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Abstract. Proper maintenance of concrete structures is a significant
issue to avoid any hazardous situation in civil infrastructure. Spalling
is a significant surface concrete distress in bridges and buildings. Cor-
rectly detecting the severity level of spalling can make it happen to
detect and maintain the harmful spalling promptly to avoid any accidents
[10]. While previous works have been on surface defects, like cracks and
spallings, few have addressed spalling severity detection. In this paper,
we have proposed a deep learning-based approach to detect the exact
location of spalling according to severity level by using pixel-by-pixel
classification. Our network labels each pixel as no-spalling, small, or large
spalling. To get the optimal proposed deep architecture, we tested sev-
eral encoder-decoder networks to compare and analyze the performance
of the detection processes.
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1 Introduction

Structural health inspection is vital to civil infrastructure, and concrete is essen-
tial to that [6]. Monitoring any structural distress periodically on roads, bridge
decks, highways, and buildings is crucial. Since proper inspection and mainte-
nance in these areas are necessary to avoid severe life-threatening disasters, any
spalling in the concrete can lead to serious accidents [24]. Therefore, proper
inspection and timely maintenance should be done to avoid unwanted events.
Another crucial part is detecting the severity of spalling and ensuring proper
maintenance based on the detection result. Different types of concrete spalling
are shown in Fig. 1. Traditional methods have been employed to detect and
inspect structural defects. Manually detecting spalling is time-consuming and
prone to human errors while detecting these anomalies on the concretes, espe-
cially if spallings happen at a crucial point like under the breeze, or underwater
beams [5]. We need an autonomous system with little or no human intervention
that can solve the issues with traditional methods.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13599, pp. 332–343, 2022.
https://doi.org/10.1007/978-3-031-20716-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20716-7_26&domain=pdf
http://orcid.org/0000-0003-2183-2634
https://doi.org/10.1007/978-3-031-20716-7_26


Deep Architecture Based Spalling Severity Detection 333

Deep learning methods are instrumental in detecting and inspecting con-
crete spalling. Several Image processing methods have emerged. However, these
approaches produce unnecessary image features. Even though these methods are
simple and computationally inexpensive [13], they need a filtration process to
remove unwanted features. Sometimes, the filtration process can remove useful
features and keep the one that is not necessary. Approaches combining machine
learning and image processing are computationally expensive and require images’
prepossessing. Convolutional Neural networks (CNNs) are experts in this case
for classifying and detecting spalling in concrete structures. They can extract
spatial-visual features from images that are very useful to increase performance
to detect structural defects [5]. The challenges that lie in detecting and classifying
the severity level of spalling are extracting features and implementing appropri-
ate methods into real-life applications. Moreover, one of the main challenges is
managing large amounts of data to extract the feature from the environment of
concretes. Our proposed work leads to overcoming these challenges.

Fig. 1. Concrete spalling: (a) Large or very severe. (b) Small or less severe.

1.1 Related Works

Several spalling detection approaches have been developed in recent years. The
proposed methods classify and detect spalling in metro tunnel, subway networks,
railway surfaces [7,8,12,20,23,27]. However, there are very few approaches for
detecting and classifying the severity of spalling in concrete. For metro tun-
nels, a concrete automatic spalling detection method has been proposed [8]. The
proposed method can detect spalling damage on the tunnel surface using a 3D
cloud point that contains information about the inner wall and outlier points.
To detect and measure the quantity of the spalling, a machine learning and
vision-based method for subways has been developed [23]. This work is a hybrid
process of extracting important features about spalling by removing noise from
the images and applying the process of detecting distress in subway surfaces. An
optical detection algorithm based on visual salience has been proposed to detect
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spalling on the rail surface [12]. The detection algorithm removes the impact of
unnecessary surroundings and increases the difference between the spalling and
the neighborhood. Then, it detects the spalling by using a threshold value.

