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Abstract

Causal models have proven extremely useful in offering formal representations of causal relationships

between a set of variables. Yet in many situations, there are non-causal relationships among

variables. For example, we may want variables LDL, HDL, and TOT that represent the level

of low-density lipoprotein cholesterol, the level of lipoprotein high-density lipoprotein cholesterol,

and total cholesterol level, with the relation LDL + HDL = TOT . This cannot be done in

standard causal models, because we can intervene simultaneously on all three variables. The goal

of this paper is to extend standard causal models to allow for constraints on settings of variables.

Although the extension is relatively straightforward, to make it useful we have to define a new

intervention operation that disconnects a variable from a causal equation. We give examples

showing the usefulness of this extension, and provide a sound and complete axiomatization for

causal models with constraints.
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1. Introduction

Causal models have proven extremely useful in offering formal representations of causal relationships

between a set of variables. Yet in many situations we want to study both causal and non-causal

relationships between a single set of variables; this cannot be done in a standard causal model.

For example, a standard causal model cannot talk simultaneously about the level of high-density

lipoprotein cholesterol (HDL), the level of low-density lipoprotein cholesterol (LDL), and the level

of total cholesterol (TOT ), although this seems quite natural. One can imagine a situation where

we only have data regarding the level of total cholesterol, even though our causal model may say

that certain health conditions depend on the amount of LDL. The problem is that standard causal

models allow simultaneous interventions to all variables in the model. But we cannot intervene

to simultaneously set LDL to 120 mg/dL, HDL to 70, and TOT to 180, for that is logically

inconsistent! In this example, the variables have a part-whole relationship, rather than a causal

relationship. Other kinds of non-causal constraints giving rise to similar problems include:

• Unit transformations; for example, having variables that describe weight in pounds and weight

in kilograms.

• Mathematical relationships; for example, having variables for both Cartesian co-ordinates and

polar co-ordinates.

• Microscopic/macroscopic relationships; for example, having variables for chemical compositions

combined with variables indicating whether a liquid sample is water, hydrogen peroxide, or

sulphuric acid; or variables representing the distribution of molecular velocities in a sample

of gas, together with variables representing temperature and pressure.
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Representing any of these using standard causal models would require having separate causal

models for each separate description, thereby ignoring the important non-causal relationships between

the variables in the distinct models.

Allowing models with non-causal constraints increases the expressive power of causal models

in important ways. For one thing, we can represent ambiguous interventions. For example, if

we change only TOT , rather than changing the levels of LDL and HDL separately, then such a

change is ambiguous, because it can be realized in a number of different ways, corresponding to

different (and perhaps unknown) interventions on LDL and HDL. (This terminology, as well as

the cholesterol example, are taken from (Spirtes and Scheines, 2004).) Having constraints also gives

us a way of effectively disallowing certain interventions, by stipulating that certain settings of the

variables are disallowed, such as setting TOT below the sum of LDL and HDL.

Moreover, causal models with constraints have an important practical application. In many

cases, different institutions or researchers study the same causal domain using non-causally related

sets of variables. These relationships can be as trivial as the unit transformations mentioned above,

but can also be far more complicated, such as the relationship between particular settings and outputs

of fMRI machines produced by different companies, the translation of terminology used in the

financial reporting of different countries, or more generally, the relationship between datasets that

encode observations of the same kind using different conventions. We cannot combine the causal

models used by such groups into one (standard) causal model, because of the relationships between

the variables used in different models. On the other hand, causal models with constraints allow for

the integration of the causal knowledge of the individual models into one combined model.

The goal of this paper is to show how all of this (and more) can be accomplished by extending

causal models with constraints on settings of variables. Although the extension is relatively straightforward,

to make it useful we have to define a new operation. Specifically, we need to be able to disconnect

a variable from a causal equation. We provide examples that illustrate how causal models with

constraints can capture many situations of interest.

We are not the first to suggest moving beyond standard causal models. In many ways, our

framework can be seen as formalizing the informal suggestions of Woodward (2015). In addition,

Blom, Bongers, and Mooij (2019) consider causal constraint models, which also allow non-causally

related variables, but their emphasis lies on extending causal models with additional causal constraints,

rather than the non-causal constraints that we consider. (Concretely, they focus exclusively on

causal representations of dynamic systems, and consider the constraints that arise in equilibrium.)

Our work differs from theirs in several respects (see Section 5); the approaches can be viewed as

complementary.

The rest of this paper is structured as follows. The next section reviews the formalism of

causal models. Section 3 introduces our new formalism for representing non-causal constraints. In

Section 4, we provide a sound and complete axiomatization for causal models with constraints, in

the spirit of that provided by Halpern (2000) for causal models. We conclude with some discussion

in Section 5.

2. Causal Models

Before getting to the new definitions, we review the standard definition of a causal model (Halpern,

2000, 2016) (with a slight modification; see below). A causal model M is a pair (S,F), where S is

a signature, which explicitly lists the endogenous and exogenous variables and characterizes their
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possible values, and F defines a set of structural equations, relating the values of the variables.

