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AbstractÐA large number of bug reports are created during
the evolution of a software system. Locating the source code files
that need to be changed in order to fix these bugs is a challenging
task. Information retrieval-based bug localization techniques do
so by correlating bug reports with historical information about
the source code (e.g., previously resolved bug reports, commit
logs). These techniques have shown to be efficient and easy
to use. However, one flaw that is nearly omnipresent in all
these techniques is that they ignore code refactorings. Code
refactorings are common during software system evolution, but
from the perspective of typical version control systems, they
break the code history. For example, a class when renamed
then appears as two separate classes with separate histories.
Obviously, this is a problem that affects any technique that
leverages code history. This paper proposes a refactoring-aware
traceability model to keep track of the code evolution history.
With this model, we reconstruct the code history by analyzing
the impact of code refactorings to correctly stitch together what
would otherwise be a fragmented history. To demonstrate that
a refactoring aware history is indeed beneficial, we investigated
three widely adopted bug localization techniques that make use
of code history, which are important components in existing
approaches. Our evaluation on 11 open source projects shows
that taking code refactorings into account significantly improves
the results of these bug localization techniques without significant
changes to the techniques themselves. The more refactorings are
used in a project, the stronger the benefit we observed. Based
on our findings, we believe that much of the state-of-the-art
leveraging code history should benefit from our work.

Index TermsÐbug localization, bug report similarity, code
refactoring, traceability, commit history, information retrieval

I. INTRODUCTION

Software maintenance runs through the entire software

lifecyle [1] [2], among which, debugging and fixing bugs is

the dominant task [3]. In response, it has become popular for

projects to use bug tracking systems (e.g., Bugzilla, JIRA)

to collect and manage bug reports. However, bugs happen in

bursts and a sizable number of bug reports are often filed

on any given day. For example, Anvik et al. report that

Eclipse received up to 192 bug reports the day the project

was released [4] and then a steady stream of reports thereafter.

Consequently, one of the most time-consuming tasks is in

understanding the bugs and where in the source code they

might need to be fixed. Over 15 years of studies reveal

that 40% of the cost of software maintenance is trying to

understand the software for bug localization [5].

To cope with this problem, a vast amount of research has

been done to automatically locate buggy code files. Informa-

tion retrieval-based (IR-based) bug localization is a widely

employed technique that takes bug reports and source code as

input, and outputs a ranked list of files that may cause the

bug. State-of-the-art approaches leverage the code evolution

history to improve on accuracy, for example: similar reports

[6]±[10], commit history [7]±[15], source code [6], [7], [10],

[13], [16], [17], and stack trace [10], [18]. Indeed, similar

reports and commit history are two of the most commonly

used input for these approaches. For example, both Zhou et

al. [6] and Rath et al. [8] found that bug reports that are similar

typically change the same files. This led to a stream of research

on creating similarity reports (bug reports and enhancement

reports/feature requests). The idea is simple. If a new bug

is similar to a previously solved bug, then the previously

changed/fixed code files can be used as a basis for predicting

the files that need changing now. These techniques assign a

suspicious score to each file that has been changed by resolved

bug reports based on textual similarity. If a file has been fixed

more than once, then the scores are aggregated. This requires

understanding the history of the files. Alternative techniques

have been created that more directly leverage code history. For

example, commit history-based approaches found that most

frequently changed files or files that changed most recently

are more likely buggy and require fixing in the near future

[14]. It collects the commit history of each source file and

then calculates a suspicious score for that file. There are other

techniques that also leverage code history for bug localization,

but these two kinds of approaches presented above have been

proven to be effective and have been widely adopted.

