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Reinforcement learning (RL) enables agents to make a decision based on a reward function. However,
in the process of learning, the choice of values for learning algorithm hyperparameters can signifi-
cantly impact the overall learning process. In this paper, we extended our previously proposed algo-
rithm Genetic Algorithm-based Deep Deterministic Policy Gradient and Hindsight Experience Replay
method (called GA+DDPG+HER) to find near-optimal values of learning hyperparameters. We used
GA+DDPG+HER method on FetchReach, FetchSlide, FetchPush, FetchPick&Place, and DoorOpen-
ing in robotic manipulation tasks. With some modifications, our GA+DDPG+HER method was also
applied to the AuboReach environment. In-depth background information, experimental settings, im-
plementation information, training evaluation, and analysis of the GA+DDPG+HER application to
manipulation tasks are the main objectives of this research. Our experimental evaluation shows that
our method leads to significantly better performance, faster than the original algorithm. Also, we provide
evidence that GA+DDPG+HER performs better than the existing methods.

Keywords: DRL; DDPG+HER; Reinforcement Learning; Genetic Algorithm; GA+DDPG+HER; DDPG;
HER.

1. Introduction

In the past, deep learning has been extensively used [1-9]. Recent significant applications of Reinforcement
Learning (RL) [10] include robotic table tennis [11], surgical robot planning [12], rapid motion planning in
bimanual regrasping for suture needles [13], aquatic navigation [14], and standard robotic manipulation [15].
Each of these applications uses reinforcement learning (RL) as a motivating alternative to automating manual
work.

In this study, we focus on training Deep Reinforcement Learning (DRL) policies utilizing DDPG [16] and
HER [17]. DDPG+HER have a difficulty with efficiency. A better selection of DDPG and HER hyperparame-
ters can enhance the performance of various robotic manipulation jobs. The number of epochs needed for the
learning agent to master a certain robotic task can be used to gauge performance. The search for near-optimal
hyperparameter values can be aided by optimization methods like Genetic Algorithms (GA), which play a bigger
part in dramatically boosting an existing system’s performance.

In our past efforts [18-20], the algorithm GA+DDPG+HER was discovered. The findings of this study are
displayed in [21]. [22] is one example of work that is closely similar. More proof that efficiency can be significantly
increased when a GA is employed to automatically tune the hyperparameters for DDPG+HER is provided by
the results of these articles. The difference can significantly affect how long it takes a learning agent to learn
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something new.

In this work, a novel automatic hyperparameter tuning algorithm [18] is applied to DDPG+HER from [23].
The algorithm is then applied to 4 existing as well as 3 custom-built robotic manipulator gym environments. Fur-
ther, the whole algorithm is analyzed at various stages to check the effectiveness of the approach in improving the
overall efficiency of the learning process. The final results strengthen our claim and provide enough evidence that
automating the hyperparameter tuning process is extremely important, and does decrease the learning time by as
much as 57%. Lastly, we compare GA+DDPG+HER with 4 methods, applied on FetchReach. GA+DDPG+HER
outperforms all of them. Open source code is available at

Our main contributions are summarized as follows:

o Algorithm (GA+DDPG+HER [18)) is applied on 6 simulated and 1 real task. We build Aubo-i5 simulated
and real custom environments for analyzing the algorithm.

e Training process is analyzed using multiple factors as the GA progresses.

e Using GA+DDPG+HER found hyperparameters, the efficiency of DDPG+HER is evaluated over 10
runs in both simulated and real manipulation tasks.

e Compared GA+DDPG+HER with existing methods.

2. Genetic Algorithm optimization for Deep Reinforcement Learning
2.1. DDPG+HER and GA

In this section, we present the GA+DDPG+HER algorithm, where the genetic algorithm searches through the
space of hyperparameter values used in DDPG + HER for values that maximize task performance and minimize
the number of training epochs. We target the following hyperparameters: discounting factor «; polyak-averaging
coefficient 7 [24]; learning rate for critic network c,.;t;c; learning rate for actor-network cgetor; percent of times
a random action is taken e; and the standard deviation of Gaussian noise added to not completely random
actions as a percentage of maximum absolute value of actions on different coordinates 7. The range of all the
hyperparameters is 0-1, which can be justified using the equations following in this section.

