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Abstract—A large number of bug reports are created during
the evolution of a software system. Locating the source code files
that need to be changed in order to fix these bugs is a challenging
task. Information retrieval-based bug localization techniques do
so by correlating bug reports with historical information about
the source code (e.g., previously resolved bug reports, commit
logs). These techniques have shown to be efficient and easy
to use. However, one flaw that is nearly omnipresent in all
these techniques is that they ignore code refactorings. Code
refactorings are common during software system evolution, but
from the perspective of typical version control systems, they
break the code history. For example, a class when renamed
then appears as two separate classes with separate histories.
Obviously, this is a problem that affects any technique that
leverages code history. This paper proposes a refactoring-aware
traceability model to keep track of the code evolution history.
With this model, we reconstruct the code history by analyzing
the impact of code refactorings to correctly stitch together what
would otherwise be a fragmented history. To demonstrate that
a refactoring aware history is indeed beneficial, we investigated
three widely adopted bug localization techniques that make use
of code history, which are important components in existing
approaches. Our evaluation on 11 open source projects shows
that taking code refactorings into account significantly improves
the results of these bug localization techniques without significant
changes to the techniques themselves. The more refactorings are
used in a project, the stronger the benefit we observed. Based
on our findings, we believe that much of the state-of-the-art
leveraging code history should benefit from our work.

Index Terms—bug localization, bug report similarity, code
refactoring, traceability, commit history, information retrieval

I. INTRODUCTION

Software maintenance runs through the entire software
lifecyle [1] [2], among which, debugging and fixing bugs is
the dominant task [3]. In response, it has become popular for
projects to use bug tracking systems (e.g., Bugzilla, JIRA)
to collect and manage bug reports. However, bugs happen in
bursts and a sizable number of bug reports are often filed
on any given day. For example, Anvik et al. report that
Eclipse received up to 192 bug reports the day the project
was released [4] and then a steady stream of reports thereafter.
Consequently, one of the most time-consuming tasks is in
understanding the bugs and where in the source code they
might need to be fixed. Over 15 years of studies reveal

that 40% of the cost of software maintenance is trying to
understand the software for bug localization [5].

To cope with this problem, a vast amount of research has
been done to automatically locate buggy code files. Informa-
tion retrieval-based (IR-based) bug localization is a widely
employed technique that takes bug reports and source code as
input, and outputs a ranked list of files that may cause the
bug. State-of-the-art approaches leverage the code evolution
history to improve on accuracy, for example: similar reports
[6]-[10], commit history [7]-[15], source code [6], [7], [10],
[13], [16], [17], and stack trace [10], [18]. Indeed, similar
reports and commit history are two of the most commonly
used input for these approaches. For example, both Zhou et
al. [6] and Rath et al. [8] found that bug reports that are similar
typically change the same files. This led to a stream of research
on creating similarity reports (bug reports and enhancement
reports/feature requests). The idea is simple. If a new bug
is similar to a previously solved bug, then the previously
changed/fixed code files can be used as a basis for predicting
the files that need changing now. These techniques assign a
suspicious score to each file that has been changed by resolved
bug reports based on textual similarity. If a file has been fixed
more than once, then the scores are aggregated. This requires
understanding the history of the files. Alternative techniques
have been created that more directly leverage code history. For
example, commit history-based approaches found that most
frequently changed files or files that changed most recently
are more likely buggy and require fixing in the near future
[14]. Tt collects the commit history of each source file and
then calculates a suspicious score for that file. There are other
techniques that also leverage code history for bug localization,
but these two kinds of approaches presented above have been
proven to be effective and have been widely adopted.

One key problem that all existing approaches appear to share
is that they use absolute path or fully-qualified class names to
uniquely identify source code files. For any given point in
time of the code history, this is a safe thing to do because
a fully qualified name makes a code file unique if there are
multiple files with the same name (not uncommon). However,
when observing a file over the course of its history, doing



so becomes problematic. If a file is renamed, then the fully-
qualified name changes. Likewise, if a file is moved from one
package to another. From the perspective of the version control
systems, such changes are equivalent to file deletions and file
creations. That is, a file that is moved from one package to
another will appear to have been deleted from the one package
and a different file will appear to have been created in the
other package. As a result, the history of that moved file will
be broken, as it ends in the file that now appears as deleted and
restarts in the file that now appears as created. Since similarity
bug report-based and commit history-based approaches rely on
the source file history, they are naturally affected by this. A file
will appear to be less frequently changed or a file will appear
to be related to fewer similar bug reports. Even co-relations
to bug reports are affected. If a code file was changed to fix
a bug and thereafter the file was moved from one package to
another, then the bug report remains linked to the old, now
apparently deleted file. Hence, this link becomes obsolete and
existing bug localization techniques ignore obsolete links for
obvious reasons. No matter the situation, a code file with a
broken history will suffer in any bug localization technique
because its history will appear shorter or its relationship will
appear to be outdated.

The main culprit that breaks code history is code refactoring.
Code refactoring is a well known, studied, and even encour-
aged activity [19]. Code refactoring restructures the source
code without changing the behavior. Developers refactor their
source code to mitigate code smell [20], for better readabil-
ity [21], ease of maintenance and evolution, etc. However,
code refactoring breaks traceability of code between different
versions. For instance, “Move Package” and “Rename Class”
will change the file path. “Move and Rename Method” will
break method level history. By far, existing studies on code
refactoring mainly focus on detecting code refactoring from
source code [22]-[27], analyzing relationship between code
refactoring and bugs (e.g., whether refactoring introduces bugs
[28]-[30], whether refactoring improves code readability [22],
[31] or removes code smell [19], [20], [30], [32]). However,
understanding of code history with the goal of improve code
traceability or even bug localization is still an explored topic.

In this paper, we propose a code traceability model, to
store the history of code elements (code blocks) not just in
terms of time revisions but also in terms of refactorings. We
employ refactoring mining tools to detect code refactorings
and then reconstruct the code history. A file that has been
moved from one package to another will continue to be one
file in our history where the move is now one part of the file’s
history, with all the changes that happened before and after
appearing in the file’s history. This paper then investigates
whether a more complete/less fragmented code history can
improve the accuracy of bug localization. To evaluate this, we
select three widely-adopted bug localization approaches as our
baselines, i.e., SimiScore [6], TraceScore [8], BugCache [15],
[33], which are usually adopted by existing approaches as one
of their components. We performed extensive evaluations to
answer the following research questions:

e RQ1. Do code refactorings benefit bug localization?
-1.1. Do code refactorings benefit bug localization based
on bug report similarity?

-1.2. Do code refactorings benefit bug localization based
on recently more frequently modified files?

« RQ2. How often do code refactorings happen?