Formally, a signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V is a set of

endogenous variables, and R associates with every variable Y ∈ U ∪ V a nonempty set R(Y ) of

possible values for Y (i.e., the set of values over which Y ranges).

For some endogenous variablesX ∈ V , F associates a function denoted FX such that FX maps

R(U ∪ V − {X}) to R(X) (where, if Y is a set of variables, we take R(Y ) to be an abbreviation

for ×Y ∈YR(Y )); that is, FX takes as input the values of the variables in U ∪ V other than X , and

returns a value in the range ofX . Note that we have departed from standard causal models (Halpern,

2000, 2016) by not requiring F to associate a function FX with every variable X ∈ V , only some

of them. This turns out to be critical when we add constraints.

If the value FX depends only on the variables in some subset W ⊆ U∪V−{X}, we often write

FX(w) = x or X = FX(W ). For example, if we have an exogenous variable U and endogenous

variables X1, . . . , X5, and X3 is the sum of X1 and X2, we write X3 = X2+X1, omitting X4, X5,

and U . Formally, if Y = U ∪V −{X}−W , then FX(w) = x is an abbrevation of FX(w,y) = x
for all y ∈ Y . While this shorthand is quite common, as we will see below it is particularly useful

in the presence of constraints.

Much of the work on causality has focused on recursive or acyclic models, where there are

no dependency cycles between variables, and the values of all endogenous variables are ultimately

determined by the context, that is, an assignment of values to the exogenous variables. As we shall

see, once we allow constraints, even in acyclic models, the values of the endogenous variables may

not be determined by the context; we also need a state, that is, an assignment of values to the

endogenous variables. A context-state pair is called an extended state. Our approach for dealing

with constraints generalizes the way Halpern (2016) deals with cyclic models, so we allow cyclic

models from the start. Given a signature S , letMS denote all causal models of the form (S,F),
where F can be arbitrary.

It is useful to have a language for reasoning about causality. The language that has been used in

earlier papers is defined as follows: Given a signature S = (U ,V,R), a primitive event is a formula

of the form X = x, for X ∈ V and x ∈ R(X). A basic causal formula (over S) is one of the form

[Y1 ← y1, . . . , Yk ← yk]ϕ, where

• ϕ is a Boolean combination of primitive events,

• Y1, . . . , Yk are distinct variables in V , and

• yi ∈ R(Yi), for i = 1, . . . , k.

Such a formula is abbreviated as [Y ← y]ϕ, using the vector notation. The special case where

k = 0 is abbreviated as [ ]ϕ.1 We assume for simplicity that the variables in V are ordered, and, no

matter in what order the variables appear in an intervention, the resulting formula is syntactic sugar

for the formula where the variables appear in order. For example if Y1 is earlier in the order than

Y2, then [Y2 ← y2, Y1 ← y1]ϕ is syntactic sugar for [Y1 ← y1, Y2 ← y2]ϕ. (This assumption is

made implicitly in (Galles and Pearl, 1998; Halpern, 2000; Halpern and Peters, 2022), the papers

that we are aware of that provide axiomatizations for causal models. Without it, the axiomatizations

they provide would not be complete: we would need an axiom that allows us to rearrange the order

1. In standard acyclic models (where there is no disconnection and an equation for each endogenous variable), we can

identify [ ]ϕ and the formula ϕ, but in our setting, we cannot do so.
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of interventions.) Intuitively, [Y1 ← y1, . . . , Yk ← yk]ϕ says that ϕ would hold if Yi were set to

yi, for i = 1, . . . , k. A causal formula is a Boolean combination of basic causal formulas. For

S = (U ,V,R), let L(S) consist of all causal formulas where the variables in the formulas are taken

from V and their possible values are determined byR.

A causal formula ψ is true or false in a causal model, given an extended state. We write

(M,u,v) |= ψ if the causal formula ψ is true in causal modelM given extended state (u,v). The |=
relation is defined inductively (see (Halpern and Pearl, 2005; Halpern, 2016)). (M,u,v) |= X = x
if (u,v) satisfies all the equations in F and X = x in state v. We extend |= to conjunctions and

negations in the standard way. Finally, (M,u,v) |= [Y ← y]ϕ iff (MY←y,u,v
′) |= ϕ for all

states v′ such that (u,v′) satisfies all the equations in FY←y, where MY←y = (S,FY←y), and

FY←y is identical to F , except that for each Yi in Y and corresponding yi in y, the causal equation

for Yi is replaced by Yi = yi (or Yi = yi is added if there was no equation for Yi in F). We write

(M,u) |= ψ if the truth of ψ depends only on the context u, which is easily seen to be the case for

formulas of the form [Y ← y]ϕ and write v |= ψ if ψ is a Boolean combination of primitive events

that is true in state v (note that the truth of Boolean combinations of primitive events is completely

determined by the state).

