result is a complete characterization
of the relationships between these quantities. We prove that all
four central stability notions — replicability, differential privacy,
perfect generalization, and bounded max-information w.r.t. prod-
uct distributions — are equivalent to one another via constructive
conversions that incur at most a near-quadratic overhead in sample
complexity.

Our equivalences apply to an abstract and broad class of statisti-
cal tasks that capture learning from i.i.d. samples from a population.
An instance of such a task is obtained by considering a distribution
𝐷 from a pre-specified family of distributions. Given i.i.d. samples
from 𝐷 , the goal of a learning algorithm is to produce an outcome
that is “good” for 𝐷 with high probability. This formulation of a
statistical task captures problems such as PAC learning, where a
sample from 𝐷 is a pair (𝑥, 𝑓 (𝑥)) ∈ X × {0, 1} where 𝑥 is drawn
from an arbitrary marginal distribution over X, and 𝑓 is an arbi-
trary function from a fixed concept class 𝐻 . A “good” outcome for
such a distribution 𝐷 is a hypothesis ℎ : X → {0, 1} that well-
approximates 𝑓 on 𝐷 . Many other objectives such as regression,
distribution parameter estimation, distribution learning, hypothe-
sis testing, and confidence interval construction can be naturally
framed as statistical tasks. (See Section 6.4 for other examples.)

Figure 1 illustrates the known relationships between the various
stability notions that hold with respect to any statistical task.

From these equivalences we obtain the following consequences,
resolving several open questions.

Sample-efficient replicable algorithms. Any differentially private
algorithm solving a statistical task (with a finite outcome space) can
be converted into a replicable algorithm solving the same task with
a near-quadratic blowup in its sample complexity. Thus, the wealth
of research on private algorithm design can be brought to bear
on designing replicable algorithms. We illustrate this algorithmic
paradigm by describing new replicable algorithms for some PAC
learning, distribution parameter estimation, and distribution testing
problems in Section 6.4.

Equivalence between perfect generalization and differential privacy.
For simplicity, the relationships summarized in Figure 1 are stated
in terms of a one-way variant of perfect generalization, where only
the inequality on the right of (1) is required to hold. But the original
two-way definition turns out to be statistically equivalent for tasks
with a finite outcome space. This is because a one-way perfectly
generalizing algorithm can be converted to a replicable algorithm
using Theorem 3.17, and Theorem 3.19 actually yields the stronger

conversion back to a two-way perfectly generalizing algorithm (See
Theorem 6.3). Thus, an (𝜀, 𝛿)-differentially private algorithm (with
a finite outcome space) can be converted to a perfectly generalizing
one solving the same statistical task with a near quadratic blow-up
in sample complexity. This resolves an open question of [12]. Their
work also gave a conversion from perfectly generalizing algorithms
to differentially private ones with no sample complexity overhead,
and while their transformation preserves accuracy for (agnostic)
PAC learning, it is not clear how to analyze it for general statistical
tasks. Our conversion from perfect generalization to replicability
and then to differential privacy holds for all statistical tasks with a
finite outcome space.

Converting item-level to user-level privacy. Consider a “user-level”
learning scenario in which 𝑛 individuals each hold𝑚 training ex-
amples drawn i.i.d. from the same distribution. When is (𝜀, 𝛿)-
differentially private learning possible if we wish to guarantee
privacy with respect to changing all of any individual’s samples
at once? Ghazi, Kumar, and Manurangsi [20] showed that this is
possible when 𝑛 ≥ 𝑂 (log(1/𝛿)/𝜀) and the task admits a replicable
learner. For the special case of PAC learning a concept class 𝐻 , they
argued that this implies a user-level private learning algorithm
whenever 𝐻 is privately PAC learnable with respect to changing
a single sample. They posed the open problem of extending this
result beyond PAC learning, e.g., to private regression [21, 25]. Our
conversion from any differentially private algorithm to a replicable
one implies that such a transformation is possible for any statistical
task with a finite outcome space (Section 6.1). Moreover, one can
always take each indvidual’s number of samples 𝑚 to be nearly
quadratic in the sample complexity of the original item-level private
learner.