Our experimental results based on 11 open source projects
with more than 8,000 bug reports show that existing ap-
proaches greatly benefit from integrating our refactoring-aware
code history. When taking refactoring into consideration,
the MAP of SimiScore, TraceScore (one-year history) and
TraceScore-W (whole history) is improved by 28.5%, 9%, and
20%, respectively. For BugCache, the MAP of most projects
is improved by 20% to 37%. In general, the more the project
was refactored, the more significant are the improvements.

The main contributions of this work are as follows.

e We propose a Code Refactoring-Aware Traceability
Model, named RAT, based on a data model to reconstruct
code evolution history that may have been broken by
code refactoring. To our best knowledge, we are the first
to employ code refactoring to reconstruct code evolution
history and recover code traceability.

o We performed empirical evaluations on three widely-used
bug localization approaches to demonstrate the improve-
ment of bug localization performance by adopting our
model over the baselines.

The rest of this paper is organized as follows. Section II
introduces the background upon which our approach is built.
Section III motivates our work. Section IV elaborates our
approach. Section V evaluates the proposed approach. Section
VII discusses threats to validity. Related work is presented in
Section VIII. Section IX concludes the work.

II. BACKGROUND

In this section, we first explain the necessary background
for better understanding IR-based bug/fault localization ap-
proaches and techniques that can potentially be affected by
code rename refactoring. Then, we present background about
code refactoring that breaks the file history.

A. Bug Localization Approaches

IR-based bug localization methods leverage bug reports and
source codes as input and search for suspicious files/methods
that may be buggy. The input of mainstream approaches can
be classified into three types: 1) calculate the textual similarity
between source code and bug report texts [6], [7], [10], [13],
[16], [17], 2) utilize similar reports that have been fixed [6]—
[10], and 3) make use of commit history which maintains
a relatively short list of the recent most fault-prone files
for prediction [7]-[15]. There can also be other inputs like
stack trace [10], [18], [34]. Then the mainstream approaches
assign weights to different suspicious scores to output the
final list [7], [8], [10], [16], [35], [36]. Among these, bug
report similarity and version history are widely-adopted by
mainstream approaches as one of their components, and are
potentially most influenced by code history. Table I shows the



weights assigned to bug report similarity and version history in
different approaches, except for Amal.gam+ [10] and ABLoTS
[8], which utilize genetic algorithm [37] and decision tree to
learn weights.

TABLE I
WEIGHTS IN EXISTING APPROACHES

Bug Report Similarity Version History

Approaches (SimiScore/TraceScore) (BugCache)
BugLocator [6] 0.2-0.3 0
BLUiR+ [16] 0.2 0
Amalgam [7] 0.14 0.3
BRTracer [18] 0.2 0
BLIA [9] 0.12-0.32 0.2-0.4
Amalgam+ [10] - -
BLIA+ [34] 0.058-0.065 0.07-0.17
ABLOTS [8] - -

Bug Report Similarity-based Techniques. Similar bug
reports are more likely to be linked to the same files [6]. For a
new bug report, this technique calculates textual similarity to
find similar bug reports or requirements that have been fixed or
implemented. Then based on these, it recommends suspicious
files. There are a lot of approaches to adopt and benefit from
similar bug reports [6], [8].

SimiScore [6] and TraceScore [8] are two of the widely-
adopted and state-of-the-art similar-reports-based techniques.
Both treat the summary and description of a new bug report
bx as query, summary and description of previously resolved
bug reports as documents, and search for similar artifacts A
(bx ¢ A). Files that have been modified to fix or implement A
are S4. Based on the textual similarity of b+ and each a € A,
the file s € S4 inherits a suspicious score from the textual
similarity. Then the suspicious scores of the candidate files
are ranked in an incremental list of bug-prone files. There
is a slight difference between SimiScore and TraceScore.
SimiScore leverages all the previously resolved bug reports
and calculates the score according to (1), where sim(a;, bx)
represents the textual similarity between a; and b*. TraceScore
involves all types of issues (including bug reports and require-
ments), but only traces back bug reports filed within one year
and filters out big issues that modify more than 10 files. It
calculates the score of files by (2).

sim(a;, bx)

SimiScore(s, bx) = Z TFira)] (1)
a;c{alsc fiz(a)} ¢
. 2
TraceScore(s, bx) = Z sim/(ai, b)” )

|fix(ai)]

Recent More Frequent Modification favored Techniques.
Kim et al. hypothesized that past knowledge of bug occurrence
can optimize bug inspection [14]. They use a “cache” to main-
tain a list of most bug-prone files. Rahman at al. [12] found out
that the bug density of files in the “cache” is higher than files
outside the “cache”. They propose an algorithm which sorts
files based on the bug fixing commits. Google’s developers
adopt this algorithm to predict bugs on their projects [15] [33],

a;€{als€ fix(a)}

which have been widely adopted and well tested [7], [8], [10],
[34]. Google’s BugCache maintains the commit history of each
file in the system by the day of a new bug fix. BugCache
identifies bug-fixing commits C' based on the appearance of
‘bug’ and ‘fix’ in the commit message. Then they calculate
the cache score based on (II-A), where f is one of the buggy
files in commit ¢ € C, t; is the elapsed time in days since the
file’s creation. This formula tends to select the most recently
and frequently changed files.

1
1+ e—12(t)+12

BugCache(f) = Z

ceCAfeEe

3)

Since the above two techniques use the past history, they are
more likely to be influenced by the code history. For example,
a change in a file f fixing a bug b results in a link between f
and b. If file f was then renamed to f’, f will no longer exist
in the source code. But b is still linked to the now non-existent
f, making this link obsolete. However, if we are aware that
f'is f, then we can relink b to f’, to update the information.

B. Code Refactoring

Code refactoring was first introduced by Martin Fowler as
the activity of improving the internal quality of source code
without changing the functional behavior of the software [19].
There are more than 80 types of different refactoring, con-
cerning moving, renaming and extracting packages, classes,
methods, attributes and so on. Refactoring has been thought
to be useful for relieving code smells [20], [30], [32], and also
notably affects code readability [21]. Thus, code refactoring
has been continuously adopted by developers.

A robust body of research has emerged to better understand
the influence of refactoring. Di Penta et al. [28] and Bavota et
al. [29] reveal the high odd to induce bug-fixing for refactoring
types involve inheritance and refactoring big chunks of code.
Halepmollasi and Tosun also discover commits that perform
refactoring are three times more fault-inducing than other
commits [30]. Brito et al. proposed the concept of refactoring
graphs to improve code comprehension and support software
evolution studies [22] [31]. They use a graph to visualize the
transformations performed by refactoring over time. Refactor-
ing graphs focus on method-level refactoring, not all the code
elements, and on short-term refactoring, not the code history.