Our experiments show that adjusting the values of hyperparameters did not increase or decrease the agent’s
learning in a linear or easily discernible pattern. So, a simple hill climber will probably not do well in finding
optimized hyperparameters. Since GAs were designed for such poorly understood problems, we use our GA to
optimize these hyperparameter values.

Specifically, we use 7, the polyak-averaging coefficient to show performance non-linearity for values of 7. 7
is used in the algorithm as shown in Equation (1):

09 — 109 + (1 —7)09,
O — 70" + (1 —7)0" . (1)

Equation (2) shows how ~ is used in the DDPG + HER algorithm, while Equation (3) describes the Q-
Learning update. o denotes the learning rate. Deep neural networks are trained based on this update equation.

Yi = 15 + Q' (5i41, 1 (504110")|09), (2)
Q(st,ar) + Q(st,at) + afrepr +YQ(St41, ar41)
—Q(st,a1)]- (3)

Since we have two kinds of networks, we will need two learning rates, one for the actor-network (agctor),
another for the critic network (aeritic). Equation (4) explains the use of percent of times that a random action
is taken, e.

ay with probability 1 — e,
ap = (4)

random action with probability e.


https://github.com/aralab-unr/ga-drl-aubo-ara-lab
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Algorithm 1 GA+DDPG+HER Algorithm

1: Choose population of n chromosomes
2: Set the values of hyperparameters into the chromosome
3: Run the DDPG + HER to get the number of epochs for which the algorithm first reaches success rate > 0.85
4: for all chromosome values do
5: Initialize DDPG
6: Initialize replay buffer R < ¢
7 for episode=1, M do
8: Sample a goal g and initial state sg
9: for t=0, T-1 do
10: Sample an action a; using DDPG behavioral policy
11: Execute the action a; and observe a new state s;11
12: end for
13: for t=0, T-1 do
14: re = 1(8¢, at,9g)
15: Store the transition (s¢||g, at, 7, s¢11]|g) in R
16: Sample a set of additional goals for replay G := S(current episode)
17: for ¢ € G do
18: ' i=1r(st, at,g)
19: Store the transition (s¢||¢’, at,7’, st+1]|9’) in R
20: end for
21: end for
22: for t=1,N do
23: Sample a minibatch B from the replay buffer R
24: Perform one step of optimization using A and minibatch B
25: end for
26: end for
27: return 1/epochs
28: end for

29: Perform Uniform Crossover
30: Perform Flip Mutation at a rate of 0.1
31: Repeat for the required number of generations to find an optimal solution

Figure 1 shows that when the value of 7 is modified, there is a change in the agent's learning, further
emphasizing the need to use a GA. The original (untuned) value of 7 in DDPG was set to 0.95, and we are using
4 CPUs. All the values of 7 are considered up to two decimal places, to see the change in success rate with change
in the value of the hyperparameter. From the plots, we can tell that there is a great scope of improvement from
the original success rate.

Algorithm 1 explains the integration of DDPG + HER with a GA, which uses a population size of 30 over 30
generations. We are using ranking selection [25] to select parents. The parents are probabilistically based on rank,
which is, in turn, decided based on the relative fitness (performance). Children are then generated using uniform
crossover [26]. We are also using flip mutation [27] with a probability of mutation to be 0.1. We use a binary
chromosome to encode each hyperparameter and concatenate the bits to form a chromosome for the GA. The six
hyperparameters are arranged in the order: 7; v; Qeritic; Qactor; € and 7. Since each hyperparameter requires 11 bits
to be represented to three decimal places, we need 66 bits for 6 hyperparameters. These string chromosomes then
enable domain-independent crossover and mutation string operators to generate new hyperparameter values. We
consider hyperparameter values up to three decimal places because small changes in values of hyperparameters
cause considerable change in success rate. For example, a step size of 0.001 is considered the best fit for our
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Fig. 1: Success rate vs. epochs for various 7 for FetchPickésPlace-vl task.

problem.

The fitness for each chromosome (set of hyperparameter values) is defined by the inverse of the number
of epochs it takes for the learning agent to reach close to maximum success rate (> 0.85) for the very first
time. Fitness is inverse of the number of epochs because GA always maximizes the objective function and this
converts our minimization of the number of epochs to a maximization problem. Since each fitness evaluation
takes significant time an exhaustive search of the 256 size search space is not possible and thus we use a GA
search.