Amplifying differential privacy parameters. While almost all (𝜀, 𝛿)-
differentially private algorithms enjoy a mild ∝ log(1/𝛿) depen-
dence in their sample complexity on the parameter 𝛿 , it was not
known how to achieve this universally, say by amplifying large val-
ues of 𝛿 to asymptotically smaller ones. [9] showed that for private
PAC learning, such amplification is possible in principle, but posed
the open question of giving an explicit amplification algorithm.
By converting an (𝜀, 𝛿)-differentially private algorithm with weak
parameters to a replicable one, and then back to a differentially
private one with strong parameters, we resolve this question for
the general class of statistical tasks with a finite outcome space,
and with a much milder sample complexity blowup (Section 6.2).

Agnostic-to-realizable reductions for distribution-family learning.
[22] introduced a simple and flexible framework for converting real-
izable PAC learners to agnostic learners without relying on uniform
convergence arguments. The framework applies to diverse settings
such as robust learning, fair learning, partial learning, and (as ob-
served in this work) replicable learning, with differential privacy
providing a notable exception.2 While an agnostic-to-realizable re-
duction for private PAC learning is known [1, 7], it relies on uniform
convergence and is only known to hold in the distribution-free PAC
model. By converting a realizable private learner to a realizable
replicable learner, then to an agnostic replicable learner, and back

2We note the technique we introduce to adapt [22] to the replicable setting has no
clear translation to the private setting.
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(0.1)-replicability (𝜀, 𝛿)-differential privacy

(𝜀, 𝛿)-max-information
w.r.t. product distributions

(𝛿, 𝜀, 𝛿)-one-way
perfect generalization

𝑛 ↦→ 𝑛 · log(1/𝛿)𝜀 , Thm. 3.1 [20]

𝑛 ↦→ 𝑛2

Cor. 3.13 [32]

Lem. 3.14

𝑛 ↦→ 𝑛

Thm. 3.17
𝑛 ↦→ 𝑛 · poly log(1/𝜀,1/𝛿)

𝜀2

Thm. 3.19

Figure 1: The solid arrow from 𝐴 to 𝐵 means that every algorithm satisfying 𝐴 also satisfies 𝐵. A dashed arrow means that for
every statistical task, a solution satisfying 𝐴 can be computationally efficiently transformed into a solution satisfying 𝐵 with
the stated blowup in sample complexity. The thin dotted arrow means an explicit transformation exists, but is not always
computationally efficient, and assumes the outcome space is finite.
This figure suppresses constant factors everywhere and polynomial factors in 𝛿 , assumes 𝜀 is below a sufficiently small constant,
and assumes that 𝛿 is a sufficiently small inverse polynomial in 𝑛.

to an agnostic private learner, we obtain a reduction that works
in the absence of uniform convergence (Section 6.3). In particular,
this reduction applies to the distribution-family learning model,
where one is promised that the marginal distribution on unlabeled
examples comes from a pre-specified family of distributions.

1.1.2 Separating Stability: Computational Barriers and the Complex-
ity of Correlated Sampling. All of the transformations appearing in
Figure 1 preserve computational efficiency, with the lone exception
of the transformation from perfectly generalizing algorithms to
replicable ones. This transformation makes use of the technique of
correlated sampling from the distribution of outputs of a perfectly
generalizing algorithm 𝐴 when run on a fixed sample 𝑆 (elaborated
on more in Sections 1.2 and 2.5). This step can be explicitly imple-
mented via rejection sampling from the output space of 𝐴, with the
rejection threshold determined by the probability mass function of
𝐴(𝑆), but in general it is not computationally efficient.

We show that under cryptographic assumptions, this is inherent
(Section 4). Specifically, we show that under standard assumptions
in public-key cryptography, there exists a statistical task that ad-
mits an efficient differentially private algorithm, but does not have
any efficient replicable algorithm. The task is defined in terms of
a public-key encryption scheme with the following rerandomiz-
ability property: Given a ciphertext Enc(pk, 𝑏), there is an efficient
algorithm producing a uniformly random encryption of 𝑏. Fixing
such a rerandomizable PKE, the statistical task is as follows. Given
a dataset consisting of random encryptions of the form Enc(pk, 𝑏)
where pk is a fixed public key and 𝑏 ∈ {0, 1} is a fixed bit, output
any encryption of 𝑏.