In terms of detecting code refactoring, some useful tools
have been proposed, including RefDiff [24], [25] and Refac-
toringMiner [27] [26]. As far as we are concerned, Refac-
toringMiner 2.0 [26] is the state-of-the-art, can detect more
than 80 types of code refactoring, has the highest average
precision of 99.7% and recall of 94.2%, as well as being faster
than other tools. The implementation is publicly available on
GitHub.! In this paper, we used RefactoringMiner 2.0 as our
tool to identify code refactoring types. We include only the
eight types that directly affect the files’ history: “Move Class”,
“Rename Class”, “Move and Rename Class”, “Rename Pack-
age”, “Move Package”, “Split Package”, “Merge Package” and

Uhttps://github.com/tsantalis/RefactoringMiner



“Move Source Folder” (RefactoringMiner 2.0 is able to detect
source folder movement). Definitions of these refactorings can
be found in Fowler’s book [19].

III. MOTIVATING EXAMPLE

In this section, we illustrate an example that motivates our
approach. Fig. 1 shows an open bug report HORNETQ-578
from project Hornetq”> and three resolved bug reports (i.e.,
HORNETQ-311, HORNETQ-812, HORNETQ-911) that have
the highest similarity to HORNETQ-578 in the resolved bug
reports. Their similarity scores are 0.2703, 0.2194, 0.2330, re-
spectively. Note that the textual similarity scores are calculated
based on both summary and description in the bug reports. In
Fig. 1, we only show the ID and Summary of each bug report,
omitting the description due to the space limit. For resolved
bug reports, we also present the Created Date, Resolved Date,
and Modified Files to fix the bugs.

In Fig. 1, we also list the eight commits that occurred
during this period of time, and six of them were committed
to resolve the three bug reports. The three connected
horizontal timelines aligning three commit sequences
represent the evolution history of the three different but
related files that were changed by these commits. During
code evolution, the full path is commonly included in
the filename to uniquely identify a file. Initially, the file
”sre/main/org/.../IMSServerManagerlmpl.java” was created.
Then, after commit co, it was renamed to “hornetq-
jms/src/main/java/org/.../JMSServerManagerlmpl.java”
by “Moving Source Folder” operation. Afterwards,
at commit cg, it was renamed again by another
”"Moving Source Folder” operation to “hornetq-jms-
server/src/main/java/org/.../JMSServerManagerImpl.java”. We
observed that the three parallel timelines in Figure 1 were
linking the commits to the same file, with different names
(and full paths) at different times in the evolution history.

Let’s use SimiScore [6], a bug locator, to illustrate how
existing bug localization approaches use text similarity to
locate relevant files to fix the bug in the open bug report
HORNETQ-578. SimiScore believes that fixing bugs in similar
bug reports tends to change similar files [6]. In our example,
seven files were changed by the three resolved bug reports
and are the candidate files evaluated by SimiScore for the
most likely changed file to fix HORNETQ-578. Since fixing
HORNETQ-311 changed two files, the SimiScore for each file
was calculated as simiscore(bx, f1) = simiscore(bx, f3) =
0.2703/2 = 0.135. Similarly, we can calculate the similarity
score for each of the seven candidates. The file “hornetq-
jms/src/main/java/org/.../JIMSServerManagerImpl.java”
(renamed after commit c¢3) was one of the 4 files
changed to fix HORNETQ-812 and one of the 2
files changed to fix HORNETQ-911. Its SimiScore is
0.2194/4 + 0.2330/2 = 0.171, the highest similarity score
among the seven candidates. As a result, this file was
recommended by SimiScore for change to fix the open

Zhttps://github.com/hornetq/hornetq

bug. It was indeed the file that was most likely to contain
the bug described in the open bug report. However, the
recommended file with the old filename no longer exists
after being renamed again by commit cg. The issue was
caused by the fact that SimiScore treated the file being
renamed twice at commits co and cg as three different files,
the source file tracking history being broken by refactoring
operations that renamed files. One may argue that removing
renamed files with old filenames would solve the problem.
However, newly renamed files are often not changed as much
as files with longer history, so their SimiScores are often
lower than older files. Our example echoed this. Even if we
only included the most recently renamed file “hornetq-jms-
server/src/main/java/org/.../JMSServerManagerlmpl.java”
into the SimiScore comparison, other older files with higher
SimiScore would be falsely recommended.

In this case, if a bug localization approach such as SimiS-
core leverages code evolution history unaware of the code
refactoring, such as file renaming, it will consider the renamed
files as different ones and separate the similarity analysis for
each of them. Therefore, it may make inaccurate recommen-
dations of the file most likely to be changed for an open bug.
If the approach could take file renaming into consideration, it
would be able to reconstruct and keep track of the complete file
evolution history and make a more accurate recommendation.

With this example, we demonstrate the importance of con-
sidering file renaming into file-level bug localization. We show
that “moving source folder” would change the file path, thus
breaking the tracking history of the file, but there are many
types of operations in the development process that could sim-
ilarly cause bias to the bug localization approaches that utilize
the code evolution history. Other types of rename refactoring,
including move package, rename package, rename class etc.,
may have an equivalent impact. If we could reconstruct the
history of the source file and recover the tracing links between
renamed files, we would be able to get rid of such bias.

IV. APPROACH

In this paper, we propose a code refactoring-aware trace-
ability model, which is open source and free available 3 to
capture the code change history. We use code refactoring
detection tools to recover code history that may be broken
by code refactoring. With this model, we can reconstruct the
whole history of source code, which is called Code Block
History. Then, we apply Code Block History in both bug report
similarity-based and commit history-based bug localization.
The framework is as shown in Fig. 2. Firstly, we would
illustrate the concept of the code traceability model. Then we
will demonstrate how to construct code block history from
source code. Finally, we will show how to leverage code block
history in bug localization.

A. Code Refactoring-Aware Traceability Model

Fig. 3 presents the class diagram of the model. There are
different code snippets in a source code, i.e., package, class,

3https://github.com/feifeiniu-se/traceability



Issue ID: HORNETQ-578 ﬁ
Summary: Unable to delete JMS
connection factory via JMX if no

Similarity: 0.2703

Similarity: 0.2194

bindings exist
Created Date: 2010-12-01

Similarity: 0.2330

Issue ID: HORNETQ-311 Issue ID: HORNETQ-812

Issue ID: HORNETQ-911

Summary: DestroyTopic management method does not Summary: CLONE - HornetQ deletes JNDI bindings during a sever Summary: IllegalStatcException: Cannot access IMS ~_
delete the core resources associated to the topic restart Server, core server is not yet active during shutting down
Created Date: 2010-02-23  Resolved Date: 2010-02-23 Created Date: 2011-12-01  Resolved Date: 2012-04-19 of backup server
Modified Files: Modified Files: Created Date: 2012-04-18  Resolved Date: 2012-04-24
- sre/main/org/hornetq/jms/server/impl/ ~ tests/i q Modified Files:
JIMSServerManagerImpl.java 545 persistence/IMSStorageManagerTestjava 33486 b N infjavador .
- tests/sro/org/hornetq/tests/integration/jms/server/ — hornetq-j ji tq : oy A er
< MSSq M. Tmpl.| 45

management/JMSServerControl Test java 1085 IMSJoumnalStorageManagerTmpl java 24453 TIP SServerManagerImpl.java 5 e

