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ABSTRACT

Many studies have shown that humans are łpredictably irrationalž:

they do not act in a fully rational way, but their deviations from

rational behavior are quite systematic. Our goal is to see the extent

to which we can explain and justify these deviations as the outcome

of rational but resource-bounded agents doing as well as they

can, given their limitations. We focus on the well-studied ranger-

poacher game, where rangers are trying to protect a number of

sites from poaching. We capture the computational limitations by

modeling the poacher and the ranger as probabilistic finite automata

(PFAs). We show that, with sufficiently large memory, PFAs learn to

play the Nash equilibrium (NE) strategies of the game and achieve

the NE utility. However, if we restrict the memory, we get more

łhuman-likež behaviors, such as probability matching (i.e., visiting

sites in proportion to the probability of a rhino being there), and

avoiding sites where there was a bad outcome (e.g., the poacher

was caught by the ranger), that we also observed in experiments

conducted on Amazon Mechanical Turk. Interestingly, we find

that adding human-like behaviors such as probability matching

and overweighting significant events (like getting caught) actually

improves performance, showing that this seemingly irrational behavior

can be quite rational.
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1 INTRODUCTION

While standard economic theory assumes that people are rational,

many studies (see, e.g., [2]) have shown that humans are irrational

in a systematic way. We are interested in the extent to which

these behaviors can be explained by computational limitations.

Following a tradition that goes back to Rubinstein [19] and Neyman

[16], we model computationally bounded agents as probabilistic

finite automata (PFAs). Earlier work (see, e.g., [11, 15, 22]) has

shown that optimal finite automata for certain problems can exhibit

quite łhuman-likež behaviors, such as confirmation and a first-

impression bias. Our goal in this paper is to see the extent to which

computational limitations can explain and justify human behaviors

in security games [21].

Specifically, we consider a (finitely) repeated two-player ranger-

poacher game, based on the wildlife poaching game introduced by

Kar et al. [12]. At each stage of the repeated game, the poacher tries
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to catch a rhino at one of 𝑛 sites, and the ranger tries to prevent

the poacher from doing so. We assume that there is a commonly-

known probability of a rhino being at any particular site, which

does not change over time. We can formulate the stage game (i.e.,

the game played at each step of the repeated game) as a zero-sum

normal-form game, which we show has a unique Nash equilibrium

(NE). An easy backward induction then shows that the unique NE

of the finitely repeated game is to play the NE of the stage game

repeatedly. We take łrational behaviorž to be best responding to the

opponent (which will mean playing the NE strategy if the opponent

is).

There are several well-studied algorithms that lead to NE; we

focus on one of them here: fictitious play (FP) [4]. In FP, each player

keeps track of what the other player has done, and best responds to

the mixed strategy where the probability that an action is played is

the frequency with which that strategy has been played thus far.1

Robinson [18] showed that in two-player zero-sum game where

both players have only a finite number of strategies (which is what

we consider here), FP converges to NE strategy and utility. However,

the rate of convergence of FP is often slow, and is quite sensitive

to which strategy is chosen if there are multiple best responses.

Abernethy, Lai, and Wibisono [1] recently showed that for two-

player zero-sum games where the payoffmatrix is a diagonal matrix,

after 𝑡 steps, players’ estimates are within𝑂 (1/
√
𝑡) of NE, if they use

a specific tie-breaking rule, while Daskalakis and Pan [6] showed

that with a random tie-breaking rule, after 𝑡 steps, for the same set of

games, the estimates might be only within 𝑂 (1/𝑡1/𝑛) of NE, where
𝑛 is the number of possible strategies of one of the players. In any

case, the games that we consider do not necessarily have diagonal

payoff matrices. Moreover, there are algorithms that converge to

NE much faster than FP [5]. Despite this, we focus on FP; our goal

is not to find optimal algorithms, but to explain and justify human

behavior. FP has the advantage of being quite natural; it seems

plausible that people would do something in the spirit of FP (which

is partly why it has attracted so much attention in the literature).