One key problem that all existing approaches appear to share

is that they use absolute path or fully-qualified class names to

uniquely identify source code files. For any given point in

time of the code history, this is a safe thing to do because

a fully qualified name makes a code file unique if there are

multiple files with the same name (not uncommon). However,

when observing a file over the course of its history, doing



so becomes problematic. If a file is renamed, then the fully-

qualified name changes. Likewise, if a file is moved from one

package to another. From the perspective of the version control

systems, such changes are equivalent to file deletions and file

creations. That is, a file that is moved from one package to

another will appear to have been deleted from the one package

and a different file will appear to have been created in the

other package. As a result, the history of that moved file will

be broken, as it ends in the file that now appears as deleted and

restarts in the file that now appears as created. Since similarity

bug report-based and commit history-based approaches rely on

the source file history, they are naturally affected by this. A file

will appear to be less frequently changed or a file will appear

to be related to fewer similar bug reports. Even co-relations

to bug reports are affected. If a code file was changed to fix

a bug and thereafter the file was moved from one package to

another, then the bug report remains linked to the old, now

apparently deleted file. Hence, this link becomes obsolete and

existing bug localization techniques ignore obsolete links for

obvious reasons. No matter the situation, a code file with a

broken history will suffer in any bug localization technique

because its history will appear shorter or its relationship will

appear to be outdated.

The main culprit that breaks code history is code refactoring.

Code refactoring is a well known, studied, and even encour-

aged activity [19]. Code refactoring restructures the source

code without changing the behavior. Developers refactor their

source code to mitigate code smell [20], for better readabil-

ity [21], ease of maintenance and evolution, etc. However,

code refactoring breaks traceability of code between different

versions. For instance, ªMove Packageº and ªRename Classº

will change the file path. ªMove and Rename Methodº will

break method level history. By far, existing studies on code

refactoring mainly focus on detecting code refactoring from

source code [22]±[27], analyzing relationship between code

refactoring and bugs (e.g., whether refactoring introduces bugs

[28]±[30], whether refactoring improves code readability [22],

[31] or removes code smell [19], [20], [30], [32]). However,

understanding of code history with the goal of improve code

traceability or even bug localization is still an explored topic.

In this paper, we propose a code traceability model, to

store the history of code elements (code blocks) not just in

terms of time revisions but also in terms of refactorings. We

employ refactoring mining tools to detect code refactorings

and then reconstruct the code history. A file that has been

moved from one package to another will continue to be one

file in our history where the move is now one part of the file’s

history, with all the changes that happened before and after

appearing in the file’s history. This paper then investigates

whether a more complete/less fragmented code history can

improve the accuracy of bug localization. To evaluate this, we

select three widely-adopted bug localization approaches as our

baselines, i.e., SimiScore [6], TraceScore [8], BugCache [15],

[33], which are usually adopted by existing approaches as one

of their components. We performed extensive evaluations to

answer the following research questions:

• RQ1. Do code refactorings benefit bug localization?

-1.1. Do code refactorings benefit bug localization based

on bug report similarity?

-1.2. Do code refactorings benefit bug localization based

on recently more frequently modified files?

• RQ2. How often do code refactorings happen?

Our experimental results based on 11 open source projects

with more than 8,000 bug reports show that existing ap-

proaches greatly benefit from integrating our refactoring-aware

code history. When taking refactoring into consideration,

the MAP of SimiScore, TraceScore (one-year history) and

TraceScore-W (whole history) is improved by 28.5%, 9%, and

20%, respectively. For BugCache, the MAP of most projects

is improved by 20% to 37%. In general, the more the project

was refactored, the more significant are the improvements.

The main contributions of this work are as follows.

• We propose a Code Refactoring-Aware Traceability

Model, named RAT, based on a data model to reconstruct

code evolution history that may have been broken by

code refactoring. To our best knowledge, we are the first

to employ code refactoring to reconstruct code evolution

history and recover code traceability.

• We performed empirical evaluations on three widely-used

bug localization approaches to demonstrate the improve-

ment of bug localization performance by adopting our

model over the baselines.

The rest of this paper is organized as follows. Section II

introduces the background upon which our approach is built.

Section III motivates our work. Section IV elaborates our

approach. Section V evaluates the proposed approach. Section

VII discusses threats to validity. Related work is presented in

Section VIII. Section IX concludes the work.