Some comments:

• In a standard acyclic causal model, there is a unique v such that (u,v) satisfies the equations

in F . That is why, in the standard semantics for causal formulas in acyclic causal models,

there is no mention of the state v; cf. (Halpern, 2016). In cyclic causal models there may be

more than one such v such that (u,v) satisfies the equations in F , or none. Once we drop the

requirement that there is an equation for each endogenous variable, there may again be more

than one such v, even in acyclic models.

• It is easy to check that this definition is equivalent to the standard definition of |= in acyclic

causal models.

• If we define ⟨X ← x⟩ϕ as an abbreviation of ¬[X ← x]¬ϕ, then (M,u) |= ⟨X ← x⟩true
iff there is some state v such that (u,v) satisfies all the causal equations in FX←x. In this

case we say that v is a solution of (M[X←x],u), meaning that (with the obvious abuse of

notation) (M,u) |= ⟨X ← x⟩V = v.

3. Causal Models With Constraints

We now extend causal models by allowing constraints. Some of the constraints we are interested in

are defined by equations, such as TOT = HDL + LDL. But we also want to allow constraints

such as (1) X ≤ Y , (2) X − Y ∈ S (where S is a set of values), and (3) X and Y are either both

positive or both negative. Thus, we take a causal model with constraints to be a triple (S,F , C),
where, as before, S is a signature and F is a collection of equations, and C is a set of extended

states (intuitively, the extended states that satisfy the constraints). In the special case where C
contains all possible extended states (i.e., where C = ×Z∈U∪VR(Z), so C places no constraints)

and F associates an equation with each variable in V , the causal model with constraints (S,F , C)
is equivalent to the standard causal model (S,F). Given a signature S , letMSc consist of all causal

models with constraints of the form (S,F , C), where S is fixed and F and C are arbitrary.
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We give semantics to formulas in L(S) just as before, except that we take C into account.

Specifically, (M,u) |= [Y ← y]ϕ iff (MY←y,u,v) |= ϕ for all states v such that (u,v) ∈ C and

(u,v) satisfies all the causal equations in FY←y.

Note that, crucially, the causal equations only matter for extended states (u,v) that satisfy the

constraints. This explains why we often need not write an equation FX as depending on all other

variables, and why not all endogenous variables require a causal equation. Consider a model where

D is diet, WP is weight in pounds, WK is weight in kilograms, and the constraints C implement

the obvious logical constraint that relates WP and WK (meaning that WP and WK fully determine

each other). It does not matter whether we write FWP
as a function of the values of both D and

WK or as a function only of D, since for all extended states (wP , wK , d) and (wP , w
′
K , d), if both

(wP , wK , d) and (wP , w
′
K , d) are in C, then wP = FWP

(wK , d) iff wP = FWP
(w′K , d). Moreover,

it is unnecessary to write an additional causal equation for WK ; it is far more natural for WK to be

determined by the logical constraint that relates WP and WK .

We find it useful to extend the language L(S) a little further, to allow us to disconnect some

variables X from their causal equations, so that the values of the variables in X are determined only

by the constraints. Specifically, we allow formulas of the form [disc(X),Y ← y]ϕ, where X and

Y are disjoint, and either of X or Y may be empty. (M,u) |= [disc(X),Y ← y]ϕ iff (M−X ,u) |=
[Y ← y]ϕ, where M−X is the model that is just like M , except that all causal equations for

variables in X are removed from F .2 Let Ld(S) be the language that extends L(S) by allowing

disconnection.

Causal models with constraints, as the name suggests, extend causal models by adding constraints

on possible solutions to the structural equations. While, at some level, this is a straightforward

extension, as the examples we present below show, it actually adds significant expressive power,

letting us capture realistic situations that cannot be captured in standard causal models. The extension

also brings out some subtle issues regarding the relationship between exogenous and endogenous

variables and how the value of an endogenous variables is determined that we briefly discuss here.

• In some respects, an endogenous variable for which there is no equation behaves similarly to

an exogenous variable: neither is determined by the structural equations, and they can both

be restricted by the constraints. However, in other respects, they behave quite differently: the

value of an exogenous variable is assumed to be simply given, as it’s determined by factors

that are not part of our model, whereas the value of an endogenous variable that does not have

an equation is either free to take on any value that is allowed by the constraints, or is set to

some value by means of an intervention.

• We could further generalize the way that the values of endogenous variables are determined.

Instead of having to choose between an endogenous variableX being uniquely determined by

its equation or not being determined by an equation at all, we could have an equation FX such

that FX mapsR(U ∪V−{X}) to P(R(X)). (Peters and Halpern (2021) go even further and

abandon equations altogether, taking a causal model to simply be a mapping from context-

intervention pairs to states.) Although we believe that this is a sensible generalization, we

believe that the current framework is already sufficiently expressive to merit a discussion of

its own.