One can solve this problem differentially privately, essentially by
choosing a random ciphertext from the input dataset and rerandom-
izing it. On the other hand, there is no efficient replicable algorithm
for this task. If there were, then one could use the public key to
produce many encryptions of 0 and 1 and run the replicable al-
gorithm on the results to produce canonical ciphertexts 𝑐0 and 𝑐1,
respectively. Then, given an unknown ciphertext, one could repeat-
edly rerandomize it, run the replicable algorithm on the results,
and compare the answer to 𝑐0 and to 𝑐1 to identify the underlying
plaintext.

We also show that cryptographic assumptions are necessary
even to separate replicability from perfect generalization. Recalling
again that the bottleneck in computationally equating the two no-
tions is in implementing correlated sampling, we show in Section
4.2 that if one-way functions do not exist, then correlated sampling
is always tractable. In addition to addressing a natural question
about the complexity of correlated sampling, this shows that func-
tion inversion enables an efficient transformation from perfectly
generalizing algorithms into replicable ones. (See Section 2.5 for
more discussion.)

1.1.3 Separating Stability: Statistical Barriers. Our equivalences
show that the sample complexities of perfectly generalizing and
replicable learning are essentially equivalent. Moreover: (1) An
approximate-DP algorithm can be converted to a perfectly general-
izing/replicable algorithm with near-quadratic blowup; and (2) A
perfectly generalizing/replicable algorithm can be converted to an
approximate-DP one using roughly the same number of samples.
We prove that both of these conversions are optimal by showing:
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(1) Quadratic separations between differential privacy and
perfect generalization/replicability. We first consider
the problem of estimating the parameters of a product of 𝑑
Bernoulli distributions. By simply taking the empirical mean
of an input dataset, this problem can be solved using𝑂 (log𝑑)
without any stability constraints. However, with differen-
tial privacy, it is known that Θ̃(

√
𝑑) samples are necessary

and sufficient. By adapting the “fingerprinting” method un-
derlying these privacy lower bounds [10, 11, 18] to perfect
generalization, we prove that any perfectly generalizing or
replicable algorithm for this problem requires Ω̃(𝑑) samples
(Section 5.1).
By reducing from a variant of this one-way marginals prob-
lem, we also show a general lower bound for replicable agnos-
tic learning. Namely, we show that every concept class 𝐻 re-
quires Ω̃(𝑉𝐶 (𝐻 )2) samples. For concept classes of maximal
VC dimension 𝑉𝐶 (𝐻 ) = log |𝐻 |, this too gives a quadratic
separation between replicable learning and both private and
unconstrained learning (Section 5.2).

(2) No separation between differential privacy and perfect
generalization/replicability. Complementing our lower
bounds, we also show that every finite class 𝐻 can be repli-
cably PAC learned (in the realizable setting) to error 𝛼 with
sample complexity 𝑂̃𝐻 (1/𝛼) (Section 5.3). Up to logarith-
mic factors, this matches the learning rate achievable for
both unconstrained and differentially private learning. Our
learner works by selecting a random threshold 𝑣 , and select-
ing a random concept from 𝐻 whose error with respect to
the sample is at most 𝑣 . A more involved random thresh-
olding strategy also yields an agnostic learner with sample
complexity 𝑂̃𝐻 (1/𝛼2).

1.2 Overview of Proofs of Equivalences
Perfect generalization is equivalent to replicability. Recall that an

algorithm is replicable if it is likely to produce exactly the same
output when run on two independent samples from any given
population. Replicability appears to be a dramatic strengthening of
perfect generalization, which only requires the distributions of𝐴(𝑆)
and 𝐴(𝑆 ′) to be statistically close. Nevertheless, we prove that per-
fectly generalizing algorithms can always be converted to replicable
ones whenever the output space Y is finite (Theorem 3.17). This
can be done via a primitive called correlated sampling (See Section
2.5). A correlated sampling algorithm for a class of distributions
P = {𝑃} is a procedure 𝐶𝑆 (𝑃, 𝑟 ) such that 1) 𝐶𝑆 (𝑃, 𝑟 ) produces
a sample distributed according to 𝑃 when provided a uniformly
random input 𝑟 , and 2) Whenever 𝑃,𝑄 ∈ P satisfy 𝑑T𝑉 (𝑃,𝑄) ≤ 𝜂,
we have Pr[𝐶𝑆 (𝑃, 𝑟 ) = 𝐶𝑆 (𝑄, 𝑟 )] ≥ 1 − 𝑂 (𝜂). That is, applying
correlated sampling to two similar distributions results in the same
output with high probability – exactly what is needed for replicabil-
ity. We actually prove a stronger theorem, showing that the larger
class of one-way perfectly generalizing algorithms (where only
the right-hand inequality in 1 holds) are replicable via correlated
sampling.