3. Experimental Results
3.1. Experimental setup

As mentioned earlier, a chromosome is binary encoded. Each chromosome string is a combination of all the hy-
perparameters used in the GA. Figure 2 shows an example chromosome with 4 hyperparameters binary encoded.

1011001011001010111/00101

N TN

Parameter 1 parameter 2 Parameter 3 Parameter 4

Fig. 2: Chromosome representation for the GA.

Figure 3, shows the environments used to test robot learning on five different simulation tasks:
FetchPickéPlace-vl, FetchPush-v1, FetchReach-vl, FetchSlide-vl, and DoorOpening. AuboReach environments
are shown in figures 4 and 5 and are performed both in simulated and real experiments. We evaluate our al-
gorithm on these 6 gym environments. The fetch environments: FetchPickéPlace, FetchPush, FetchReach, and
FetchSlide are from [28]. DoorOpening and AuboReach are custom-built gym environments, developed by us.
The details of the 6 tasks are described below:

o FetchPick&Place: The agent picks up the box from a table and moves to the goal position, which may
be anywhere on the table or the area above it.



(a) FetchPick&Place environment

(b) FetchPush environment

(c) FetchReach environment

(d) FetchSlide environment

(e) Door Opening environment

Fig. 3: Environments and the corresponding DDPG+HER vs GA+DDPG+HER plots, when all the 6 hyperpa-
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rameters are found by GA. All plots are averaged over 10 runs. DRL stands for DDPG+HER.
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e FetchPush: A box is kept in front of the agent. It pushes or rolls the box to the goal position on the
table. The agent is not allowed to pick up the box.

e FetchReach: The agent has to move the end-effector to the goal position in the area around it.

e FetchSlide: A puck is placed on a slippery table within the reach of the agent. It has to hit the puck
with such a force that it (puck) comes to rest at the goal position due to friction.

e DoorOpening: A simulated Aubo i5 manipulator is placed within the reach of a door, having a door
handle facing the robot. The task is to push open the door by putting the force in the area of the door
handle.

e AuboReach: A simulated/real Aubo i5 manipulator learns to reach a goal joint configuration and pick
up the object using a gripper.

Fig. 4: AuboReach environment performing a task in a real experiment, using most accurate policy learned from
GA+DDPG+HER.

Fig. 5: AuboReach environment performing a task in a simulated experiment, using best policy learned using
GA+DDPG+HER.
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3.2. Running GA

We ran the GA separately on these environments to check the effectiveness of our algorithm and compared
performance with the original values of the hyperparameters. Figure 6 (a) shows the result of our experiment
with FetchPush-vi. We let the system run with the GA to find the best values of hyperparameters 7 and ~.
Since the GA is probabilistic, we show results from ten runs of the GA and the results show that the optimized
hyperparameters found by the GA can lead to better performance. The learning agent can run faster and can
reach the maximum success rate faster. In Figure 6 (b), we show one learning run for the original hyperparameter
set and the average learning over these ten different runs of the GA. The results shown in figure 6 show changes
when only two hyperparameters are being optimized as we tested and debugged the genetic algorithm, we can
see the possibility for performance improvement. Our results from optimizing all five hyperparameters justify
this optimism and are described next.

o L - -
0

10 20 30 40 50 4 10 20 30 40 50
epochs epochs

(a) GA+DDPG+HER over 10 runs, vs. Original (b) GA+DDPG+HER averaged over 10 runs, vs. Original
Fig. 6: Success rate vs. epochs for FetchPush-vl task when 7 and 7 are found using the GA.

The GA was then run to optimize all hyperparameters and these results were plotted in Figure 3 for all
the tasks. Table 1 compares the GA found hyperparameters with the original hyperparameters used in the
RL algorithm. Though the learning rates qgector and aeritic are the same as their original values, the other
four hyperparameters have different values than the original. The plots in figure 3 show that the GA found
hyperparameters outperformed the original hyperparameters, indicating that the learning agent was able to
learn faster. All the plots in the above-mentioned figure are averaged over ten runs.

