
Can one hear the shape of a neural network?:
Snooping the GPU via Magnetic Side Channel

Henrique Teles Maia
Columbia University

Chang Xiao
Columbia University

Dingzeyu Li
Adobe Research

Eitan Grinspun
Columbia University &
University of Toronto

Changxi Zheng
Columbia University

Abstract

Neural network applications have become popular in both
enterprise and personal settings. Network solutions are tuned
meticulously for each task, and designs that can robustly re-
solve queries end up in high demand. As the commercial
value of accurate and performant machine learning models in-
creases, so too does the demand to protect neural architectures
as confidential investments. We explore the vulnerability of
neural networks deployed as black boxes across accelerated
hardware through electromagnetic side channels.

We examine the magnetic flux emanating from a graphics
processing unit’s power cable, as acquired by a cheap $3 in-
duction sensor, and find that this signal betrays the detailed
topology and hyperparameters of a black-box neural network
model. The attack acquires the magnetic signal for one query
with unknown input values, but known input dimensions. The
network reconstruction is possible due to the modular layer
sequence in which deep neural networks are evaluated. We
find that each layer component’s evaluation produces an iden-
tifiable magnetic signal signature, from which layer topology,
width, function type, and sequence order can be inferred using
a suitably trained classifier and a joint consistency optimiza-
tion based on integer programming.

We study the extent to which network specifications can
be recovered, and consider metrics for comparing network
similarity. We demonstrate the potential accuracy of this side
channel attack in recovering the details for a broad range of
network architectures, including random designs. We con-
sider applications that may exploit this novel side channel
exposure, such as adversarial transfer attacks. In response, we
discuss countermeasures to protect against our method and
other similar snooping techniques.

1 Introduction

The graphics processing unit (GPU) is a favored vehicle for
executing a neural network. GPUs allow difficult and siz-

able jobs to be treated faster, and have been used extensively
in state of the art machine learning pipelines across both
academic and commercial settings. In turn, the widespread
success of neural network models when applied to real-world
challenges in vision [18], security [48], natural language pro-
cessing [41], and robotics [24], has solidified the demand for
GPUs to support machine learning technologies. Hardware
and software companies alike have streamlined management
of the GPU into their products as they strive to support ever
larger and more complex neural networks [1, 33].

These recent developments raise security concerns sur-
rounding an adversary who wishes to uncover the underlying
network design from an application. Model extraction at-
tacks, aimed at reverse engineering a network structure, have
attracted a growing research effort [34, 43, 44], and are mo-
tivated by several incentives. First, it is well known that the
performance of a network model hinges on its judiciously
designed structure—but finding an effective design is no easy
task. Significant time and energy is expended in searching and
fine-tuning network structures [52]. Moreover, in industry, op-
timized network structures are often considered confidential
intellectual property. In some cases businesses even charge
per inference for queries submitted by a client to networks
they host or provide as a service [2, 13].

Furthermore, a reverse engineered “surrogate” model also
makes the black-box “victim” model more susceptible to ad-
versarial transfer attacks [29, 36], in which a vulnerability
identified in the surrogate is exploited on the victim. Success
in the exploit is contingent on the ability of the surrogate to
successfully model the vulnerabilities of the victim. Recover-
ing accurate, detailed network topology and hyperparameters
informs the modeling of a good surrogate. It is therefore
important to understand how this valuable, privileged infor-
mation can be compromised.

These risks are assessed in the study of physical side-
channel attacks targeting neural networks. Granted local
access to processors, several works have explored how electro-
magnetic (EM) radiation is a powerful side channel through

which one can infer network details [3, 51]. However, these
works make use of methods specified to a limited set of neural
architectures that are tailored for microprocessors and edge
devices. We apply their same threat model, but instead gen-
eralize our approach to handle a wider array of deep neural
networks running on the GPU.

Most similar to our goal is a recent effort that likewise tar-
gets models on a GPU but by observing read-write volumes
and memory traces via both EM signals and bus snooping [20].
However, rather than aiming to predict precise parameter di-
mensions for their extracted layers, their approach randomly
selects parameter values from predetermined sets. We in-
stead examine an alternative source of EM leakage, the power
supplied to the GPU, and develop a novel way to assign pa-
rameters for arbitrary layers that result in valid architectures.
Our work extends the capability of previous EM side channel
attacks in order to generalize extraction for complex models
running on advanced hardware.

Approach. The GPU consumes energy at a variable rate
that depends on operations performed. Every microprocessor
instruction is driven by transistor electron flows, and different
instructions require different power levels [17]. The many
compute cores of a GPU amplify the fluctuation in energy
consumption, and so too the current drawn from the power
cable. Current induces magnetic flux governed by the Biot-
Savart law [16], and current fluctuations induce EM ripples
whose propagation through the environment is governed by
the Ampère-Maxwell law. Even a cheap, $3 magnetic induc-
tion sensor (see Fig. 2) placed within a few millimeters of the
power cable suffices to record these EM ripples.

We examine the fluctuation of magnetic flux from the
GPU’s power cable, and ask whether a non-intrusive observer
can glean the information needed to reconstruct neural net-
work structures. Our findings span across multiple GPU mod-
els and demonstrate transfer attacks on state of the art net-
works. Remarkably, we show that, through magnetic induc-
tion sensing, a passive observer can reconstruct the complete
network structure even for large and deep networks.

To reconstruct the black-box network’s structure, we pro-
pose a two-step approach. First, we estimate the network
topology, such as the number and types of layers, and types of
activation functions, using a suitably trained neural network
classifier. Then, for each layer, we estimate its hyperparame-
ters using another set of deep neural network (DNN) models.
The individually estimated hyperparameters are then jointly
optimized by solving an integer programming problem to
enforce consistency between the layers. We demonstrate the
potential accuracy of this side-channel attack in recovering
the details for a wide range of networks, including large,
deep networks such as ResNet101 [18]. We further apply
this recovery approach to demonstrate black-box adversarial
transfer attacks.

To summarize, our main contributions are as follows:

• We study how the large-amplitude EM radiation asso-
ciated to neural network GPU implementations allows
recovery of significantly richer network details.

• We explore a simple–yet–effective recurrent classifica-
tion model that translates measurements made by a cheap
and elementary sensor.

• We present a robust algorithm based on limited a pri-
ori knowledge of parameters and heuristics, complete
with an integer programming optimization formulation,
which improves on previous attempts to specify network
models from side-channel information.

• We demonstrate vulnerabilities through model extraction
and transfer attack results that leverage the proposed in-
depth recovery of a black box network model.

2 Related Work

Our work falls under the umbrella of black-box model extrac-
tion. Absent access to the model’s internals, one might infer
structure from observed input-output pairs. For instance, [43]
demonstrated that, for simple models such as decision trees
and support vector machines hosted on a cloud, certain inter-
nal information can be extracted via a large amount of queries.
This approach, which was extended to infer details of deep
neural networks [10, 29, 34, 44], is typically able to recover
some crucial information, such as the optimization learning
rate and narrowing in on the network structure family, but has
not demonstrated recovery of full structural details.

An orthogonal approach, side-channel analysis (SCA), ex-
tracts information gained from the physical implementation
of a model, rather than in the mathematical model itself. Anal-
ysis of timing [26], power [25, 30], cache flushes [50], and
audio [12] have been prominently demonstrated to extract
secret keys from cryptographic procedures such as the Digital
Signature and Advanced Encryption Standards.

When concerned with machine learning, different net-
work models exert different computational burdens on hard-
ware [47]. The variance across operations and layers result
in different physical patterns of consumption, regardless of
implementation or hardware, leaving neural architectures in
general susceptible to side channel attacks. SCA was recently
used to infer machine learning models by observing power
consumption profiles [9, 45, 47], timing information [11] and
memory/cache access [19–21, 49]. These methods placed a
malware process on the machine hosting the black-box model.
Our threat model does not involve introducing processes on
the host.

vo
lts 5.0

4.5

ms20 251550 10

4.0

3.5

3.0

2.5
conv BN relu MP conv con

vBN BNaddrelu relu

Figure 1: Leaked magnetic signal. (left) Our induction sensor captures a magnetic signal when a CNN is running on the GPU.
We observe strong correlation between the signal and the network steps. Across two steps, the GPU has to synchronize, resulting
in a sharp drop of the signal level (highlighted by selected red circles). (right) We can accurately classify the network steps
and reconstruct the topology, as indicated by the labels under the x-axis. Here we highlight the signal regions associated with
convolutions (conv), batch-norm (BN), Relu non-linear activations (relu), max-pooling (MP), and adding steps together (add).