— hornetq-j in/j o j er/impl) : > ) netdtest .

or] N integration/management/ManagementActivationTest java Hash: 37733f
JMSServerManagerlmpljava 545 x425 & 2 g Date: 20140729

2 !
server/management/JMSQueueControl Test java 1224

? Hash: 44979

Commited Date:
2014-07-29

Hash: 8007f6

o8

(&)
Hash: 90f137

Commited Date: 2010-02-23

Hash: B68364 Commited Date: 2011-04-07

Message: mavenized hornetq jms and spring part 2
Refactoring: Move Source Folder sr¢/main to hometq-jms/src/main/java
File Rename:

Impljava

hornetq:j i
JIMSServerManagerTmpl.java

ghornetq/j r/impl

Commited Date: 2012-02-14 Commited Date: 2012-04-05 Commited Date: 2012-04-05

() (=) (<)

Hash: 7f9da6 Hash: 48734 Hash: 6af095 Hash: 9ae34b

Commited Date: 2012-04-20

Hash: 94a766 Commited Date: 2012-10-19

Message: repackaged jms client/core/server packages
Refactoring: Move Source Folder hornetg-jms to hometg-jms-
server

File Rename:

hornetg-j in/j 2/ a/j er/impl
JMSServerManagerImpljava  hornetq-jms-server/src/main/
java/org/hornetq/jms/server/impl/
JIMSServerManagerTmpl.java

Fig. 1. Motivating Example
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Fig. 2. Framework for Leveraging Code Refactoring-Aware Traceability
Model into Bug Localization.

method, attribute, parameter and variable, which we call code
block. In this paper, we mainly focus on packages and classes
according to the localization granularity. Every project is made
up of many code blocks. To identify them, we assign them the
unique ID CodeBlockID. One code block can be a package
or a class, denoted by Type. During the evolution of software,
there can be thousands of commits, each potentially renaming,
moving some code blocks to a different package, etc. Thus, the
same code block may have different names at different times,
yet, the file path is by far the most common identification in
existing bug localization approaches. To capture the different
external appearances of code blocks at different commit times,
we use CodeBlock.History to store the whole life cycle of
code blocks, which consists of a series of CodeBlockTime.
Each CodeBlockTime stores information of code block at
commit ¢, which includes name, time, refactoring type, parent

Code Block History
Package CodeBlockTime PackageTime
CodeBlock ]
Name: String Packages: List<Package>
‘Time: Commit Classes: List<Class>
CodeBlockID: Integer Pre: CodeBlockTime
. B>{ Type: CodeBlockType [ Post: CodeBlockTime 5
Class History: List<CodeBlockTime> |' '] RefactoringType: String ClassTime
Parent: CodeBlock
Owner: CodeBlock
Classes: List<Class>
BugReport
\

Summary: String Issue Commit
D

String

Issuelnfo
Links:List<Issue>
Fix: List<Commit>
Type: IssueType

CommitID: CommitHash
- ———=>{ CodeChange: List<CodeBlockTime>
CommitTime: Date

FeatureRequest

Summary: String
Description: String

Fig. 3. Code Refactoring-Aware Traceability Model

code block and child code blocks etc. PackageTime and
ClassTivme are inherited from CodeBlockTvme, indicating
history of different types of code blocks. C'ode BlockTime en-
sures to keep track of the same source code throughout name-
change refactorings. To facilitate collecting code information
at commit ¢, we also use Commit, which consists of list of
CodeBlockTime at commit c. We use the commit hash to
indicate the commit ID.

Given a CodeBlockID, we can easily go through the
history with the Pre and Post link in CodeBlockTime. One
block of code can be renamed many times in the history,
so the name attribute records the name changes at different
commits. Given a commit hash, we can collect all the code
blocks that exist at that time. What’s more, CodeBlockTime
and Commit are linked by the CodeBlockTime.Time and
Commit.CodeChange. Externally, commits are linked to
issues to fix bugs or implement requirements. All these trace
links make up the traceability model, with which we can easily
keep both horizontal and vertical traceability of code change.



B. Collecting Code Block History

With the above-mentioned traceability model, we can keep
track of the code history, called Code Block History. The main
idea of code block history is to obtain the code blocks from
the source code. Then for each source code, capture its infor-
mation throughout the history. The key point here is to link a
new CodeBlockTime to the previous CodeBlockTvme. For
most of the CodeBlockTime, the block name is indicative.
We can link different C'ode BlockTimes based on the same
name. However, code refactoring would change the name of
the code block during the commit. It would be tricky if we link
different versions of C'ode BlockTime merely according to the
name. A lot of tools have been proposed to detect the code
refactorings [24], [24], [26], [27]. Thus we adopt a refactoring
miner to deal with our tricky problem.

Specifically, as shown in the red box in Fig. 2, given one
version of source code files S; at time ¢, firstly, we use
JavaParser* to parse all the source files, and obtain all the code
blocks, i.e., packages and classes. For each code block, we
would create a C'odeBlock to store all the information of the
block, and the first C'odeBlockTime to store the information
at time ¢. There can also be some files that can not be parsed, or
they do not have java class, we would also create C'ode Block
for such files, to make sure that we do not miss files. The
name of such code blocks is set to be the file path.

Then, for the two versions of source code S;, S;y1 before
and after one commit C', we parse the source code, and obtain
the collection of code block time in the two versions of source
code, which we denote by C'BT; and CB7T;;;. For each
cbt; € CBTy, cbtj € CBTyq, if cbty.name == cbtj.name,
then cbt;.post = cbt;, cbt;.pre = cbt;. Then we use the state-
of-the-art refactoring miner tool [26] to mine the refactorings
between S; and S;.;. With the detected refactorings, we
would be able of know pairs of cbt,,, cbt, (cbt,, € CBT;,
cbt, € CBTiy1, cbty,.name # cbt,.name), that satisfy
cbt,, is renamed to cbt,,. Thus, we can have the links:
cbt,,.post = cbt,, cbt,.pre = cbt.m. So far, we are able
to link different C'odeBlockTimes with refactorings, even
if they are renamed. The links between commits and issues
are already connected to each other by the open-sourced bug
localization dataset.

