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Abstract

Weight smoothing is a useful technique in improving the efficiency of design-
based estimators at the risk of bias due to model misspecification. As an extension
of the work of Kim and Skinner (2013), we propose using the weight smoothing to
construct the conditional likelihood for efficient analytic inference under informative
sampling. The Beta prime distribution can be used to build a parameter model for
weights in the sample. A score test is developed to test for model misspecification
in the weight model. A pretest estimator using the score test can be developed
naturally. The pretest estimator is nearly unbiased and can be more efficient than the
design-based estimator when the weight model is correctly specified or the original
weights are highly variable. A limited simulation study is presented to investigate
the performance of the proposed methods.
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1 Introduction

Suppose that the finite population of (xi, yi) is an independent and identically distributed

(IID) realization of the superpopulation model with density f(y | x; θ)g(x), where θ is

the parameter of interest and the marginal density g(·) is completely unspecified. From

the finite population, we obtain a probability sample A with a known first-order inclusion

probability πi. We observe (xi, yi) in the sample. We are interested in estimating the model

parameter θ from the complex sample, which is the main problem in the area of analytic

inference in survey sampling. See Korn and Graubard (1999) and Fuller (2009, Ch. 6) for

comprehensive overviews of analytic inference in survey sampling.

For efficient estimation, we can construct the conditional likelihood function from the

sample as follows:

Lc(θ) =
∏
i∈A

f(yi | xi; θ)π̃(xi, yi)∫
f(y | xi; θ)π̃(xi, y)dµ(y)

(1)

where

π̃(x, y) = E
(
π | x, y

)
(2)

is the conditional inclusion probability and µ(·) is the dominating measure. See Section 8.2

of Kim and Shao (2021) for some details of the conditional maximum likelihood method.

To compute the conditional inclusion probability in (2), we can use the formula of

Pfeffermann and Sverchkov (1999):

E(π | x, y) = 1

Es(w | x, y)
, (3)

where w = π−1 and Es(·) is the expectation with respect to the sample distribution, the

conditional distribution given the sample.

The conditional inclusion probability obtained from (3) can be used to calculate the

smoothed weight w̃i = {π̃(xi, yi)}−1. The weight smoothing can reduce the variability of

the sampling weight wi = π−1
i in estimating parameters and thus can lead to more efficient

estimation, as discussed by Beaumont (2008) and Kim and Skinner (2013). To compute

the conditional expectation Es(w | x, y), we need to build a regression model for w, which

can be called a weight model.
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In this article, we explore some particular parametric classes of weight models. In

Section 2, a weight model using the Beta prime distribution is introduced. In Section 3,

a score test for correct model specification in the weight model is proposed. In Section 4,

results from a limited simulation study are presented. Some concluding remarks are made

in Section 5.

2 Weight model

Because the sampling weights satisfy wi≥1 (i = 1, . . . , n), it is assumed that w−1
i are

modeled as a Beta distribution Beta(m(xi, yi)ϕ, {1 − m(xi, yi)}ϕ). Thus, the density

function satisfies

f(w−1 | x, y) ∝ (w−1)mϕ−1(1− w−1)(1−m)ϕ−1,

and the conditional expectation and variance are

E(w−1 | x, y) = m(x, y), and V (w−1 | x, y) = m(x, y){1−m(x, y)}
1 + ϕ

,

respectively, where ϕ is the precision parameter. An example of a mean function is the

logistic model:

m(x, y; β) =
exp(β0 + β1x+ β2y)

1 + exp(β0 + β1x+ β2y)
. (4)

This is essentially a beta regression model. Further details on beta regression can be found

in Ferrari and Cribari-Neto (2004).

Unfortunately, the beta regression approach cannot be applied directly because the

regression model does not necessarily hold in the sample due to informative sampling.

To avoid this problem, we can derive the distribution of the sampled data. Recall that

if X ∼ Beta(α, β) then 1 − X follows Beta(β, α) and (1 − X)/X follows a Beta prime

distribution Beta′(β, α). Therefore, o = w − 1 follows Beta′({1 −m(xi, yi)}ϕ, m(x, y)ϕ),

and the density function is expressed as

f(o | x, y) ∝ o(1−m)ϕ−1(1 + o)−ϕ.
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Based on Bayes’ theorem and w−1 = (1 + o)−1, the sampled distribution of o satisfies

fs(o | x, y) ∝ f(o | x, y)P (δ = 1 | x, y, w) = o(1−m)ϕ−1(1 + o)−ϕ−1, (5)

which implies o | (x, y, δ = 1) ∼ Beta′({1 − m(x, y)}ϕ, m(x, y)ϕ + 1). Thus, we obtain

the following.

Es(w | x, y) = 1 + Es(o | x, y) =
1

m(x, y; β)
(6)

and

V ars(w | x, y) = 1−m(x, y)

m(x, y)

1

m(x, y) · ϕ− 1

∼=
1−m(x, y)

m(x, y)

1

m(x, y) · ϕ

for sufficiently large ϕ. Thus, we obtain the following method of moments estimator of ϕ:

ϕ̂ =
1

n

∑
i∈A

{
wi ·m(xi, yi; β)− 1

}2

1−m(xi, yi; β)
(7)

which depends on unknown parameter β.