Methods for spalling localization, evaluation, and detection based on machine
vision, laser scanning, Deep learning, infrared thermography have enticed the
attraction of researchers [1,4,9,11,15,22,25]. Three variations of Mask R-CNNs
have been proposed for detecting two major types of structural damage, namely,
spalling and crack [4]. This work is designed to segment the damaged area in
the brides and buildings and continuously check for the damages. A framework
has been proposed to detect spalling and the damaged properties of the spalling
area using point cloud data [25]. This point cloud data has been used in the
framework to extract spalling features from Reinforced concrete and to detect
spalling semi-automatically. Image texture and a piece-wise linear stochastic
gradient descent logistic regression are used to detect automatically spalling in
concrete [11]. The regression model is used for pattern detection, and image tex-
tures are used to extract features from images. The pattern detection approach
can classify spalling and non-spalling areas depending on the image features. A
novel idea using a hybrid machine learning approach and image texture anal-
ysis has been proposed to categorize the severity of concrete spalling [10]. The
machine learning approach has been optimized using jellyfish search. Depending
on this method, a shallow spall or deep spall can be identified from the images.
The effect of specimen size, aggregate size, and aggregate type on spalling in
concrete under hydrocarbon fire exposure are crucial [18]. The investigation on
different specimen sizes, aggregate sizes, and types indicates that these proper-
ties impact concrete spalling under hydrocarbon fire exposure. To classify con-
crete spall severity, a solution based on computer vision has been proposed [19].
The authors categorize two spall classes: shallow and deep spall, using Extreme
Gradient Boosting Machine and Deep Convolutional Neural Network. Detection
and severity of the spalling are crucial points for reinforced concrete bridges.
An entropy-based automated method has been introduced, developing three sig-
nificant parts: detecting spall, assessing spall, and rating severity of spalling in
concrete [17]. Therefore, this proposed work includes three models; a segmenta-
tion model for images to detect spall, a feature extracting model for retrieving
important properties of the image, and a rating model to compute the severity
of the spalling depending on its area and depth.

1.2 Contributions

From the above discussion, we can refer that spalling detection and severity
level classification are crucial for maintaining the structural health of concretes.
There are several approaches for spalling detection. However, very few methods
discussed the severity level of spalling. The severity level of spalling can be mea-
sured using depth (deep or shallow) and size (Large or small). The most crucial
part of the severity level falls into segmenting the spalling area in a properly
identifiable manner. Therefore, we have proposed the use of deep architecture
using different encoder-decoder networks with pixel-by-pixel multiclass semantic
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segmentation to classify the severity levels of spalling as no-spalling, small, or
large spalling. Moreover, we have provided a comparative analysis of the deep
architectures with different encoder-decoder networks to predict the best result
among the proposed approaches. The main contributions of our proposed work
include:

1. An encoder-decoder-based deep architecture to detect the spalling in concrete.
2. Classification of the level of spalling severity using multi-class semantic seg-

mentation.
3. Comparative analysis between deep architectures with different encoder-

decoder networks for spalling detection and severity level classification.

2 Research Methodology

Our proposed method for detecting and classifying spalling severity level is based
on Deep encoder-decoder networks. Several encoder-decoder based deep convo-
lutional networks have been proposed [2,21,26]. In this paper we have selected
SegNet [2] and UNet [21] for our proposed Architecture. Moreover, later in this
paper, we discussed the comparison between these two architectures based on
spalling detection and severity level classification.

Fig. 2. Architecture for UNet with encoder and decoder [16]
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2.1 UNet

The UNet architecture consists of four encoder and four decoder blocks. Each
encoder block contains two 3 × 3 convolutions [21]. Each of the convolutions is
followed by a ReLU activation function. The encoder part of the UNet architec-
ture works as a feature extractor and acquires the features of the image. The
encoder network has half the spatial dimensions and doubles the number of fea-
ture channels of each encoder block. The encoder blocks and decoder blocks are
connected via a link. The resulted output of the ReLU activation function from
the encoder blocks makes a connection to the corresponding decoder blocks. The
connection between the encoder-decoder block contains two 3 × 3 convolutions,
and each of the convolutions is followed by a ReLU activation function. This con-
nection helps the decoder to produce better semantic features by providing ““
information. The decoder network has half the number of feature channels and
doubles the spatial dimensions. The starting phase of the decoder contains a 2
× 2 transpose convolution. The feature maps are passed through the connection
between the encoder and decoder using a concatenation process of convolution
and the connection. In the decoder part, a segmentation mask is generated.
The resulting output produced from the last decoder is passed through a 1 × 1
convolution with sigmoid activation. The segmentation mask is converted into
pixel-wise classification using an activation function. The architecture for UNet
is shown in Fig. 2.