2. Requiring that X and Y be disjoint does not lose expressive power. If X and Y were not disjoint, we would want

(M,u |= [disc(X),Y ← y]ϕ iff (M,u) |= [disc(X − Y ),Y ← y]ϕ.
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Example 1 Suppose that two different researchers study the effect of temperature on heat stroke in

vulnerable populations. One expresses temperature in Celsius (and uses a variable TC to represent

temperature in Celsius) while the other uses a variable TF to represent temperature in Fahrenheit.

We can combine their two models into a single causal model M that includes the constraint TF =
1.8TC + 32 (which means that C consists of all those extended states where the equation holds).

For simplicity, suppose that the value of TC is determined by an exogenous variable U according

to the causal equation TC = U . There is no causal equation for TF (whose value is determined by

the constraint). There is one other variable HS (the patient will suffer heatstroke), with the causal

equation HS = 1 if TC ≥ 40, and HS = 0 otherwise. Consider the context u where U = 35, so

that TC = 35, TF = 95, and HS = 0. Clearly we have that (M,u) |= ⟨TC ← 40⟩(HS = 1);
if we set TC to 40, there is a unique solution to the equations, and in that solution HS = 1.

On the other hand, we do not have (M,u) |= ⟨TF ← 104⟩(HS = 1). If we set TF to 104

degrees in context u, then TC remains at 35 degrees (since the value of TC is determined by the

context u, which has not changed). The resulting state is not in C; there are no solutions to the

equations in C where TC = 35 and TF = 104. Thus, [TF ← 104](HS = 0) is vacuously true

in all these solutions; that is, (M,u) |= [TF ← 104](HS = 0). On the other hand, we have

(M,u) |= ⟨disc(TC), TF ← 104⟩(HS = 1). Once we disconnect the equation for TC, there is

a (unique) solution to the equations where TF = 104; in that solution, TC = 40 (because of the

constraint) and HS = 1. The key point here is that we need to disconnect TC to get the desired

effect of intervening on TF .

Now consider a formalization of the cholesterol example.

Example 2

Consider a model M that represents the impact of cholesterol on atherosclerosis in a particular

patient. While it is normal for physicians to report total cholesterol level, total cholesterol includes

three different kinds of cholesterol: HDL cholesterol, (LDL cholesterol, and very low-density lipoproteins

(VLDL cholesterol). LDL cholesterol is harmful,contributing to the buildup of plaque in arteries.

By contrast, HDL cholesterol is beneficial, since it helps to clear LDL cholesterol out of the arteries.

VLDL cholesterol has little direct impact on the arteries, but it contributes to levels of triglycerides,

which are harmful. In practice, it is very difficult to directly measure LDL and VLDL cholesterol.

Instead, VLDL cholesterol is inferred from observed triglyceride levels, and this inferred value is

used together with measured values of HDL and total cholesterol to estimate the value of LDL

cholesterol. For this reason, it may be useful to be able to include all of these variables together in

the same causal model. The model has the following endogenous variables:

• AS ± atherosclerosis, level of plaque build-up in arteries

• HDL ± level of HDL cholesterol

• LDL ± level of LDL cholesterol

• VLDL ± level of VLDL cholesterol

• TOT ± total cholesterol level

• TRI ± level of triglycerides
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• D ± dietary factors that affect cholesterol.

There is one exogenous variable, U . The causal equations are

• D = FD(U)

• HDL = FHDL(D)

• LDL = FLDL(D)

• VLDL = FVLDL(D)

• TRI = FTRI(VLDL)

• AS = FAS(HDL,LDL,TRI)

D is determined by the exogenous variable (i.e., the context). We do not specify the precise equations,

but assume that FAS is a decreasing function of HDL and increasing in LDL and TRI; we also

assume that FTRI is an increasing function of VLDL. The constraint C consists of all the states

where TOT = HDL+ LDL+ VLDL.

In this model, we can freely intervene on HDL, LDL, and VLDL; the value of TOT will

change in the appropriate way, so as to maintain the constraint. Of course, if we intervene to set

HDL = hdl, LDL = ldl, VLDL = v ldl and TOT = tot simultaneously, then unless the

intervention is such that tot = ldl + hdl + v ldl, there will be no states satisfying the constraints,

so all formulas of the form [LDL ← ldl,HDL ← hdl,VLDL ← v ldl,TOT ← tot]ϕ will be

vacuously true. Indeed, in a context u where LDL = ldl∗, HDL = hdl∗, VLDL = v ldl∗, and

TOT = tot∗, an intervention that sets TOT to tot′ > tot∗ will also lead to an inconsistency,

unless we disconnect the equation for at least one of LDL, HDL, or VLDL.