We can use the following iterative estimation procedure estimate model parameters.

1. Compute

ϕ̂(0) =
1

n

∑
i∈A

(
wi/w̄ − 1

)2
1− 1/w̄

as an initial estimator of ϕ, where w̄ = n−1
∑

i∈S wi.

2. Using ϕ̂(t), compute β̂(t) by finding the maximizer of

ℓc(β | ϕ̂(t)) =
∑
i∈S

log fs(oi | xi, yi; β, ϕ̂
(t))

with respect to β, where

fs(o | x, y; β, ϕ) =
Γ(ϕ+ 1)

Γ(ϕ−mϕ)Γ(mϕ+ 1)
oϕ−mϕ−1(1 + o)−ϕ−1,

and m = m(x, y; β).

3. Compute ϕ̂(t+1) by applying (7) with β = β̂(t). Iteratively update ϕ̂ and β̂ until

convergence.
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3 Score test for weight model specification

The weight smoothing method in Section 2 is justified under the assumption that the

weight model is correctly specified. In practice, we may wish to test for the validity of

the weight model before we use the model-based estimator. In this section, we consider a

version of score test for model specification.

Let θ̂c be the maximizer of the conditional likelihood function in (1). Let θ̂d be the

design-based estimator of θ that is obtained by maximizing the pseudo log-likelihood

function

ℓp(θ) =
∑
i∈A

1

πi

log f(yi | xi; θ). (8)

The pseudo MLE has been discussed in Chambers and Skinner (2003). Thus, we can

develop a test for the following null hypothesis:

E
(
θ̂d

)
= E

(
θ̂c

)
. (9)

However, developing a Wald-type test statistics for the null hypothesis in (9) can be

cumbersome as the variance-covariance matrix of θ̂d − θ̂c needs to be estimated.

Instead of testing (9), we can consider testing the following null hypothesis

H0 : E
{
Ŝc(θ0)

}
= 0, (10)

where θ0 is the true parameter and Ŝc(θ) = n−1∂ logLc(θ)/∂θ is the score function ob-

tained from the conditional log-likelihood in (1). That is,

Ŝc(θ) =
1

n

∑
i∈A

[
S(θ;xi, yi)− Es

{
S(θ;xi, Y ) | xi

}]
,

where S(θ;x, y) = ∂ log f(y | x; θ)/∂θ and

Es

{
S(θ;x, Y ) | x

}
=

∫
S(θ;x, y)π̃(x, y)f(y | x; θ)dy∫

π̃(x, y)f(y | x; θ)dy
.

Under some regularity conditions (Binder, 1983), we can establish that

√
n

[
Ŝc(θ)− E

{
Ŝc(θ)

}]
L−→ N

[
0, Ic(θ)

]
, (11)
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as n → ∞, where
L−→ denotes the convergence in distribution and

Ic(θ) = −E

{
∂

∂θ′
Sc(θ)

}

= n−1

n∑
i=1

E {
SiS

′
iπ̃i | xi; θ

}
−

{
E
(
Siπ̃i | xi; θ

)}⊗2

E
(
π̃i | xi; θ

)
 . (12)

The proposed test statistic is

T (θ̂d) = nŜc(θ̂d)
′
{
Ic(θ̂d)

}−1

Ŝc(θ̂d)

where θ̂d is the pseudo ML estimator of θ0. Note that

T (θ̂d) = T (θ0) + op(1),

as θ̂d = θ0 + op(1), regardless of whether the weight model holds or not. Under the null

hypothesis in (10), by (11), we can establish that T converges to χ2(q) distribution where

q = dim(θ). If the null hypothesis is rejected, then it implies that π̃(x, y) in constructing

the conditional likelihood in (1) is incorrectly specified. Otherwise, we can safely use the

conditional ML estimator.

Strictly speaking, the information matrix in (12) ignores the uncertainty of β̂ in π̃i =

π̃(xi, yi; β̂). To incorporate the uncertainty in β̂, we can consider another information

matrix for β. Ignoring the uncertainty in β̂ will overestimate the variance and lead to a

conservative test. See the simulation study in the next section.

4 Simulation study

To test our theory, we performed a limited simulation study. In the simulation, we generate

a finite population of size N = 10, 000 and use Poisson sampling to select a sample of

expected size n = 1, 000. We repeat this procedure independently B = 1, 000 times.

In each Monte Carlo sample, we generate (xi, yi, πi) for i = 1, . . . , N where xi ∼

U(0, 2), yi = θ0 + θ1xi + ei, (θ0, θ1) = (0.5, 0.5), ei ∼ N(0, 0.52), and πi | xi, yi ∼
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Beta(m(xi, yi)ϕ, {1−m(xi, yi)}ϕ), where

m(x, y; β) =
exp(β0 + β1x+ β2y)

1 + exp(β0 + β1x+ β2y)
(13)

with β1 = 1, β2 = 1, and β0 being different values for different cases to ensure that

n = 1, 000. We used two different values of ϕ, ϕ = 100 versus ϕ = 1, 000, in the simulation

study. The weight distribution is less skewed for ϕ = 1, 000.