In cases where access to memory is secured by the target,
one can still leverage physical access to collect patterns from
the processor itself or its power consumption. Recently, side
channel analysis of EM radiation has been applied to exploit
network model extraction [3, 51]. These attempts concentrate
on EM radiation from embedded processors. Edge devices are
often constrained to lite (abbreviated) machine learning frame-
works, limiting the size and complexity of models supported
by the hardware. In contrast to GPUs, embedded processors
emit a relatively weak EM signal, necessitating delicate and
costly measurement devices and even mechanical opening of
the chip package.

Our advance. Previous works are demonstrated on shallow
networks (e.g., fewer than 20 layers) and on more limited edge
hardware. It remains unclear whether these methods can also
extract deep network models, ones that are structurally more
complex and more prevalent in practice. We demonstrate
successful recovery of the full structure of deep networks,
such as AlexNet [27], VGGNet [39], and ResNet101 [18].
With that, we hope to raise awareness of the GPU’s EM
radiation as an information-rich, easily and non-intrusively
probed side channel.

3 Background

3.1 Neural Networks

Neural Networks constitute a field of machine learning al-
gorithms suited for general purpose feature extraction, re-
gression, and classification objectives [28]. A network is an
assembly layers, each containing either a linear operation, an
aggregate operator, or a non-linear activation function that
works to transform an input. Each layer consists of a differen-
tiable function in order to permit optimization of an objective
through back-propagation and stochastic gradient descent.

The design of a neural network, often referred to as its
architecture, model, or topology, gives the network its shape.
Models are commonly defined by their shape characteristics,
namely: (i) the number of layers used, also known as the
depth, (ii) the sequence in which layers appear, and (iii) each
layer’s individual type (e.g. fully connected, convolutional,
recurrent, pooling, activation, normalization, etc.). Networks
may then compose these elements in unique ways. For exam-
ple, VGGNet and ResNet are both composed of convolutional,
pooling, activation, and fully connected layers, but structure
them with distinct numbers of layers set up in differing orders.

Beyond the high-level shape of a network, a model must
also specify the parameters for its layers. This includes detail-
ing the size and padding of convolution kernels, whether to
use average or max pooling, or choice in activation function
from a growing list of candidates (e.g., ReLU, Tanh, Sig-
moid, etc.). It also predominantly involves delineating the
dimension for each layer. In practice, a layer’s size dimension
determines the number of operations (such as multiplication
or addition) it imposes, and is closely related to the compu-
tational overhead of the layer. Asides from transforming the
values passing through the network, size parameters also influ-
ence the dimensions of neighboring layers. Layer definitions
cannot be specified arbitrarily and must be consistent across
layers in the network in order to ensure valid output-input
dimension agreement.

After a neural architecture is chosen, networks undergo
stages of training and inference. Training leverages a labeled
dataset of inputs and desired outputs to update values stored
on layers in order to minimize a target loss function. Infer-
ences make use of the trained network to resolve queries,
leveraging patterns ’learned’ throughout training [28]. A net-
works shape, along with the variance of the training set, dic-
tates the capability of a network to accurately and efficiently
process new queries.

3.2 GPUs for Deep Neural Networks

GPU hardware is used pervasively throughout the machine
learning community, and some GPUs even feature dedi-
cated tensor-based cores optimized for computing network
steps [32]. We use step to refer to performing a specific kind
of network operation, such as a linear operation, batch nor-
malization, pooling, activation function, etc. A layer is a se-
quences of steps, e.g., a (i) linear operation, then (ii) pooling,
then (iii) activation. While there may be data dependencies
between steps, there are no such dependencies within a step.

The parallel nature of GPU computation lends itself to a
natural implementation of networks, wherein each step de-
fines a compute kernel that is executed in parallel, i.e., single
instruction multiple data (SIMD) parallelism. Transitions
between steps, however, are synchronized [4]: in our example
above, activation begins only after pooling completes. This
cross-step synchronization allows for implementations struc-
tured into modules, or GPU kernels. This modular approach
is employed in widely-used deep learning frameworks such
as PyTorch and TensorFlow [1, 37].

3.3 Magnetic Signals from GPUs

Kernel execution demands transistor flips, which place elec-
tric load on the GPU processor, in turn emitting magnetic flux
from its power cable. An induction sensor measures this flux
and produces proportional voltage. The time-varying voltage
is our acquired signal (see Fig. 1).

Different steps correspond to different GPU kernels, tran-
sistor flips, electric loads, and signal characteristics, which
are distinguished even by the naked eye (see Fig. 1). Cross-
step synchronization involves idling, dramatically reducing
electric load and signal level (see Fig. 1). These rapid sharp
drops demarcate steps.

We observe that the acquired signal strongly correlates to
the kind of GPU operations, rather than the specific values
of computed floating point numbers. We verify this by ex-
amining signals using both PyTorch and TensorFlow and on
multiple GPU models (see Sec. 7). Furthermore, we discuss
how the signal is processed in Sec. 5.1, and later address
challenges to our side-channel signal in Sec. 8.

The signal is also affected by the input to the network.
Although the specific input data values do not influence the
signal, the input data size does. When the GPU launches a
network, the size of its single input (e.g., image resolution)
is fixed. But the network may be provided with a batch of
input data (e.g., multiple images). As the batch size increases,
more GPU cores will be utilized in each step. The GPU
consequently draws more power, which in turn strengthens
the signal. Once all GPU cores are involved, further increase
of input batch size will not increase the signal strength, but

elongate the execution time until the GPU runs out of memory.

Therefore, in launching a query to the black-box network
model, the adversary should choose a batch size sufficiently
large to activate a sufficient number of GPU cores to produce
a sufficient signal-to-noise ratio. We find that the range of
the proper batch sizes is not prohibitively large (e.g., 64 ∼ 96
for ImageNet networks), loosely depending on the size of the
single input’s features and the parallel computing ability of
the GPU. In practice, the adversary can choose the batch size
by experimenting with their own GPUs under various image
resolutions.

Notably however, we do not require knowledge of batch
size to robustly recover network topology (as opposed to hy-
perparameters), only that the batch size is sufficiently large
enough to provide a clear signal. While we used a consumer
friendly sensor with limited sampling rate (see 6.1) and corre-
sponding signal-to-noise ratio (SNR), a sensor with high sam-
pling rate and SNR would correspondingly require a smaller
minimum batch size.

4 Threat Model

Incentives. An adversary may have numerous motives to
carry out a successful model extraction attack.

Physical IP snooping. Most major tech firms provide plat-
forms to manage neural networks as a service that can be
vertically integrated [1, 22, 33]. A client subscribes to the
machine learning interface of the service provider but can oth-
erwise host these services within their own servers to preserve
the integrity of their data. The ability to host these platforms
onsite or on edge devices grants local access to these ma-
chine learning applications and creates an opportunity for an
adversary who looks to acquire intellectual property.

Circumventing payment. Neural inference engines are often
deployed as black-box services which an attacker may have
economic incentives to sidestep [2,13,33]. In these scenarios,
a service provider may invest significant time and resources
towards developing a robust model, which it hopes to recover
and profit from by charging clients for queries. Through
model extraction and offline training an attacker can avoid
both the development and prediction charges of the reverse
engineered model.

Violating sentries. In cases where a machine learning ap-
proach is taken to identify viruses or spam, an attacker in-
creases their chances of deceiving or bypassing the model by
recovering its underlying neural network architecture. Proxi-
mate models have shown to produce better transfer attacks,
allowing one to uncover the classification pitfalls of a similar
model offline before attempting to fool the production model.

For these reasons, enterprises that embed networks into
their applications rely on the privacy of their models. While

the host hardware and operating system may be secured by
passwords and file access controls, there remains the threat
that an attacker gains physical proximity to the hardware. The
dangers associated with physical access have been established
by several side-channel works exhibiting different goals under
various computing environments [3, 9, 45–47]. Our study
explores how the risk of forfeiting confidentiality remains
present for complex designs running on a GPU.

Target scope. Our primary focus centers on using an elec-
tromagnetic side channel to reverse engineer the neural ar-
chitecture and its defining layer parameters. The networks
in question may be of arbitrary size and depth, and involve
combinations of fully connected, convolutional, and recur-
rent layers, along with a medley of interspersed activation,
normalization, and pooling layers.