Fig. 3. Architecture for SegNet with encoder and decoder [14]

2.2 SegNet

The SegNet architecture consists of encoder and decoder networks and is pro-
posed for pixel-wise semantic segmentation. The encoder network has 13 convo-
lutional layers for feature maps, leading to object classification. The encoder net-
work performs dense convolutions, ReLU non-linearity, a non-overlapping max
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pooling [2]. The max pooling is done with a 2 × 2 window. The final step of
the encoder is down-sampling. The decoder network performs up-sampling and
convolutions [3]. In the end, there is a softmax classifier for each pixel. The max
pooling indices of the corresponding encoder layer are called when the decoder
conducts the up-sampling. In the end, there is a K-class softmax classifier to
identify the class for each pixel. Figure 3 shows the architecture for SegNet with
encoder-decoder block.

2.3 Data Prepossessing and Augmentation

In Deep network architectures, we need large amounts of data [6] to train, val-
idate, and test the model. Therefore, collecting the dataset is a crucial part.
For our proposed architecture, we have used a data augmentation process that
alleviates the problem of managing the data.

For each image in our dataset, we labeled the image as non-spalling or spalling
with the levels of severity. Therefore, pixel mapping is automatically created
during the training process by labeling the image. Since the label of images
follows the RGB range, the non-spalling area and the severity levels of spalling
are labeled with RGB combinations.

After labeling every image, we have used the data augmentation process to
prepare a dataset of sub-images for every original image. For each image, the
augmentation process selects a random image and a random pixel point for
the labeled image. According to that point, a sub-image and pixel map of the
corresponding original image are created. From the pixel point, the augmentation
method generates several sub-images randomly by flipping or rotating the pixel
map.

2.4 Proposed Deep Architecture

We have proposed using two different types of deep architectures with different
encoder-decoder networks for detecting the severity of spalling. First, we detect
spalling and the severity level using SegNet and UNet architectures. Finally,
we discuss the comparative analysis of their performances. Our proposed archi-
tecture is very similar to SegNet and UNet architectures. We have considered
spalling detection and severity level classification as multi-class semantic segmen-
tation. Therefore, our proposed method follows the architectures of SegNet and
Unet. In the encoder phase for both architectures, we have used three different
encoders and provided a comparative analysis for the proposed architectures.

The proposed architecture has an encoder block and a decoder block, making
it an encoder-decoder network. This architecture is similar to SegNet architec-
ture, as shown in Fig. 2. Therefore, two main blocks are being used here. Besides
the main blocks, the encoder block has network and pooling layers. The decoder
block differs from the encoder block with the upsampling layer instead of the
pooling layers. For better results in segmentation, the encoder block does sub-
sampling which gives better classification results but reduces the map sizes of
the features. For this reason, the decoder block uses upsampling to recreate the
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Fig. 4. Proposed encoder-decoder based deep architecture

output resolution as the input images. In this paper, since we are classifying
the severity of spalling as no-spalling, small, and large spalling, we have used
multi-class segmentation to classify the image pixel by pixel. The proposed Deep
architecture is shown in Fig. 4

3 Result

This section describes the comparative analysis of the proposed architecture with
different encoder-decoder networks. Moreover, we will discuss the data processing
and system configuration used for training and testing the models.

3.1 Data Processing and Experimental Setup

In this study, we have collected images of different types of spalling from build-
ings, bridges, and roads to train the model for classifying the severity level.
These images contain various noises like faded colors, stones, and oil spills. For
the multi-class classification problem, we used categorical cross-entropy. The
Adam optimizer was used to optimize the architecture with a learning rate of
0.001. The training and testing ran on a system with a GTX 1080 GPU.

The GIMP software was used for the dataset to generate a pixel map. We
have augmented the images and prepared a dataset of 10000 images for training
and 2000 images for validation with a resolution height × width of 1024 × 1024.
For each test, 100 images were used. For each encoder-decoder network, we have
used a sub-sample size of each image with height × width: 416 × 608.
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To evaluate the performance, we have used several metrics, which will be
described in the next. Since we have used an encoder-decoder-based architec-
ture to detect the spalling and multi-class segmentation to classify the severity
level, we have compared the performances of two Deep encoder-decoder-based
architectures with different encoder-decoder networks.