To the extent that wemodel people as PFAs, they cannot implement

full-blown FP, since it requires an unbounded number of states

to keep track of the full history of play. Nevertheless, there are

straightforward ways for a finite automaton to approximate FP; we

start by considering that. Specifically, we approximate the probability

that the opponent will go to a particular site 𝑖 by the fraction of

times he has gone to site 𝑖 in the past𝑀 steps. Instead of keeping a

sliding window of size𝑀 , which requires keeping track of the order

in which sites were visited, and thus requires quite a few states,

each player keeps 𝑀 pieces of information in total and decides

probabilistically what information to replace. Here𝑀 can be viewed

as a proxy for a player’s memory capacity. At each step, both the

poacher and the ranger play a best response to their beliefs of what

1The term łfictitious playž is due to the fact that this procedure could in principle be
simulated by each player without the game actually being played. Note that there is
an implicit assumption here that all actions are observed.



their opponent is doing. More precisely, at each step, the player

calculates the expected utility of going to each site (based on their

estimate of the strategy of their opponent encoded in their memory)

and plays the action with the highest expected utility, randomly

choosing one if there are ties.

We can modify Robinson’s proof [18] to show that if the PFA

has sufficiently many states, players eventually converge to playing

the NE strategies of the stage game and achieve the NE utilities.

Since we are not particularly interested in the case where 𝑀 is

large, rather than proving this result formally, we do simulations

that illustrate this behavior. More interesting from our perspective

is what happens if we limit the number of states of the PFA. Now

the situation changes significantly; as we show, the PFA acts more

human-like; the strategy it uses it somewhere between the NE

strategy and probability matching (i.e., visiting sites in proportion

to the probability of a rhino being there).

Things become even more interesting if we do not treat all

outcomes equally. From a human perspective, some events are

more significant than others. Observing a potentially poisonous

snake is far more significant than observing a beetle. We would

expect humans to treat significant events differently from less

significant events. In the context of the ranger-poacher game, it

seems reasonable to think that a poacher views getting caught by

the ranger as particularly significant, because it gives him negative

utility. (Althoughwe do notmodel poachers’ snares being confiscated

in our abstraction of the game, Xu et al. [26] observed that real-

world poachers reacted quite strongly to this event which, from

their perspective, is quite significant.) Similarly, the ranger views

the poacher catching a rhino as a significant event, because that

is what gives her negative utility. We can capture this significance

by assuming that the poacher and the ranger assign more weight

to site 𝑖 in their memory if it is related to an event with negative

utility. Our simulations show that taking significance into account,

even in this naive way, can lead to higher utility. We also show

that the greater the weight of significant events, the greater the

improvement in the utility, although the effect of the weightings

has diminishing returns. We can explain why this should be the case

here: If the ranger or the poacher use FP with a large memory, then

the site that they consider best will not change much, especially

if they got rewarded by going there. If the poacher overweights a

site where he has been caught, he is less likely to return there (and

thus less likely to be caught by the ranger, who will return there if

she is using FP). We would expect overweighting to have less of an

impact the smaller the memory of the poacher and ranger (since

smaller memory makes returning to the same site less likely), and

this is indeed the case. Interestingly, Lieder, Griffiths, and Hsu [14]

have argued that over-representation of extreme events leads to

better decision-making performance; our results suggest that this

phenomenon is not just limited to extreme events.

To understand the effects of boundedmemory and taking significance

into account, for various choices of ranger strategy, we compared

the performance (in terms of utility) of various parameter settings

of our PFA to each other and to other poacher strategies. Our results

showed that probability matching and overweighting significance

can often lead to higher utility. This supports one of our key hypotheses:

It can be quite rational to be (somewhat) łirrationalž, at least in the

ranger-poacher game!

To see how humans actually play the ranger-poacher game, we

ran experiments on Amazon Mechanical Turk (MTurk), using a

number of different rhino distributions, with people playing the

role of poacher for 100 rounds. The ranger in the experiment uses

a PFA with 𝑀 = 100 and 𝑠 = 0 (i.e., it does not take significance

into account; we take 𝑠 = 1 if it does take significance into account).