Together these layers span the basic components used
to assemble most state of the art networks and account for
models used across a variety of machine learning applica-
tions [18, 24, 27, 39, 41, 48]. Furthermore, there are no re-
strictions on the types of variables involved in the network,
suggesting our method is type agnostic and can support binary,
integer, or real-valued models equally.

Attacker’s capability. We follow the threat model of prior
works who measure physical EM signals from models where
the adversary may control the input [3, 51] . Our attacker
has no prior knowledge of the target neural network. The
model is taken to be developed, trained, and validated else-
where. The only accessible result is an inference engine
whose code, memory, and design cannot be accessed without
tampering with the service or otherwise alerting the provider.
The attacker is both non-invasive and passive, working within
standard operating procedure and treating the network as a
black-box while providing inputs of known size to the target.
The adversary can only observe the side channel information
leaked from the targeted hardware. Our attacker does not
make any effort to circumvent countermeasures, given that
side channel attacks on neural networks have only recently
been attempted on computing accelerators [20].

The side channel information is revealed by placing a mag-
netic induction sensor in close proximity to the GPU’s power
cable, and launching a query to produce a measurable signal.
Our attacker’s ability to observe the input and acquire signals
matches the assumptions of several studies that explore side-
channel leakage [3,45,46,51] The attacker is otherwise weak,
without ability to execute code on the host CPU and GPU; and
without knowledge of the input values and output results of
the launched queries, only their size. Not only that—they also
lack direct access to the GPU hardware, beyond the proximity
to the power cable. The adversary only requires access to
their own GPU hardware and deep learning framework (e.g.,
PyTorch, TensorFlow), matching that of the victim in order to

train offline and carry out the attack. Although it is possible
to extract network information from similar processors in the
family of the target GPU (Sec. 7.2), best results are achieved
when offline computing is performed on the same platform as
the victim.

5 Signal Analysis & Network Reconstruction

We prepare for the attack by training several recovery DNN
models. After the attacker launches a single batch query
(whose input and output values are irrelevant), we recover
structure from the acquired signal in two stages: (i) topology
and (ii) hyperparameters. To recover topology, a pretrained
DNN model associates a step to every signal sample. This
per-sample classification partitions the signal into segments
corresponding to steps. We estimate hyperparameters for
each individual segment in isolation, using a step-specific
pretrained DNN model, and resolve inconsistencies between
consecutive segments using an integer program. The pretrain-
ing of our recovery DNN models is hardware-specific, and
good recovery requires data gathered from similar hardware.

5.1 Topology Recovery

Classifying steps in a network model requires taking in a time-
series signal and converting it to labeled operations. The EM
signal responds only to the GPU’s instantaneous performance,
but because the GPU executes a neural network sequence,
there is rich context in both the window before and after any
one segment of the signal. Some steps are often followed by
others, such as pooling operations after a series of convolu-
tions. We take advantage of this bidirectional context in our
sequence to sequence classification problem by utilizing a
recurrent neural network to classify the observed signal.

Bidirectional Long Short-Term Memory (BiLSTM) net-
works are well-suited for processing time-series signals [15].
We train a BiLSTM network to classify each signal sample
si predicting the step C(si) that generated si (see Fig. 1-b).
The training dataset consists of annotated signals constructed
automatically (see Sec. 6.2). The input signal is first normal-
ized before undergoing processing with a two-layer BiLSTM
network, using a dropout layer of 0.2 in between. The input
to our network is a sliding window of the time-series signal,
the entirety of which is classified according to the available
step operations from our supervised learning dataset. For
all experiments in our work, we used a layer size of 128 for
the two BiLSTM layers and an input-output window size
of 128. We train the BiLSTM by minimizing the standard
cross-entropy loss between the predicted per-sample labels
and the ground-truth labels. This approach proves robust, and
is the method used by all of our experiments and on all GPU’s
tested.

The segmented output of our BiLSTM network on our ex-
tracted signal is for the most part unambiguous. Operations
that follow one another (i.e. convolution, non-linear activation
function, pooling) are distinct in their signatures and easily
captured from the context enabled by the sliding window sig-
nal we use as input to the BiLSTM classifier. Errors that arise
come primarily from traces of very small-sized steps, closer
to our sensor’s sampling limit. Noise in such regions may
over-segment a non-linear activation, causing it to split into
two (possibly different) activation steps. To ensure consis-
tency we post-process the segmented results to merge steps of
the same type that are output in sequence, cull out temporal
inconsistencies such as pooling before a non-linear activa-
tion, and remove activation functions that are larger than the
convolutions that precede them.

This concludes identifying the sequence of steps, recover-
ing the layers of the network, including their type (e.g., fully
connected, convolution, recurrent, etc.), activation function,
and any subsequent forms of pooling or batch normalization.
What remains is to recover layer hyperparameters.

5.2 Hyperparameter Estimation

Hyperparameter consistency. The number of hyperpa-
rameters that describe a layer type depends on its linear step.
For instance, a CNN layer type’s linear step is described by
size, padding, kernel size, number of channels, and stride
hyperparameters. Hyperparameters within a layer must be
intra-consistent. Of the six CNN hyperparameters (stride,
padding, dilation, input, output, and kernel size), any one
is determined by the other five. Hyperparameters must also
be inter-consistent across consecutive layers: the output of
one layer must fit the input of the next. A brute-force search
of consistent hyperparameters easily becomes intractable for
deeper networks; we therefore first estimate hyperparameters
for each layer in isolation, and then jointly optimize to obtain
consistency.

Initial estimation. We estimate a specific hyperparameter
of a specific layer type, by pretraining a DNN. We pretrain a
suite of such DNNs, one for each (layer type, hyperparameter)
pairing. Once the layers (and their types) are recovered, we
estimate each hyperparameter using these pretrained (layer
type, hyperparameter) recovery DNNs.

Each DNN is comprised of two 1024-node fully connected
layers with dropout. The DNN accepts two (concatenated)
feature vectors describing two signal segments: the linear step
and immediately subsequent step. The subsequent step (e.g.,
activation, pooling, batch normalization) tends to require ef-
fort proportional to the linear step’s output dimensions, thus
its inclusion informs the estimated output dimension. Each
segment’s feature vector is assembled by (i) partitioning the
segment uniformly into N windows, and computing the aver-

age value of each window, (ii) concatenating the time duration
of the segment. The concatenated feature vector has a length
of 2N +2.

The DNN is trained with our automatically generated
dataset (see Sec. 6.2). The choice of loss function depends
on the hyperparameter type: For a hyperparameter drawn
from a wide range, such as a size, we minimize mean squared
error between the predicted size and the ground truth (i.e., re-
gression). For a hyperparameter drawn from a small discrete
distribution, such as stride, we minimize the cross-entropy
loss between the predicted value and the ground truth (i.e.,
classification). In particular, we used regression for sizes, and
classification for all other parameters.

Joint optimization. The initial estimates of the hyperpa-
rameters are generally not fully accurate, nor consistent. To
enforce consistency, we jointly optimize all hyperparame-
ters, seeking values that best fit their initial estimates, subject
to consistency constraints. Our optimization minimizes the
convex quadratic form

min
xi∈Z0+ ∑

i∈X
(xi − x∗i)

2 , subject to consistency constraints,

(1)
where X is the set of all hyperparameters across all layers;
x∗i and xi are the initial estimate and optimal value of the i-
th hyperparameter, respectively. The imposed consistency
constraints are:

(i) The output size of a layer agrees with the input size of
the next next layer.

(ii) The input size of the first layer agrees with the input
feature size.

(iii) The output size of a CNN layer does not exceed its input
size (due to convolution).

(iv) The hyperparameters of a CNN layer satisfy

sout =

⌊
sin +2β− γ(k−1)−1

α
+1

⌋
, (2)

where α, β, γ, and k denote the layer’s stride, padding,
dilation, and kernel size, respectively.

(v) Heuristic constraint: the kernel size must be odd.

Among these constraints, (i-iii) are linear constraints, which
preserves the convexity of the problem. The heuristic (v)
can be expressed as a linear constraint: for every kernel size
parameter k j, we introduce a dummy variable τ j, and require
k j = 2τ j + 1 and τ j ∈ Z0+. Constraint (iv) , however, is
troublesome, because the appearance of stride α and dilation γ,
both of which are optimization variables, make the constraint
nonlinear.

