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Abstract

We introduce a deep learning model for speech denoising, a long-standing challenge
in audio analysis arising in numerous applications. Our approach is based on a
key observation about human speech: there is often a short pause between each
sentence or word. In a recorded speech signal, those pauses introduce a series of
time periods during which only noise is present. We leverage these incidental silent
intervals to learn a model for automatic speech denoising given only mono-channel
audio. Detected silent intervals over time expose not just pure noise but its time-
varying features, allowing the model to learn noise dynamics and suppress it from
the speech signal. Experiments on multiple datasets confirm the pivotal role of
silent interval detection for speech denoising, and our method outperforms several
state-of-the-art denoising methods, including those that accept only audio input
(like ours) and those that denoise based on audiovisual input (and hence require
more information). We also show that our method enjoys excellent generalization
properties, such as denoising spoken languages not seen during training.

1 Introduction

Noise is everywhere. When we listen to someone speak, the audio signals we receive are never
pure and clean, always contaminated by all kinds of noises—cars passing by, spinning fans in an
air conditioner, barking dogs, music from a loudspeaker, and so forth. To a large extent, people
in a conversation can effortlessly filter out these noises [42]. In the same vein, numerous applica-
tions, ranging from cellular communications to human-robot interaction, rely on speech denoising
algorithms as a fundamental building block.

Despite its vital importance, algorithmic speech denoising remains a grand challenge. Provided
an input audio signal, speech denoising aims to separate the foreground (speech) signal from its
additive background noise. This separation problem is inherently ill-posed. Classic approaches
such as spectral subtraction [7, 98, 6, 72, 79] and Wiener filtering [80, 40] conduct audio denoising
in the spectral domain, and they are typically restricted to stationary or quasi-stationary noise. In
recent years, the advance of deep neural networks has also inspired their use in audio denoising.
While outperforming the classic denoising approaches, existing neural-network-based approaches
use network structures developed for general audio processing tasks [56, 90, 100] or borrowed from
other areas such as computer vision [31, 26, 3, 36, 32] and generative adversarial networks [70, 71].
Nevertheless, beyond reusing well-developed network models as a black box, a fundamental question
remains: What natural structures of speech can we leverage to mold network architectures for better
performance on speech denoising?

1.1 Key insight: time distribution of silent intervals

Motivated by this question, we revisit one of the most widely used audio denoising methods in
practice, namely the spectral subtraction method [7, 98, 6, 72, 79]. Implemented in many commercial
software such as Adobe Audition [39], this classical method requires the user to specify a time
interval during which the foreground signal is absent. We call such an interval a silent interval. A
silent interval is a time window that exposes pure noise. The algorithm then learns from the silent
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Clean Speech

Noisy Speech

Figure 1: Silent intervals over time. (top) A speech signal has many natural pauses. Without any
noise, these pauses are exhibited as silent intervals (highlighted in red). (bottom) However, most
speech signals are contaminated by noise. Even with mild noise, silent intervals become overwhelmed
and hard to detect. If robustly detected, silent intervals can help to reveal the noise profile over time.

interval the noise characteristics, which are in turn used to suppress the additive noise of the entire
input signal (through subtraction in the spectral domain).

Yet, the spectral subtraction method suffers from two major shortcomings: i) it requires user spec-
ification of a silent interval, that is, not fully automatic; and ii) the single silent interval, although
undemanding for the user, is insufficient in presence of nonstationary noise—for example, a back-
ground music. Ubiquitous in daily life, nonstationary noise has time-varying spectral features. The
single silent interval reveals the noise spectral features only in that particular time span, thus inade-
quate for denoising the entire input signal. The success of spectral subtraction pivots on the concept
of silent interval; so do its shortcomings.

In this paper, we introduce a deep network for speech denoising that tightly integrates silent intervals,
and thereby overcomes many of the limitations of classical approaches. Our goal is not just to identify
a single silent interval, but to find as many as possible silent intervals over time. Indeed, silent
intervals in speech appear in abundance: psycholinguistic studies have shown that there is almost
always a pause after each sentence and even each word in speech [78, 21]. Each pause, however
short, provides a silent interval revealing noise characteristics local in time. All together, these silent
intervals assemble a time-varying picture of background noise, allowing the neural network to better
denoise speech signals, even in presence of nonstationary noise (see Fig. 1).

In short, to interleave neural networks with established denoising pipelines, we propose a network
structure consisting of three major components (see Fig. 2): i) one dedicated to silent interval
detection, ii) another that aims to estimate the full noise from those revealed in silent intervals, akin
to an inpainting process in computer vision [38], and iii) yet another for cleaning up the input signal.

Summary of results. Our neural-network-based denoising model accepts a single channel of audio
signal and outputs the cleaned-up signal. Unlike some of the recent denoising methods that take
as input audiovisual signals (i.e., both audio and video footage), our method can be applied in a
wider range of scenarios (e.g., in cellular communication). We conducted extensive experiments,
including ablation studies to show the efficacy of our network components and comparisons to
several state-of-the-art denoising methods. We also evaluate our method under various signal-to-noise
ratios—even under strong noise levels that are not tested against in previous methods. We show that,
under a variety of denoising metrics, our method consistently outperforms those methods, including
those that accept only audio input (like ours) and those that denoise based on audiovisual input.

The pivotal role of silent intervals for speech denoising is further confirmed by a few key results. Even
without supervising on silent interval detection, the ability to detect silent intervals naturally emerges
in our network. Moreover, while our model is trained on English speech only, with no additional
training it can be readily used to denoise speech in other languages (such as Chinese, Japanese, and
Korean). Please refer to the supplementary materials for listening to our denoising results.

2 Related Work

Speech denoising. Speech denoising [53] is a fundamental problem studied over several decades.
Spectral subtraction [7, 98, 6, 72, 79] estimates the clean signal spectrum by subtracting an estimate of
the noise spectrum from the noisy speech spectrum. This classic method was followed by spectrogram
factorization methods [84]. Wiener filtering [80, 40] derives the enhanced signal by optimizing the
mean-square error. Other methods exploit pauses in speech, forming segments of low acoustic
energy where noise statistics can be more accurately measured [13, 57, 86, 15, 75, 10, 11]. Statistical
model-based methods [14, 34] and subspace algorithms [12, 16] are also studied.
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Figure 2: Our audio denoise network. Our model has three components: (a) one that detects silent
intervals over time, and outputs a noise profile observed from detected silent intervals; (b) another
that estimates the full noise profile, and (c) yet another that cleans up the input signal.

Applying neural networks to audio denoising dates back to the 80s [88, 69]. With increased computing
power, deep neural networks are often used [104, 106, 105, 47]. Long short-term memory networks
(LSTMs) [35] are able to preserve temporal context information of the audio signal [52], leading to
strong results [56, 90, 100]. Leveraging generative adversarial networks (GANs) [33], methods such
as [70, 71] have adopted GANs into the audio field and have also achieved strong performance.

Audio signal processing methods operate on either the raw waveform or the spectrogram by Short-
time Fourier Transform (STFT). Some work directly on waveform [23, 68, 59, 55], and others use
Wavenet [91] for speech denoising [74, 76, 30]. Many other methods such as [54, 94, 61, 99, 46,
107, 9] work on audio signal’s spectrogram, which contains both magnitude and phase information.
There are works discussing how to use the spectrogram to its best potential [93, 67], while one
of the disadvantages is that the inverse STFT needs to be applied. Meanwhile, there also exist
works [51, 29, 28, 95, 19, 101, 60] investigating how to overcome artifacts from time aliasing.

Speech denoising has also been studied in conjunction with computer vision due to the relations
between speech and facial features [8]. Methods such as [31, 26, 3, 36, 32] utilize different network
structures to enhance the audio signal to the best of their ability. Adeel et al. [1] even utilize lip-reading
to filter out the background noise of a speech.

