STRUCTURAL
HEALTH

MONITORING
2021

Enabling Next-generation SHM for Cyber-Physical Systems

Edited by
Saman Farhangdoust

Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305

Alfredo Guemes

ETSI Aeronautics, Madrid, Spain

Fu-Kuo Chang

Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305

Proceedings of the 13th International Workshop on Structural Health Monitoring
Stanford University, Stanford, CA
March 15-17, 2022 (formerly December 7-9, 2021)

Sponsors:

« Office of Naval Research Science & Technology * Air Force Office of Scientific
Research, United States Air Force « Boeing * U.S. Department of Transportation

« Transportation Research Board * IABMAS U.S.A. » Energies * Aerospace * Sensors

* DEStech Publications, Inc.
-~
® .A
/-4
DEStech Publications, Inc.



Steel Defect Detection in Bridges Using Deep
Encoder-Decoder Networks

HABIB AHMED and HUNG MANH LA

ABSTRACT

Recent major accidents related to bridges have emphasized the need for developing
effective technological solutions for defect detection, which can minimize the
possibility of bridge-related accidents in the future. In this respect, this research will
focus towards development of automated system for the detection of defective regions
within different steel parts of bridges. At present, there is no open-source image dataset,
which can be used for this purpose. Consequently, the training dataset has been
developed by using images acquired from bridges in Vietnam and validation was
performed using images acquired from Lovelock bridge situated at Highway-80,
Lovelock, NV, USA. A total of 5,500 (4,000 images for training and 1,500 for
validation) images of different dimensions have been used the original dimensions of
the steel bridge images have been modified 572 x 572 pixels, which have been used for
the training and evaluation of the dataset on different Deep Encoder-Decoder networks.
The use of diverse data from different bridges will allow the development of a robust
Deep Encoder-Decoder network with considerable implications for practical systems in
the future. This study will employ state-of-the-art Deep Encoder-Decoder network,
which have been recently developed for other applications. However, no such study has
been developed for defect detection in steel bridges. A comparative evaluation of
different Deep Encoder-Decoder networks will be examined. At the same time, the
performance of the system will be compared with recent advanced approaches. The
results reveal the considerable potential of Deep Encoder-Decoder towards defect
detection of steel bridges, which will be further exploited in the future studies.

INTRODUCTION

There has been considerable amount of attention devoted in the recent past
towards developing automated systems for inspection of civil infrastructures [1-15] The
existing methods for non-destructive evaluation of bridges are limited in a number of
different ways. Majority of bridges are composed of different parts, which are
constructed using different building block materials, such as concrete blocks, as well as
steel blocks, rebars and other building structures. Some of the serious recent bridge
accidents in the United States include a collapsed railroad bridge in Alabama that led to
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Figure I: A brief historical overview of the different bridge-related accidents that took place in the
United States in the recent few decades [17].

around 47 deaths and collapsed bridge that connected Point Pleasant, West Virginia
with Gallipolis, Ohio [16]. Figure 1 shows the different major bridge-related incidents
that took place in the past few decades in the United States [17]. It can be seen that the
bridge destruction is a recurring occurrence in the United States, which leads to
devastating financial, economic, lass of lives and considerable incurred costs that could
have been easily avoided with regular and effective inspection. In terms of specifically
highlighting and maintaining steel structures in bridges in particular and infrastructures
in general, a high level of cost is associated with repairing and maintain steel structures.
It has been reported that more than 2 trillion annually is spent in this respect [18].

RELATED WORKS

This research area has not properly been defined and explored in the past. There
have been studies, but reputable and sincere efforts by researchers remains missing at
present. It is only recently that some studies have tried to work on the research problem
of detecting steel defects to some extent. For the major part, there are very few main
credible recent studies that can be reported in this section [19-21]. The algorithm
developed for corrosion detection attempts to exploit some physical and visual features,
such that the surface of the corroded region differs from non-corroded regions in terms
of hue [20]. In [19], the method proposed for visual inspection of the steel structures
using two basic features, namely roughness and color to locate the corrosion pixels from
normal, un-corroded pixels in images. Another study towards corrosion detection in
metal and steel structures made use of texture-based features for differentiating between
non-corroded and corroded regions in images containing steel structures [21]. Due to
the lack of effective examination of this research problem, this study will attempt to
contribute in terms of improving the overall performance as well as extending the state-
of-the-art for defect detection in bridge steel structures. The existing literature does not
properly highlight the performance of the steel defect detection systems and the manner
in which Deep Learning frameworks can contribute towards improving the overall
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Figure II: The proposed model for steel defect detection, which is based on image pre- and post-
processing modules. At the center is given the Deep Encoder-Decoder architecture for UNet with

different layer, input and output information.

performance of such systems in practical settings. The next section will shed light on
the method proposed for steel defect detection.