Conversely, we show how to convert replicable algorithms to
perfectly generalizing ones (Theorem 3.19). While a 𝜌-replicable

algorithm is automatically also a (𝛽 = 𝑂 (𝜌), 𝜀 = 0, 𝛿 = 𝑂 (𝜌))-
perfectly generalizing one, these parameters are too weak for ap-
plications where one wants to take 𝛽, 𝛿 to be inverse polynomial in
the dataset size 𝑛 (e.g., to prove the lower bounds in Section 5). To
obtain a perfectly generalizing algorithm with stronger parameters,
we repeatedly run the replicable algorithm using 𝑘 = 𝑂 (log(1/𝛿))
different sequences of coin tosses 𝑟1, . . . , 𝑟𝑘 , and using 𝑂̃ (1/𝜀2) in-
dependent samples for each sequence of coin tosses. Using the
exponential mechanism from differential privacy [28], we select
an outcome 𝑦𝑖 that appears approximately the most frequently
amongst these repetitions in a manner that ensures (𝛽 = 𝛿, 𝜀, 𝛿)-
perfect generalization. This strategy allows us to obtain inverse
polynomial 𝛽, 𝛿 parameters with only a logarithmic multiplicative
overhead in the number of samples.

Bounded max-information implies perfect generalization.
In Lemma 3.14, we show that bounded max-information implies
one-way perfect generalization with similar parameters. Namely, if
an algorithm 𝐴 has (𝜀, 𝛿)-max-information with respect to product
distributions, then it is also (

√
𝛿, 2𝜀,

√
𝛿)-one-way perfectly gener-

alizing. The idea is to take the simulator distribution 𝑆𝑖𝑚𝐷 to be
the distribution of 𝐴(𝑆 ′), where the randomness is taken over both
the coin tosses of 𝐴 and the randomness of a sample 𝑆 ′ ∼ 𝐷 . A
similar argument is implicit in [4, Proof of Lemma 4.5]. Then by
combining Theorems 3.17 and 3.19, it follows that bounded max-
information also implies perfect generalization for finite outcome
spaces (Theorem 6.3).

Replicability implies differential privacy. In Theorem 3.1 we show
that replicability implies differential privacy. Given a replicable
algorithm, one can run it 𝑘 = 𝑂 (log(1/𝛿)/𝜀) times using the same
sequence of coin tosses, but on independent samples, producing
outcomes 𝑦1, . . . , 𝑦𝑘 . Replicability ensures that most of these out-
comes are the same with high probability, and so this common
outcome can be selected in a standard differentially private way.
This argument appears in the differential privacy literature as a con-
version from “globally stable” and “pseudo-globally stable” learners
to private ones [9, 19, 20]. Our presentation of Theorem 3.1 includes
an additional amplification step that avoids union bounding over
correctness, making the conversion suitable for a broader range of
parameters.

Differential privacy implies bounded max-information. The
final conversion in Figure 1 is from differentially private algorithms
to algorithms with bounded max-information. This argument is
implicit in [32] and we show how it follows from their work here
(Corollaries 3.12 and 3.13).

1.3 Further Discussion of Related Work
Several elements of our approach were inspired by Ghazi, Kumar,
and Manurangsi’s study of the relationship between user-level and
item-level differentially private learning [20]. They introduced a
notion of “pseudo-global stability” that is essentially the same as
replicability, and showed that it implies differential privacy. Corre-
lated sampling also played a crucial role in their work by allowing
individuals to use shared randomness to reach consensus on a
learned hypothesis. In fact, it provided a key step in their conver-
sion from “list globally stable” algorithms [19] (learning algorithms
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that output a short list of hypotheses, one of which is almost guar-
anteed to be canonical for the given distribution) to pseudo-globally
stable ones.