Deep learning for other audio processing tasks. Deep learning is widely used for lip reading,
speech recognition, speech separation, and many audio processing or audio-related tasks, with the
help of computer vision [64, 66, 5, 4]. Methods such as [50, 17, 65] are able to reconstruct speech
from pure facial features. Methods such as [2, 63] take advantage of facial features to improve speech
recognition accuracy. Speech separation is one of the areas where computer vision is best leveraged.
Methods such as [25, 64, 18, 109] have achieved impressive results, making the previously impossible
speech separation from a single audio signal possible. Recently, Zhang et al. [108] proposed a new
operation called Harmonic Convolution to help networks distill audio priors, which is shown to even
further improve the quality of speech separation.

3 Learning Speech Denoising

We present a neural network that harnesses the time distribution of silent intervals for speech denoising.
The input to our model is a spectrogram of noisy speech [103, 20, 83], which can be viewed as a 2D
image of size T ⇥F with two channels, where T represents the time length of the signal and F is the
number of frequency bins. The two channels store the real and imaginary parts of STFT, respectively.
After learning, the model will produce another spectrogram of the same size as the noise suppressed.

We first train our proposed network structure in an end-to-end fashion, with only denoising super-
vision (Sec. 3.2); and it already outperforms the state-of-the-art methods that we compare against.
Furthermore, we incorporate the supervision on silent interval detection (Sec. 3.3) and obtain even
better denoising results (see Sec. 4).

3.1 Network structure

Classic denoising algorithms work in three general stages: silent interval specification, noise feature
estimation, and noise removal. We propose to interweave learning throughout this process: we rethink
each stage with the help of a neural network, forming a new speech denoising model. Since we
can chain these networks together and estimate gradients, we can efficiently train the model with
large-scale audio data. Figure 2 illustrates this model, which we describe below.
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Figure 3: Example of intermediate and final results. (a) The spectrogram of a noisy input signal,
which is a superposition of a clean speech signal (b) and a noise (c). The black regions in (b) indicate
ground-truth silent intervals. (d) The noise exposed by automatically emergent silent intervals, i.e.,
the output of the silent interval detection component when the entire network is trained without silent
interval supervision (recall Sec. 3.2). (e) The noise exposed by detected silent intervals, i.e., the
output of the silent interval detection component when the network is trained with silent interval
supervision (recall Sec. 3.3). (f) The estimated noise profile using subfigure (a) and (e) as the input to
the noise estimation component. (g) The final denoised spectrogram output.

Silent interval detection. The first component is dedicated to detecting silent intervals in the input
signal. The input to this component is the spectrogram of the input (noisy) signal x. The spectrogram
sx is first encoded by a 2D convolutional encoder into a 2D feature map, which is in turn processed
by a bidirectional LSTM [35, 81] followed by two fully-connected (FC) layers (see network details
in Appendix A). The bidirectional LSTM is suitable for processing time-series features resulting
from the spectrogram [58, 41, 73, 18], and the FC layers are applied to the features of each time
sample to accommodate variable length input. The output from this network component is a vector
D(sx). Each element of D(sx) is a scalar in [0,1] (after applying the sigmoid function), indicating a
confidence score of a small time segment being silent. We choose each time segment to have 1/30
second, small enough to capture short speech pauses and large enough to allow robust prediction.

The output vector D(sx) is then expanded to a longer mask, which we denote as m(x). Each element
of this mask indicates the confidence of classifying each sample of the input signal x as pure noise
(see Fig. 3-e). With this mask, the noise profile x̃ exposed by silent intervals are estimated by an
element-wise product, namely x̃ := x�m(x).

Noise estimation. The signal x̃ resulted from silent interval detection is noise profile exposed only
through a series of time windows (see Fig. 3-e)—but not a complete picture of the noise. However,
since the input signal is a superposition of clean speech signal and noise, having a complete noise
profile would ease the denoising process, especially in presence of nonstationary noise. Therefore,
we also estimate the entire noise profile over time, which we do with a neural network.

Inputs to this component include both the noisy audio signal x and the incomplete noise profile x̃.
Both are converted by STFT into spectrograms, denoted as sx and sx̃, respectively. We view the
spectrograms as 2D images. And because the neighboring time-frequency pixels in a spectrogram
are often correlated, our goal here is conceptually akin to the image inpainting task in computer
vision [38]. To this end, we encode sx and sx̃ by two separate 2D convolutional encoders into two
feature maps. The feature maps are then concatenated in a channel-wise manner and further decoded
by a convolutional decoder to estimate the full noise spectrogram, which we denote as N(sx, sx̃). A
result of this step is illustrated in Fig. 3-f.

Noise removal. Lastly, we clean up the noise from the input signal x. We use a neural network
R that takes as input both the input audio spectrogram sx and the estimated full noise spectrogram
N(sx, sx̃). The two input spectrograms are processed individually by their own 2D convolutional
encoders. The two encoded feature maps are then concatenated together before passing to a bidirec-
tional LSTM followed by three fully connected layers (see details in Appendix A). Like other audio
enhancement models [18, 92, 96], the output of this component is a vector with two channels which

4



form the real and imaginary parts of a complex ratio mask c := R
�
sx,N(sx, sx̃)

�
in frequency-time

domain. In other words, the mask c has the same (temporal and frequency) dimensions as sx.

In the final step, we compute the denoised spectrogram s⇤x through element-wise multiplication of
the input audio spectrogram sx and the mask c (i.e., s⇤x = sx � c). Finally, the cleaned-up audio
signal is obtained by applying the inverse STFT to s⇤x (see Fig. 3-g).

3.2 Loss functions and training

Since a subgradient exists at every step, we are able to train our network in an end-to-end fashion
with stochastic gradient descent. We optimize the following loss function:

L0 = Ex⇠p(x)

h
kN(sx, sx̃)� s⇤nk2 + �

��sx � R
�
sx,N(sx, sx̃)

�
� s⇤x

��
2

i
, (1)

where the notations sx, sx̃, N(·, ·), and R(·, ·) are defined in Sec. 3.1; s⇤x and s⇤n denote the
spectrograms of the ground-truth foreground signal and background noise, respectively. The first
term penalizes the discrepancy between estimated noise and the ground-truth noise, while the second
term accounts for the estimation of foreground signal. These two terms are balanced by the scalar �
(� = 1.0 in our experiments).

Natural emergence of silent intervals. While producing plausible denoising results (see Sec. 4.4),
the end-to-end training process has no supervision on silent interval detection: the loss function (1)
only accounts for the recoveries of noise and clean speech signal. But somewhat surprisingly, the
ability of detecting silent intervals automatically emerges as the output of the first network component
(see Fig. 3-d as an example, which visualizes sx̃). In other words, the network automatically learns
to detect silent intervals for speech denoising without this supervision.

3.3 Silent interval supervision

As the model is learning to detect silent intervals on its own, we are able to directly supervise silent
interval detection to further improve the denoising quality. Our first attempt was to add a term
in (1) that penalizes the discrepancy between detected silent intervals and their ground truth. But
our experiments show that this is not effective (see Sec. 4.4). Instead, we train our network in two
sequential steps.

First, we train the silent interval detection component through the following loss function:

L1 = Ex⇠p(x)

h
`BCE

�
m(x),m⇤

x

�i
, (2)

where `BCE(·, ·) is the binary cross entropy loss, m(x) is the mask resulted from silent interval
detection component, and m⇤

x is the ground-truth label of each signal sample being silent or not—the
way of constructing m⇤

x and the training dataset will be described in Sec. 4.1.