METHODOLOGY

The complete block diagram of the proposed system for steel defect detection has been
given in figure 2. As it can be seen in figure 2, there are five steps of the proposed
system. Starting from the input video frames, which are individually pre-processed
using a number of steps, e.g. the Region-of-Interest (ROI) selection. The original size
of the high-resolution image frame is very large, due to which, a selected region is
separated out. This ensures that the background regions are separated and majority of
the steel region close to the robot can be cropped, resized and saved separately. The
image ROI is resized to 572 x 572 x 3, which is the input size permitted for the
validation of the input video frames using Deep Encoder Decoder Networks. These
networks are pre-trained on Vietnam bridge dataset. A state-of-the-art Deep Encoder-
Decoder Network architecture has been used in this study, namely U-Net [22], which
has found considerable application in the field of medical imaging and other research
fields in the recent past. A number of different Encoders modules are leveraged to
examine and compare the performance of the different Architecture-Encoder pairs.
Some of the Encoders used in this study include the ResNet-18 [23], ResNet-34 [23],
EfficientNet-BO [24], EfficientNet-B2 [24], and RegNet-X2 [25]. One of the prime
focus was towards selecting Encoder modules that are not very large in terms of number
of layers and parameters. The output image from this stage in the video processing
pipeline contains pixel-level masks highlighting steel defect locations. This output is
modified to ensure that the predicted defect locations are highlighted using red pixels
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TABLE I. THE DIFFERENT SYSTEM-LEVEL SPECIFICATION INFORMATION FOR THE TWO
SYSTEMS USED IN THIS STUDY FOR ASSESSING THE VALIDATION PERFORMANCE OF
THE PROPOSED MODEL FOR STEEL DEFECT DETECTION.

and green color bounding box surrounding each of these pixel regions.

Two different types of systems were used to examine the performance of the
proposed model for Steel Defect Detection. The training process was conducted offline
on System 2, which is equipped with on-board GPU with details given in table 1. The
different Deep Learning models trained for varying Architecture-Encoder pairs were
saved and the validation process was performed on two separate systems to examine
whether the validation process could be performed in real-time for the two different PCs
with varying system configurations. Table I highlights the different aspects of the two
different types of PCs that have been used to examine the performance of pre-trained
models in terms of providing real-time steel defect detection. It can be seen from table
I that system 1 has Intel ® Integrated UHD Graphics Card, which is not supported by
Nvidia ® CUDA ® libraries leading to slower validation time. In comparison, the
onboard GPU within system 2 had full support from the Nvidia ® CUDA ® libraries,
which allowed a faster training and validation processing time, which will be elaborated
in the next section.

RESULTS AND DISCUSSION

Table 2 outline statistical evaluation for the different Architecture-Encoder pairs
in terms of the different metrics, such as Dice Loss, mloU, Precision, and Recall. For
the metrics such as mloU, Precision and Recall, higher values reflect better
performance. Each metric and encoder module has the highest, lowest and average
values specified, as it allows the exploration of level of variance as well as upper and
lower bounds on the different metrics. For Dice Loss, the opposite rule has to be applied;
the smaller values reflect better performance of the system. The bold values in tables 2
specify the highest value for a particular Architecture. The bold values with an underline
specify the highest value in comparison to all the different Architecture-Encoder pairs.
For performance regarding UNet [22] Architecture, EfficientNet-BO [24] outperforms
other Encoder modules with best performance for two out of four metrics, namely Dice
Loss (a.k.a. Fl-score) and mloU. For the case of Precision, the best results are
highlighted by ResNet-18 encoder module with UNet architecture. Whereas, the
encoder module RegNet-X2 is able provide the highest performance in terms of Recall.
Since, most of the studies pertaining to the deployment of Deep Encoder-Decoder
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TABLE. II: A COMPARISON BETWEEN THE DIFFERENT ENCODER-ARCHITECTURE PAIRS
IN TERMS OF THE DIFFERENT PERFORMANCE METRICS UTILIZED IN THIS STUDY.

networks for different applications leverage F1-score and mloU as the most reliable
metrics, the most optimal performance can be obtained by using UNet architecture with
EfficientNet-BO encoder module.