C. Leveraging Code Refactoring-Aware Traceability Model in
Bug Localization

Fig. 2 shows the framework for employing a code
refactoring-aware traceability model in bug localization tech-
niques. Our aim of this paper is to investigate whether
existing bug localization techniques can benefit from using
code refactorings. We select two different kinds of well-
known techniques: bug report similarity based and recent more
frequent change favored techniques. For bug report similarity-
based techniques, we use the widely used SimiScore [6]
and state-of-the-art TraceScore [8] as examples. For recent

“https://github.com/javaparser/javaparser

more frequent change favored techniques, we choose the well-
tested google’s implementation of BugCache [15] [33]. These
three approaches have been successively applied in dozens of
researches [6]-[10], [18]. Details of these three techniques are
explained in Section II-A. For a fair comparison, we do not
change the approaches and use the same configuration and
parameters. We only translate the file path into Code Block
ID. In this way, even though some refactored files may have
different paths, they still share the same Code Block ID.

For a given file path, we have to recognize the pack-
age and the class name, then search for the corresponding
CodeBlockTime, and then get the Code Block ID. In Fig 2,
the "Bug-File Graph” part would be constructing the graph
with ID not the file path. The “File Commit History” part
would be calculating the BugCache of CodeBlocks, not file
path. In theory, the mapping does not change the approaches,
but only merges the score of the renamed files.

We sort all the bug reports by the resolved time. For a
new bug report, we select resolved issues and bug-fixing
commits as historical information. For SimiScore, it only
applies previous bug reports, while TraceScore utilize both
bug reports and feature requests. BugCache uses bug-fixing
commits, which are filtered by the keywords ”fix” or “bug” in
the commit message.

V. EXPERIMENTS

To investigate how code refactorings would influence com-
ponents and approaches that involve code history, we answer
two research questions, which assess the influence of employ-
ing code refactorings. Then we evaluate our approach from
different practical perspectives.

A. Data Set

Rath et al. [8] collected a dataset consisting of 15 open-
sourced projects. We reused 11 out of them to evaluate
our approach. In the other 4 projects, some commits have
been forked by the developer and no longer available in the
repository, while BugCache requires the commit history. For
fair comparisons, we exclude these four projects from the
dataset. In this dataset, there are issues (including bug reports
and feature requests), commits that are committed to resolve
the issues, and files that are modified by the commits, making
up the trace links in the lower part of Fig 3.

Apart from the original information provided in the dataset,
we also collect all the commit logs from Git repositories of
those 11 projects, which is the input of BugCache.

Lastly, and most importantly, we collect Code Block His-
tory during the studied time period, as described in Sec-
tion IV-A. Firstly, we download git repositories of the 11
projects from GitHub. Then we detect code refactorings with
RefactoringMiner 2.0 tool® proposed by Nikolaos et al. [26].
RefactoringMiner 2.0 is able to detect more than 80 types of
refactoring, but we only select 8 types that would rename files.
With the output, we would be able to know the traceability

Shttps://github.com/tsantalis/RefactoringMiner



between renamed files or classes. We parse all the source code
files at the initial commit, create code blocks and construct the
CodeBlock.History for each code block.

Finally, there are 8,494 bug reports and 6,029 requirements
in the dataset. Table II describes the dataset in more detail.

B. Experiment Design

In order to investigate whether bug localization can ben-
efit from code refactoring (RQ1), we select different types
of bug localization approaches, that are based on different
information, i.e., bug report similarity(RQ1.1) and recent more
frequent modified files(RQ1.2).

1) Bug Report Similarity: Bug report similarity-based ap-
proaches retrieve resolved issues (i.e., bug reports and feature
requests) from the history. We select SimiScore proposed by
Zhou et al. [6], TraceScore by Rath et al. [8], as our baseline,
with the same configuration proposed by the authors.

SimiScore calculates the textual similarity between the
new bug report and resolved bug reports from the whole
history. TraceScore uses both resolved bug reports and feature
requests, but it only uses bug reports and feature requests that
are fixed within the last year. They filter out big issues that
change more than 10 files. To see how the length of history
would be influenced, we add the third baseline that tests on all
the resolved bug reports and feature requests for TraceScore.
More details about calculation are described in Section II-A.

For comparison, we add code history in the three baseline
experiments. When taking code history into consideration, the
original links from bug reports to modified files, would become
bug reports to CodeBlockIDs. Then we evaluate the three
groups of experiments with the evaluation metrics.

2) Recently More Frequently Modified File Favored: This
kind of approach utilizes commit history to find buggy-prone
files, which is proposed and verified by [14] [12]. Commits
also come from the past, and thus may be influenced by
code refactoring. We select the well-tested and commonly-
used Google’s implementation of BugCache [15] [33] as the
baseline. We collect all commit logs from the code repository.
Then pick out bug-fixing commits by the appearance of
keywords "fix” and “bug” in the commit message. Then for
all the files in each commit, we use the formula (II-A) in
Section II-A to calculate the suspicious score.

It is worth noting that for BugCache, instead of carrying
out comparison experiments on all the bug reports in the
dataset, we test on bug reports who modify files that have
been renamed during the history. In this way, we would like
to see how our code history model works when dealing with
refactored files.

C. Evaluation Metrics

To evaluate the effectiveness of the approach, we adopt
commonly used metrics as follows:

Top@k (Hit@k) measures the percentage of bug reports in
which at least one of the buggy files is a top k ranked file.

Mean Average Precision (MAP) is a standard metric widely
used in information retrieval to evaluate ranking approaches.

It considers all the ranks of all buggy files into consideration.
It is calculated as the mean of the Average Precision over all
queries. Average Precision of a given bug report aggregates
precision of positively recommended files as:

Z P(i) x pos(i) 4)
# of positive instances

where 1 is a rank of the ranked files, N is the number of

ranked files and pos(i) € {0,1} indicates whether the ith file is

a buggy file or not. P(i) is the precision at a given top i files:
) #of buggy filesintopi

P(i) = , 5)

1

Mean Reciprocal Rank (MRR) computes the average of the
reciprocal of the positions of the first correctly located buggy
files in the ranked files, following this equation:
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RQ1 investigates whether our approach can improve the
accuracy of bug localization. Then we verify if rename refac-
torings are a common practice in the subject systems of our
study at RQ2. Fig. 4 presents the number of files of each
system and highlights the percentage of files that underwent
rename refactorings (at the top of the columns). We have a
variety of results, from projects with few refactorings (e.g.,
Railo with only 1%) to projects with intensive application
of refactorings (e.g., Hornetq with 63%). This diversity of
values allows us to see how bug localization benefits from
refactorings.
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Fig. 4. Proportion of files with rename refactorings.