In the context just described, if we intervene to set TOT = tot′, while disconnecting the

equation for LDL (but not the equations for HDL and V LDL), there will be a unique solution to

the equations, where HDL = hdl∗, VLDL = v ldl∗, TOT = tot′, and LDL = tot′ − hdl∗ −
v ldl∗. That is, intervening on TOT while disconnecting LDL results in the values of HDL and

VLDL remaining fixed, while LDL changes to maintain the constraint. Similarly, if we disconnect

only HDL or only VLDL. If we disconnect all of HDL, LDL, and VLDL while setting

TOT = tot′, then there will be multiple solutions to the equations: HDL, LDL, and VLDL can

take arbitrary values that add up to tot′. This makes (disc(LDL,HDL,VLDL),TOT = tot′)
what Spirtes and Scheines (2004) call an ambiguous intervention.

The next example shows that using the disconnection operation allows us to distinguish different

ways of implementing an intervention on a variable.

Example 3 A point is confined to the first quadrant of the Cartesian plane. We can represent its

position using Cartesian coordinates X and Y , with 0 < X,Y . We can also represent its position

using polar coordinates R and θ, with 0 < R and 0 < θ < π
2 . The model requires X,Y,R, and θ

to satisfy the usual constraints:

• R =
√
X2 + Y 2

• θ = arctan( Y
X
).
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In the absence of intervention, the point will remain in place. Thus, we can have as our exogenous

variable the previous position of the point U = (UX , UY ). The causal equations are

• X = UX

• Y = UY

• R =
√

U2
X + U2

Y

• θ = arctan(UY

UX
).

If we want to set the value of X in a meaningful way, we need to either disconnect both R and

θ or disconnect Y and R. That is, we consider interventions of the form

• disc(R, θ), X ← x and

• disc(Y,R), X ← x.

The first intervention sets the value ofX while leaving Y alone; technically, this means that Y takes

the value determined by the causal equations. This corresponds to sliding the point horizontally

until the desired value of X is reached. This intervention removes R and θ from the influence of

their causal equations, effectively forcing them to take the values determined by the constraints.

The second intervention, disc(Y,R), X ← x, sets the value of X while leaving θ alone. This

corresponds to sliding the point along the ray connecting its current position to the origin, until

the desired value of X is reached. We can also consider the intervention disc(Y, θ), X ← x.

This corresponds to rotating the point around the origin until X = x. In context (uX , uY ), this

intervention only yields solutions consistent with the constraint when x <
√

u2X + u2Y .

4. A sound and complete axiomatization for causal models with constraints

In this section we provide a sound and complete axiomatization for the language Ld(S) with respect

toMSc . Following (Halpern, 2000), we restrict to the case that S = (U , V,R) is finite, that is, U is

finite, V is finite, andR(X) is finite for all X ∈ U ∪ V .

Halpern (2000) considers a somewhat richer language than we do, where the context u is part

of the formula, not on the left-hand side of the |=. Specifically, Halpern considers primitive events

of the form X(u) = x, where M |= X(u) = x in Halpern’s semantics iff (M,u) |= X = x in our

semantics. We follow what is now the more standard usage, with the context u on the left of |=. We

thus follow (Halpern and Peters, 2022) and consider a variant of Halpern’s axioms more appropriate

for our language.

Here are Halpern’s axioms, as given in (Halpern and Peters, 2022) (we keep the same numbering):3

D0. All instances of propositional tautologies.

D1. [Y ← y](X = x⇒ X ̸= x′) if x, x′ ∈ R(X), x ̸= x′

D2. [Y ← y](
∨

x∈R(X)X = x) (definiteness)

3. The axiom D6 that we omit is for axiomatizing acyclic models, since our focus is on general models here.
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D3. ⟨X ← x⟩(W = w ∧ ϕ)⇒ ⟨X ← x,W ← w⟩(ϕ) if W /∈X4 (composition)

D4. [X ← x](X = x) (effectiveness)

D5. (⟨X ← x, Y ← y⟩(W = w ∧Z = z) ∧ ⟨X ← x,W ← w⟩(Y = y ∧Z = z))
⇒ ⟨X ← x⟩(W = w ∧ Y = y ∧Z = z) if Z = V − (X ∪ {W,Y }) (reversibility)

D7. ([X ← x]ϕ ∧ [X ← x](ϕ⇒ ψ))⇒ [X ← x]ψ (distribution)

D8. [X ← x]ϕ if ϕ is a propositional tautology (generalization)

D9. ⟨Y ← y⟩true ∧ (⟨Y ← y⟩ϕ⇒ [Y ← y]ϕ) if Y = V or, for some X ∈ V , Y = V − {X}
(unique outcomes for V and V − {X})5

MP. From ϕ and ϕ⇒ ψ, infer ψ (modus ponens)

We refer the reader to (Halpern and Peters, 2022) for a detailed discussion of how these axioms

compare to those of Halpern (2000).

Let AX+ consist of axiom schema D0-D5 and D7-D9, and inference rule MP.

Theorem 1 (Halpern, 2000) AX+ is a sound and complete axiomatization for the language L(S)
with respect toMS .