Since all hyperparameters are non-negative integers, the
objective must be optimized via integer programming: IP in
general case is NP-complete [35], and the nonlinear constraint
(iv) does not make life easier. Fortunately, both α and γ have
very narrow ranges in practice: α is often set to be 1 or 2, and
γ is usually 1, and they rarely change across all CNN layers
in a network. As a result, they can be accurately predicted
by our DNN models; we therefore retain the initial estimates
and do not optimize for α and γ, rendering (2) linear. Even if
DNN models could not reliably recover α and γ, one could
exhaustively enumerate the few possible α and γ combina-
tions, and solve the IP problem (1) for each combination, and
select the best recovery.

The IP problem with a quadratic objective function and
linear constraints can be easily solved, even when the number
of hyperparameters is large (e.g., > 1,000). In practice, we
use IBM CPLEX [6], a widely used IP solver. Optimized
hyperparameters remain close to the initial DNN estimates,
and are guaranteed to define a valid network structure.

6 Experimental Setup

In the following section we discuss hardware choices, sensor
setup, and dataset generation details of our experiments.

6.1 Hardware Sensors

We use the DRV425 fluxgate magnetic sensor from Texas
Instruments for reliable high-frequency sensing of magnetic
signals [23, 38]. This sensor, though costing only $3 USD,
outputs robust analog signals with a 47kHz sampling rate
and ±2mT sensing range. For analog to digital conversion
(ADC), we use the USB-204 Digital Acquisition card, a 5-
Volt ADC from Measurement Computing [5]. This allows a
12-bit conversion of the signal, mapping sensor readings from
-2mT∼2mT to 0V∼5V.

Previous works have attempted electromagnetic side-
channel attacks with industrial probes, e.g. the Langer RF-U
5-2 [3]. These sensors are rated to measure at higher fre-
quencies ranging from 30MHz to 3GHz, but are far more
expensive ($1,500+ USD) and require additional technical
equipment to operate. Other power side channel exploits have
explored sampling at again higher rates varying from 400KHz
to 2.5GHz [45,47]. Sampling at these frequencies allows finer
capture of hardware signals that can ease network step clas-
sification, although it significantly increases the amount of
feature data to be processed. In contrast, our method involves
a $3 USD sensor sampling at 47KHz. Sampling at rates lower
than 47KHz would make it difficult to adequately capture
short events on the GPU, such as non-linear activation func-
tions and small matrix multiplications that may occur.

6.2 Dataset Construction

Sensor placement. Setup of the sensor requires that (i) the
sensor is within range of the electromagnetic signal and (ii)
the sensor orientation is consistent. To avoid interference
from other electric components, we place the sensor near the
GPU’s magnetic induction source, anywhere along the power
cable. Because magnetic flux decays inversely proportional
to the squared distance from the source, according to the Biot-
Savart law [16], we position the sensor within millimeters of
the cable casing (see Fig. 2). Flipping the sensor over will
result in a sign change of the received magnetic induction
signal, thus we maintain a uniform orientation to avoid the
misalignment of readings across the dataset.

Data capture. Pretraining the recovery DNN models (re-
call Sec. 5) requires an annotated dataset with pairwise cor-
respondence between signal and step types (see Fig. 2). We
can automatically generate an annotated signal for a given
network and specific GPU hardware, simply by executing
a query (with arbitrary input values) on the GPU to ac-
quire the signal. Timestamped ground-truth GPU opera-
tions are made available by most deep learning libraries (e.g.,
torch.autograd.profiler in PyTorch and tf.profiler in
TensorFlow).

A difficulty in this process lies in the fact that the captured
(47kHz) raw signals and the ground truth GPU traces run
on different clocks. Similar to the use of clapperboard to
synchronize picture and sound in filmmaking, we precede
the inference query with a short intensive GPU operation to
induce a sharp spike in the signal, yielding a synchronization
landmark (see Fig. 4). We implemented this “clapperboard”
by filling a vector with random floating point numbers.

Training Set Details. The set of networks to be annotated
could in principle consist (i) solely of randomly generated
networks, on the basis that data values and “functionality” are
irrelevant to us, and the training serves to recover the substeps
of a layer; or (ii) of curated networks or those found in the
wild, on the basis that such networks are more indicative of
what lies within the black-box.

We construct our training set as a mixture of both ap-
proaches. Randomly generated networks involve base steps
made up of a mixture of fully-connected, recurrent, and CNN
layers. These are accompanied by 5 different activation func-
tions, 2 types of pooling layers, and a potential normalization
operation. Off the shelf networks consist of VGG and ResNet
variants. All in all we consider 500 networks for training,
ranging from 4 to 512 steps per network and culminating in
70,933 individual steps in total. When we construct these
networks, their input image resolutions are randomly chosen
from [224×224, 96×96, 64×64, 48×48, 32×32]: the highest
resolution is used in ImageNet, and lower resolutions are used

weiv edis weiv pot
GPU power cable

Analog-to-Digital
Converter

GND

USB output

GPU

Sensor placed on the power cable

Figure 2: Sensing setup. Placement of the magnetic induction sensor on the power cord works regardless of the GPU model,
providing a common weak-spot to enable current-based magnetic side-channel attacks.

Table 1: Classification accuracy of network steps (Titan V)

Layer Type Prec. Rec. F1 # samples
LSTM .997 .992 .995 8,704
Conv .993 .996 .994 447,968
Fully-connected .901 .796 .846 10,783
Add .984 .994 .989 22,714
BatchNorm .953 .955 .954 47,440
MaxPool .957 .697 .806 4,045
AvgPool .371 .760 .499 675
ReLU .861 .967 .911 28,512
ELU .464 .825 .594 2,834
LeakyReLU .732 .578 .646 9,410
Sigmoid .694 .511 .588 8,744
Tanh .773 .557 .648 4,832
Weighted Avg. .968 .967 .966 -

in datasets such as CIFAR. We will release training and test
datasets along with source code and hardware schematics for
full reproducibility.

Test dataset. We construct a test dataset fully separate from
the training dataset. Our test dataset consists of 64 randomly
generated networks produced the same way as those randomly
generated for training. The number of layers ranges from 30
to 50 layers. To diversify our zoology of test models, we
also include smaller networks that are under 10 layers, LSTM
networks, as well as ResNets (18, 34, 50, and 101). Alto-
gether, each test network has up to 514 steps. In total, the
test dataset includes 5,708 network steps, broken down into
1,808 activation functions, 1,975 additional batch normaliza-
tion and pooling, and 1,925 fully connected, convolutional,
and recurrent layers.

7 Results

This section presents the major empirical evaluations of our
method. We refer the reader to Appx. A for additional results,
experiments, and discussion.

7.1 Accuracy of Network Reconstruction

Topology reconstruction. As discussed in Sec. 5, we use
a BiLSTM model to predict the network step for each single
sample. Table 1 reports its accuracy, measured on an Nvidia
Titan V GPU. There, we also break the accuracy down into
measures of individual types of network steps, with an over-
all accuracy of 96.8%. An interesting observation is that
the training and test datasets are both unbalanced in terms
of signal samples (see last column of Table 1). This is be-
cause in practice convolutional layers are computationally the
most expensive, while activation functions and pooling are
lightweight. Also, certain steps like average pooling are much
less frequently used. While such data imbalance does reflect
reality, when we use them to train and test, most of the mis-
classifications occur at those rarely used, lightweight network
steps, whereas the majority of network steps are classified
correctly.

We evaluate the quality of topology reconstruction using
normalized Levenshtein distance (i.e., one of the edit distance
metrics) that has been used to evaluate network structure
similarity [14, 20]. Here, Levenshtein distance measures the
minimum number of operations—including adding/removing
network steps and altering step type—needed to fully rectify
a recovered topology. This distance is then normalized by the
total number of steps of the target network.

We report the detailed results in Figure S1 in the appendix.
Among the 64 tested networks, 40 of the reconstructed net-
works match precisely their targets, resulting in zero Leven-
shtein distance. The average normalized Levenshtein distance
of all tested networks is 0.118. This confirms our networks
are recovered with similar network lengths and often exact
step matches.

To provide a sense of how the normalized Levenshtein
distance is related to a network’s ultimate performance, we
conduct an additional experiment to gauge reconstruction
quality via classification accuracy. We consider AlexNet
(referred as model A) and its five variants (refered as model
B, C, D, and E, respectively). The variants are constructed by
randomly altering some of the network steps in model A. The
Levenshtein distances between model A and its variants are 1,

C
la

ss
ifi

ca
tio

n
te

st
 a

cc
ur

ac
y

0.7

0.732

0.765

0.798

0.83

A B C D E

0.771

0.8080.8060.811
0.822

0 0.05 0.11 0.28 0.11
Normalized
Levenshtein distance

Figure 3: Each model’s classification accuracy drops as
its Levenshtein distance from the original model (model A:
AlexNet) increases.