All environments | Aubo-i5 - Fixed | Aubo-i5 - Random

except Aubo-i5 Initial and Target | Initial and Target
state state

Hyperparameters | DDPG+HER GA+DDPG+HER | GA+DDPG+HER | GA+DDPG+HER
5 0.98 0.928 0.949 0.988
T 0.95 0.484 0.924 0.924
Qgctor 0.001 0.001 0.001 0.001
Qeritic 0.001 0.001 0.001 0.001
€ 0.3 0.1 0.584 0.912
n 0.2 0.597 0.232 0.748

Table 1: DDPG+HER vs. GA+DDPG-+HER values of hyperparameters.

GA+DDPG+HER hyperparameters (as in table 1) were also applied on a custom-built gym environment
for Aubo-i5 robotic manipulator, as shown in figures 4 and 5. This environment uses MOV FEit package to control
the motors, however DDPG+HER acts as a brain for its movement. Initially, the results were not as expected.
Each epoch was taking several hours (> 10-15 hours) to complete. We did not run the whole learning since it
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could take several weeks to complete. The same applied to DDPG+HER, hyperparameters. This is primarily
because both in simulation and real experiment, the movement speed of Aubo i5 robotic manipulator was kept
slow to avoid any unexpected sudden movement, which in turn could cause injury. Also, planning and execution
steps were involved in the successful completion of each action on AuboReach environment. Unlike other gym
environments discussed in this paper, AuboReach could only work with a single CPU. This is because other
environments were implemented in MuJoCo, and could easily be run with maximum possible CPUs. MuJoCo
can create multiple instances for training, resulting in faster learning. AuboReach needs to perform one action
at a time, which is similar to a real robot. These factors make this environment time-consuming to train.

3.3. Modifications required for AuboReach

The GA+DDPG+HER hyperparameters were then applied on AuboReach environment, but only with the values
of actions. This means that the robot was not running to perform the action in both simulated or real experiments.
This is reliable because each action decided by the DDPG+HER algorithm is reachable by the robot. We say this
because of planning and execution steps involved in the movement of the robot. This also avoids any possible
collision, which could’ve happened, had these steps been missing. Now, each epoch took less than a minute to
complete, which is significant reduction in training time, making it feasible to train in this environment.

Now that some of the environment difficulties were overcome, the GA+DDPG+HER hyperparameters (table
1) were applied again. These hyperparameters did not outperform the performance of the original hyperparam-
eters. We believe that is because this environment is too complex and different from other environments. We
considered yet more factors to make sure the environment is trainable. This environment uses four joints for
training and testing (instead of six). The ones used are: shoulder, forearm, upper-arm, and wrist!. This was
intended to make sure that the learning can be completed in limited time. Each of the joints can go from -1.7 to
1.7 radians. The initial and the reset state of the robot was set at an upright position, i.e., [0, 0, 0, 0].

For better learning and quick hyperparameters search, in addition to some tweaks to the environment, the
GA+DDPG+HER algorithm was also modified. The success was re-defined to consider ten successful epochs.
This means that the 100% success rate for ten successive epochs was considered as the success for the GA. It
was experimentally found that learning never converged if agctor and eritic are greater than 0.001. So, agctor
and i were capped at 0.001. Four CPUs could be used here since multi-threading can happen when using
only action values. AuboReach considered the DDPG+HER-decided joint states as a success if the combined
difference between target and the achieved joint states is less than 0.1 radians. The target joint states were set
at [-0.503, 0.605, -1.676, 1.391]. With these modifications to the algorithm, we were able to find a new set of
hyperparameters, as in Table 1. The difference between success rates of DDPG+HER and GA+DDPG+HER
during training is demonstrated by figure 7a. Clearly, the GA+DDPG+HER performs better than DDPG+HER.

AuboReach

— DAL
—— GADRL
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Median success rate
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-y 00 25 50 75 100 125 150 175
05 epochs

2 4 6 8 10 12 14 16

epochs (b) Training is done with random initial and target joint
(a) Trained initial and target state states with 1 CPU

Fig. 7: Success rate vs. epochs for the AuboReach task. This plot is an average of over ten runs.

Once the GA+DDPG+HER have been found the optimal hyperparameters for the AuboReach environment,
training was run again, using four CPUs, to find the optimal policy. This policy was then applied to the robots
in simulated and real experiments. The important thing to note here is that CPU usage was updated to one
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for testing. In both experiments, the robot was successfully able to go from the trained initial to target joint
spaces. The environment is limited to only one possible path because randomness was not introduced in training.
Since both, DDPG+HER and GA+DDPG+HER, ultimately reach a success rate of 100%, no difference was
observed during testing. The main difference lies in how quickly the environment can learn using the given set
of hyperparameters.