A. RQI.1. Do code rename refactorings benefit bug localiza-
tion based on bug report similarity?

The results to answer this RQ are shown in Table III.
For each project, we can observe the difference in the bug
localization techniques based on bug report similarity. From
the table, we can see that considering rename refactorings (i.e.,
+R) leads to improvements to all three baselines, or at least
equal results. There were only two cases in each comparison
with equal results, both for the system Railo, which is the
system with the least proportion of rename refactorings (i.e.,



TABLE II
CHARACTERISTICS OF THE DATASET

Changed Source Code . Changed Source Code ]
Project #Bug Files Per Bug Rport #Requi- Files Per Requirement | #Commits #Files #Code #Depend_e “‘?y #Bug Reports T OPCh
Reports — - rements ——M —————————— Blocks Trace Links Renamed Files
min median mean max min median mean max
Derby 1778 1 2 6.5 1920 1264 1 4 14.4 1334 5255 3224 3065 1764 433
Drools 1281 1 3 17.4 1371 653 1 11 76.7 3247 3682 6933 4799 153 1211
Hornetq 270 1 4 74 50 187 1 10 59.5 3680 1003 3395 2087 42 265
Izpack 318 1 3 9 140 160 1 8 24 460 927 1077 943 49 199
Keycloak 786 1 4 11.3 645 637 1 10 39.8 4652 2753 5196 3540 360 621
Log4j2 441 1 2 7.6 385 335 1 4 31.7 1266 1574 2173 1454 200 399
Railo 300 1 2 4 66 129 1 4 85 140 470 871 859 7 34
Seam?2 776 1 1 2.7 63 526 1 3 12.8 2268 1477 2539 2049 246 721
Teiid 1297 1 3 14 1073 | 1162 1 8 72.9 3616 3462 8118 5949 311 1003
Weld 560 1 4 8.7 570 419 1 7 25 2050 1460 3696 3119 228 388
Wildfly 687 1 2 7.7 295 557 1 8 379 3270 2266 5878 5130 1925 398
1%) (see Fig. 4). This indicates that all three baselines do 025
benefit more or less from using more complete code history oa .
constructed by RAT, on our dataset. ) I > ) T
Fig. 5 presents the values of the metrics MAP (at the top) 015 Fle 5 > >
and MRR (at the bottom) for each project. In this figure, E e * 1 ® L g T> I ’
we compare the results of three baselines (i.e., SimiScore, o1& @ - I i I |
TraceScore, and TraceScore with whole history) without and %
with considering refactoring information (+R). Since we aim 0.05
to understand the influence of refactorings, in this figure we
sorted the projects according to the renaming rate. RR 0% 905 g% 1% A% 28 36 b ool a2 63
From the figure, we can observe an increase with using o
refactorings in all three baselines for MAP and MRR (except 05 !
for MAP of Railo, which remains the same). What is also 03
. . . . . - >
obvious is that from left to right (renaming rate of projects 2025 v % $ o I ? '
increases), the improvement in MAP and MRR value becomes £ 02l . ® s 12 : :°’ s I >
more significant. Project Railo (1% renaming rate) has almost 015 o . I >
no improvement, while Hornetq (63% renaming rate) has the o1 s
most notable improvement. This indicates that, when project 005

has higher rename rate, more complete code history becomes
more helpful for better accuracy.

To corroborate the analysis, we computed the Pearson
correlation coefficient. Table IV presents the correlation and
p-values comparing the results of MPA and MRR and the re-
naming rate. In all cases, there is a strong positive correlation,
which indicates that the more renaming refactorings in the
projects, the more significant improvement in MAP and MRR
results. Since all p-values are lower than 0.001, we have 99%
of confidence in these results.

When comparing without and with considering refactorings,
for SimiScore, the improvement varies from 2% to 134%
for MAP and from 2% to 100% for MRR on all projects.
Average MAP and MRR are improved by 28% and 20%.
For TraceScore, the improvement varies from 0% to 21% for
MAP and 0% to 16% for MRR. Average MAP and MRR are
improved by 9% and 8% on all projects. For TraceScore with
whole history (TraceScore+W), the improvement varies from
0% to 105% for MAP and 1% to 91% for MRR. Average
MAP and MRR are improved by 20% and 19%. When
compared with the other two baselines, TraceScore (with one-
year history) shows less improvement. The reason is that

Q}b 'Lé)b\eo,y-ﬂb@.
¥« o«o"\@e &

» TraceScore+W
TraceScore+tW+R

A0 N *
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W SimiScore TraceScore+1ly
# SimiScore+R @ TraceScore+1y+R

Fig. 5. MAP and MRR for each project. The projects appear sorted by the
Refactoring Rate (RR)

TraceScore only involves one-year history, while SimiScore
and TraceScore+W involve whole history (which is around 10
years). With shorter history, file renaming happens less and
therefore less improvement. This shows that our RAT model
is particularly effective for approaches that need to exploit
long histories. TraceScore is an advanced version of SimiScore
by Rath et al. [8], which also takes user requirements and
trace links into consideration, thus we can observe higher
accuracy in TraceScore. With longer history, TraceScore+W
can leverage more information, thus gains improvement than
TraceScore in most of the projects. However, in some projects,
for example, Drools, we observe a degradation in accuracy,
which is consistent with the reported result in the original pa-



TABLE III
PERFORMANCE OF TECHNIQUES USING BUG REPORT SIMILARITY WITH
AND WITHOUT CONSIDERING RENAME REFACTORINGS.

Project | Approach [MAP MRR [Top1 Top 5 Top 10
SimiScore 0.097 0.183 | 0.106 0.260 0.335
SimiScore+R 0.101 0.188 | 0.110 0.262 0.342

Derby TraceScore 0.132 0217 | 0.140 0.294 0.367
TraceScore+R 0.136  0.220 | 0.142 0.301 0.372
TraceScore+W 0.164 0.266 | 0.169 0.364 0.458
TraceScore+W+R | 0.169 0.273 | 0.175 0.374 0.470
SimiScore 0.119 0.244 | 0.137 0.351 0.458
SimiScore+R 0.162 0312 | 0.171 0473 0.572

Drools TraceScore 0.179 0.344 | 0.233 0479 0.568
TraceScore+R 0.203 0.389 | 0.273 0.529 0.608
TraceScore+W 0.158 0.292 | 0.186 0.406 0.507
TraceScore+W+R | 0.199 0.365 | 0.226 0.521 0.628
SimiScore 0.067 0.152 | 0.081 0.222 0.322
SimiScore+R 0.157 0305 | 0.213 0418 0.515

Hornetq TraceScore 0.104 0.216 | 0.131 0.291 0.407
TraceScore+R 0.126 0.250 | 0.157 0.332 0.451
TraceScore+W 0.090 0.172 | 0.090 0.250 0.343
TraceScore+W+R | 0.185 0.328 | 0.224 0.437 0.541
SimiScore 0.122  0.229 | 0.151 0.308 0.390
SimiScore+R 0.135 0.233 | 0.129 0.331 0.438