Table 2: Model extraction accuracy on CIFAR-10
Model Target Titan V Titan X GTX1080 GTX960
VGG-11 89.03 89.61 89.63 88.46 88.3
VGG-16 90.95 91.08 91.03 89.33 90.78
AlexNet 81.68 85.26 85.11 85.27 85.03
ResNet-18 92.77 92.61 92.82 92.79 92.04
ResNet-34 92.21 92.28 92.95 90.81 92.71
ResNet-50 90.89 91.8 91.97 91.2 91.29
ResNet-101 91.58 91.91 91.85 91.37 91.72

2, 2, 5, respectively, and the normalized Levenshtein distances
are 0.05, 0.11, 0.11, 0.28 (see Fig. 3). We then measure the
performance (i.e., standard test accuracy) of these models
on CIFAR-10. As the edit distance increases, the model’s
performance drops.

DNN hyperparameter estimation. Next, we report the
test accuracies of our DNN models (discussed in Sec. 5.2) for
estimating hyperparameters of convolutional layers. Our test
data here consists of 1804 convolutional layers. On average,
our DNN models have 96%-97% accuracy. The break-down
accuracies for individual hyperparameters are shown in Ta-
ble S2 of the appendix.

Reconstruction quality measured as classification accu-
racy. Ultimately, the reconstruction quality must be eval-
uated by how well the reconstructed network performs in
the task that the original network aims for. To this end, we
test seven networks, including VGGs, AlexNet, and ResNets,
that have been used for CIFAR-10 classification (shown in
Table 2). We treat those networks as black-box models and
reconstruct them from their magnetic signals. We then train
those reconstructed networks and compare their test accu-
racies with the original networks’ performance. Both the
reconstructed and original networks are trained with the same
training dataset for the same number of epochs. The results in
Table 2 show that for all seven networks, including large net-
works (e.g., ResNet101), the reconstructed networks perform
almost as well as their original versions. We also conduct
similar experiments on ImageNet and report the results in

Table 3: Classification accuracy of network steps (GTX-1080).

Prec. Rec. F1 # samples
LSTM .997 .999 .998 12,186
Conv .985 .989 .987 141,164
Fully-connected .818 .969 .887 9,301
Add .962 .941 .951 30,214
BatchNorm .956 .944 .950 48,433
MaxPool .809 .701 .751 1,190
AvgPool .927 .874 .900 294
ReLU .868 .859 .863 11,425
ELU .861 .945 .901 8,311
LeakyReLU .962 .801 .874 3,338
Sigmoid .462 .801 .585 5,106
Tanh .928 .384 .543 8,050
Weigted Avg. .945 .945 .945 -

Table S1 of Appx. A.1.

7.2 Accuracy across GPUs

Twin GPU transferability. Our proposed attack requires
the adversary to have the same brand/version of GPU as
the victim, but not necessarily the same physical copy (see
Fig. 4). Here, we obtain two Nvidia GTX-1080 Graphics
cards running on two different machines with different CPUs
and RAM, using one to generate training data and another
one for black-box reconstruction.

We set out to verify that (i) the leaked magnetic signals
are largely related to GPU brand/version but not the other
factors such as CPUs and (ii) the signal characteristics from
two physical copies of the same GPU type stay consistent.
When we run the same network structure on both GPUs, the
resulting magnetic signals are similar to each other, as shown
in Figure 4. This suggests that the GPU cards are indeed the
primary sources contributing the captured magnetic signals.

Next, we use one GPU to generate training data and another
one to collect signals and test our black-box reconstruction.
The topology reconstruction results are shown in Table 3,
arranged in the way similar to Table 1, and the distribution of
normalized Levenshtein edit distance over the tested networks
are shown in Figure S2 of the appendix. These accuracies are
very close to the case wherein a single GPU is used. The later
part of the reconstruction pipeline (i.e., the hyperparameter
recovery) directly depends on the topology reconstruction.
Therefore, we expect that the final reconstruction is also very
similar to the single-GPU results.

Unspecified GPU transferability. Thus far we have con-
sidered the case where the attacker knows the hardware model
and version of the target GPU. We now explore the case where

vo
lts

2.5

5

5

2.5

ms60306 12 18 24 5436 42 480
Figure 4: Here we plot the resulting signals from the same network model deployed on two different instances of a Nvidia GTX
1080 (running on two different computers). In the green dash boxes on the left are the spikes that we inject on purpose (discussed
in Sec. 6.2) to synchronize the measured signal with the runtime trace of the GPU operations.

the model and version are unavailable. The adversary may
attempt to address this by exhaustively pretraining reconstruc-
tion networks for a wide range of GPU models. The signal
collected from the target GPU may then be processed by the
wide range of reconstruction networks. Since software up-
grades may affect GPU performance and alter the emitted
magnetic signals, the software version is considered to be
part of the GPU model specification. In our experiments,
we keep software versions constant, including OS version,
CUDA version, and PyTorch/Tensorflow version.

The scenario in which GPU model and version are unavail-
able can present itself in two ways: The victim GPU may
or may not be represented during the network training phase.
We explore each case in turn.

Suppose that the victim GPU is not represented in the net-
work training phase. To explore this scenario, we perform
K-fold cross-validation of classification accuracy across 6
unique GPUs. For each potential victim GPU, we perform re-
construction multiple times, each time against measurements
of another GPU, utilizing a new dataset comprised of all other
GPUs. The results of this K-fold cross-validation can be
found on the top row of Table 4. There we find that older
GPUs (such as the GTX-960) perform poorly when trained
on newer counterparts. Accuracy improves when trained with
similar models, such as the three 1080 architectures, which al-
though they have different memory allowances and hardware
specifications, result in high holdout accuracy. This suggests
that it is possible to achieve favorable results even without
precise knowledge of the target GPU, so long as the training
employs a similar GPU.

Next, suppose that the victim GPU is represented in the
network training phase. Although our proposed attack en-
courages the attacker to train solely and specifically with the
victim GPU, by assumption this is not possible in this sce-
nario. Instead, we train one generalized network comprised
of signals from all available GPUs. We then evaluate the
reconstruction accuracy for each specific GPU against the
generalized network. As recorded in the second row of Ta-
ble 4, reconstruction accuracy improves when the victim GPU
is represented during training, even if the training set is “con-

taminated” by data from other GPU models.

Multi-GPU Workstations. Multi-GPU configurations do
not introduce interference so long as their power cables are
isolated and sufficiently far apart (>7mm). An easy way to
avoid any such interference is to record the signal either on
the GPU itself or proximate to the connection between power
cable and GPU. We experimented with recording multi-GPU
configurations and found no issues isolating the side-channel
information of the victim GPU.

7.3 Transfer Attack

An adversarial transfer attack attempts to design an input that
tricks an unknown target model. The name transfer alludes
to the method of attack: The attacker builds a surrogate, an
approximation (informed guess) of the unknown target model,
and seeks out an input that tricks the surrogate. The attacker
hopes that the exploit “transfers” to the actual target, i.e., that
an input that tricks the surrogate also tricks the target. The
likelihood of a successful attack increases as the surrogate
better approximates the target. In a black-box setting, find-
ing an effective surrogate is very hard [8]. Therefore, the
attacker wishes to design a more informed surrogate. One
avenue toward this is to design surrogates with topology and
parameters similar to the target.

CIFAR-10 Dataset. Here we test on six networks found
in the wild, ranging from VGGs to AlexNet to ResNets, as
listed on the header row of Table 5. The table shows the
percent of successful transfer attacks over 5,000 attempts on
the CIFAR-10 dataset.

We consider each target architecture on each of four GPUs
in turn (top four rows of Table 5). We consider each such
architecture-GPU combination, in turn, as black-box target.
Using the side channel exploit, we reconstruct the target’s
structure to obtain a surrogate architecture, which we train
on CIFAR-10 to obtain a surrogate model. We craft inputs
that trick the surrogate, and evaluate whether those inputs
also trick the target. Transfer attack success is defined as

Table 4: Classification accuracy on datasets combining many GPUs
Target GPU

GTX-960 MSI-1060 MSI-1070 MSI-1080 EVGA-1080 GTX-1080
With Holdout 61.3 77.4 83.4 87.1 93.2 93.9
Full Dataset 96.5 88.6 93.4 91.7 95.8 95.2

the percent of generated inputs (based on the surrogate) that
correctly cause the trained target model to mislabel an input.
All adversarial inputs are generated via Projected Gradient
Descent [31], using an ε of 0.031 and an α of 0.003 for all
results. The success rate of the transfer attacks is summarized
in the upper four rows of Table 5.