When looking at the overall distribution (i.e., the fraction of times

the human player visits each site), we found that we could roughly

cluster players into three groups: level-0 poachers are non-strategic

and either visit all sites with equal probability or stick to one site

(they simply try to finish the game as quickly as possible); level-1

poachers best respond to level-0 rangers, which in our settingmeans

that they probability match; and level-2 poachers best respond to

level-1 rangers, which in our setting means that they best respond

under the assumption that rangers are probability matching. (These

names are intentionally chosen to match the level-𝑘 hierarchy of

Stahl [20]. Stahl defined level-0 players to be ones who choose a

strategy at random, just as our level-0 poachers do, while level-

(𝑘 + 1) players best respond under the assumption that they are

playing against level-𝑘 players.) Our experimental data show that

most human poachers tend to probability match. As we show, this

is also the case for poachers that use a PFA with small memory size

𝑀 . As𝑀 increases, our PFA will play a combination of probability

matching and NE strategy, which is closer to the level-2 strategy.

These and other observations suggest that modeling people as PFAs

does capture important aspects of human behavior.

The rest of the paper is organized as follows: in Section 2, we

formally define the ranger-poacher game as a normal-form game

and prove that it has a unique NE. In Section 3, we define our

PFA for the ranger-poacher game and show by simulations how

it converges to NE strategies with sufficiently large memory and

how it compares to other poacher strategies. We present the results

from MTurk experiments and compare them with the simulation

results in Section 4. We conclude in Section 5 with a discussion of

related work and plans for future work.

2 THE RANGER-POACHER GAME

As we said, our ranger-poacher game is based on the wildlife

poaching game of Kar et al. [12]. There are two players, a ranger

and a poacher, and a fixed number 𝑛 of sites that rhinos might go to.

We assume that the rhino distribution 𝑑 = (𝑑1, . . . , 𝑑𝑛) is commonly

known, where 𝑑𝑖 ∈ [0, 1] is the probability that there is a rhino at

site 𝑖 (we do not assume that
∑𝑛
𝑖=1 𝑑𝑖 = 1; there could be more than

one rhino!). We denote by Γ
𝐾 (𝑑) the ranger-poacher game with

rhino distribution 𝑑 and 𝐾 stages, whose stage game is denoted

Γ(𝑑). (Note that the distribution also implicitly encodes the number

of sites.)

Formally, the stage game Γ(𝑑) can be viewed as a normal-form

game with players 𝑃 and 𝑅, whose expected payoff matrix is given

in the following table, where the poacher is the row player and the

ranger is the column player.

1 2 . . . 𝑛

1 (−1, 1) (𝑑1, −𝑑1) . . . (𝑑1, −𝑑1)
2 (𝑑2, −𝑑2) (−1, 1) . . . (𝑑2, −𝑑2)
. . . . . . . . . . . . . . .

𝑛 (𝑑𝑛 , −𝑑𝑛) (𝑑𝑛 , −𝑑𝑛) . . . (−1, 1)



We take the poacher’s utility in Γ
𝐾 (𝑑) to be his average utility in

each of the 𝐾 stage games, and similarly for the ranger.

Although, in general, zero-sum games can havemultiple equilibria,

the ranger-poacher game has a unique NE.

Proposition 2.1. For all 𝑑 , Γ(𝑑) has a unique NE.

Proof. We now show that the stage game Γ(𝑑) has a unique NE.
Suppose that the poacher and the ranger use the mixed strategies

𝜎𝑃 = (𝑝1, . . . , 𝑝𝑛) and 𝜎𝑅 = (𝑟1, . . . , 𝑟𝑛), respectively, in the stage

game, where 𝑝𝑖 is the probability that the poacher goes to site 𝑖

and 𝑟𝑖 is the probability that the ranger goes to site 𝑖 , for all sites

𝑖 ∈ [1, . . . , 𝑛]. Let 𝑣𝑖𝑠𝑖𝑡𝑃
𝑖
and 𝑣𝑖𝑠𝑖𝑡𝑅

𝑖
denote the pure strategies where

the poacher and the ranger, respectively to visit site 𝑖 . Taking 𝑢𝑃
and 𝑢𝑅 to denote the poacher’s and ranger’s expected utility, note

that

𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡𝑃𝑖 , 𝜎𝑅) = (1 − 𝑟𝑖 )𝑑𝑖 − 𝑟𝑖 and
𝑢𝑅 (𝜎𝑃 , 𝑣𝑖𝑠𝑖𝑡𝑅𝑖 ) = 𝑝𝑖 −

