Allocation Policies Matter for Hybrid Memory Systems

Adnan Maruf
amaru009@fiu.edu
Florida International University
Miami, Florida, USA

Manoj Saha
msaha002@fiu.edu
Florida International University
Miami, Florida, USA

ABSTRACT

Existing tiered memory systems all use DRAM-Preferred as their al-
location policy whereby pages get allocated from higher-performing
DRAM until it is filled after which all future allocations are made
from lower-performing persistent memory (PM). The novel insight
of this work is that the right page allocation policy for a workload
can help to lower the access latencies for the newly allocated pages.
We design, implement, and evaluate three page allocation policies
within the real system deployment of the state-of-the-art dynamic
tiering system. We observe that the right page allocation policy can
improve the performance of a tiered memory system by as much
as 17x for certain workloads.

KEYWORDS

hybrid memory systems, memory allocation, memory tiering

ACM Reference Format:

Adnan Maruf, Daniel Carlson, Ashikee Ghosh, Manoj Saha, Janki Bhimani,
and Raju Rangaswami. 2018. Allocation Policies Matter for Hybrid Mem-
ory Systems. In Proceedings of The 32nd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC’23). ACM, New York,
NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

In tiered memory systems, optimizing dynamic page migration
has received substantial attention. The state-of-the-art tiered mem-
ory systems such as MULTI-CLOCK, AutoTiering, AMP, Nimble,
and others [?] dynamically reorganize the pages across memory
tiers based upon the accesses to the pages. These systems improve
the overall performance of the dynamic workloads by periodically
scanning/sampling the page accesses to determine page importance
and perform page selection followed by page migration to move the
page(s) to an appropriate tier. However, to our surprise, we noticed
that all the existing tired memory systems allocate the new pages
in DRAM until full, and then allocate the remaining new pages
throughout the workload from the lower tier (i.e., the tier with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC’23, June 20-23, 2023, Orlando, Fl

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00

https://doi.org/XXXXXXX. XXXXXXX

Daniel Carlson
dcarl026@fiu.edu
Florida International University
Miami, Florida, USA

Janki Bhimani
jbhimani@fiu.edu
Florida International University
Miami, Florida, USA

Ashikee Ghosh
ghashike@amazon.com
Amazon Web Services
New York City, New York, USA

Raju Rangaswami
raju@cs.fiv.edu
Florida International University
Miami, Florida, USA

100 T fpr—
H -

80 i e -
© :. 2 ¢ 6

P4 60 B Cluster-26 3
2 401 [y --- Cluster-45 54

2 50 5 o Cluster-50 £
0 :'J i ---- Min Access Req. :; 2

' S
0 5 10 15 20 = o

Access Count Dem L PromL Dem F Prom F

(a) (b)

Figure 1: Page Selection (a) and Migration (b) Overhead.

higher access latency compared to DRAM). In the rest of this paper,
we refer to this as the DRAM-Preferred allocation policy. Hence, in
the steady state of any workload when DRAM is fully utilized, the
important pages get accessed from the slower tier until the page
is selected and promoted to the faster tier. The novel insight of this
research is that with the right page allocation policy in addition to
tiering algorithm, the workload performance can be further improved
by the lower access latencies as well as reduced page selection and
migration overheads for the newly allocated pages.

The page allocation policy of a tiered memory system determines
which tier new page allocations are made from prior to engaging
page migration mechanisms.

Figure ??(a) shows the page selection overhead of the dynamic
tiered systems, with the number of page access on the X-axis and the
percentages of total pages on the Y-axis for Twitter cluster trace [?].
The dashed line presents the required number of page accesses (i.e.,
2) for Multi-Clock to select the page to migrate. From Figure ?? (a), we
can see that the accesses to the 67% of the total pages for cluster 50, 57%
for cluster 26, and 38% for cluster 45 depend on the initial placement of
the pages due to the page allocation policy used. These pages would
not even be considered for migrations as these pages have a total
access count less than the required threshold. Figure ??(b) shows the
time taken to demote and promote a page in most of the dynamic
tiering systems [?]. With the default DRAM-Preferred allocation
policy, hot pages that are allocated after the DRAM is filled will trigger
migration. Thus, the number of initial demotions and promotions
can be hundreds of millions for workloads like the Twitter clusters
where the working set size of a cluster can reach terabytes [?]. These
demotions and promotions would require a significant amount of
time just for the migrations. The above overheads can be significantly
reduced by choosing the right tier to allocate new pages.