Next, we train the noise estimation and removal components through the loss function (1). This
step starts by neglecting the silent detection component. In the loss function (1), instead of using
sx̃, the noise spectrogram exposed by the estimated silent intervals, we use the noise spectrogram
exposed by the ground-truth silent intervals (i.e., the STFT of x�m⇤

x). After training using such
a loss function, we fine-tune the network components by incorporating the already trained silent
interval detection component. With the silent interval detection component fixed, this fine-tuning
step optimizes the original loss function (1) and thereby updates the weights of the noise estimation
and removal components.

4 Experiments

This section presents the major evaluations of our method, comparisons to several baselines and prior
works, and ablation studies. We also refer the reader to the supplementary materials (including a
supplemental document and audio effects organized on an off-line webpage) for the full description
of our network structure, implementation details, additional evaluations, as well as audio examples.

4.1 Experiment setup

Dataset construction. To construct training and testing data, we leverage publicly available audio
datasets. We obtain clean speech signals using AVSPEECH [18], from which we randomly choose
2448 videos (4.5 hours of total length) and extract their speech audio channels. Among them, we
use 2214 videos for training and 234 videos for testing, so the training and testing speeches are fully
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Figure 4: Noise gallery. We show four examples of noise from the noise datasets. Noise 1) is a
stationary (white) noise, and the other three are not. Noise 2) is a monologue in a meeting. Noise 3) is
party noise from people speaking and laughing with background noise. Noise 4) is street noise from
people shouting and screaming with additional traffic noise such as vehicles driving and honking.

separate. All these speech videos are in English, selected on purpose: as we show in supplementary
materials, our model trained on this dataset can readily denoise speeches in other languages.

We use two datasets, DEMAND [89] and Google’s AudioSet [27], as background noise. Both consist
of environmental noise, transportation noise, music, and many other types of noises. DEMAND has been
used in previous denoising works (e.g., [70, 30, 90]). Yet AudioSet is much larger and more diverse
than DEMAND, thus more challenging when used as noise. Figure 4 shows some noise examples. Our
evaluations are conducted on both datasets, separately.

Due to the linearity of acoustic wave propagation, we can superimpose clean speech signals with
noise to synthesize noisy input signals (similar to previous works [70, 30, 90]). When synthesizing
a noisy input signal, we randomly choose a signal-to-noise ratio (SNR) from seven discrete values:
-10dB, -7dB, -3dB, 0dB, 3dB, 7dB, and 10dB; and by mixing the foreground speech with properly
scaled noise, we produce a noisy signal with the chosen SNR. For example, a -10dB SNR means
that the power of noise is ten times the speech (see Fig. S1 in appendix). The SNR range in our
evaluations (i.e., [-10dB, 10dB]) is significantly larger than those tested in previous works.

To supervise our silent interval detection (recall Sec. 3.3), we need ground-truth labels of silent
intervals. To this end, we divide each clean speech signal into time segments, each of which lasts 1/30
seconds. We label a time segment as silent when the total acoustic energy in that segment is below a
threshold. Since the speech is clean, this automatic labeling process is robust.

Remarks on creating our own datasets. Unlike many previous models, which are trained using
existing datasets such as Valentini’s VoiceBank-DEMAND [90], we choose to create our own datasets
because of two reasons. First, Valentini’s dataset has a noise SNR level in [0dB, 15dB], much
narrower than what we encounter in real-world recordings. Secondly, although Valentini’s dataset
provides several kinds of environmental noise, it lacks the richness of other types of structured noise
such as music, making it less ideal for denoising real-world recordings (see discussion in Sec. 4.6).

Method comparison. We compare our method with several existing methods that are also designed
for speech denoising, including both the classic approaches and recently proposed learning-based
methods. We refer to these methods as follows: i) Ours, our model trained with silent interval
supervision (recall Sec. 3.3); ii) Baseline-thres, a baseline method that uses acoustic energy
threshold to label silent intervals (the same as our automatic labeling approach in Sec. 4.1 but applied
on noisy input signals), and then uses our trained noise estimation and removal networks for speech
denoising. iii) Ours-GTSI, another reference method that uses our trained noise estimation and
removal networks, but hypothetically uses the ground-truth silent intervals; iv) Spectral Gating,
the classic speech denoising algorithm based on spectral subtraction [79]; v) Adobe Audition [39],
one of the most widely used professional audio processing software, and we use its machine-
learning-based noise reduction feature, provided in the latest Adobe Audition CC 2020, with default
parameters to batch process all our test data; vi) SEGAN [70], one of the state-of-the-art audio-only
speech enhancement methods based on generative adversarial networks. vii) DFL [30], a recently
proposed speech denoising method based on a loss function over deep network features; 1

viii)

VSE [26], a learning-based method that takes both video and audio as input, and leverages both audio
signal and mouth motions (from video footage) for speech denoising. We could not compare with
another audiovisual method [18] because no source code or executable is made publicly available.

For fair comparisons, we train all the methods (except Spectral Gating which is not learning-
based and Adobe Audition which is commercially shipped as a black box) using the same datasets.

1This recent method is designed for high-noise-level input, trained in an end-to-end fashion, and as their
paper states, is “particularly pronounced for the hardest data with the most intrusive background noise”.
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Figure 5: Quantitative comparisons. We measure denoising quality under six metrics (correspond-
ing to columns). The comparisons are conducted using noise from DEMAND and AudioSet separately.
Ours-GTSI (in black) uses ground-truth silent intervals. Although not a practical approach, it serves
as an upper-bound reference of all methods. Meanwhile, the green bar in each plot indicates the
metric score of the noisy input without any processing.
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Figure 6: Denoise quality w.r.t. input SNRs. Denoise results measured in PESQ for each method
w.r.t different input SNRs. Results measured in other metrics are shown in Fig. S2 in Appendix.

For SEGAN, DFL, and VSE, we use their source codes published by the authors. The audiovisual
denoising method VSE also requires video footage, which is available in AVSPEECH.

4.2 Evaluation on speech denoising

Metrics. Due to the perceptual nature of audio processing tasks, there is no widely accepted single
metric for quantitative evaluation and comparisons. We therefore evaluate our method under six
different metrics, all of which have been frequently used for evaluating audio processing quality.
Namely, these metrics are: i) Perceptual Evaluation of Speech Quality (PESQ) [77], ii) Segmental
Signal-to-Noise Ratio (SSNR) [82], iii) Short-Time Objective Intelligibility (STOI) [87], iv) Mean
opinion score (MOS) predictor of signal distortion (CSIG) [37], v) MOS predictor of background-
noise intrusiveness (CBAK) [37], and vi) MOS predictor of overall signal quality (COVL) [37].

Results. We train two separate models using DEMAND and AudioSet noise datasets respectively,
and compare them with other models trained with the same datasets. We evaluate the average metric
values and report them in Fig. 5. Under all metrics, our method consistently outperforms others.

We breakdown the performance of each method with respect to SNR levels from -10dB to 10dB on
both noise datasets. The results are reported in Fig. 6 for PESQ (see Fig. S2 in the appendix for all
metrics). In the previous works that we compare to, no results under those low SNR levels (at < 0
dBs) are reported. Nevertheless, across all input SNR levels, our method performs the best, showing
that our approach is fairly robust to both light and extreme noise.

From Fig. 6, it is worth noting that Ours-GTSI method performs even better. Recall that this is
our model but provided with ground-truth silent intervals. While not practical (due to the need of
ground-truth silent intervals), Ours-GTSI confirms the importance of silent intervals for denoising: a
high-quality silent interval detection helps to improve speech denoising quality.

4.3 Evaluation on silent interval detection

Due to the importance of silent intervals for speech denoising, we also evaluate the quality of our
silent interval detection, in comparison to two alternatives, the baseline Baseline-thres and a
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Table 1: Results of silent interval detection. The metrics are measured using our test signals that
have SNRs from -10dB to 10dB. Definitions of these metrics are summarized in Appendix C.1.