We have four different sampling designs as follows:

Case 1 ϕ = 100; weight model is specified correctly.

Case 2 ϕ = 100; lowest 30% πi’s are multiplied by 0.25, i.e., top 30% wi’s in the full data

are multiplied by 4. Thus, the weight model (13) is incorrectly specified.

Case 3 ϕ = 1000; weight model is correctly specified.

Case 4 ϕ = 1000; the lowest 30% πi’s are multiplied by 4, i.e., the top 30% wi’s in the full

data are multiplied by 0.25. Thus, the weight model (13) is incorrectly specified.

We are interested in estimating θ0 and θ1. The following three estimators are considered.

1. PMLE: The pseudo maximum likelihood estimator θ̂d maximizing (8).

2. CMLE: The conditional maximum likelihood estimator θ̂c maximizing (1) with

π̃(x, y) = {w̃(x, y)}−1 and w̃(x, y) is the smoothed weight under the specified weight

model. To avoid numerical problems, we estimate σ2 in a design-based way.

3. PreTest: The pretest estimator using the score test in Section 3. That is, the pretest

estimator θ̂pre with α = 0.05 is defined as

θ̂pre =

{
θ̂d if T (θ̂) > q0.95(χ

2
2)

θ̂c otherwise,

where q0.95(χ
2
2) is the 0.95 quantile of the χ2(2) distribution.

Table 1 presents the biases, standard errors, and root mean square errors (RMSE) of the

three estimators using Monte Carlo samples. The simulation results can be summarized

as follows.
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1. The PMLE is nearly unbiased for all cases, but it is less efficient than the other

methods in Cases 1 and 3, where the weight model is correctly specified.

2. The CMLE is the most efficient but is subject to significant biases when the weight

model is incorrectly specified. The efficiency gain is higher for a smaller ϕ, as the

distribution of wi’s is more skewed and the advantage of weight smoothing is more

significant.

3. The pretest estimator is nearly unbiased for all cases and can be more efficient than

the PMLE when the weight model is correctly specified (Case 1 and Case 3) or the

original weights are highly variable (Case 2).

Table 1: Monte Carlo biases, standard errors (SE) and root mean square errors (RMSE)
of the three estimators based on 1,000 Monte Carlo samples

θ0 θ1
Case Method SE Bias RMSE SE Bias RMSE

PMLE 0.0768 -0.001 0.0768 0.0799 0.001 0.0800
1 CMLE 0.0608 -0.001 0.0608 0.0425 0.001 0.0425

PreTest 0.0701 0.006 0.0704 0.0672 -0.004 0.0673
PMLE 0.1198 -0.000 0.1198 0.1182 0.008 0.1185

2 CMLE 0.0750 0.020 0.0777 0.0375 0.066 0.0764
PreTest 0.1198 0.001 0.1198 0.1179 0.008 0.1182
PMLE 0.0651 0.000 0.0651 0.0645 0.000 0.0645

3 CMLE 0.0525 0.002 0.0526 0.0413 -0.002 0.0413
PreTest 0.0561 0.003 0.0563 0.0499 -0.003 0.0500
PMLE 0.0455 0.001 0.0456 0.0432 0.000 0.0432

4 CMLE 0.0472 0.053 0.0713 0.0432 -0.127 0.1345
PreTest 0.0456 0.001 0.0456 0.0433 0.000 0.0433

The rejection rates for the score test are 0.119, 0.952, 0.051, and 0.997 for the four

cases, respectively, where the level of significance is α = 0.05. The high rejection rate of

0.119 in Case 1 is due to the effect of ignoring uncertainty in weight smoothing. The effect

of ignoring the uncertainty in weight smoothing is negligible in Case 3, since the effect of

weight smoothing is less significant when ϕ is large. The higher rejection rate indicates

that the score test is conservative in adopting CMLE using w̃i over PMLE.
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5 Concluding Remark

This article is dedicated to the memory of Professor Chris Skinner. The first author collab-

orated on various projects with Chris Skinner and their first research outcome was pub-

lished in Kim and Skinner (2013). When J.K. Kim visited Chris Skinner at Southampton

in the summer of 2011, they first worked on analytic inference under informative sam-

pling, studying the work of Pfeffermann and Sverchkov (1999), but they did not make

a connection with weight smoothing at that time. Instead, they mainly focused on the

weight smoothing method. About ten years later, we now present a method that connects

weight smoothing to the likelihood framework.

Weight smoothing is a potentially useful idea, but the correct model specification is

required. The pretest estimator using the score test in Section 3 can be used in practice,

as it compromises the efficiency of weight smoothing and the robustness of design-based

estimation. How to estimate the variance of the pretest estimator is not explored in this

paper and will be investigated in the future.
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10