We now want to extend this result to causal models with constraints. The first step is to deal with

disconnection, which can be done using the following surprisingly simple axiom, where R(X) =
×X∈XR(X).

DSC. [disc(X),Y ← y]ϕ⇔
∧

x∈R(X)[X ← x,Y ← y]ϕ.

Roughly speaking, DSC says that disconnecting all the variables in X is the same as nondeterministically

assigning the variables in X an arbitrary value in their range. As we shall see, DSC is exactly what

we need to capture disconnection.

We also need to modify D9. We break the modification up into two parts, which we discuss

further below.

D9′. (⟨Y ← y⟩(X = x)∧ ⟨Y ← y⟩(X = x′)∧ ⟨Y ← y∗, X ← x′′⟩true)⇒ ⟨Y ← y∗⟩(X = x′′)
if Y = V − {X} and x ̸= x′.

D9′′. ∧x∈R(X)⟨Y ← y, X ← x⟩true ⇒ ⟨Y ← y⟩true , where Y = V − {X}.
D9′ is intended to deal with the case that FX is undefined (i.e., F does not associate a function FX

with the variable X) in a causal model M . This must be the case if there are two distinct values

x, x′ ∈ R(X) such that (⟨Y ← y⟩(X = x)∧⟨Y ← y⟩(X = x′) is true in (M,u) for some context

u. In that case, ⟨Y ← y∗⟩(X = x′′) must be true in (M,u) for all y∗ ∈ R(Y ) and x′′ ∈ R(X)
such that (u,y∗, x′′) ∈ C, which will be the case exactly if ⟨Y ← y∗, X ← x′′⟩true is true in

(M,u). D9′′ says that, for a fixed setting y of the variables in Y = V − {X}, if the constraints do

not preclude X from taking any value, then there is some solution to the equations FY←y, whether

or not FX is defined.

Let AX+,d be the result of adding axiom DSC to AX
+ and replacing D9 by D9′ and D9′′.

4. The requirement W /∈ X is not explicit in (Halpern, 2000), but is needed to ensure that the variables in ⟨X ←
x,W ← w⟩ are distinct.

5. Halpern (2000) did not include the case that Y = V , but it seems necessary for completeness.
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Theorem 2 AX
+,d is a sound and complete axiomatization for the language Ld(S) with respect

toMSc .

Proof We here focus on the parts of the proof that differ from that of (Halpern, 2000).

For completeness, using DSC, we can eliminate all occurrences of disc(X) from formulas, so

it suffices to show that if a formula ϕ ∈ L(S) is valid inMSc , then it is provable from AX
′, where

AX
′ is identical to AX

+ except that D9 is replaced by D9′ and D9′′. The steps of the argument are

standard: It suffices to show that if a formula ϕ ∈ L(S) is consistent with respect to AX
′ (i.e., we

cannot prove ¬ϕ in AX
′), then there is a causal model with constraints M ∈ MSc and a context u

such that (M,u) |= ϕ.

We extend {ϕ} to a maximal set C of formulas consistent with AX
′. We then use the formulas

in C to define a model M = (S,F , C) ∈ MSc such that in all contexts u of M and for all formulas

ψ ∈ L(S), we have that (M,u) |= ψ iff ψ ∈ C. Halpern (2000) used the formulas in C to

define F , by taking FX(u,y) = x if y ∈ R(V − {X}) and ⟨Y = y⟩(X = x) ∈ C. It follows

easily from D1, D2, and D9 that FX is well defined: there is a unique value x ∈ R(X) such that

⟨Y = y⟩(X = x) ∈ C for Y = V − {X}. We must work harder here, since we do not have axiom

D9, only axioms D9′ and D9′′. For each variable X ∈ V , there may be a unique x ∈ R(X) such

that ⟨Y ← y⟩(X = x) ∈ C, but there may not be any such value x, and there may be more than

one. We have to define F in all these cases.

We proceed as follows. We define C to consist of all extended states (u,v) such that ⟨V ←
v⟩true ∈ C. To define F , for each variable X ∈ V we consider three cases. Given X , if for some

y ∈ Y = V − {X} there are two values x and x′ in R(X) such that both ⟨Y ← y⟩(X = x) ∈ C
and ⟨Y ← y⟩(X = x′) ∈ C, then FX is undefined. Otherwise, for all y ∈ R(Y ), there is at most

one x ∈ R(X) such that ⟨Y ← y⟩(X = x) ∈ C. Thus, if there is some x ∈ R(X) such that

⟨Y ← y⟩(X = x) ∈ C, then x is unique, and we take FX(u,y) = x for all contexts u. Finally,

if there are no values x ∈ R(X) such that ⟨Y ← y⟩(X = x) ∈ C, then there must be some

x ∈ R(X) such that ⟨Y ← y,X ← x⟩true /∈ C, for otherwise, by D9′′, ⟨Y ← y⟩true ∈ C, and

it follows by standard modal reasoning, using D2, D7, D8, and MP, that ⟨Y ← y⟩(X = x) ∈ C
for some x ∈ R(X). We define FX(u,y) = x for all contexts u. (If there is more than one value x
such that ⟨Y ← y, X ← x⟩true /∈ C, we can choose one arbitrarily.) Let M = (S,F , C), for this

definition of F and C.