Noise Dataset Method Precision Recall F1 Accuracy

DEMAND
Baseline-thres 0.533 0.718 0.612 0.706
VAD 0.797 0.432 0.558 0.783
Ours 0.876 0.866 0.869 0.918

Audioset
Baseline-thres 0.536 0.731 0.618 0.708
VAD 0.736 0.227 0.338 0.728
Ours 0.794 0.822 0.807 0.873

Table 2: Ablation studies. We alter network components and training loss, and evaluate the denoising
quality under various metrics. Our proposed approach performs the best.

Noise Dataset Method PESQ SSNR STOI CSIG CBAK COVL

DEMAND

Ours w/o SID comp 2.689 9.080 0.904 3.615 3.285 3.112
Ours w/o NR comp 2.476 0.234 0.747 3.015 2.410 2.637
Ours w/o SID loss 2.794 6.478 0.903 3.466 3.147 3.079
Ours w/o NE loss 2.601 9.070 0.896 3.531 3.237 3.027
Ours Joint loss 2.774 6.042 0.895 3.453 3.121 3.068
Ours 2.795 9.505 0.911 3.659 3.358 3.186

Audioset

Ours w/o SID comp 2.190 5.574 0.802 2.851 2.719 2.454
Ours w/o NR comp 1.803 0.191 0.623 2.301 2.070 1.977
Ours w/o SID loss 2.325 4.957 0.814 2.814 2.746 2.503
Ours w/o NE loss 2.061 5.690 0.789 2.766 2.671 2.362
Ours Joint loss 2.305 4.612 0.807 2.774 2.721 2.474
Ours 2.304 5.984 0.816 2.913 2.809 2.543

Voice Activity Detector (VAD) [22]. The former is described above, while the latter classifies each time
window of an audio signal as having human voice or not [48, 49]. We use an off-the-shelf VAD [102],
which is developed by Google’s WebRTC project and reported as one of the best available. Typically,
VAD is designed to work with low-noise signals. Its inclusion here here is merely to provide an
alternative approach that can detect silent intervals in more ideal situations.

We evaluate these methods using four standard statistic metrics: the precision, recall, F1 score, and
accuracy. We follow the standard definitions of these metrics, which are summarized in Appendix C.1.
These metrics are based on the definition of positive/negative conditions. Here, the positive condition
indicates a time segment being labeled as a silent segment, and the negative condition indicates a
non-silent label. Thus, the higher the metric values are, the better the detection approach.

Table 1 shows that, under all metrics, our method is consistently better than the alternatives. Between
VAD and Baseline-thres, VAD has higher precision and lower recall, meaning that VAD is overly
conservative and Baseline-thres is overly aggressive when detecting silent intervals (see Fig. S3
in Appendix C.2). Our method reaches better balance and thus detects silent intervals more accurately.

4.4 Ablation studies

In addition, we perform a series of ablation studies to understand the efficacy of individual network
components and loss terms (see Appendix D.1 for more details). In Table 2, “Ours w/o SID loss”
refers to the training method presented in Sec. 3.2 (i.e., without silent interval supervision). “Ours
Joint loss” refers to the end-to-end training approach that optimizes the loss function (1) with the
additional term (2). And “Ours w/o NE loss” uses our two-step training (in Sec. 3.3) but without
the loss term on noise estimation—that is, without the first term in (1). In comparison to these
alternative training approaches, our two-step training with silent interval supervision (referred to as
“Ours”) performs the best. We also note that “Ours w/o SID loss”—i.e., without supervision on
silent interval detection—already outperforms the methods we compared to in Fig. 5, and “Ours”
further improves the denoising quality. This shows the efficacy of our proposed training approach.

We also experimented with two variants of our network structure. The first one, referred to as “Ours
w/o SID comp”, turns off silent interval detection: the silent interval detection component always
outputs a vector with all zeros. The second, referred as “Ours w/o NR comp”, uses a simple spectral
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Table 3: Comparisons on VoiceBank-DEMAND corpus.

Method PESQ CSIG CBAK COVL STOI

Noisy Input 1.97 3.35 2.44 2.63 0.91
WaveNet [91] – 3.62 3.24 2.98 –
SEGAN [70] 2.16 3.48 2.94 2.80 0.93
DFL [30] 2.51 3.79 3.27 3.14 –
MMSE-GAN [85] 2.53 3.80 3.12 3.14 0.93
MetricGAN [24] 2.86 3.99 3.18 3.42 –
SDR-PESQ [43] 3.01 4.09 3.54 3.55 –
T-GSA [44] 3.06 4.18 3.59 3.62 –
Self-adapt. DNN [45] 2.99 4.15 3.42 3.57 –
RDL-Net [62] 3.02 4.38 3.43 3.72 0.94
Ours 3.16 3.96 3.54 3.53 0.98

subtraction to replace our noise removal component. Table 2 shows that, under all the tested metrics,
both variants perform worse than our method, suggesting our proposed network structure is effective.

Furthermore, we studied to what extent the accuracy of silent interval detection affects the speech
denoising quality. We show that as the silent interval detection becomes less accurate, the denoising
quality degrades. Presented in details in Appendix D.2, these experiments reinforce our intuition that
silent intervals are instructive for speech denoising tasks.

4.5 Comparison with state-of-the-art benchmark

Many state-of-the-art denoising methods, including MMSE-GAN [85], Metric-GAN [24], SDR-
PESQ [43], T-GSA [44], Self-adaptation DNN [45], and RDL-Net [62], are all evaluated on Valen-
tini’s VoiceBank-DEMAND [90]. We therefore compare ours with those methods on the same dataset.
We note that DEMAND consists of audios with SNR in [0dB, 15dB]. Its SNR range is much narrower
than what our method (and our training datasets) aims for (e.g., input signals with -10dB SNR).
Nevertheless, trained and tested under the same setting, our method is highly competitive to the
best of those methods under every metric, as shown in Table 3. The metric scores therein for other
methods are numbers reported in their original papers.

4.6 Tests on real-world data

We also test our method against real-world data. Quantitative evaluation on real-world data, however,
is not easy because the evaluation of nearly all metrics requires the corresponding ground-truth
clean signal, which is not available in real-world scenario. Instead, we collected a good number of
real-world audios, either by recording in daily environments or by downloading online (e.g., from
YouTube). These real-world audios cover diverse scenarios: in a driving car, a café, a park, on
the street, in multiple languages (Chinese, Japanese, Korean, German, French, etc.), with different
genders and accents, and even with singing songs. None of these recordings is cherry picked. We refer
the reader to our project website for the denoising results of all the collected real-world recordings,
and for the comparison of our method with other state-of-the-art methods under real-world settings.

Furthermore, we use real-world data to test our model trained with different datasets, including our
own dataset (recall Sec. 4.1) and the existing DEMAND [90]. We show that the network model
trained by our own dataset leads to much better noise reduction (see details in Appendix E.2). This
suggests that our dataset allows the denoising model to better generalize to many real-world scenarios.

5 Conclusion

Speech denoising has been a long-standing challenge. We present a new network structure that
leverages the abundance of silent intervals in speech. Even without silent interval supervision, our
network is able to denoise speech signals plausibly, and meanwhile, the ability to detect silent intervals
automatically emerges. We reinforce this ability. Our explicit supervision on silent intervals enables
the network to detect them more accurately, thereby further improving the performance of speech
denoising. As a result, under a variety of denoising metrics, our method consistently outperforms
several state-of-the-art audio denoising models.
Acknowledgments. This work was supported in part by the National Science Foundation (1717178,
1816041, 1910839, 1925157) and SoftBank Group.
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Broader Impact

High-quality speech denoising is desired in a myriad of applications: human-robot interaction, cellular
communications, hearing aids, teleconferencing, music recording, filmmaking, news reporting, and
surveillance systems to name a few. Therefore, we expect our proposed denoising method—be it a
system used in practice or a foundation for future technology—to find impact in these applications.