Stability in learning has a long history as a tool for ensuring
generalization. Early work [8, 13, 33, 35] showed that the stabil-
ity of a learning algorithm with respect to a specific loss func-
tion could ensure strong generalization guarantees with respect
to that loss. A more recent literature has focused on stability no-
tions that are not tied to a specific loss, and which ideally are
robust under post-processing and adaptive composition. This in-
cludes understanding the generalization guarantees of differen-
tial privacy [6, 14, 15, 24, 31, 32, 38] and other constraints on the
information-theoretic relationship between the input and output
of a learning algorithm [5, 27, 30, 34, 36, 37]. A related line of work
considers more “semantic” notions of stability, defining it in terms
of the difficulty of inferring properties specific to the sample rather
than of the underlying distribution [4, 12, 29]. Perfect generalization,
one of the main definitions we study in this work, was introduced
by [12] and is a special case of typical stability that was introduced
in independent work of Bassily and Freund [4].

Independent of this work, [26] study similar relationships be-
tween notions of stability. They focus on the PAC-learning setting,
where they show a statistical equivalence between differential pri-
vacy, replicability, and a notion called “TV-indistinguishability”
which can be thought of as a special case of perfect generalization
with 𝜀 = 0. To clarify the differences between our work and [26],
first recall how we obtain replicability from differential privacy:

• First, we exploit existing connections between privacy and
bounded max-information from [32] to obtain an algorithm
with bounded max-information from a differentially private
one.

• We prove that bounded max-information implies perfect
generalization.

• We then show that we can obtain a replicable algorithm
from a perfectly generalizing one by applying correlated
sampling to its distribution over outputs. The relevant out-
put distribution is induced by fixing an input sample of the
perfectly generalizing algorithm and redrawing its internal
randomness.

Recall that the correlated sampling procedure may not be effi-
cient, and that we assume the output domain of the differentially
private algorithm is finite.

The work of [26] follows a different approach. First, they start
from a differentially private PAC learner, rather than a differen-
tially private algorithm for a general statistical task, and factor
through TV-indistinguishability and Littlestone dimension. More
specifically:

• They first observe a similar equivalence of replicability and
TV-indistinguishability for general statistical tasks.

• They then show that a private PAC learner implies the exis-
tence of a TV-indistinguishable learner, leveraging results
from [2] showing that private PAC learning implies finite
Littlestone dimension, and results from [19, 20] showing that
finite Littestone dimension implies list global-stability.

Our approach gives us a constructive procedure for converting
a private algorithm for a general statistical task into a replicable

algorithm, so long as the private algorithm has finite range. Our
transformations induce a modest sample complexity increase, re-
sulting in a replicable algorithm with sample complexity 𝑛2, given
a private learner with sample complexity 𝑛. By contrast, the results
of [26], while non-constructive, apply to countably infinite domains
(and therefore to some uncountably infinite ranges). However, their
results go through Littlestone dimension, which may be an expo-
nential tower in 𝑛, and so they obtain sample complexity bounds
which are an exponential tower in 𝑛 as well.

1.4 Open Problems
We highlight several directions and open problems for future work.

(1) Is a transformation from (one-way) perfectly generalizing
algorithms to replicable algorithms possible for infinite out-
put spaces in general? While correlated sampling introduces
no sample complexity overhead in terms of the output space,
it is only known to be possible when the output space is
finite or the class of distributions to be sampled from is
structured. (E.g., the distributions in the class all have uni-
formly bounded Radon-Nikodym derivative with respect
to some fixed base measure).3 In independent work, [26]
make progress towards this goal by giving a transformation
from TV-indistinguishability to replicability when there are
only countably many options for the TV-indistinguishable
algorithm {𝐴(𝑆)}𝑆 ∈𝑋𝑛 . In the full version, we show that
(𝛽, 𝜀, 𝛿)-one-way perfect generalization implies (4𝜀+2𝛿+2𝛽)-
TV indistinguishability, and so the result of [26] gives the
following corollary.