There are some relevant studies, which have presented their own approach
towards steel corrosion detection. For example, study by [19] make use of roughness
analysis and color comparison on image patches to separate corrosion patches for steel
images. The recall and precision levels computed by the study range between 5% and
100% and 25% and 30% respectively, which is much lower than results obtained in this
study. Another study [21] made use of texture analysis with variables such as contrast,
correlation and energy. Since, these variables do not correlate with the metrics used in
this study, no comparison can be possible. Study by [26] is used for crack and corrosion
detection, which made use of a supervised classification method with code-word
dictionary consisting of stacked RGB histograms for image patches symmetric gray-
level co-occurrence matrix for each patch. The metrics used by this study [26] are also
different from our study. The study [26] reports that the false positive rate ranges from
1 pixel (0.2 percent of image patches), 25% (0.1 percent of image patches) and 100%
(very low percent) When comparing the results in the other studies [19-21, 26] in terms
of depth of evaluation and the metrics used within this study, the performance of the
proposed system far surpasses other study highlighted with demonstrable high-
performance using quantitative and qualitative analysis.

Figure 3 highlights a side-by-side comparison between the validation time
between System 1 and System 2 with values for each Architecture-Encoder Pair
highlighted on top of each bar plot. For system 1, lowest value for validation time is
outlined by UNet architecture [22] with RegNet-X2 encoder module. For system 2, the
lowest values for validation time have been reported by UNet [22] architecture with
ResNet-18 encoder module. The EfficientNet-BO encoder module, which provided the
optimal performance has significantly higher validation time in comparison to other
encoder modules selected. It can be seen here that there is always a trade-off between
the best validation time and best performance, as improving one variable leads to
decrease in another and vice versa. For obvious reasons, the validation time values for
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Figure III: A side-by-side comparison between the validation time for System 1 and System 2, which is
mentioned in table I.

GPU are considerably lower than their counterparts leveraging CPU computational
capabilities alone. The difference in validation time between system 1 and 2 is
significant, where the system 2 is able to provide real-time performance if it is
implemented on an actual robot with GPU resources to compute defect detection
algorithm for bridge inspection.

CONCLUSION AND FUTURE WORKS

This paper presents the development of a novel defect detection system, which
can be introduced as one part of the overall suite for automated system for bridge
inspection. Two novel dataset containing data from two separate set of bridges were
used in this study; one set was used for system training and the other was used for
validation of the system. The first set was developed using bridge image information
from Vietnam and the second set was developed from data collection at Highway-80,
Lovelock, NV, USA. The proposed system was able to leverage the Deep Encoder-
Decoder architecture, namely UNet, along with different encoder modules. The
different modules were used to create Architecture-Encoder pairs and compare their
performance for steel defect detection. The quantitative results demonstrate
considerable promise of the proposed system for real-time processing with reliable
performance for different Architecture-Encoder pairs. Future work will focus towards
on-board implementation on an actual robotic platform to provide real-time
performance for steel defect detection on actual bridges.

847



ACKNOWLEDGMENT

This work is supported by the U.S. National Science Foundation (NSF) under grants
NSF-CAREER: 1846513 and NSF-PFI-TT: 1919127, the U.S. Department of
Transportation, Office of the Assistant Secretary for Research and Technology
(USDOT/OST-R) under Grant No. 69A3551747126 through INSPIRE University
Transportation Center, and the Vingroup Joint Stock Company (Vietnam)’s Vingroup
Innovation Foundation (VINIF) under project code VINIF.2020.NCUD.DA094. The
views, opinions, findings and conclusions reflected in this publication are solely those
of the authors and do not represent the official policy or position of the NSF and
USDOT/OSTR.

REFERENCES

1. S.T.Nguyen and H. M. La, “Roller chain-like robot for steel bridge inspection,” in 9th International
Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-9). SHMII-9, 2019,
pp- 1-6.

2. S. T. Nguyen and H. M. La, “Development of a steel bridge climbing robot,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 1912-1917.

3. S.T. Nguyen, A. Q. Pham, C. Motley, and H. M. La, “A practical climbing robot for steel bridge
inspection,” in Proceedings of the 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 9322-9328.

4. H.D.Bui, S. T. Nguyen, U. H. Billah, C. Le, A. Tavakkoli, and H. M. La, “Control framework for a
hybrid-steel bridge inspection robot,” In Proceedings of the 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2585-2591.

5. S. T. Nguyen and H. M. La, “A climbing robot for steel bridge inspection robot,” in Journal of
Intelligent and Robotic Systems. Springer, 2021, pp. 1-21.

6. H. Ahmed, H. M. La, and N. Gucunski, “Review of non-destructive civil infrastructure evaluation
for bridges: State-of-the-art robotic platforms, sensors and algorithms,” in Sensors. MDPI, 2020, pp.
1-35.