In our experiments, we train our model using English speech only, to demonstrate its generalization
property—the ability of denoising spoken languages beyond English. Our demonstration of denoising
Japanese, Chinese, and Korean speeches is intentional: they are linguistically and phonologically
distant from English (in contrast to other English “siblings” such as German and Dutch). Still, our
model may bias in favour of spoken languages and cultures that are closer to English or that have
frequent pauses to reveal silent intervals. Deeper understanding of this potential bias requires future
studies in tandem with linguistic and sociocultural insights.

Lastly, it is natural to extend our model for denoising audio signals in general or even signals beyond
audio (such as Gravitational wave denoising [97]). If successful, our model can bring in even broader
impacts. Pursuing this extension, however, requires a judicious definition of “silent intervals”. After
all, the notion of “noise” in a general context of signal processing depends on specific applications:
noise in one application may be another’s signals. To train a neural network that exploits a general
notion of silent intervals, prudence must be taken to avoid biasing toward certain types of noise.
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Supplementary Document

Listening to Sounds of Silence for Speech Denoising

A Network Structure and Training Details

We now present the details of our network structure and training configurations.

The silent interval detection component of our model is composed of 2D convolutional layers, a
bidirectional LSTM, and two FC layers. The parameters of the convolutional layers are shown in
Table S1. Each convolutional layer is followed by a batch normalization layer with a ReLU activation
function. The hidden size of bidirectional LSTM is 100. The two FC layers, interleaved with a ReLU
activation function, have hidden size of 100 and 1, respectively.

Table S1: Convolutional layers in the silent interval detection component.

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 conv10 conv11 conv12

Num Filters 48 48 48 48 48 48 48 48 48 48 48 8
Filter Size (1,7) (7,1) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (1,1)
Dilation (1,1) (1,1) (1,1) (2,1) (4,1) (8,1) (16,1) (32,1) (1,1) (2,2) (4,4) (1,1)
Stride 1 1 1 1 1 1 1 1 1 1 1 1

The noise estimation component of our model is fully convolutional, consisting of two encoders and
one decoder. The two encoders process the noisy signal and the incomplete noise profile, respectively;
they have the same architecture (shown in Table S2) but different weights. The two feature maps
resulted from the two encoders are concatenated in a channel-wise manner before feeding into the
decoder. In Table S2, every layer, except the last one, is followed by a batch normalization layer
together with a ReLU activation function. In addition, there is skip connections between the 2nd and
14-th layer and between the 4-th and 12-th layer.

Table S2: Architecture of noise estimation component. ‘C’ indicates a convolutional layer, and ‘TC’
indicates a transposed convolutional layer.

Encoder Decoder

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layer Type C C C C C C C C C C C TC C TC C C
Num Filters 64 128 128 256 256 256 256 256 256 256 256 128 128 64 64 2
Filter Size 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3
Dilation 1 1 1 1 1 2 4 8 16 1 1 1 1 1 1 1
Stride 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1

The noise removal component of our model is composed of two 2D convolutional encoders, a
bidirectional LSTM, and three FC layers. The two convolutional encoders take as input the input
audio spectrogram sx and the estimated full noise spectrogram N(sx, sx̃), respectively. The first
encoder has the network architecture listed in Table S3, and the second has the same architecture but
with half of the number of filters at each convolutional layer. Moreover, the bidirectional LSTM has
the hidden size of 200, and the three FC layers have the hidden size of 600, 600, and 2F , respectively,
where F is the number of frequency bins in the spectrogram. In terms of the activation function,
ReLU is used after each layer except the last layer, which uses sigmoid.

Table S3: Convolutional encoder for the noise removal component of our model. Each convolutional
layer is followed by a batch normalization layer with ReLU as the activation function.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Num Filters 96 96 96 96 96 96 96 96 96 96 96 96 96 96 8
Filter Size (1,7) (7,1) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (1,1)
Dilation (1,1) (1,1) (1,1) (2,1) (4,1) (8,1) (16,1) (32,1) (1,1) (2,2) (4,4) (8,8) (16,16) (32,32) (1,1)
Stride 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure S1: Constructed noisy audio based on different SNR levels. The first row shows the
waveform of the ground truth clean input.

Training details. We use PyTorch platform to implement our speech denoising model, which is
then trained with the Adam optimizer. In our end-to-end training without silent interval supervision
(referred to as “Ours w/o SID loss” in Sec. 4; also recall Sec. 3.2), we run the Adam optimizer for
50 epochs with a batch size of 20 and a learning rate of 0.001. When the silent interval supervision is
incorporated (recall Sec. 3.3), we first train the silent interval detection component with the following
setup: run the Adam optimizer for 100 epochs with a batch size of 15 and a learning rate of 0.001.
Afterwards, we train the noise estimation and removal components using the same setup as the
end-to-end training of “Ours w/o SID loss”.

B Data Processing Details

Our model is designed to take as input a mono-channel audio clip of an arbitrary length. However,
when constructing the training dataset, we set each audio clip in the training dataset to have the
same 2-second length, to enable batching at training time. To this end, we split each original audio
clip from AVSPEECH, DEMAND, and AudioSet into 2-second long clips. All audio clips are then
downsampled at 16kHz before converting into spectrograms using STFT. To perform STFT, the
Fast Fourier Transform (FFT) size is set to 510, the Hann window size is set to 28ms, and the hop
length is set to 11ms. As a result, each 2-second clip yields a (complex-valued) spectrogram with a
resolution 256⇥ 178, where 256 is the number of frequency bins, and 178 is the temporal resolution.
At inference time, our model can still accept audio clips with arbitrary length.

Both our clean speech dataset and noise datasets are first split into training and test sets, so that no
audio clips in training and testing are from the same original audio source—they are fully separate.

To supervise our silent interval detection, we label the clean audio signals in the following way. We
first normalize each audio clip so that its magnitude is in the range [-1,1], that is, ensuring the largest
waveform magnitude at -1 or 1. Then, the clean audio clip is divided into segments of length 1/30
seconds. We label a time segment as a “silent” segment (i.e., label 0) if its average waveform energy
in that segment is below 0.08. Otherwise, it is labeled as a “non-silent” segment (i.e., label 1).
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Metric Dataset SNR Baseline-thres SEGAN Spectral gating Adobe Audition DFL VSE Ours Ours-GTSI

avg_stoi Audioset -10 0.452435221186 0.239792699982 0.480897205715 0.498351248714 0.359458015212 0.339769991737 0.601921509877 0.638204206878

avg_stoi Audioset -7 0.541852268966 0.286854724622 0.563202140051 0.574848359499 0.464998412978 0.392132163975 0.69522558827 0.718753578538

avg_stoi Audioset -3 0.652099112496 0.363023527823 0.671714767097 0.676393645352 0.618150488059 0.444570540143 0.795443428389 0.806383840488

avg_stoi Audioset 0 0.71846241353 0.428111325525 0.743615992609 0.746257376588 0.71423807327 0.458656992051 0.850343095305 0.857522433438

avg_stoi Audioset 3 0.774287496407 0.483402768654 0.805798068855 0.806576254242 0.786894414835 0.475988156388 0.891961445652 0.896741288063

avg_stoi Audioset 7 0.81942655938 0.535070552592 0.871147454483 0.86971108878 0.854474908641 0.496507598105 0.929618377107 0.93327168215

avg_stoi Audioset 10 0.838441265589 0.558100747534 0.905914562206 0.904167825488 0.887762306588 0.494145838704 0.948536799441 0.951655050801

avg_stoi DEMAND -10 0.553166661562 0.653382295734 0.721006107387 0.718956515606 0.685191177031 0.430805843788 0.790743553097 0.805123909548

avg_stoi DEMAND -7 0.625274202924 0.740577824678 0.781610360589 0.779002283309 0.746021563415 0.460305708156 0.850713755898 0.859616921299