II. BACKGROUND

In this section, we first explain the necessary background

for better understanding IR-based bug/fault localization ap-

proaches and techniques that can potentially be affected by

code rename refactoring. Then, we present background about

code refactoring that breaks the file history.

A. Bug Localization Approaches

IR-based bug localization methods leverage bug reports and

source codes as input and search for suspicious files/methods

that may be buggy. The input of mainstream approaches can

be classified into three types: 1) calculate the textual similarity

between source code and bug report texts [6], [7], [10], [13],

[16], [17], 2) utilize similar reports that have been fixed [6]±

[10], and 3) make use of commit history which maintains

a relatively short list of the recent most fault-prone files

for prediction [7]±[15]. There can also be other inputs like

stack trace [10], [18], [34]. Then the mainstream approaches

assign weights to different suspicious scores to output the

final list [7], [8], [10], [16], [35], [36]. Among these, bug

report similarity and version history are widely-adopted by

mainstream approaches as one of their components, and are

potentially most influenced by code history. Table I shows the







Issue ID: HORNETQ-911

Summary: IllegalStateException: Cannot access JMS 

Server, core server is not yet active during shutting down 

of backup server

-- hornetq-jms/src/main/java/org/hornetq/jms/server/

impl/JMSServerManagerImpl.java 545

-- tests/integration-tests/src/test/java/org/hornetq/tests/

integration/management/ManagementActivationTest.java

34296

Created Date: 2012-04-18 Resolved Date: 2012-04-24

Modified Files:

Issue ID: HORNETQ-812

Summary: CLONE - HornetQ deletes JNDI bindings during a sever 

restart

-- tests/integration-tests/src/test/java/org/hornetq/tests/integration/

persistence/JMSStorageManagerTest.java 33486

-- hornetq-jms/src/main/java/org/hornetq/jms/persistence/impl/journal/

JMSJournalStorageManagerImpl.java 24453

-- hornetq-jms/src/main/java/org/hornetq/jms/server/impl/

JMSServerManagerImpl.java 545

-- tests/integration-tests/src/test/java/org/hornetq/tests/integration/jms/

server/management/JMSQueueControlTest.java 1224

Created Date: 2011-12-01 Resolved Date: 2012-04-19

Modified Files:

Issue ID: HORNETQ-311

Summary: DestroyTopic management method does not 

delete the core resources associated to the topic

-- src/main/org/hornetq/jms/server/impl/

JMSServerManagerImpl.java 545

-- tests/src/org/hornetq/tests/integration/jms/server/

management/JMSServerControlTest.java 1085

Created Date: 2010-02-23 Resolved Date: 2010-02-23

Modified Files:

Hash: 90f137

Commited Date: 2010-02-23

Hash: 7f9da6

Commited Date: 2012-02-14

Hash: 4873f4

Commited Date: 2012-04-05

Hash: 6af095

Commited Date: 2012-04-05

C2 C3 C4 C5 C6 C7 C8

C1 C2

Hash: B68364 Commited Date: 2011-04-07

Message: mavenized hornetq jms and spring part 2

Refactoring: Move Source Folder src/main to hornetq-jms/src/main/java

File Rename:

src/main/org/hornetq/jms/server/impl/JMSServerManagerImpl.java

à hornetq-jms/src/main/java/org/hornetq/jms/server/impl/

JMSServerManagerImpl.java

Hash: 37723f

Commited Date: 2014-07-29

C9

Hash: 4d9fe9

Commited Date: 