Corollary 1.4. Fix 𝑛 ∈ N, 𝛽, 𝜀, 𝛿 ∈ (0, 1]. Let X be a count-
able domain and𝐴 : X𝑛 → Y be a (𝛽, 𝜀, 𝛿)-one-way perfectly
generalizing algorithm for a statistical task. Then there ex-

ists an algorithm 𝐴′ : X𝑛 → Y that is
(
2𝜌
1+𝜌

)
-replicable for

𝜌 = 4𝜀 + 2𝛿 + 2𝛽 , and for all 𝑆 ∈ X𝑛 , 𝐴(𝑆) = 𝐴′(𝑆).

Whether a transformation exists for general measure spaces
remains open.4 In the full version we discuss the list heavy-
hitters problem thatmay be a candidate for separating perfect
generalization from replicability over infinite output spaces.

(2) What are the minimal cryptographic assumptions under
which a computational separation between replicability and
differential privacy exists? Our results show that one-way
functions are necessary, while public-key assumptions are
sufficient.

(3) [23, Lemma A.7] showed that replicable algorithms com-
pose adaptively. That is, a sequence of 𝑘 adaptively chosen
𝜌-replicable algorithms yields a transcript that is 𝑂 (𝑘𝜌)-
replicable. One way to interpret this result is as follows:
Given a sequence of𝑘 analyses that are each (0.01)-replicable
using a sample of size 𝑛, one can amplify their individual

3Formally, such a case would fall into a restricted notion of correlated sampling over a
subset of distributions, similar to the multiple coupling of [3].
4We note that in the PAC-setting one can resolve this issue via factoring through Little-
stone Dimension and [23]’s heavy-hitters, but this results in tower sample complexity.
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replicability parameters to 𝑂 (1/𝑘) at the expense of increas-
ing their sample complexity to 𝑂 (𝑘2𝑛). This yields a (0.01)-
replicable algorithm for performing all 𝑘 analyses at a sample
cost of 𝑂 (𝑘2𝑛).
Our conversions between replicability and differential pri-
vacy yield a different tradeoff, at least for simulating non-
adaptive composition. Given 𝑘 analyses that are each (0.01)-
replicable using a sample of size 𝑛, one can convert them to
𝑂̃ (1/

√
𝑘)-differentially private algorithms each using a sam-

ple of size 𝑂̃ (
√
𝑘𝑛). “Advanced” composition of differential

privacy [17] yields an (0.01, 𝛿)-differentially private algo-
rithm using 𝑂̃ (

√
𝑘𝑛) samples, which can then be turned back

into a (0.01)-replicable algorithm using 𝑂̃ (𝑘𝑛2) samples.
What is the optimal sample cost for conducting, or at least
statistically simulating, the (adaptive) composition of 𝑘 repli-
cable algorithms? Is it possible to do so at a cost of 𝑂 (𝑘𝑛)
samples?

(4) In the full version, we give a direct replicable algorithm for
the task of realizable PAC learning of finite classes with
sample cost inverse linear in the accuracy parameter 𝛼 . (As
opposed to inverse quadratic, which is what applying the
reduction from replicability to approximate DP gives – see
Theorem 6.13 and the following discussion.) Are there other
natural problems for which there are (perhaps more dra-
matic) separations between what’s achievable via directly
constructing a replicable algorithm for a task, and what’s
achievable using our reduction to approximate DP? For ex-
ample, can discrete distributions over [𝑘] be replicably es-
timated using 𝑂 (𝑘) samples (as opposed to quadratic in 𝑘 ,
which is what is obtained through our reduction)? Can the
mean of a 𝑑-variate Gaussian with unknown covariance be
estimated directly using 𝑂 (𝑑) samples (as opposed to qua-
dratic in𝑑 , which is what is obtained through our reduction)?
Evenmore ambitiously, is it possible to characterize the types
of problems for which our reduction from replicability to
approximate DP gives tight bounds?

(5) To what extent is replicability preserved under distributional
shift? In the full version, we give a simple argument showing
that a 𝜌-replicable algorithm is 𝜌 (1 − 𝛿)2𝑚-replicable across
two close distributions. Are there tighter replicability and
non-replicability bounds for specific families of distributions,
problems, and algorithms under distributional shifts?
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