To gauge the success rates of the “side channel surrogates,”
we compare them against “white-box surrogates.” We build
six white-box surrogates, corresponding to the six known
target architectures; these white-box surrogates differ only in
weights, as the surrogates are trained from scratch on CIFAR-
10. The idealized white-box surrogates serve as a benchmark
for effective surrogates; refer to the success rates in the bottom
six rows of Table 5.

Remarkably, the “side-channel surrogates” offer compa-
rable success rates to “white-box surrogates.” The relative
success of side-channel surrogates becomes more pronounced
for deeper networks (ResNets), where it appears that architec-
ture dominates sensitivity to weight values. When the number
of layers is small, as in VGG-11 and AlexNet architectures,
the margin for error decreases, and more importance is given
to the weights of the target. However, even in these cases
where attack performance drops, the side-channel surrogates
closely match the success rate of their white-box counterparts,
displayed in the lower rows. In other words, the side-channel
reconstruction effectively turns a black-box into a white-box
attack.

MNIST Dataset. Similar to our analysis of CIFAR-10
transfer attacks, we also conduct transfer attack experiments
on the MNIST dataset. We download four networks online,
which are not commonly used. Two of them are convolutional
networks (referred as CNN1 and CNN2), and the other two
are fully connected networks (referred as DNN1 and DNN2).
None of these networks appear in the training dataset. We
treat these networks as black-box targets, reconstruct a side-
channel surrogate for each, and attack the four targets; results
are shown in Table 6. As baselines, we also train white-box
surrogates with the exact architecture of the four target mod-
els.

All four of our extracted networks, visible in the top row of
Table 6 achieve high transfer attack scores against our candi-
date targets. These high scores suggest a close approximation
of the target models by our reconstructed networks. The simi-
larity between our extracted network’s transfer attack results

volts
4.5

20 251550 10

3.5

2.5

volts
4.5

3.5

2.5
ms20 251550 10 30 35

ms30 35

Figure 5: Deceptive steps. Our side channel cannot track
dataflow across the network to distinguish relevant opera-
tions (green and blue highlights). Extraneous interspersed
steps (red and orange) can mix in signals to impede topology
extraction, trading off less efficient processing for security.

and the results achieved by the matching source model across
the bottom four rows also indicates a strong correspondence
in the achieved architectures. We find that even across the
MNIST dataset we are able to generate a model that behaves
akin to a white-box transfer attack.

8 Defenses Against Magnetic Side Channels

At this point, we have shown the robustness and accuracy of
the magnetic side channel exploits and turn our attention to
countermeasures. Traditionally side channel defenses fall un-
der the category of either detection or reduction of the relevant
signal [40]. Since our approach is non-invasive and passive in
that it does not alter any code or hardware operation of GPUs,
detection methods which consist of somehow discovering
someone is listening to the GPU are not applicable to mag-
netic leakage. Instead we focus on suppression techniques
of the correlated signal, which aim to decrease the leaked
signal-to-noise ratio by either confounding the signal in place
or concurrently injecting noise to mask emissions [7]. We ex-
plore both these avenues separately by looking at prevention
and jamming.

8.1 Prevention

As shown in Figure 1, each rise and drop of the magnetic
signals correspond to the boundary between GPU operations.
This is only possible when the input batch is large enough
to keep every GPU operation sustained and stabilized at a

Table 5: Transfer attack results on CIFAR-10.
Target Model

ResNet-18 ResNet-34 ResNet-101 VGG-11 VGG-16 AlexNet
So

ur
ce

M
od

el
GTX-960 98.56 92.51 91.20 63.41 72.57 58.90
GTX-1080 97.88 90.86 86.24 64.69 55.19 56.83
Titan X 98.32 93.45 84.47 61.89 77.36 68.41
Titan V 98.48 93.65 91.27 64.39 72.77 60.17
ResNet-18 97.70 90.72 80.27 47.98 86.64 30.56
ResNet-34 97.21 92.46 82.30 51.42 85.60 32.34
ResNet-101 92.53 86.98 92.95 53.98 83.04 30.55
VGG-11 65.86 57.82 57.52 60.24 65.50 39.95
VGG-16 74.00 61.54 54.23 41.60 74.29 29.57
AlexNet 10.11 9.59 10.19 11.60 10.42 62.70

Table 6: Transfer attack results on MNIST.
Target Model

CNN1 CNN2 DNN1 DNN2

So
ur

ce
M

od
el GTX-1080 .802 .878 .999 .874

CNN1 .858 .226 .785 .476
CNN2 .395 .884 .354 .354
DNN1 .768 .239 .999 .803
DNN2 .703 .219 .975 .860

high-load state. To prevent this behavior, one can restrict
the input to be sufficiently small (e.g. 1 single image) when-
ever appropriate, such that the magnetic signals never reach
any stable state and suffer from a low signal-to-noise ratio,
rendering our sensing setup futile.

Another way to prevent magnetic side channel leakage is
to use a non-standard framework for inference which the ad-
versary does not have any training data to start with. Whether
by bringing into play new low-level GPU kernels or operating
in unique sequences, an atypical software implementation of
a network architecture will result in magnetic signatures that
are unaccounted for in the offline training.

Yet another possible defense mechanism results from the
fact that we are not tracking the actual dataflow in the GPU.
For example, we can correctly identify two GPU operations,
convolution and batch norm, within a long sequence. But
there is no evidence to be found within the magnetic side
channel proving the dataflow follows the same pattern—the
output from convolution could be a dead end and batch norm
takes input from a previous GPU operation. This mismatch be-
tween the dataflow and the underlying network model makes
it hard to decipher network measurements robustly.

We explore this approach in Figure 5, and find that one can
muddle the signal by periodically altering the flow of logic
in the target network. By introducing additional operations
within the network logic for the GPU to perform, the network
appears to consist of steps that are not in fact necessary for

inference. We achieve this by regularly performing an ad-
ditional convolution, normalization, or pooling function on
a copy of the dataflow input at any junction along the net-
work. These accessory network steps create dead branches
in the topology of the network, producing data that is aban-
doned since it is not used anywhere further along as part of the
inference. In our experiments we found that although our BiL-
STM had no issues classifying any invalid steps added, they
were nevertheless sufficient to derail our estimate of network
topology. However we also confirmed that shuffling in addi-
tional computation has the undesirable effect of prolonging
inference times and reducing overall network efficiency [7],
leading to an inference delay linear in the quantity, types, and
sizes of the extraneous steps introduced.

8.2 Jamming

While running on tiny input batch size or tampering with
network logic may at times be infeasible, we find jamming
to be an additional effective defense mechanism when ap-
plicable. Unlike simpler processors, GPUs are capable of
concurrently operating multiple programming kernels (e.g.,
each in a different CUDA stream). This allows for alternative
code to run adjacent to the hidden target network, inducing
EM signals that potentially obfuscate the signal related to the
model architecture.

Specifically, during the inference of a large input batch,
we ran a third-party CUDA GPU stress test in the back-
ground [42]. We found that the magnetic signals are com-
pletely distorted because of the constant high utilization of
GPU. The main caveats opposing this heavy handed approach
involve higher power consumption and the possible effects
on the lifetime of a GPU.

To further quantify how secondary usage might mask the
signal associated to primary usage, we also trained a network
to recover signals from a GTX-1080 GPU while incrementally
adding a background load throughout testing. The network
is solely trained on a dataset of signals free of noise or any

Background GPU Utilization (%)

Ac
cu

ra
cy

 0%

25%

50%

75%

100%

0 10 20 30 40 50

Figure 6: Classification accuracy in the precense of noise.
We simultaneously run additional immaterial kernels on the
GPU while collecting inferences on a target dataset. The
background load is increased until accuracy on the target
drops below 50%.

secondary processes on the GPU. Next, we record a fixed
test set of signals, repeating the recording process at varying
levels of background load on the GPU. We repeat this process
until the extraction accuracy falls below 50%. The results are
depicted in Figure 6.