2014-07-29

C10C8

Similarity: 0.2703 Similarity: 0.2194 Similarity: 0.2330

Hash: 9ae34b

Commited Date: 2012-04-20

Hash: 8007f6

Commited Date: 2012-04-20

Hash: 94a766 Commited Date: 2012-10-19

Message: repackaged jms client/core/server packages

Refactoring: Move Source Folder hornetq-jms to hornetq-jms-

server

File Rename:

hornetq-jms/src/main/java/org/hornetq/jms/server/impl/

JMSServerManagerImpl.java à hornetq-jms-server/src/main/

java/org/hornetq/jms/server/impl/

JMSServerManagerImpl.java

Issue ID: HORNETQ-578

Summary: Unable to delete JMS 

connection factory via JMX if no 

bindings exist

Created Date: 2010-12-01

Fig. 1. Motivating Example
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Fig. 2. Framework for Leveraging Code Refactoring-Aware Traceability
Model into Bug Localization.

method, attribute, parameter and variable, which we call code

block. In this paper, we mainly focus on packages and classes

according to the localization granularity. Every project is made

up of many code blocks. To identify them, we assign them the

unique ID CodeBlockID. One code block can be a package

or a class, denoted by Type. During the evolution of software,

there can be thousands of commits, each potentially renaming,

moving some code blocks to a different package, etc. Thus, the

same code block may have different names at different times,

yet, the file path is by far the most common identification in

existing bug localization approaches. To capture the different

external appearances of code blocks at different commit times,

we use CodeBlock.History to store the whole life cycle of

code blocks, which consists of a series of CodeBlockTime.

Each CodeBlockT ime stores information of code block at

commit c, which includes name, time, refactoring type, parent

CodeBlock

CodeBlockID: Integer

Type: CodeBlockType

History: List<CodeBlockTime>

Commit

CommitID: CommitHash

CodeChange: List<CodeBlockTime>

CommitTime: Date

PackageTime

Packages: List<Package>

Classes: List<Class>

ClassTime

Classes: List<Class>

Package

Class

BugReport

Summary: String

Description: String

FeatureRequest

Summary: String

Description: String

Issue

IssueInfo

Links:List<Issue>

Fix: List<Commit>

Type: IssueType

CodeBlockTime

Name: String

Time: Commit

Pre: CodeBlockTime

Post: CodeBlockTime

RefactoringType: String

Parent: CodeBlock

Owner: CodeBlock

Code Block History

1

1 1..*

*

Fig. 3. Code Refactoring-Aware Traceability Model

code block and child code blocks etc. PackageT ime and

ClassT ime are inherited from CodeBlockT ime, indicating

history of different types of code blocks. CodeBlockT ime en-

sures to keep track of the same source code throughout name-

change refactorings. To facilitate collecting code information

at commit c, we also use Commit, which consists of list of

CodeBlockT ime at commit c. We use the commit hash to

indicate the commit ID.

Given a CodeBlockID, we can easily go through the

history with the Pre and Post link in CodeBlockT ime. One

block of code can be renamed many times in the history,

so the name attribute records the name changes at different

commits. Given a commit hash, we can collect all the code

blocks that exist at that time. What’s more, CodeBlockT ime

and Commit are linked by the CodeBlockT ime.T ime and

Commit.CodeChange. Externally, commits are linked to

issues to fix bugs or implement requirements. All these trace

links make up the traceability model, with which we can easily

keep both horizontal and vertical traceability of code change.



B. Collecting Code Block History

With the above-mentioned traceability model, we can keep

track of the code history, called Code Block History. The main

idea of code block history is to obtain the code blocks from

the source code. Then for each source code, capture its infor-

mation throughout the history. The key point here is to link a

new CodeBlockT ime to the previous CodeBlockT ime. For

most of the CodeBlockT ime, the block name is indicative.

We can link different CodeBlockT imes based on the same

name. However, code refactoring would change the name of

the code block during the commit. It would be tricky if we link

different versions of CodeBlockT ime merely according to the

name. A lot of tools have been proposed to detect the code

refactorings [24], [24], [26], [27]. Thus we adopt a refactoring

miner to deal with our tricky problem.