avg_stoi DEMAND -3 0.713761524053 0.8272630316 0.848201926362 0.845376422518 0.811285453074 0.476619227544 0.905679639079 0.911138736434

avg_stoi DEMAND 0 0.767750382985 0.870178850878 0.887953227152 0.883655299869 0.849823545207 0.483375797614 0.933110856316 0.936634683923

avg_stoi DEMAND 3 0.809977514501 0.898972129825 0.917268938905 0.91276743617 0.879801514652 0.496745522403 0.951859897034 0.954462423953

avg_stoi DEMAND 7 0.839759440988 0.922691746168 0.944072068003 0.939713546885 0.909440582201 0.496783455747 0.967695057825 0.97025338594

avg_stoi DEMAND 10 0.851136887153 0.933187563345 0.957288345806 0.952972426848 0.925755751256 0.503612328369 0.975460970055 0.97813551667

avg_csig Audioset -10 1.38184591945 1.01482989249 1.21013344315 1.43244182962 1.05774346267 1.83136456829 1.7982145472 1.99043215572

avg_csig Audioset -7 1.64539209768 1.01916195361 1.35186814047 1.68809856871 1.10033154374 2.05626851121 2.17927007522 2.37843748427

avg_csig Audioset -3 2.05629722246 1.04188752035 1.70762621688 2.16762655851 1.27512966244 2.30851787814 2.64397539356 2.80932079692

avg_csig Audioset 0 2.37294490211 1.08223043611 2.01462820064 2.53822901983 1.54054753956 2.45603853705 2.96539022549 3.11554639442

avg_csig Audioset 3 2.70562032138 1.15108502507 2.35725772548 2.94121501629 1.88660711688 2.56801903735 3.32794713927 3.46174116275

avg_csig Audioset 7 2.9577303687 1.28261338445 2.76291996742 3.29843382072 2.37792107712 2.71321000215 3.59711310827 3.71589989485

avg_csig Audioset 10 3.19113236991 1.36596812223 3.04813896667 3.63592768265 2.69729056987 2.75593559853 3.88155178351 3.98649814747

avg_csig DEMAND -10 1.87002618665 1.71010766003 1.94567233994 2.10149523175 1.74651665706 2.28997007715 2.78081352145 2.89162911252

avg_csig DEMAND -7 2.1714038205 2.02399528274 2.25865816815 2.45836201091 1.97846852675 2.4453653343 3.13269207245 3.24224023712

avg_csig DEMAND -3 2.59799358965 2.46308789135 2.64355254584 2.97315840118 2.32791450864 2.61527743823 3.54150883411 3.65242863891

avg_csig DEMAND 0 2.8942677892 2.72225994064 2.94227467512 3.32759448608 2.61019375326 2.70819585413 3.789732664 3.89437160605

avg_csig DEMAND 3 3.11949673345 2.92256133303 3.11812984672 3.59357073858 2.87351952928 2.78152529765 3.95241903192 4.05822091177

avg_csig DEMAND 7 3.35553645249 3.1115894152 3.37060153891 3.89702076585 3.19349630622 2.83591265167 4.18064834216 4.28010761713

avg_csig DEMAND 10 3.43568356507 3.20700853687 3.4524249956 4.022436246 3.40391496901 2.88188855576 4.23567441771 4.34058062807

avg_cbak Audioset -10 1.63300603249 1.30934795505 1.3745867378 1.59381988132 1.45521592892 1.69038261341 2.02805499848 2.13401486329

avg_cbak Audioset -7 1.80977418372 1.34429398195 1.54964826596 1.78304642222 1.59530567305 1.79615817372 2.28532392042 2.38430465251

avg_cbak Audioset -3 2.09279987913 1.45591690573 1.88985459878 2.0824653242 1.91293650075 1.9086047612 2.61957303372 2.70233065977

avg_cbak Audioset 0 2.3046451094 1.57371851786 2.14227453831 2.31742030758 2.18047302049 1.98424106071 2.84987860414 2.92902822558

avg_cbak Audioset 3 2.51236744052 1.6870410422 2.38782025647 2.55160428375 2.43253435222 2.03626945686 3.06597682552 3.14075604327

avg_cbak Audioset 7 2.73498753469 1.81526394753 2.69842229145 2.84075810785 2.73803958664 2.10696460833 3.32149478103 3.39416966185

avg_cbak Audioset 10 2.85698494464 1.87231659764 2.89120778153 3.03349530347 2.93780167642 2.13118768516 3.49080596816 3.56362473235

avg_cbak DEMAND -10 1.90980851692 2.12658950026 1.93734714511 1.93765715381 2.16180632372 1.90659454879 2.68945332416 2.76867770113

avg_cbak DEMAND -7 2.11134268484 2.36494778529 2.1708321186 2.14969914227 2.37463298773 1.98184207652 2.94074185598 3.01810993498

avg_cbak DEMAND -3 2.39899878288 2.65866022956 2.47274428625 2.46644609796 2.65548191547 2.06385565093 3.23164872199 3.31145098296

avg_cbak DEMAND 0 2.61054456596 2.84081997328 2.70614075027 2.71728157061 2.84903460644 2.11010194265 3.41981812272 3.4988601241

avg_cbak DEMAND 3 2.80131560925 2.9890457177 2.90258444099 2.95225370075 3.02423207891 2.14746930661 3.58161825113 3.66221151215

avg_cbak DEMAND 7 2.98553007154 3.13640606148 3.12953713865 3.21071661404 3.22716247802 2.17209175614 3.76518929619 3.84772685646

avg_cbak DEMAND 10 3.07768120679 3.2121678098 3.27025868265 3.35637544284 3.35684774286 2.19588606866 3.88030919031 3.96354104525

avg_covl Audioset -10 1.16852786313 1.04085498997 1.14094596886 1.23414944246 1.05083266498 1.42571992216 1.56287749416 1.72946402856

avg_covl Audioset -7 1.31837497391 1.02568748257 1.23702529674 1.40721849863 1.07910351495 1.59560815901 1.89235980221 2.0776539074

avg_covl Audioset -3 1.60794037902 1.03436633948 1.51403169542 1.78227632849 1.22170760193 1.80102913972 2.30708929326 2.46821124837

avg_covl Audioset 0 1.87974512741 1.0589044715 1.79027645692 2.10685955593 1.45459486582 1.93901575981 2.59163708375 2.74524661027

avg_covl Audioset 3 2.16093475458 1.10599163512 2.10968316442 2.46317708977 1.77301844427 2.03453863456 2.90751200759 3.05105487163

avg_covl Audioset 7 2.37814359049 1.19813094347 2.47394098327 2.79948723856 2.22237088735 2.1676478906 3.14913941942 3.28035631548

avg_covl Audioset 10 2.55635756578 1.25357808036 2.74891936278 3.10740814308 2.51121954018 2.21266878789 3.39221193667 3.51525854406

avg_covl DEMAND -10 1.42728550153 1.59153717461 1.75438873957 1.83998419708 1.63045115261 1.81404925572 2.40522810399 2.52638647395

avg_covl DEMAND -7 1.63944632148 1.86282674582 2.02055067169 2.13476229428 1.84436913783 1.93773996827 2.72216900291 2.84475143827

avg_covl DEMAND -3 1.9894307776 2.24372442591 2.37497639006 2.5796267862 2.16323714163 2.08639247493 3.08717050074 3.21702822133

avg_covl DEMAND 0 2.25445037073 2.47859354074 2.64914624051 2.88887215419 2.41521044122 2.17292640396 3.30521053976 3.43229421999

avg_covl DEMAND 3 2.46040803567 2.66769942595 2.83250028776 3.12354973572 2.65290790018 2.24055332084 3.44690252358 3.57576136508

avg_covl DEMAND 7 2.66118569629 2.85169511382 3.06910933022 3.3858301795 2.94691088349 2.28885730808 3.6428937956 3.76603885054