∑

𝑗≠𝑖 𝑑 𝑗𝑝 𝑗 .
(1)

For (𝜎𝑃 , 𝜎𝑅) to be a NE, the poacher has to be indifferent among

all the pure strategies in the support of 𝜎𝑃 if the ranger plays 𝜎𝑅 ,

and similarly for the ranger. Thus, we require that

𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡𝑃𝑖 , 𝜎𝑅) = 𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡
𝑃
𝑗
, 𝜎𝑅) if 𝑝𝑖 > 0 and 𝑝 𝑗 > 0,

𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡𝑃𝑖 , 𝜎𝑅) ≥ 𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡
𝑃
𝑗 , 𝜎𝑅) if 𝑝𝑖 > 0 and 𝑝 𝑗 = 0,

(2)

and similarly for the ranger. Using (1) and (2), it is straightforward

to solve for a NE of Γ(𝑑). As we now show, the NE is unique.

It is well known that a two-player zero-sum game Γ has a unique

value 𝑣 ≥ 0. If each player 𝑖 plays a maximin strategy (intuitively, a

strategy that guarantees the best possible result for player 𝑖 under

the assumption that the other player is trying to hurt him as much

as possible), then one player will get an expected utility of 𝑣 and the

other player will get an expected utility of −𝑣 . Moreover, (𝜎1, 𝜎2)
is a NE of Γ if and only if 𝜎𝑖 is a maximin strategy for player 𝑖 , for

𝑖 = 1, 2. It follows that, while there may be more than one NE in Γ,

one of the players gets 𝑣 in all the NE, while the other player gets

−𝑣 . (See, e.g., [10] for proofs of these results.)
We show that there is in fact a unique NE in Γ(𝑑). Suppose,

by way of contradiction, that there are two equilibria (𝜎𝑃 , 𝜎𝑅)
and (𝜎′

𝑃
, 𝜎′
𝑅
), where 𝜎𝑃 = (𝑝1, . . . , 𝑝𝑛)𝑇 , 𝜎′𝑃 = (𝑝′

1
, . . . , 𝑝′𝑛)𝑇 , 𝜎𝑅 =

(𝑟1, . . . , 𝑟𝑛)𝑇 , and𝜎′𝑅 = (𝑟 ′
1
, . . . , 𝑟 ′𝑛)𝑇 . Further suppose that the value

of the game is 𝑣 . Thus, we can assume without loss of generality

that in all NE, the poacher gets expected utility 𝑣 and the ranger

gets expected utility −𝑣 . Since all of 𝜎𝑃 , 𝜎′𝑃 , 𝜎𝑅 , and 𝜎
′
𝑅
must be

maximin strategies, it follows that (𝜎𝑃 , 𝜎′𝑅) and (𝜎′
𝑃
, 𝜎′
𝑅
) must also

be NE. While 𝜎𝑃 and 𝜎′
𝑃
may have different supports, the mixture

1

2
𝜎𝑃 + 1

2
𝜎′
𝑃
is also a maximin strategy, and its support is the union

of that of 𝜎𝑃 and 𝜎′
𝑃
. It follows for all pure strategies 𝑣𝑖𝑠𝑖𝑡𝑃

𝑖
and

𝑣𝑖𝑠𝑖𝑡𝑃
𝑗
in the support of either 𝜎𝑃 or 𝜎′

𝑃
, by (1), we have that −𝑟𝑖 +

(1−𝑟𝑖 )𝑑𝑖 = 𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡𝑃𝑖 , 𝜎𝑅) = 𝑢𝑃 (𝑣𝑖𝑠𝑖𝑡
𝑃
𝑖
, 𝜎′
𝑅
) = −𝑟 ′𝑖 + (1−𝑟

′
𝑖 )𝑑𝑖 . Thus,

𝑑𝑖 − (1 + 𝑑𝑖 )𝑟𝑖 = 𝑑𝑖 − (1 + 𝑑𝑖 )𝑟 ′𝑖 , so 𝑟𝑖 = 𝑟
′
𝑖 . Thus, 𝜎𝑅 = 𝜎′

𝑅
.