In yet another experiment, the AuboReach environment was modified to train on random joint states. Due
to the modification, the robot can effectively start and reach targets at random joint states during testing. GA
was run on this environment and hyperparameters found by the GA is as listed in the table 1. The plot of
GA+DDPG+HHER is still better than DDPG+HER, as shown in figure 7b. Figures 4 and 5 show the robot in
action as it performs the task of picking the object in real and simulated experiments respectively.

Applying GA+DDPG+HER on AuboReach environment also became an instance of automatic hyperpa-
rameter tuning for DDPG+HER, and hence increased the performance of the algorithm.

3.4. Training evaluation

It is significantly important to monitor the progress of a GA as it is running to optimize the performance of the
system. From the way GA’s work, some of the chromosomes will outperform the others. Hence, it is expected that
the graph of performance will not be a smooth increase curve. Some of the fitness function evaluations output a
zero, suggesting that the chromosome is unfit for use. Despite having non-smooth curve, it is also expected that
the overall performance of the system will increase as the GA progresses.

We generated several plots to monitor GA’s progress in search of optimal hyperparameters. Figures in [21]
depicts the increasing performance of the system as the GA advances. The factors considered for evaluating the
training performance are: median success rate over fitness function evaluations, total reward over episodes, and
epochs to reach the goal over fitness function evaluations. It can be observed that the overall performance of
the system is increasing. The total reward is increasing while episodes and epochs taken by the agent to reach
the goal are decreasing with fitness function evaluations. This confirms that the GA is on the right track for
finding the optimal hyperparameter values. Since each GA run takes several hours to several days of run time,
for plotting purposes, we have plotted results for only one run and for a limited duration of a GA run. The GA
was stopped once we started seeing improvement.

Now that the GA performed as expected, next, we will evaluate the efficiency of the system using the GA
found hyperparameters.

3.5. Efficiency evaluation

To evaluate and compare the efficiency of the GA+DDPG+HER algorithm for training the agent to do a task,
we have generated data for various hyperparameters. These hyperparameters are good indicators of the efficiency
of the algorithm. Figure 8 shows that the total reward has been significantly improved for most of the training
tasks. Higher reward notably increase the efficiency of the DDPG+HER algorithm. The agent can learn much
faster since it is guided much faster towards the desired task. We averaged these plots over ten runs to have an
unbiased evaluation. FetchSlide environment performed worse with GA+DDPG+HER. We believe that this is
because of the complexity of the task. For representation in the tables, the tasks that did not reach the goal
while training, we considered the maximum number used for that hyperparameter.

Further, we generate more data to evaluate the episodes, running time (s), steps, and epochs for an agent to
learn the desired goal. This data is shown in tables 2-5 (also shown in [21]). The data in the tables are averaged
over ten runs. Table 2 compares the number of episodes taken by an agent to reach the goal. The numbers in bold
indicate better performance and most of the environments perform substantially better than the DDPG+HER
algorithm. FetchPush environment alone takes about 54.34% fewer episodes to learn the task.

Running time is yet another factor to be considered to evaluate the efficiency of a DDPG+HER algorithm.
Time is counted in seconds. The lesser time it takes to learn the task, the better the algorithm. Table 3 exhibits
that the running time was less for GA+DDPG+HER algorithm for most of the environments. FetchPush, for
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Fig. 8 DDPG+HER vs. GA+DDPG+HER efficiency evaluation plots (Total reward vs episodes) when all the
six hyperparameters are found by GA. All plots are averaged over ten runs.

Method FetchPick&Place | FetchPush | FetchReach | FetchSlide| DoorOpening | AuboReach
DDPG+HER 6,000 2,760 100 4,380 960 320
GA+DDPG+HER | 2,270 1,260 60 6,000 180 228

Table 2: Efficiency evaluation: Average (over ten runs) episodes comparison to reach the goal, for all the tasks.

example, takes about 57.004% less time with GA+DDPG-+HER algorithm.