Though ample background use can limit our sensor’s ef-
fectiveness, it is important to note that normal background,
variable, and low-utilization GPU operations do not affect
our signal recovery. Figure 6 shows that the network per-
forms best when free of any noise, and degrades as concurrent
background noise introduces an additional 35% GPU utiliza-
tion. Around and beyond this level of noise we find that the
background signals reached similar peaks to that of the tar-
get network, whose unhindered GPU utilization ranges from
10% ∼ 45%. Consequently, as the signal becomes dominated
by background signals, the accuracy drops, until a masking
effect akin to jamming with a constant signal is achieved
between 45% ∼ 50% background utilization.

9 Ethical Considerations

The general notion that a magnetic side channel can leak
information has been disclosed in prior work [3, 9, 45–47].
However, the extent to which such a side channel can recover
neural architecture details is becoming more evident. As with
all disclosures of vulnerabilities, sharing these findings creates
the potential for malicious use. Due to the non-intrusive
nature of this attack, network application logs do not include
the requisite details to determine via audits whether such
malicious use is already occurring.

At the same time, such side channel information can lead to
positive outcomes, such as non-intrusive hardware monitoring
and intellectual property protection.

Therefore, it is not straightforward to weigh the costs and
benefits of disclosing this vulnerability. What is clear is that
creating a better shared understanding of such vulnerabilities

is a necessary step toward developing appropriate precautions,
safeguards, and countermeasures.

We have corresponded with vendors to disclose and de-
scribe our findings, and will provide the requisite time for
mitigation. We have also discussed several viable defense
mechanisms targeting GPU processes and network implemen-
tations in response to our study.

10 Discussion

Comparisons. Our method considers more general recov-
ery of more complex GPU-based networks using lower cost
sensors. Compared to prior works [3, 51], we recover net-
works from a single EM trace using a data-driven approach
leveraging BiLSTMs, rather than requiring multiple scans (po-
tentially tens-of-thousands) and relying on additional steps
like Correlation Power Analysis or visual inspection for topol-
ogy recovery. Approaches based on these methods make ad-
ditional assumptions about layer sizes and handle a maximum
of 7 and 23 layers, respectively, whereas we accommodate
hundreds of layers. It is unclear whether these methods extend
beyond the straightforward and small multi-layer perceptrons
and CNNs programmable on simpler processors to other layer
types and models. Moreover these prior methods use setups
that cost thousands of dollars and involve either tampering
with the chips or carefully positioning processors against sen-
sors via stepper-motors, particularly limiting application to
GPUs.

Unlike previous approaches, we do not require access to
input-output variables and can handle large state-of-the-art
models using a $3 sensor. Our side-channel exploit stems
entirely from the GPU’s power cord, without requiring inti-
mate knowledge of memory registers, without intricate signal
capture, nor access to input-output variables. Furthermore,
we optimize parameter assignment as an integer program-
ming problem, allowing us to tackle arbitrary networks with-
out choosing between parameter templates for hidden mod-
els. We validate across various GPUs and our extracted net-
works achieve transfer attack rates of 55.19−77.36% (VGG)
84.47− 98.56% (ResNet), with existing works demonstrat-
ing 51.53% (VGG) [51] and 75.9% (ResNet) [20]. Lastly,
our study includes diverse activation functions, normalization
layers, pooling variants, and recurrent layers unexplored in
previous literature.

Limitations. In our formulation, we assume networks
progress in a linear fashion and do not handle complex graph
networks with intricate branching topologies. We cannot tell
if a network is trained with dropout since dropout layers do
not appear at inference time. Indeed, any operation that only
appears during training is beyond the capability of magnetic
side channel snooping.

It is an assumption of our method that the target network
is observed during inference and not during training. Our
method may naturally extend to extracting within training
phases by ignoring signals related to back-propagation and fo-
cusing only on the feed-forward steps. This extension would
require the additional processing to isolate the forward pat-
tern and sanitize other signals auxiliary to the model architec-
ture, which we do not explore within the scope of this work.
Access to training would provide numerous example signa-
tures of the network to work with, rather than the more re-
stricted single source acquired during inference, which might
in turn increase the recovery accuracy and robustness of our
method. Given the ability to single out forward passes, one
could straightforwardly apply our method to batches in every
training epoch and consolidate the proposed networks using
statistics and heuristics on the candidate models. Our focus
on inferences stems from our threat model, which does not
require access to hardware during training.

Conclusion. We set out to study what can be learned from
passively listening to a magnetic side channel in the prox-
imity of a running GPU. Our prototype shows it is possible
to extract both the high-level network topology and detailed
hyperparameters. To better understand the robustness and
accuracy, we collected a dataset of magnetic signals by infer-
encing through thousands of layers on four different GPUs.
We also investigated how one might use this side channel in-
formation to turn a black-box attack into a white-box transfer
attack.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283,
2016.

[2] Amazon. Amazon elastic inference pricing. https:
//aws.amazon.com/machine- learning/elastic-
inference/pricing/. Accessed: 2021-01-22.

[3] Lejla Batina, Dirmanto Jap, Shivam Bhasin, and S Picek.
Csi nn: Reverse engineering of neural network architec-
tures through electromagnetic side channel. In Proceed-
ings of the 28th USENIX Security Symposium. USENIX
Association, 2019.

[4] Ian Buck. Gpu computing: Programming a massively
parallel processor. In International Symposium on Code
Generation and Optimization (CGO’07), pages 17–17.
IEEE, 2007.

[5] Measurement Computing. USB-200 Series Single Gain
Multifunction USB Devices (accessed Oct 1, 2020),
2020.

[6] IBM ILOG Cplex. V12. 1: User’s manual for
cplex. International Business Machines Corporation,
46(53):157, 2009.

[7] Debayan Das and Shreyas Sen. Electromagnetic and
power side-channel analysis: Advanced attacks and low-
overhead generic countermeasures through white-box
approach. Cryptography, 4(4), 2020.

[8] Ambra Demontis, Marco Melis, Maura Pintor, Matthew
Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-
Rotaru, and Fabio Roli. Why do adversarial attacks
transfer? explaining transferability of evasion and poi-
soning attacks. In 28th USENIX Security Symposium
Security 19), pages 321–338, 2019.

[9] Anuj Dubey, Rosario Cammarota, and Aydin Aysu.
Maskednet: The first hardware inference engine aiming
power side-channel protection. arXiv: Cryptography
and Security, 2019.

[10] Vasisht Duddu and D Vijay Rao. Quantifying (hyper)
parameter leakage in machine learning. arXiv preprint
arXiv:1910.14409, 2019.

[11] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and
Valentina E Balas. Stealing neural networks via timing
side channels. arXiv preprint arXiv:1812.11720, 2018.

[12] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa
key extraction via low-bandwidth acoustic cryptanaly-
sis. In Annual Cryptology Conference, pages 444–461.
Springer, 2014.

[13] Google. Googleai pricing. https :
//cloud.google.com/ai- platform/prediction/
pricing. Accessed: 2021-01-17.

[14] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classifi-
cation: labelling unsegmented sequence data with re-
current neural networks. In Proceedings of the 23rd
international conference on Machine learning, pages
369–376, 2006.

[15] Alex Graves, Santiago Fernández, and Jürgen Schmidhu-
ber. Bidirectional lstm networks for improved phoneme
classification and recognition. In International Con-
ference on Artificial Neural Networks, pages 799–804.
Springer, 2005.

[16] David J Griffiths. Introduction to electrodynamics,
2005.

https://aws.amazon.com/machine-learning/elastic-inference/pricing/
https://aws.amazon.com/machine-learning/elastic-inference/pricing/
https://aws.amazon.com/machine-learning/elastic-inference/pricing/
https://cloud.google.com/ai-platform/prediction/pricing
https://cloud.google.com/ai-platform/prediction/pricing
https://cloud.google.com/ai-platform/prediction/pricing

[17] Ed Grochowski and Murali Annavaram. Energy per in-
struction trends in intel microprocessors. Technology@
Intel Magazine, 4(3):1–8, 2006.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[19] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya,
Dana Dachman-Soled, and Tudor Dumitraş. How to
0wn the nas in your spare time. In International Con-
ference on Learning Representations, 2019.

[20] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei
Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Timo-
thy Sherwood, et al. Deepsniffer: A dnn model extrac-
tion framework based on learning architectural hints. In
Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 385–399, 2020.

[21] Weizhe Hua, Zhiru Zhang, and G Edward Suh.
Reverse engineering convolutional neural networks
through side-channel information leaks. In 2018
55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2018.

[22] IBM. Ibm’s cloud pak for data with watson assis-
tant. https://newsroom.ibm.com/2019-10-21-IBM-
Advances-Watson-Anywhere-with-New-Clients-
and-Innovations-Designed-to-Make-it-Even-
Easier-to-Scale-AI-Across-Any-Cloud, Nov
2020.