Specifically, as shown in the red box in Fig. 2, given one

version of source code files St at time t, firstly, we use

JavaParser4 to parse all the source files, and obtain all the code

blocks, i.e., packages and classes. For each code block, we

would create a CodeBlock to store all the information of the

block, and the first CodeBlockT ime to store the information

at time t. There can also be some files that can not be parsed, or

they do not have java class, we would also create CodeBlock

for such files, to make sure that we do not miss files. The

name of such code blocks is set to be the file path.

Then, for the two versions of source code St, St+1 before

and after one commit C, we parse the source code, and obtain

the collection of code block time in the two versions of source

code, which we denote by CBTt and CBTt+1. For each

cbti ∈ CBTt, cbtj ∈ CBTt+1, if cbti.name == cbtj .name,

then cbti.post = cbtj , cbtj .pre = cbti. Then we use the state-

of-the-art refactoring miner tool [26] to mine the refactorings

between St and St+1. With the detected refactorings, we

would be able of know pairs of cbtm, cbtn (cbtm ∈ CBTt,

cbtn ∈ CBTt+1, cbtm.name ̸= cbtn.name), that satisfy

cbtm is renamed to cbtn. Thus, we can have the links:

cbtm.post = cbtn, cbtn.pre = cbt.m. So far, we are able

to link different CodeBlockT imes with refactorings, even

if they are renamed. The links between commits and issues

are already connected to each other by the open-sourced bug

localization dataset.

C. Leveraging Code Refactoring-Aware Traceability Model in

Bug Localization

Fig. 2 shows the framework for employing a code

refactoring-aware traceability model in bug localization tech-

niques. Our aim of this paper is to investigate whether

existing bug localization techniques can benefit from using

code refactorings. We select two different kinds of well-

known techniques: bug report similarity based and recent more

frequent change favored techniques. For bug report similarity-

based techniques, we use the widely used SimiScore [6]

and state-of-the-art TraceScore [8] as examples. For recent

4https://github.com/javaparser/javaparser

more frequent change favored techniques, we choose the well-

tested google’s implementation of BugCache [15] [33]. These

three approaches have been successively applied in dozens of

researches [6]±[10], [18]. Details of these three techniques are

explained in Section II-A. For a fair comparison, we do not

change the approaches and use the same configuration and

parameters. We only translate the file path into Code Block

ID. In this way, even though some refactored files may have

different paths, they still share the same Code Block ID.

For a given file path, we have to recognize the pack-

age and the class name, then search for the corresponding

CodeBlockT ime, and then get the Code Block ID. In Fig 2,

the ºBug-File Graphº part would be constructing the graph

with ID not the file path. The ºFile Commit Historyº part

would be calculating the BugCache of CodeBlocks, not file

path. In theory, the mapping does not change the approaches,

but only merges the score of the renamed files.

We sort all the bug reports by the resolved time. For a

new bug report, we select resolved issues and bug-fixing

commits as historical information. For SimiScore, it only

applies previous bug reports, while TraceScore utilize both

bug reports and feature requests. BugCache uses bug-fixing

commits, which are filtered by the keywords ºfixº or ºbugº in

the commit message.

V. EXPERIMENTS

To investigate how code refactorings would influence com-

ponents and approaches that involve code history, we answer

two research questions, which assess the influence of employ-

ing code refactorings. Then we evaluate our approach from

different practical perspectives.

A. Data Set

Rath et al. [8] collected a dataset consisting of 15 open-

sourced projects. We reused 11 out of them to evaluate

our approach. In the other 4 projects, some commits have

been forked by the developer and no longer available in the

repository, while BugCache requires the commit history. For

fair comparisons, we exclude these four projects from the

dataset. In this dataset, there are issues (including bug reports

and feature requests), commits that are committed to resolve

the issues, and files that are modified by the commits, making

up the trace links in the lower part of Fig 3.

Apart from the original information provided in the dataset,

we also collect all the commit logs from Git repositories of

those 11 projects, which is the input of BugCache.

Lastly, and most importantly, we collect Code Block His-

tory during the studied time period, as described in Sec-

tion IV-A. Firstly, we download git repositories of the 11

projects from GitHub. Then we detect code refactorings with

RefactoringMiner 2.0 tool5 proposed by Nikolaos et al. [26].