Since FX (if it is defined) is independent of u, it follows that for all formulas ψ ∈ L(S),
(M,u) |= ψ for some context u iff (M,u) |= ψ for all contexts u. We show that for all ψ ∈ L(S),
we have that (M,u) |= ψ for some (and hence all) contexts u iff ψ ∈ C. Using standard modal

reasoning as in (Halpern, 2000), it suffices to consider primitive events and formulas of the form

⟨Y ← y⟩(X = x). Using D4, we can further restrict to the case where X and Y are disjoint. We

proceed by induction on |V − Y |. If |V − Y | = 0, then Y = V and we can take X = x to be the

formula true and take Y = y to be V = v for some state v. Note that ⟨V ← v⟩true ∈ C iff v ∈ C
iff (M,u) |= ⟨V ← v⟩true , as desired.

If |V − Y | = 1, then V − Y = {X} for some variable X ∈ V . Suppose that ⟨Y ← y⟩(X =
x) ∈ C. Then by D3, we must have ⟨Y ← y, X ← x⟩true ∈ C. There are two cases: If for some

y∗ ∈ R(Y ) there exist two values x′ and x′′ inR(X) such that both ⟨Y ← y∗⟩(X = x′) ∈ C and

⟨Y ← y∗⟩(X = x′′) ∈ C, then FX is undefined. It easily follows that (M,u) |= ⟨Y ← y⟩(X =
x). Otherwise, for all y∗ ∈ R(Y ), there is at most one x′ such that ⟨Y ← y∗⟩(X = x′) ∈ C,
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so x has to be the unique value x′ ∈ R(X) such that ⟨Y ← y⟩(X = x′) ∈ C; therefore, by

construction, FX(u,y) = x. It again follows that (M,u) |= ⟨Y ← y⟩(X = x).
For the opposite direction, suppose that (M,u) |= ⟨Y ← y⟩(X = x). Then (M,u) |= ⟨Y ←

y, X ← x⟩true , so ⟨Y ← y, X ← x⟩true ∈ C by the induction hypothesis, and either (1)

FX(u,y) = x or (2) FX is undefined. In case (1), by construction, ⟨Y ← y⟩(X = x) ∈ C. In

case (2), there must be two values x′ and x′′ in R(X) and some value y∗ ∈ R(Y ) such that such

that ⟨Y ← y∗⟩(X = x′) ∈ C and ⟨Y ← y∗⟩(X = x′′) ∈ C. Since ⟨Y ← y, X ← x⟩true ∈ C,

by D9′, ⟨Y ← y⟩(X = x) ∈ C, as desired.

The inductive step proceeds just as in (Halpern, 2000), using D3 and D5; we omit the details

here.

We now prove the soundness of AX+,d. GivenM = (S,F , C) ∈MSc , we want to show that all

the axioms are valid in M . The argument for D0-D5, D7, and D8 is much like that given in (Galles

and Pearl, 1998; Halpern, 2000); we leave the details to the reader.

For D9′, observe that without constraints, D9 is sound because for each u, there is a unique

solution v to the equations in FY←y if Y consists of all but one endogenous variable. With

constraints, there may not be a solution at all (so the first conjunct of D9 is not sound), and there

may be many solutions if FX is undefined. If (M,u,v) |= (⟨Y ← y⟩(X = x) ∧ ⟨Y ← y⟩(X =
x′) ∧ ⟨Y ← y, X ← x′′⟩true), (with x ̸= x′), then there are at least two solutions to the equations

(x and x′), so FX must be undefined. That means that if (u,y∗, x′′) ∈ C, which must be the case if

(M,u) |= ⟨Y ← y∗, X ← x′′⟩true , then (M,u,y) |= ⟨Y ← y∗⟩(X = x′′), as desired.

For D9′′, suppose that (M,u) |= ∧x∈R(X)⟨Y ← y, X ← x⟩true . We want to show that

(M,u) |= ⟨Y ← y⟩true . Suppose that FX is defined and FX(u,y) = x. Let v be such that

v |= Y = y ∧ X = x. Since (M,u) |= ⟨Y ← y, X ← x⟩true , and v is the unique state such

that (u,v) satisfies the equations in FY←y,X←x, it must be the case that (u,v) ∈ C and satisfies

the equations in FY←y. Thus, (M,u) |= ⟨Y ← y⟩true , as desired. On the other hand, if FX is

undefined, since (M,u) |= ∧x∈R(X)⟨Y ← y, X ← x⟩true , it must be the case that (u,y, x) ∈ C
for all x ∈ R(X), and (u,y, x) satisfies all the equations in FY←y, so (M,u) |=

∧

x∈R(X)⟨Y ←
y⟩(X = x), and hence (M,u) |= ⟨Y ← y⟩true ,

Finally, for DSC, suppose that (M,u) |= [disc(X),Y ← y]ϕ. Then (M−X ,u) |= [Y ← y]ϕ.