HPDC’23, June 20-23, 2023, Orlando, FI

Filled
[[J Available

New Page New Page New Page
Allocation Allocation /—Allocalicn
4//// Allocatlon
| DRAM | — ,////// [DRAM || — [DRAM |

(c) PM Preferred

DRAM Preferred

New P
New Page Alcation
New Page Allocation New Page
Al\ocat\on A\Iacatlon
RAM - DRAM = oromot
Demot\on romotion

.

(d) PM Always

(b) DRAM AIways

Figure 2: Page allocation policies.

In this work, first, we design and implement three different allo-
cation policies. Second, we integrate the above allocation policies
with the state-of-the-art dynamic tiering systems deployed using
Linux kernel to study the impact of allocation policies within tier-
ing systems using various real workload traces and several popular
benchmarks.

We find that the page allocation policy is as important as the
dynamic tiering policy. Allocation policies can impact the tiering
system performance by up to 17x. While all of the state-of-the-
art tiering mechanisms use the DRAM-Preferred allocation policy,
we find that no single allocation policy performs the best for all
workloads.

2 ALLOCATION POLICIES

DRAM-Preferred: In the DRAM-Preferred allocation policy, all new
pages are allocated from the DRAM tier as long as it has free space.
Once the DRAM is filled, new pages are allocated from the PM tier.
Figure 2(a) illustrates this allocation policy.

DRAM-Always: In DRAM-Always allocation, all new pages are
allocated from the DRAM, even if the DRAM is already filled. As
Figure 2(b) shows, when DRAM is filled, new page allocations force
the demotion of cold pages to the PM tier.

PM-Preferred: In the PM-Preferred allocation policy, new pages are
allocated from the PM tier as long as the PM has free space. Once
it is filled, new pages are then allocated from the DRAM tier. Fig-
ure 2(c) shows how page allocations get made with the PM-Preferred
policy.

PM-Always: The final allocation policy, PM-Always, always allo-
cates new pages from the PM tier as shown in Figure 2(d). With
PM-Always, in the Linux kernel, we observe that allocating new
pages from the swap space while DRAM space is free often causes
an Out Of Memory (OOM) error which kills the running application.
Hence, in the rest of the paper, we focus our experiments on the
remaining three allocation policies.

3 EXPERIMENT SETUP

All experiments are performed using an Intel Xeon Gold 5218 dual-
socket processor with 16 cores per socket, i.e., 32 cores in total. The
system is configured with twelve DDR4 DIMMs, totaling 192GB of
DRAM, and 4 Intel Optane DC Persistent Memory (DCPM) DIMMs
totaling 512GB of PM. We implemented the allocation policies in
Linux kernel version 5.3.1. We used SPEC [?], NAS [?], YCSB [?

Trovato et al.

GEJ DRAM-Preferred e DRAM-Always #7. PM-Preferred

F o107y

5 .

- |

ELC v 7

o® /R

x 5 10 . | | h

i~ 42272
o2 u v 227 r
g= 2 B RR
5 = Wt ¥ 0 5
£) 7
=

o

=

Figure 3: Impact of allocation policy on the dynamic tiered
memory system.

], and GAPBS [?] benchmarks to evaluate the performance of the
allocation policies.

4 IMPACT OF ALLOCATION POLICIES

Figure 3 shows the large variation in performance that we can
obtain by changing the allocation policy for various workloads.
For example, in Fig 3, the performance of the dynamic tiering can
significantly improve if the default allocation policy of DRAM-
Preferred is replaced by the DRAM-Always allocation policy for the
YCSB.D workload. In YCSB workload D, new items are added, and
the most recent items are the most popular items [?]. With DRAM-
Preferred, since new pages are allocated from the PM once the
DRAM is filled, the newer popular pages would get accessed from
the PM. On the other hand, with DARM-Always allocation policy,
newer pages containing popular items are allocated and accessed
from the DRAM. Thus, the allocation policies can significantly impact
the performance of the tiered memory systems. Furthermore, we
observed that no single allocation policy always performs best for
different types of workloads.

5 CONCLUSION

In this work, we investigated the problem of page allocation in tiered
memory systems which was previously unexplored. We introduced
several allocation policies and evaluated the performance of these
allocation policies in dynamic tiered memory systems by using
a variety of workloads. We observed that allocation policies can
significantly impact the performance of tiered memory systems.

	Abstract
	1 Introduction
	2 Allocation Policies
	3 Experiment Setup
	4 Impact of Allocation Policies
	5 Conclusion