7. H. M. La, N. Gucunski, K. Dana, and S.-H. Kee, “Development of an autonomous bridge deck
inspection robotic system,” Journal of Field Robotics, vol. 34, no. 8, pp. 1489-1504, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21725

8. H. M. La, N. Gucunski, Seong-Hoon Kee, J. Yi, T. Senlet, and Luan Nguyen, “Autonomous robotic
system for bridge deck data collection and analysis,” in 2014 IEEE/RSJ Intern. Conf. on Intelligent
Robots and Systems, Sep. 2014, pp. 1950-1955.

9. H.M. La, T. H. Dinh, N. H. Pham, Q. P. Ha, and A. Q. Pham, “Automated robotic monitoring and
inspection of steel structures and bridges,” Robotica, pp. 1 — 21, 2018.

10. H. M. La, R. S,, B. B. Basily, N. Gucunski, J. Yi, A. Maher, F. A. Romero, and H. Parvardeh,
“Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck
inspection and evaluation,” Mechatronics, IEEE/ASME Transactions on, vol. 18, no. 6, pp. 1655—
1664, Dec 2013.

11. H. M. La, N. Gucunski, S.-H. Kee, and L. Nguyen, “Data analysis and visualization for the bridge
deck inspection and evaluation robotic system,” Visualization in Engineering, vol. 3, no. 1, pp. 1-16,
2015.

12. H. M. La, N. Gucunski, S. Kee, and L. Nguyen, “Visual and acoustic data analysis for the bridge deck
inspection robotic system,” in The 31st International Symposium on Automation and Robotics in
Construction and Mining (ISARC), July 2014, pp. 50-57.

13. H. M. La, N. Gucunski, S.-H. Kee, J. Yi, T. Senlet, and L. Nguyen, “Autonomous robotic system for
bridge deck data collection and analysis,” in IEEE Intern. Conf. on Intelligent Robots and Systems
(IROS), Sept 2014, pp. 1950-1955.

14. R.S. Lim, H. M. La, and W. Sheng, “A robotic crack inspection and mapping system for bridge deck
maintenance,” in IEEE Transactions on Automation Science and Engineering. IEEE, 2014, pp. 367—
378.

848



15

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

N. Gucunski, A. Maher, B. Basily, H. M. La, R. S. Lim, H. Parvardeh, and S. H. Kee, “Robotic
platform rabit for condition assessment of concrete bridge decks using multiple nde technologies,” in
Journal of Croatian Society for Non-Destructive Testing. Croatian Society for Non-Destructive
Testing, 2013, pp. 5-12.

A Penn. The deadliest bridge collapses in the us in the last 50 years. CNN, 15March 2018.

Koch, G., Varney, Thopson, N., Moghissi, O., Gould, M., & Payer, J. (2016). International Measures
of Prevention, Application and Economics of Corrosion Technologies. NACE International, pp. 1-
216.

Ahmed, H., La, H. M. and Gucunski, N. (2020). Review of Non-Destructive Civil Infrastructure
Evaluation for Bridges: State-of-the-art Robotic Platforms, Sensors and Algorithms. Sensors, pp. 1-
35.

Khayatazad, M., De Pue, L. and De Waele, W. (2020). Detection of corrosion on steel structures
using automated image processing. Developments in the Built Environment. 3, pp. 1-12.
Bonnin-Pascual, F., Ortiz, A., (2014). “Corrosion Detection for Automated Visual Inspection,” In:
Developments in Corrosion Protection. INTECH, pp. 619-632.

Enikeev, M., Gubaydullin, 1., Maleeva, M., (2017). Analysis of corrosion process development on
metals by means of computer vision. Eng. J., 21 (4), 183-192.

0. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional neural networks for biomedical
image segmentation,” in arXiv preprint: 1505.04597. arXiv, 2015, pp. 1-8.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016, pp. 770-778

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in
arXiv preprint: 1707.03718. arXiv, 2017, pp. 1-8

R. Iljja, R. P. Kosaraju, R. Girshick, K. He, and P. Dollar, “Designing network design spaces,” in
arXiv preprint: 2003.13678. arXiv, 2020, pp. 1-8

F. F. Feliciano, F. R. Leta, and F. B. Mainier, “Texture digital analysis for corrosion monitoring,” in
Corrosion Science. Elsevier, 2015, pp. 138—147.

849



	CoverPage_SHM-2021_password_SHM2021Stanford-2
	IWSHM2021_381_Published