avg_covl DEMAND 10 2.73077954769 2.94540289635 3.15567250621 3.50075542625 3.14244133392 2.32935298321 3.69177375632 3.82029127601

avg_pesq Audioset -10 0.924088591427 0.777906485525 1.045186227 1.01416232264 0.723805399425 1.21072688263 1.49321457841 1.68612497765

avg_pesq Audioset -7 1.06263094068 0.784360812015 1.25243807786 1.24437458398 0.845534836284 1.35453917931 1.77435181504 1.9619057935

avg_pesq Audioset -3 1.32799818309 0.841500279088 1.61150939559 1.59077637471 1.17828470035 1.49735088934 2.13075576099 2.29982094785

avg_pesq Audioset 0 1.52752901041 0.919772355252 1.87616270933 1.85420142433 1.46999775383 1.60844536378 2.36697376539 2.5342873936

avg_pesq Audioset 3 1.72295432799 1.00315455086 2.1185494641 2.11444938794 1.76038289758 1.68273054996 2.58286411487 2.74331730553

avg_pesq Audioset 7 1.90527675294 1.11221058616 2.41210526177 2.43087395389 2.1285367091 1.79070658642 2.81920251938 2.97029628407

avg_pesq Audioset 10 1.97735667866 1.15596683409 2.59757543018 2.63777308179 2.36744350093 1.83618863389 2.9590846835 3.10324312072

avg_pesq DEMAND -10 1.04141358251 1.55705351666 1.9298458968 1.91257566567 1.50487205811 1.53646500696 2.21089407165 2.35679833171

avg_pesq DEMAND -7 1.22147012177 1.80505497977 2.1492789345 2.14839664765 1.74035705671 1.62722750435 2.46049654815 2.60445576295

avg_pesq DEMAND -3 1.4867303537 2.1137618043 2.41930987259 2.44849459279 2.05864462753 1.73899699582 2.72376374837 2.87706292032

avg_pesq DEMAND 0 1.69048987342 2.30547160369 2.60959566607 2.64252384555 2.27884698322 1.80752944179 2.87958444031 3.03204306731

avg_pesq DEMAND 3 1.8636040117 2.46452854586 2.76060782029 2.79845963584 2.4794550254 1.86449576888 2.99743682999 3.15123278972

avg_pesq DEMAND 7 2.00874357753 2.62893634474 2.91800894136 2.96070283193 2.73063050363 1.90137165332 3.11439533933 3.26768618873

avg_pesq DEMAND 10 2.06267856686 2.71469114377 3.00591690571 3.04862845453 2.90312580178 1.92970571811 3.1764660519 3.32713262953

avg_ssnr Audioset -10 1.27738496777 0.104606474115 0.75811714378 0.632327770879 0.535233239324 0.0751246339745 2.32229410118 2.51508309979

avg_ssnr Audioset -7 1.9606158704 0.248675329927 1.17313518784 1.02684680809 1.01372266813 0.0932493747925 3.25149268148 3.41615080131

avg_ssnr Audioset -3 3.17817678946 0.623993207192 1.98731498746 1.8067004794 2.10379997084 0.124790091516 4.69847830758 4.80126493255

avg_ssnr Audioset 0 4.23826479324 1.05142051989 2.70448153861 2.54149642425 3.11309673023 0.133950538447 5.85446287332 5.94247031777

avg_ssnr Audioset 3 5.39717767494 1.50680256065 3.44464452227 3.37009682678 4.12526395917 0.145721331226 7.06019772169 7.14507039335

avg_ssnr Audioset 7 6.87198978755 2.03560176346 4.65656723657 4.53621511078 5.41623948338 0.160568272956 8.7161594012 8.80405093367

avg_ssnr Audioset 10 7.84109636392 2.32655104412 5.55559625302 5.41479321723 6.33473491066 0.164945925586 9.98539041269 10.0773727545

avg_ssnr DEMAND -10 2.83363901944 2.62283940409 1.68899107024 0.572218003206 3.18072646106 0.114796773595 5.14483330341 5.34388531207

avg_ssnr DEMAND -7 3.73009729315 3.60657515363 2.41252362071 1.04750755502 4.0399536095 0.133028433281 6.42255639111 6.61710238247

avg_ssnr DEMAND -3 5.25960094766 4.93229599746 3.57509705237 2.13032621396 5.2246226552 0.151297809038 8.22303012099 8.39029083915

avg_ssnr DEMAND 0 6.48895851886 5.83026974071 4.5671263652 3.30543130529 6.10740859842 0.157334097536 9.57352812709 9.72403437096

avg_ssnr DEMAND 3 7.7529600295 6.59844712753 5.54500307927 4.62428090869 6.95188100097 0.170818267992 10.8857794561 11.0356381902

avg_ssnr DEMAND 7 9.1329505758 7.38516838517 6.83972251299 6.24679359602 7.92339049 0.166365183575 12.5619830342 12.7116563295

avg_ssnr DEMAND 10 9.92825310545 7.80813293108 7.76897185274 7.25079850654 8.51381472963 0.183162574714 13.7242716488 13.8699439631

S
TO

I

  0.0
  0.3

  0.5
  0.8
  1.0

0.0
0.3

0.5
0.8
1.0

C
S

IG

  0.0

  1.0
  2.0
  3.0

  4.0

0.0

1.3
2.5
3.8

5.0

C
B

A
K

  0.0
  1.0

  2.0
  3.0
  4.0

0.0
1.0

2.0
3.0
4.0

C
O

V
I

  0.0
  1.0
  2.0

  3.0
  4.0

SNR
-10 -8 -5 -3 0 3 5 8 10

0.0
1.0
2.0

3.0
4.0

SNR
-10 -8 -5 -3 0 3 5 8 10

AudioSet

P
E

S
Q

  0.0
  1.0
  2.0

  3.0
  4.0

Baseline-thres SEGAN Spectral gating Adobe Audition
DFL VSE Ours Ours-GTSI

DEMAND

0.0
1.0
2.0

3.0
4.0

S
S

N
R

0.0

3.0
6.0
9.0

12.0

0.0

3.5
7.0

10.5

14.0

�1

Figure S2: Denoise quality under different input SNRs. Here we expand Fig. 6 of the main text,
including the evaluations under all six metrics described in Sec. 4.2.

C Evaluation on Silent Interval Detection

C.1 Metrics

We now provide the details of the metrics used for evaluating our silent interval detection (i.e., results
in Table 1 of the main text). Detecting silent intervals is a binary classification task, one that classifies
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every time segment as being silent (i.e., a positive condition) or not (i.e., a negative condition). Recall
that the confusion matrix in a binary classification task is as follows:

Table S4: Confusion matrix

Actual

Positive Negative

Pr
ed

ic
te

d
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

In our case, we have the following conditions:

• A true positive (TP) sample is a correctly predicted silent segment.

• A true negative (TN) sample is a correctly predicted non-silent segment.

• A false positive (FP) sample is a non-silent segment predicted as silent.

• A false negative (FN) sample is a silent segment predicted as non-silent.

The four metrics used in Table 1 follow the standard definitions in statistics, which we review here:

precision =
NTP

NTP +NFP
,

recall =
NTP

NTP +NFN
,

F1 = 2 · precision · recall
precision + recall

, and

accuracy =
NTP +NTN

NTP +NTN +NFP +NFN
,

(S1)

where NTP, NTN, NFP, and NFN indicate the numbers of true positive, true negative, false positive,
and false negative predictions among all tests. Intuitively, recall indicates the ability of correctly
finding all true silent intervals, precision measures how much proportion of the labeled silent intervals
are truly silent. F1 score takes both precision and recall into account, and produces their harmonic
mean. And accuracy is the ratio of correct predictions among all predictions.