Tzpack TraceScore 0.159 0.276 | 0.186 0.382 0.451
TraceScore+R 0.163 0.280 | 0.189 0.388 0.473
TraceScore+W 0.172 0.271 | 0.174 0.379 0.489
TraceScore+W+R | 0.194 0.301 | 0.180 0.432 0.565
SimiScore 0.076  0.154 | 0.084 0.220 0.302
SimiScore+R 0.101 0.196 | 0.115 0.267 0.372

Keycloak TraceScore 0.116 0.200 | 0.119 0.287 0.372
TraceScore+R 0.138  0.230 | 0.136 0.336 0.424
TraceScore+W 0.116 0.204 | 0.118 0.290 0.377
TraceScore+W+R | 0.150 0.253 | 0.153 0.364 0.454
SimiScore 0.097 0.178 | 0.113 0.249 0.308
SimiScore+R 0.153 0.258 | 0.169 0.347 0.441

Log4i2 TraceScore 0.149 0.222 | 0.148 0.295 0.390
TraceScore+R 0.178 0.269 | 0.183 0.370 0.468
TraceScore+W 0.151 0.223 | 0.135 0.308 0.388
TraceScore+W+R | 0.208 0.310 | 0.199 0.436 0.527
SimiScore 0.100 0.163 | 0.100 0.217 0.287
SimiScore+R 0.102 0.166 | 0.101 0.221 0.295

Railo TraceScore 0.125 0.184 | 0.114 0.248 0.339
TraceScore+R 0.125 0.185 | 0.114 0.252 0.342
TraceScore+W 0.136 0.190 | 0.111 0.282 0.356
TraceScore+W+R | 0.137 0.192 | 0.111 0.292 0.356
SimiScore 0.132 0.184 | 0.117 0.245 0.316
SimiScore+R 0.148 0.200 | 0.125 0.271 0.357

Seam? TraceScore 0.187 0.250 | 0.161 0.351 0.427
TraceScore+R 0.200 0.262 | 0.173 0.355 0.446
TraceScore+W 0.189 0.249 | 0.165 0.339 0.424
TraceScore+W+R | 0.214 0.277 | 0.182 0.377 0.476
SimiScore 0.098 0.188 | 0.109 0.252 0.357
SimiScore+R 0.111 0.208 | 0.125 0.278 0.383

Teiid TraceScore 0.130 0.221 | 0.127 0.320 0.414
TraceScore+R 0.136  0.229 | 0.132 0.329 0.425
TraceScore+W 0.140 0.235| 0.137 0.331 0.446
TraceScore+W+R | 0.156 0.258 | 0.159 0.361 0.478
SimiScore 0.084 0.213 | 0.139 0.273 0.364
SimiScore+R 0.117 0.227 | 0.144 0.300 0.389

Weld TraceScore 0.122  0.225| 0.138 0.322 0.407
TraceScore+R 0.128 0.232 | 0.142 0.326 0.424
TraceScore+W 0.145 0.254 | 0.158 0.350 0.455
TraceScore+W+R | 0.154 0.267 | 0.169 0.361 0.484
SimiScore 0.065 0.112 | 0.071 0.148 0.188
SimiScore+R 0.071 0.118 | 0.076 0.156 0.194

Wildfl TraceScore 0.087 0.134 | 0.079 0.187 0.241

y TraceScore+R 0.090 0.142 | 0.086 0.194 0.250
TraceScore+W 0.091 0.136 | 0.077 0.196 0.250
TraceScore+W+R | 0.093 0.143 | 0.083 0.203 0.255

TABLE IV
PEARSON CORRELATION BETWEEN BUG LOCALIZATION METRICS
IMPROVEMENT (MAP AND MRR) AND RENAMING REFACTORING

Technique Metric  Correlation P-value
SimiScore+R MAP 0.789 0.004
MRR 0.838 0.001
MAP 0.929 0
TraceScore+R MRR 0876 0
MAP 0.813 0.002
TraceScore+W+R MRR 0.826 0.002

per [8]. To reveal the underlying cause, we split the dataset of
Drools into five folds according to filed date, and experiment
on each fold. We observed that the results on each fold are
almost the same. But when leveraging longer history (more
older bug reports), the results decrease. The reason could be
that with longer history, older similar bug reports can introduce
noise (i.e., files that were long ago changed, but are not
relevant), while more recent similar bug reports are more help-
ful. However, when leveraging whole history (TraceScore+W),
TraceScore decreased by 11.7% in MAP and 15% in MRR
(comparing TraceScore with TraceScore+W). After adopting
RAT, TraceScore+R decreased by 2.0% in MAP and 6.2%
in MRR (comparing TraceScore+R with TraceScore+W+R).
RAT does help to mitigate the noise brought by long histories
by constructing more accurate code history. This conclusion
also holds in the other projects. Among all the results, the best
results are always achieved by leveraging RAT.

Results of Top 1, Top 5, and Top 10 are shown in Fig. 6
for easy visualization. As expected, the higher the renaming
rate, the better the results of the bug localization. Overall,
the results when analyzing the metrics that consider the top
files are similar to MAP and MRR, in which projects with
more refactorings have greater improvement, when consider-
ing longer histories, the improvement is more significant.

Answering RQ1.1: We can conclude that bug localization
based on bug report similarity indeed benefits from the
use of rename refactorings. This conclusion is supported
by the Pearson correlation coefficient, which indicates that
the existence of rename refactorings are correlated to the
improvement of MAP and MRR. The improvement is more
significant when exploiting longer history.

B. RQ1.2. Do code rename refactorings benefit bug localiza-
tion that favor recently more frequently modified files?

We conduct experiments on Google’s implementation of
BugCache [15] to evaluate the effectiveness of integrating code
rename refactoring into commit history-based bug localization.
Experimental results are shown in Table V.

Overall, the results show that eight projects out of all 11
projects can benefit from code refactoring, with one project
(Seam?2) showing no significant difference and two projects
(Drools and Weld) showing a small decline. Among all the
improved eight projects, the MAP score of Izpack and Railo
is slightly improved by around 4%. For the other six projects,
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Fig. 6. Performance of SimiScore, TraceScore, and TraceScore-Whole history for Metrics Top 1, Top 5, and Top 10.

MAP scores are improved by 17%736%. If we look at the
MRR, Top 1 and Top5 metrics, Derby and Wildfly are two that
benefit the most. The Top 1 are improved by 137% and 233%,
respectively. If we look at the two projects (Drools and Weld)
that have lower scores when considering code refactorings, the
decrease in score is almost negligible, which is less than 7%.