Method FetchPick&Place | FetchPush | FetchReach | FetchSlide] DoorOpening | AuboReach
DDPG+HER 3069.981 1314.477 | 47.223 2012.645| 897.816 93.258
GA+DDPG+HER | 1224.697 565.178 28.028 3063.599 | 167.883 66.818

Table 3: Efficiency evaluation: Average (over 10 runs) running time (s) comparison to reach the goal, for all the

tasks.



Paper Title 11

Average steps to reach the goal is yet another factor in assessing and studying the effectiveness of
GA+DDPG+HER algorithm. Table 4 reveals the average number of steps taken by an agent in each envi-
ronment. Most of the environments outmatch the DDPG+HER, performance, with the exception of FetchSlide
environment. FetchPush, for example, takes about 54.35% less number of steps with GA+DDPG+HER algo-
rithm.

Method FetchPick&Place | FetchPush | FetchReach | FetchSlide| DoorOpening | AuboReach
DDPG+HER 300,000 138,000 5000 219,000 | 48000 65,600
GA+DDPG+HER | 113,000 63,000 3000 300,000 9000 46,000

Table 4: Efficiency evaluation: Average (over ten runs) steps comparison to reach the goal, for all the tasks.

The last hyperparameter used to contrast the competence of DDPG+HER and GA+DDPG+HER algo-
rithms are the number of epochs taken by the agent to reach the goal. Table 5 presents average epochs for all
the environments. Almost all the environments exceed efficacy with GA+DDPG+HER. FetchPush, for example,
takes about 54.35% less number of epochs with GA+DDPG-+HER.

Method FetchPick&Place | FetchPush | FetchReach | FetchSlide| DoorOpening | AuboReach
DDPG+HER 60 27.6 5 43.8 47 16
GA+DDPG+HER | 22.6 12.6 3 60 8 11.4

Table 5: Efficiency evaluation: Average (over 10 runs) epochs comparison to reach the goal, for all the tasks.

Next, we present the overall analysis of the GA+DDPG+HER algorithm compared to DDPG+HER.

3.6. Analysis

In the previous sub-sections, we presented several results and the
mechanism to judge the efficaciousness of GA+DDPG+HER compared
with DDPG+HER. Overall, GA+DDPG+HER performed better than
DDPG+HER, with an exception of the FetchSlide environment. The
average comparison tables show that each environment can assume dif-

ferent values of the evaluation parameters. This is governed by the
type of task agent is trying to learn. While most of the tasks out-

0 50 10 15 200 250 30
epochs

Fig. 90 GA+DDPG+HER com- performed DDPG+HER with more than a 50% increase in efficiency,
parison with PPO [29], A2C [30], FetchSlide performed worse than DDPG+HER. This performance is
DRL (DDPG [16] + HER [17)) also attributed to the goal of the task. This task is unique in the sense
and DDPG [16], on FetchReach that the end-effector does not physically go to the target position to

environment. All plots are aver- place the box. GA+DDPG+HER was evaluated using multiple param-
aged over 2 runs. eters and that too by taking an average of over ten runs. This pro-
vides enough evidence that GA+DDPG+HER performed better than DDPG+HER. Figures 3 and 7b further
strengthens our claim by showing that the task in most of the environments can be learned much quicker
when GA+DDPG+HER is used. We also compare FetchReach results with four other methods in figure 9.
GA+DDPG+HER beats the performance of all of these methods.

4. Conclusion and Future Work

This paper showed initial results that demonstrated that a genetic algorithm can tune reinforcement learning
algorithm hyperparameters to achieve better performance, illustrated by faster learning rates at six manipula-
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tion tasks. We discussed existing work in reinforcement learning in robotics, presented the GA+DDPG+HER
algorithm to optimize the number of epochs required to achieve maximal performance, and explained why a
GA might be suitable for such optimization. Initial results bore out the assumption that GAs are a good fit
for such hyperparameter optimization and our results on the six manipulation tasks show that the GA can find
hyperparameter values that lead to faster learning and better (or equal) performance at our chosen tasks. We
compared GA+DDPG+HER with existing methods and our method proved to the best of all.

We provided further evidence that heuristic search as performed by genetic and other similar evolutionary
computing algorithms are a viable computational tool for optimizing reinforcement learning and sensor odometry
performance. Adaptive Genetic Algorithms can also be deployed to have different sets of hyperparameters during
the process of running the system. This may point towards online hyperparameter tuning, which will help any
system have better performance, irrespective of the domain or type of testing environment.
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