[23] Texas Instruments. DRV425: Fully-integrated fluxgate
magnetic sensor for open-loop applications (accessed
Oct 1, 2020), 2020.

[24] Jens Kober, J. Andrew Bagnell, and Jan Peters. Rein-
forcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research, 32(11):1238–1274,
2013.

[25] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differen-
tial power analysis. In Annual international cryptology
conference, pages 388–397. Springer, 1999.

[26] Paul C Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In Annual
International Cryptology Conference, pages 104–113.
Springer, 1996.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[28] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature Cell Biology, 521(7553):436–
444, May 2015.

[29] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
Delving into transferable adversarial examples and
black-box attacks. arXiv preprint arXiv:1611.02770,
2016.

[30] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and
David Kaeli. Side-channel power analysis of a gpu
aes implementation. In 2015 33rd IEEE International
Conference on Computer Design (ICCD), pages 281–
288. IEEE, 2015.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[32] NVIDIA. Tensorcores. https://www.nvidia.com/
en-us/data-center/tensor-cores. Accessed:
2021-01-26.

[33] NVIDIA. Nvidia triton inference server.
https://developer.nvidia.com/nvidia-triton-
inference-server, Jan 2021.

[34] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt
Schiele. Towards reverse-engineering black-box neural
networks. In International Conference on Learning
Representations, 2018.

[35] Christos H Papadimitriou and Kenneth Steiglitz. Com-
binatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

[36] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pages 506–519,
2017.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

[38] Vojtech Petrucha and David Novotny. Testing and appli-
cation of an integrated fluxgate sensor drv425. Journal
of Electrical Engineering, 69(6):418–421, 2018.

[39] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014.

https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://www.nvidia.com/en-us/data-center/tensor-cores
https://www.nvidia.com/en-us/data-center/tensor-cores
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server

[40] Raphael Spreitzer, Veelasha Moonsamy, Thomas Ko-
rak, and Stefan Mangard. Systematic classification of
side-channel attacks: A case study for mobile devices.
IEEE Communications Surveys Tutorials, 20(1):465–
488, 2018.

[41] Peter Teufl, Udo Payer, and Guenter Lackner. From
nlp (natural language processing) to mlp (machine lan-
guage processing). In Igor Kotenko and Victor Skormin,
editors, Computer Network Security, pages 256–269,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[42] Ville Timonen. Multi-GPU CUDA stress test (accessed
Oct 1, 2020), 2020.

[43] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 601–618,
2016.

[44] B. Wang and N. Z. Gong. Stealing hyperparameters in
machine learning. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 36–52, 2018.

[45] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang
Xu. I know what you see: Power side-channel attack on
convolutional neural network accelerators. In Proceed-
ings of the 34th Annual Computer Security Applications
Conference, pages 393–406, 2018.

[46] Léo Weissbart, Stjepan Picek, and Lejla Batina. One
trace is all it takes: Machine learning-based side-channel
attack on eddsa. In International Conference on Security,
Privacy, and Applied Cryptography Engineering, pages
86–105. Springer, 2019.

[47] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang,
Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan,
and Xiaoniu Yang. Open dnn box by power side-channel
attack. IEEE Transactions on Circuits and Systems II:
Express Briefs, 2020.

[48] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. Neural network-based graph embed-
ding for cross-platform binary code similarity detection.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17,
page 363–376, New York, NY, USA, 2017. Association
for Computing Machinery.

[49] Mengjia Yan, Christopher W Fletcher, and Josep Tor-
rellas. Cache telepathy: Leveraging shared resource
attacks to learn dnn architectures. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2003–
2020, 2020.

[50] Yuval Yarom and Katrina Falkner. Flush+ reload: a
high resolution, low noise, l3 cache side-channel attack.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 719–732, 2014.

[51] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin. Deepem:
Deep neural networks model recovery through em side-
channel information leakage. In 2020 IEEE Interna-
tional Symposium on Hardware Oriented Security and
Trust (HOST), pages 209–218, 2020.

[52] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8697–8710, 2018.

Supplementary Document
Can one hear the shape of a neural network?:

Snooping the GPU via Magnetic Side Channel

A Additional Experiments

A.1 Reconstruction Quality on ImageNet

We treat ResNet18 and ResNet50 for ImageNet classification
as our black-box models, and reconstruct them from their
magnetic signals. We then train those reconstructed networks
and compare their test accuracies with the original networks’
performance. Both the reconstructed and original networks
are trained with the same training dataset for the same number
of epochs. The results are shown in Table S1, where we report
both top-1 and top-5 classification accuracies. In addition,
we also report a KL-divergence measuring the difference
between the 1000-class image label distribution (over the
entire ImageNet test dataset) predicted by the original network
and that predicted by the reconstructed network. Not only are
those KL-divergence values small, we also observe that for
the reconstructed network that has a smaller KL-divergence
from the original network (i.e., ResNet18), its performance
approaches more closely to the original network.

Table S1: Model reconstruction evaluated on ImageNet clas-
sification.

Model ResNet18 ResNet50
Original Extracted Original Extracted

Top-1 Acc. 64.130 64.608 62.550 61.842
Top-5 Acc. 86.136 86.195 85.482 84.738
KL Div. - 2.39 - 4.85

Table S2: DNN estimation accuracies. Using the 1804 con-
volutional layers in our test dataset, we measure the accuracies
of our DNN models for estimating the convolutional layers’
hyperparameters. Here, we break the accuracies down into
the accuracies for individual hyperparameters.

Kernel Stride Padding Image-in Image-out
Precision 0.971 0.976 0.965 0.968 0.965

Recall 0.969 0.975 0.964 0.969 0.968
F1 Score 0.969 0.975 0.962 0.967 0.965

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized edit distance

20%

30%

40%

50%

60%

Figure S1: Distribution of normalized Levenshtein dis-
tance on dataset. We plot the distribution of the normalized
Levenshtein distances between the reconstructed and target
networks. This results, corresponding to Table 1 in the main
text, use signals collected on Nvidia Titan V.

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized edit distance

20%

30%

40%

50%

60%

Figure S2: Distribution of normalized Levenshtein dis-
tance across GPUs. An experiment comparing the distri-
bution of the normalized Levenshtein distances between two
Nvidia GTX-1080 GPUs. One is used for collecting training
signals, and the other is used for testing our side-channel-
based reconstruction algorithm.

B Variations to our Approach

B.1 Recovering Encoder-Decoder

Encoder-decoder networks can similarly be recovered by our
method. The handling of decoders differs in the constraints
used for the integer programming problem to ensure param-
eter consistency. Decoders are composed of the same func-
tional steps as encoders, but potentially grow in size across
steps. Treating decoders requires reassessing the optimiza-
tion constraints to enforce that layers remain the same size or
grow. Recovering encoder-decoder networks introduces the
additional challenge of pinpointing the switch from encoder

to decoder. However, if this transition can be detected or
approximated, an additional boundary constraint could be in-
troduced to our integer programming formulation that would
allow the network to be split into two optimization problems
constrained to align at the transition. This formulation would
provide a natural extension of our method to handle encoder-
decoder networks, however any such attempts remains future
work.

B.2 Software Optimizations

Machine learning frameworks sometimes allow for
performance-tuned alternatives for frequently used op-
erations. These inference optimizers have the effect of
introducing new categories to the supervised BiLSTM
classification task, either by merging commonly paired
operations (i.e. fully connected step and batch norm)
or introducing new operations altogether (i.e optimized
mean computation for average pooling). Changing topology
classification categories provides a defense against a BiLSTM
classifier trained without optimizers in its dataset. However,
there are no stipulations against building a dataset consisting
of inferences where optimizers are both turned on and off,
generating an encompassing BiLSTM classifier that would
be robust to such defenses.

	Introduction
	Related Work
	Background
	Neural Networks
	GPUs for Deep Neural Networks
	Magnetic Signals from GPUs

	Threat Model
	Signal Analysis & Network Reconstruction
	Topology Recovery
	Hyperparameter Estimation

	Experimental Setup
	Hardware Sensors
	Dataset Construction

	Results
	Accuracy of Network Reconstruction
	Accuracy across GPUs
	Transfer Attack

	Defenses Against Magnetic Side Channels
	Prevention
	Jamming

	Ethical Considerations
	Discussion
	Additional Experiments
	Reconstruction Quality on ImageNet

	Variations to our Approach
	Recovering Encoder-Decoder
	Software Optimizations