However, BugCache recommends recently more frequently
modified files, independent of the content of bug reports,
therefore the accuracy is much lower than bug report similarity.
Although renamed files gain extended history (history before
renaming) with RAT, their BugCache scores will not be
changed a lot according to equation II-A. BugCache prefers
the most recent modifications, so old modifications only con-
tribute minor difference.

Answering RQI1.2: For recently more frequently modified
file favored bug localization, 70% projects in our dataset
can benefit from code rename refactorings, with 20% of
them gaining significant improvement in Top 1 (greater than
100%). 30% of projects show no significant difference.

Existing approaches aggregate bug report similarity and
version history, as well as other components by weights as
indicated in Table 1. The weight of bug report similarity ranges
from 0.058 to 0.32 and it is from O to 0.4 for version history. In
this way, we can see all the approaches will benefit from more
complete code history, especially for approaches that adopted
both with high weights.

C. RQ2. How often do code refactorings happen?

According to the first question, we can see that different
bug localization approaches do benefit from code refactoring.
Fig. 4 presents during the whole studied period of time, how
many buggy files have been refactored (renamed). In some
projects, there is a huge number of refactored buggy files,
while in other projects, there are hardly any.

In this research question we want to investigate when and
how often refactoring occurs (we are only concerned about the
eight types mentions in Section II). Considering that commits
are not uniformly distributed over a period of time. Thus,
instead of calculating the occurrence of refactorings based on
time, we calculate how many refactorings there are in a certain
amount of commits. Specifically, for each project, we group all
the commits into ten groups, and for each group, we calculate
how many refactorings there are, and how many refactorings
that rename a buggy file.

The results are shown in Fig 7. From the figure, we can
see that refactoring happens throughout the whole history,
not a rare case. This emphasizes the importance of keeping
tracking of source code, because code history is being broken
all the time. Sometimes refactorings may happen in bursts.
For example, in the eighth group of Drools, there are 2,615
refactorings, while for the other nine groups, there are about
300 refactorings in each group. The number of refactorings in
different projects varies. In Derby, there are about 10 30 refac-
toring for every group. While in Wildly, the average number of
refactorings for each group is about 680. This variety indicates
whether our code traceability model fits or not.

Answering RQ2: Software refactoring happens throughout
the software lifecycle. At some points, it can happen in
bursts, which emphasizes keeping track of code history.

VII. THREATS TO VALIDITY

Threats to validity of our work come from three aspects:

« Refactoring Mining Tool. We leverage refactoring de-
tection to construct our code history. Our results rely on
the refactoring mining results. To mitigate this bias, we
choose the state-of-the-art tool, which has the highest
average precision and recall.

« Implementation of Compared Approaches. We im-
plement SimiScore, TraceScore and BugCache as our
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TABLE V
PERFORMANCE OF BUG CACHE WITH AND WITHOUT CONSIDERING
RENAME REFACTORINGS.

Project | Approach [ MAP MRR [Top1 Top 5 Top 10
Derby BugCache 0.052 0.137 | 0.046 0.219 0.342
BugCache+R | 0.071 0.194 | 0.109 0.282 0.370
Drools BugCache 0.121 0.261 | 0.165 0.364 0.448
BugCache+R | 0.118 0.253 | 0.177 0.339 0.427
Hornetq BugCache 0.064 0.138 | 0.072 0.208 0.279
BugCache+R | 0.081 0.162 | 0.091 0.219 0.309
Tzpack BugCache 0.132 0237 | 0.126 0.342 0.447
BugCache+R | 0.137 0.265 | 0.151 0.377 0.497
Keycloak BugCache 0.043 0.101 | 0.037 0.159 0.229
BugCache+R | 0.054 0.119 | 0.050 0.177 0.246
Log4i2 BugCache 0.060 0.111 | 0.043 0.168 0.238
BugCache+R | 0.072 0.137 | 0.068 0.198 0.268
Railo BugCache 0.076 0.278 | 0.176  0.382 0.441
BugCache+R | 0.080 0.283 | 0.176 0.382 0.441
Seam? BugCache 0.047 0.078 | 0.039 0.114 0.151
BugCache+R | 0.047 0.077 | 0.037 0.114 0.158
Teiid BugCache 0.034 0.087 | 0.031 0.129 0.201
BugCache+R | 0.040 0.092 | 0.033 0.135 0.220
Weld BugCache 0.083 0.192 | 0.095 0.284  0.384
BugCache+R | 0.081 0.184 | 0.095 0.291 0.369
Wildfly BugCache 0.009 0.019 | 0.003 0.018 0.045
BugCache+R | 0.011 0.026 | 0.010 0.028 0.050

baseline. Since there are no available packages for SimiS-
core and TraceScore, we re-implement their approaches
strictly by their papers. For BugCache, we reused the
reproducible package by Jackwon et al. [38].

« Refactoring Types Selection. In this paper, we only
consider about eight types of code refactoring. However,
there can also be other types of refactoring that may cause
influence. To reduce this threat, we only choose types that
obviously rename files.

VIII. RELATED WORK

The IR-based bug localization has been intensively studied
in the literature, e.g., [6]-[8], [10]. It uses information retrieval
techniques to find buggy-prone files. Zhou et al. propose
BuglLocator which calculate similarity between bug reports to
recommend similar files to similar bug reports [6]. Sisman
and Kak propose a source code version history-based fault
localization approach, which utilizes the frequency of a file
being buggy and its modifications to prioritize candidate
source code files [11]. Wang et al. combine similar bug reports,

code version history and code structure to find the buggy files
[7], [10]. Wen et al. uses change logs and change hunks from
commit message as alternative of segments of source code
files to enable more accurate bug localization [13]. Rath et al.
propose ABLoTS approach that leverages similar bug reports,
requirements, code structure and commit history [8]. Jackwon
et al. conduct on a reproduction study of state-of-the-art IRBL
approaches [38]. They provide their replication package °,
which makes our replication of BugCache easier. Li et al.
re-implement six state-of-the-art bug localization approaches
and report their effectiveness on 10 Huawei projects [39].

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a refactoring-aware traceability
model, and based on the data model, we reconstruct the
code evolution history that may have been broken by code
refactoring. Then we leverage the more complete/less frag-
mented code history to three widely-adopted, code history-
based bug localization components: SimiScore, TraceScore
and BugCache. We evaluate our traceability model on 11
large scale open source projects with more than 8,000 bug
reports. Experimental results show that with our traceability
model, all of the existing approaches can be boosted. We
also found the improvement are correlated to the refactoring
amount. Therefore, we show effectiveness of considering code
refactoring history into code history-based tasks. Our source
code is available at https://github.com/feifeiniu-se/RAT.

In the future, we plan to improve method-level bug local-
ization with the refactoring-aware traceability model. Also,
We plan to develop broader application scenarios that leverage
code history.
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