C.2 An Example of Silent Interval Detection

In Fig. S3, we present an example of silent interval detection results in comparison to two alternative
methods. The two alternatives, described in Sec. 4.3, are referred to as Baseline-thres and VAD,
respectively. Figure S3 echos the quantitative results in Table 1: VAD tends to be overly conservative,
even in the presence of mild noise; and many silent intervals are ignored. On the other hand,
Baseline-thres tends to be too aggressive; it produces many false intervals. In contrast, our silent
interval detection maintains a better balance, and thus predicts more accurately.

Ground Truth

Ours

Baseline-thres

VAD

Figure S3: An example of silent interval detection results. Provided an input signal whose SNR
is 0dB (top-left), we show the silent intervals (in red) detected by three approaches: our method,
Baseline-thres, and VAD. We also show ground-truth silent intervals in top-left.
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D Ablation Studies and Analysis

D.1 Details of Ablation Studies

In Sec. 4.4 and Table 2, the ablation studies are set up in the following way.

• “Ours” refers to our proposed network structure and training method that incorporates silent
interval supervision (recall Sec. 3.3). Details are described in Appendix A.

• “Ours w/o SID loss” refers to our proposed network structure but optimized by the
training method in Sec. 3.2 (i.e. an end-to-end training without silent interval supervision).
This ablation study is to confirm that silent interval supervision indeed helps to improve the
denoising quality.

• “Ours Joint loss” refers to our proposed network structure optimized by the end-to-end
training approach that optimizes the loss function (1) with the additional term (2). In this
end-to-end training, silent interval detection is also supervised through the loss function.
This ablation study is to confirm that our two-step training (Sec. 3.3) is more effective.

• “Ours w/o NE loss” uses our two-step training (in Sec. 3.3) but without the loss term on
noise estimation—that is, without the first term in (1). This ablation study is to examine the
necessity of the loss term on noise estimation for better denoising quality.

• “Ours w/o SID comp” turns off silent interval detection: the silent interval detection
component always outputs a vector with all zeros. As a result, the input noise profile to the
noise estimation component N is made precisely the same as the original noisy signal. This
ablation study is to examine the effect of silent intervals for speech denoising.

• “Ours w/o NR comp” uses a simple spectral subtraction to replace our noise removal
component; the other components remain unchanged. This ablation studey is to examine the
efficacy of our noise removal component.

D.2 The Influence of Silent Interval Detection on Denoising Quality

A key insight of our neural-network-based denoising model is the leverage of silent interval distribu-
tion over time. The experiments above have confirmed the efficacy of our silent interval detection
for better speech denoising. We now report additional experiments, aiming to gain some empirical
understanding of how the quality of silent interval prediction would affect speech denoising quality.

Table S5: Results on how silent interval detection quality affects the speech denoising quality.

Shift No Shift 1/30 1/10 1/5 1/2

PESQ 2.471 1.932 1.317 1.169 1.094
(a) Effect of shifting silent intervals.

Shrink No Shrink 20% 40% 60% 80%

PESQ 2.471 2.361 2.333 2.283 2.249
(b) Effect of shrinking silent intervals.

First, starting with ground-truth silent intervals, we shift them on the time axis by 1/30, 1/10, 1/5, and
1/2 seconds. As the shifted time amount increases, more time segments become incorrectly labeled:
both the numbers of false positive labels (i.e., non-silent time segments labeled silent) and false
negative labels (i.e., silent time segments are labeled non-silent) increase. After each shift, we feed
the silent interval labels to our noise estimation and removal components and measure the denoising
quality under the PESQ score.

In the second experiment, we again start with ground-truth silent intervals; but instead of shifting
them, we shrink each silent interval toward its center by 20%, 40%, 60%, and 80%. As the silent
intervals become more shrunken, fewer time segments are labeled as silent. In other words, only the
number of false negative predictions increases. Similar to the previous experiment, after each shrink,
we use the silent interval labels in our speech denoising pipeline, and meausure the PESQ score.

The results of both experiments are reported in Table S5. As we shrink the silent intervals, the
denoising quality drops gently. In contrast, even a small amount of shift causes a clear drop of
denoising quality. These results suggest that in comparison to false negative predictions, false positive
predictions affect the denoising quality more negatively. On the one hand, reasonably conservative
predictions may leave certain silent time segments undetected (i.e., introducing some false negative
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labels), but the detected silent intervals indeed reveal the noise profile. On the other hand, even a
small amount of false positive predictions causes certain non-silent time segments to be treated as
silent segments, and thus the observed noise profile through the detected silent intervals would be
tainted by foreground signals.

E Evaluation of Model Performance

E.1 Generalization Across Datasets

To evaluate the generalization ability of our model, we performed three cross-dataset tests reported in
Table S6. The experiments are set up in the following way.

• “Test i”: We train our model on our own AVSPEECH+Audioset (AA) dataset but evaluate
on Valentini’s VoiceBank-DEMAND (VD) testset. The result is shown in the first row of
the “Test i” section in Table S6. In comparison, the second row shows the result of training
on VD and testing on VD.

• “Test ii”: We train our model on our own AA dataset but evaluate on our second
AVSPEECH+DEMAND (AD) testset. The result is shown in the first row of the “Test
ii” section in Table S6. In comparison, the second row shows the result of training on AD
and testing on AD.

• “Test iii”: We train our model on our own AD dataset but evaluate on AA testset. The result
is shown in the first row of the “Test iii” section of the table. In comparison, the second row
shows the result of training on AA and testing on AA.

The small degradation in each cross-dataset test demonstrates the great generalization ability of our
method. We could not directly compare the generalization ability of our model with existing methods,
as no previous work reported cross-dataset evaluation results.

Table S6: Generalization across datasets.

Test Trainset Testset PESQ CSIG CBAK COVL STOI

Test i
AA VD 3.00 3.78 3.08 3.34 0.98
VD VD 3.16 3.96 3.54 3.53 0.98

Test ii
AA AD 2.65 3.48 3.21 3.01 0.90
AD AD 2.80 3.66 3.36 3.17 0.91

Test iii
AD AA 2.12 2.71 2.65 2.34 0.79
AA AA 2.30 2.91 2.81 2.54 0.82

E.2 Generalization on Real-world Data

We conduct experiments to understand the extent to which the model trained with different datasets
can generalize to real-world data. We train two versions of our model using our AVSPEECH+Audioset
dataset and Valentini’s VoiceBank-DEMAND, respectively (denoted as “Model AA” and “Model
VD”, respectively, in Table S7), and use them to denoise our collected real-world recordings. For the
denoised real-world audios, we measure the noise level reduction in detected silent intervals. This
measurement is doable, since it requires no knowledge of noise-free ground-truth audios. As shown
in Table S7, in terms of noise reduction, the model trained with our own AA dataset outperforms
the one trained with the public VoiceBank-DEMAND dataset by a significant amount for all tested
real-world recordings. On average, it produces 22.3 dB noise reduction in comparison to 12.6 dB,
suggesting that our dataset allows the denoising model to better generalize to many real-world
scenarios.
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Table S7: Real-world recording noise reduction comparison.

Real-world Recording Model AA noise reduction (dB) Model VD noise reduction (dB)

Song Excerpt 1 22.38 9.22
Song Excerpt 2 21.16 17.65
Chinese 18.99 15.65
Japanese 16.95 9.39
Korean 25.90 9.76
German 14.54 7.29
French 21.95 17.16
Spanish 1 33.34 11.00
Spanish 2 31.66 14.09
Female 1 17.64 7.79
Female 2 30.21 8.64
Female 3 19.15 6.70
Male 1 24.81 14.44
Male 2 24.92 13.35
Male 3 13.10 10.99
Multi-person 1 32.00 21.60
Multi-person 2 15.10 15.07
Multi-person 3 18.71 10.68
Street Interview 20.54 18.94

AVERAGE 22.27 12.60
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