RefactoringMiner 2.0 is able to detect more than 80 types of

refactoring, but we only select 8 types that would rename files.

With the output, we would be able to know the traceability

5https://github.com/tsantalis/RefactoringMiner







TABLE III
PERFORMANCE OF TECHNIQUES USING BUG REPORT SIMILARITY WITH

AND WITHOUT CONSIDERING RENAME REFACTORINGS.

Project Approach MAP MRR Top 1 Top 5 Top 10

Derby

SimiScore 0.097 0.183 0.106 0.260 0.335
SimiScore+R 0.101 0.188 0.110 0.262 0.342
TraceScore 0.132 0.217 0.140 0.294 0.367
TraceScore+R 0.136 0.220 0.142 0.301 0.372
TraceScore+W 0.164 0.266 0.169 0.364 0.458
TraceScore+W+R 0.169 0.273 0.175 0.374 0.470

Drools

SimiScore 0.119 0.244 0.137 0.351 0.458
SimiScore+R 0.162 0.312 0.171 0.473 0.572
TraceScore 0.179 0.344 0.233 0.479 0.568
TraceScore+R 0.203 0.389 0.273 0.529 0.608
TraceScore+W 0.158 0.292 0.186 0.406 0.507
TraceScore+W+R 0.199 0.365 0.226 0.521 0.628

Hornetq

SimiScore 0.067 0.152 0.081 0.222 0.322
SimiScore+R 0.157 0.305 0.213 0.418 0.515
TraceScore 0.104 0.216 0.131 0.291 0.407
TraceScore+R 0.126 0.250 0.157 0.332 0.451
TraceScore+W 0.090 0.172 0.090 0.250 0.343
TraceScore+W+R 0.185 0.328 0.224 0.437 0.541

Izpack

SimiScore 0.122 0.229 0.151 0.308 0.390
SimiScore+R 0.135 0.233 0.129 0.331 0.438
TraceScore 0.159 0.276 0.186 0.382 0.451
TraceScore+R 0.163 0.280 0.189 0.388 0.473
TraceScore+W 0.172 0.271 0.174 0.379 0.489
TraceScore+W+R 0.194 0.301 0.180 0.432 0.565

Keycloak

SimiScore 0.076 0.154 0.084 0.220 0.302
SimiScore+R 0.101 0.196 0.115 0.267 0.372
TraceScore 0.116 0.200 0.119 0.287 0.372
TraceScore+R 0.138 0.230 0.136 0.336 0.424
TraceScore+W 0.116 0.204 0.118 0.290 0.377
TraceScore+W+R 0.150 0.253 0.153 0.364 0.454

Log4j2

SimiScore 0.097 0.178 0.113 0.249 0.308
SimiScore+R 0.153 0.258 0.169 0.347 0.441
TraceScore 0.149 0.222 0.148 0.295 0.390
TraceScore+R 0.178 0.269 0.183 0.370 0.468
TraceScore+W 0.151 0.223 0.135 0.308 0.388
TraceScore+W+R 0.208 0.310 0.199 0.436 0.527

Railo

SimiScore 0.100 0.163 0.100 0.217 0.287
SimiScore+R 0.102 0.166 0.101 0.221 0.295
TraceScore 0.125 0.184 0.114 0.248 0.339
TraceScore+R 0.125 0.185 0.114 0.252 0.342
TraceScore+W 0.136 0.190 0.111 0.282 0.356
TraceScore+W+R 0.137 0.192 0.111 0.292 0.356

Seam2

SimiScore 0.132 0.184 0.117 0.245 0.316
SimiScore+R 0.148 0.200 0.125 0.271 0.357
TraceScore 0.187 0.250 0.161 0.351 0.427
TraceScore+R 0.200 0.262 0.173 0.355 0.446
TraceScore+W 0.189 0.249 0.165 0.339 0.424
TraceScore+W+R 0.214 0.277 0.182 0.377 0.476