3.2 Quantitative Analysis

This section has prepared a performance-based quantitative analysis for two deep
architectures with different encoder-decoder networks. Table 1 shows the overall
performance for spalling detection with severity level classification. We have used
Dice loss, Precision, Recall, and Accuracy metrics for the performance analysis.
The dice loss referred to the loss level for the combination architecture with
different encoder-decoder networks. we have used Eq. 1, 2, and 3 for Accuracy,
Precision, and Recall respectively. Here, true positive (TP) means the number of
spalling pixels correctly predicted, and true negative (TN) means the number of
spaling detected as non-spalling, which are non-spalling areas by pixel mapping.
False positive (FP) means the number of pixels detected as spalling incorrectly,
and false negative (FN) means the number of pixels detected as non-spalling
erroneously.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

With two deep architectures UNet [21] and SegNet [2], we used VGG19,
Xception and ResNet50 as encoder-decoder networks. The results from Table 1
show that when we used the UNet framework with the ResNet-50 combination
performed better than any combination. Therefore, we can say that the com-
plexity of the number of layers does not negatively impact the performance of
the UNet framework.

While using ResNet-50 with SegNet architecture provided a different set of
performances (Dice Loss: 8.7%, precision: 85.4%, Recall: 90.2%, and Accuracy:
98.1%). With SegNet architecture, the most promising results are given by the
SegNet-VGG19 combination. The performances, including Dice Loss, Precision,
Recall, and Accuracy for all the other architecture-encoder combinations, can
be seen in Table 1. We do not have any comparative study with previous works.
We have used multi-class segmentation for classifying the severity level as no-
spalling, small, and large spalling. Previous studies classifies severity level as
shallow or deep spalling [10,19] and predicted severity rating according to area
and depth [17]. In our proposed approach, the comparative analysis provides
the best result between the deep architectures with different encoder-decoder
networks for detecting the spalling severity.
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Table 1. Quantitative performance comparison between two deep architectures with
different encoder-decoder networks.

Method Dice Loss(%) Precision(%) Recall(%) Accuracy(%)

UNet (VGG19) 8.5 85.4 91.3 98.3

UNet (Xception) 8.6 85.5 90.3 98.2

UNet (ResNet-50) 7.9 92.3 91.9 98.5

SegNet (VGG19) 8.5 85.6 91.2 98.3

SegNet (Xception) 8.8 85.2 90.0 98.0

SegNet (ResNet-50) 8.7 85.4 90.2 98.1

3.3 Qualitative Analysis

This section shows the non-statistical evaluation of our proposed architecture
for spalling detection and the severity level. Figure 5 presented the qualitative
performance for the deep UNet architecture for different encoder-decoder net-
works. Figure 6 shows the performance analysis for SegNet architecture with the
encoder-decoder networks.

Fig. 5. Results shown for UNet framework with different encoder-decoder networks

Table 1 already shows that the UNet architecture with ResNet-50 shows bet-
ter results than all the architectures. In Fig. 5, from the left, the images are
from our dataset, then the pixel map for the images (shown as ground truth),
then the multi-class classification for each image. For a better view, we have
provided separate images for the spalling severity classification as Large spalling
and Small spalling. The area labeled with the color black has been considered as
an area with no spalling. The qualitative and quantitative analysis shows that
the accuracy for detecting spalling and severity classification is better than oth-
ers. For that reason, the UNet architecture with ResNet-50 shows results similar
to ground truth.
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Fig. 6. Results shown for SegNet framework with different encoder-decoder networks

In Fig. 6, we have compared the results of SegNet architecture with encoder-
decoder networks and the image’s pixel map (ground truth). For SegNet architec-
ture, the VGG19 encoder shows better results than others. We have separated
the pixel map for spalling severity classification as Large spalling and Small
Spalling in Fig. 6. The no-spalling area has been labeled as color black.

We can infer from our quantitative and qualitative analysis that the UNet
architecture shows comparatively better results with ResNet-50, VGG19, and
Xception encoders. The SegNet architecture with Xception encoder-decoder net-
work shows that the result was not very accurate compared to the ground truth.

4 Conclusion

We presented an encoder-decoder-based deep architecture for detecting and clas-
sifying the severity level of spalling. Our architecture shows we can classify the
spalling levels using semantic segmentation for multi-class. In past studies, there
are very few methods to detect the severity level of spalling. In civil infrastruc-
ture, it is crucial to know the exact position of the spalling and how severe it
is. Therefore, in this study, we have proposed a semantic segmentation-based
process with an encoder-decoder. To get a better result and compare them,
we have used two different encoder-decoder-based architectures with different
encoder-decoder combinations. The most promising result we get for UNet archi-
tecture with ResNet-50 encoder. Our future direction will be designing a novel
lightweight deep architecture to reduce power consumption and memory while
achieving better performance.
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