So for all (u,v) ∈ C such that (u,v) satisfies the equations in F−X,Y←y, we have that v |= ϕ.

We claim that, for all x ∈ R(X), we have that (M,u) |= [X ← x,Y ← y]ϕ. For suppose

that (u,v) ∈ C and (u,v) satisfies the equations in FX←x,Y←y. Then (u,v) clearly satisfies the

equations in F−X,Y←y, so v |= ϕ. The result follows.

Conversely, suppose that (M,u) |=
∧

x∈R(X)[X ← x,Y ← y]ϕ. We want to show that

(M,u) |= [disc(X),Y ← y]ϕ. Suppose that (u,v) ∈ C and (u,v) satisfies the equations in

F−X,Y←y. There must be some x ∈ R(X) such that v |= X = x. It follows that (u,v) satisfies

the equations in FX←x,Y←y. Since (M,u) |= [X ← x,Y ← y]ϕ, we must have that v |= ϕ.

Since this is the case for all (u,v) ∈ C such that (u,v) satisfies the equations in F−X,Y←y, it

follows that (M,u) |= [disc(X),Y ← y]ϕ, as desired.

5. Discussion

We have introduced an approach for allowing non-causal constraints in causal models. We believe

that our approach will have applications well beyond those that we have discussed. We mention just

some of them here that we hope to address in future work.
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First, there has been recent work on representing causal models at different levels of abstraction

(Beckers and Halpern, 2019; Rubenstein et al., 2017). Representing that a (standard) causal model

MH (intuitively, the high-level model) is an abstraction of ML (the low-level model) is done using

an abstraction function that relates the values of variables in ML to those in MH . Models with

constraints can easily capture abstraction. Given an abstraction function τ : R(VL)→ R(VH), we

can construct a model with constraints M that simply combines ML and MH (both the signatures

and the equations), and let the constraints C consist of all extended states (uL, τU (uL),vL, τ(vL)).

The work on abstraction has two features that are not directly captured by this map. First, they

include a set of allowed interventions. Intuitively, disallowed interventions are not meaningful or

cannot be performed. Disallowed interventions in a causal model with constraints can be viewed as

ones that do not have a solution. However, it seems useful to have a more systematic understanding

of the set of interventions that are meaningful and will give rise to solutions. Second, abstractions

have been generalized to the approximate case, so that the solutions to the equations in both causal

models may deviate slightly from the abstraction relation (Beckers et al., 2019). As such a situation

seems more realistic in practice, it would be good to generalize causal models with constraints in

a similar manner. One way of doing so would be to consider a metric dV(·, ·) on the range of

endogenous variables R(V) and consider as solutions of the model all extended states (u,v) that

are within α of some (u′,v′) ∈ C. Doing this would allow the tools for approximate abstraction to

be carried over to models with constraints.

Second, causal discovery algorithms are usually limited to learning a causal model using just

a single dataset. There has been interesting work on generalizing causal discovery algorithms

to overcome this limitation, meaning they can take advantage of various datasets using different

variables, greatly improving accuracy (Tillman and Eberhardt, 2014; Huang et al., 2020). This

work has not yet considered non-causal relationships between variables. A natural step to take is

to modify these algorithms so that they can exploit the constraints between variables appearing in

different datasets, and learn a causal model with constraints.

Third, it is worth examining the relative expressive power of our approach and that of Blom et

al. (2019). As we said, they also allow non-causally related variables. They in fact allow a more

general class of constraints, ones that are active only under certain interventions. However, we allow

disconnection (i.e., the disc() operation), which allows us to remove causal constraints. As we saw

in our examples, disconnection plays a critical role; in particular, as Example 3 shows, it allows

us to specify how we want to implement an intervention on a particular variable in a way that we

believe is quite useful in practice. There is no analog of this in the framework of Blom et al. It

would be useful to get a deeper understanding of the connection between the two approaches.

We conclude with a brief comparison of causal models with constraints to the GSEMs (generalized

structural equations models) of Peters and Halpern (2021). GSEMs are more expressive than causal

models with constraints (at least, if all variables have finite range); they can simply express the

effect of an intervention in a given context directly, by having a function F that takes as input a

context u and an intervention I , and returns a set of states (intuitively, the set of states that might

result by performing intervention I in context u). Thus, given a causal model with constraints M ,

we can define a GSEM M ′ that agrees with M on all formulas in L(S) (which suffices, given that

we can replace all occurrences of the disc operator using the DSC axiom if all variables have finite

range). However, causal models with constraints allow us to describe constraints directly, which

makes them more practical for many applications.
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