Teiid

SimiScore 0.098 0.188 0.109 0.252 0.357
SimiScore+R 0.111 0.208 0.125 0.278 0.383
TraceScore 0.130 0.221 0.127 0.320 0.414
TraceScore+R 0.136 0.229 0.132 0.329 0.425
TraceScore+W 0.140 0.235 0.137 0.331 0.446
TraceScore+W+R 0.156 0.258 0.159 0.361 0.478

Weld

SimiScore 0.084 0.213 0.139 0.273 0.364
SimiScore+R 0.117 0.227 0.144 0.300 0.389
TraceScore 0.122 0.225 0.138 0.322 0.407
TraceScore+R 0.128 0.232 0.142 0.326 0.424
TraceScore+W 0.145 0.254 0.158 0.350 0.455
TraceScore+W+R 0.154 0.267 0.169 0.361 0.484

Wildfly

SimiScore 0.065 0.112 0.071 0.148 0.188
SimiScore+R 0.071 0.118 0.076 0.156 0.194
TraceScore 0.087 0.134 0.079 0.187 0.241
TraceScore+R 0.090 0.142 0.086 0.194 0.250
TraceScore+W 0.091 0.136 0.077 0.196 0.250
TraceScore+W+R 0.093 0.143 0.083 0.203 0.255

TABLE IV
PEARSON CORRELATION BETWEEN BUG LOCALIZATION METRICS

IMPROVEMENT (MAP AND MRR) AND RENAMING REFACTORING

Technique Metric Correlation P-value

SimiScore+R
MAP 0.789 0.004
MRR 0.838 0.001

TraceScore+R
MAP 0.929 0
MRR 0.876 0

TraceScore+W+R
MAP 0.813 0.002
MRR 0.826 0.002

per [8]. To reveal the underlying cause, we split the dataset of

Drools into five folds according to filed date, and experiment

on each fold. We observed that the results on each fold are

almost the same. But when leveraging longer history (more

older bug reports), the results decrease. The reason could be

that with longer history, older similar bug reports can introduce

noise (i.e., files that were long ago changed, but are not

relevant), while more recent similar bug reports are more help-

ful. However, when leveraging whole history (TraceScore+W),

TraceScore decreased by 11.7% in MAP and 15% in MRR

(comparing TraceScore with TraceScore+W). After adopting

RAT, TraceScore+R decreased by 2.0% in MAP and 6.2%

in MRR (comparing TraceScore+R with TraceScore+W+R).

RAT does help to mitigate the noise brought by long histories

by constructing more accurate code history. This conclusion

also holds in the other projects. Among all the results, the best

results are always achieved by leveraging RAT.

Results of Top 1, Top 5, and Top 10 are shown in Fig. 6

for easy visualization. As expected, the higher the renaming

rate, the better the results of the bug localization. Overall,

the results when analyzing the metrics that consider the top

files are similar to MAP and MRR, in which projects with

more refactorings have greater improvement, when consider-

ing longer histories, the improvement is more significant.

Answering RQ1.1: We can conclude that bug localization

based on bug report similarity indeed benefits from the

use of rename refactorings. This conclusion is supported

by the Pearson correlation coefficient, which indicates that

the existence of rename refactorings are correlated to the

improvement of MAP and MRR. The improvement is more

significant when exploiting longer history.

B. RQ1.2. Do code rename refactorings benefit bug localiza-

tion that favor recently more frequently modified files?

We conduct experiments on Google’s implementation of

BugCache [15] to evaluate the effectiveness of integrating code

rename refactoring into commit history-based bug localization.

Experimental results are shown in Table V.

Overall, the results show that eight projects out of all 11

projects can benefit from code refactoring, with one project

(Seam2) showing no significant difference and two projects

(Drools and Weld) showing a small decline. Among all the

improved eight projects, the MAP score of Izpack and Railo

is slightly improved by around 4%. For the other six projects,
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