We have to work a little harder to show that 𝜎𝑃 = 𝜎′
𝑃
. Note that

𝑢𝑅 (𝜎𝑃 , 𝑣𝑖𝑠𝑖𝑡𝑅𝑖 ) = 𝑢𝑅 (𝜎𝑃 , 𝑣𝑖𝑠𝑖𝑡
𝑅
𝑗
), so

𝑝𝑖 −
∑︁

𝑘≠𝑖

𝑑𝑘𝑝𝑘 = 𝑝 𝑗 −
∑︁

𝑘≠𝑗

𝑑𝑘 .

Similarly, 𝑢𝑅 (𝜎′𝑃 , 𝑣𝑖𝑠𝑖𝑡
𝑅
𝑖
) = 𝑢𝑅 (𝜎′𝑃 , 𝑣𝑖𝑠𝑖𝑡

𝑅
𝑗
), so

𝑝′𝑖 −
∑︁

𝑘≠𝑖

𝑑𝑘𝑝
′
𝑘
= 𝑝′𝑗 −

∑︁

𝑘≠𝑗

𝑑𝑘𝑝
′
𝑘
.

Simple algebra shows that

(𝑝𝑖 − 𝑝 𝑗 ) + 𝑑𝑖𝑝𝑖 − 𝑑 𝑗𝑝 𝑗 = 0 = (𝑝′𝑖 − 𝑝
′
𝑗 ) + 𝑑𝑖𝑝

′
𝑖 − 𝑑 𝑗𝑝

′
𝑗 .

Therefore,

(1 + 𝑑𝑖 ) (𝑝𝑖 − 𝑝′𝑖 ) = (1 + 𝑑 𝑗 ) (𝑝 𝑗 − 𝑝′𝑗 ) . (3)

If 𝜎𝑃 ≠ 𝜎′
𝑃
, then there must be some site 𝑖 in the support of 𝜎𝑃 such

that 𝑝𝑖 > 𝑝
′
𝑖 . Thus, (1+𝑑𝑖 ) (𝑝𝑖 −𝑝

′
𝑖 ) > 0. But then it follows from (3)

that 𝑝 𝑗 > 𝑝
′
𝑗 for all sites 𝑗 in the support of either 𝜎𝑃 or 𝜎′

𝑃
. Since

∑

𝑖 𝑝𝑖 =
∑

𝑖 𝑝
′
𝑖 = 1, this is clearly a contradiction. Thus, 𝑝𝑖 = 𝑝

′
𝑖 for

all sites 𝑖 , so 𝜎𝑃 = 𝜎′
𝑃
. □

It now easily follows by backward induction on 𝐾 that the only

NE in Γ
𝐾 (𝑑) is for the ranger and poacher to play the NE in each

stage game. Thus, the poacher’s expected utility in Γ
𝐾 (𝑑) if the

NE is played is exactly the same as his expected utility in the stage

game Γ(𝑑) if the NE of that game is played, and similarly for the

ranger.

It is not hard to construct distributions such that the poacher’s

expected utility in the NE of Γ(𝑑) is negative. Typically, this happens
if the probability of finding a rhino is low. To take a simple example,

in the extreme case where 𝑑𝑖 = 0 for all 𝑖 , since there is a positive

probability that the poacher is caught, no matter what strategy he

uses, his expected utility will be negative. Of course, in the real

world, if this were the situation, poachers simply wouldn’t poach at

all. For simplicity, we have not given the poacher an action of łno

poachingž (with a payoff of 0 to both the ranger and poacher if it is

played). In our experiments, we consider only distributions 𝑑 such

that the poacher has positive expected utility in the NE of Γ(𝑑).

3 PFAS PLAY THE RANGER-POACHER GAME

In this section, we present a family of PFAs for the ranger-poacher

game, and discuss their performance; in the next section, we compare

their performance to that of people playing the ranger-poacher

game. A PFA is just like the deterministic finite automaton, except

its action and transition functions are probabilistic. Since we want

our automata to produce an output (a site to visit), rather than

accepting a language, we are technically looking at what have been

called probabilistic finite automata with output. Formally, we can

define a PFA with output as a tuple (𝑄,𝑞0, Σ,𝑂,𝛾, 𝛿), where
• 𝑄 is a finite set of states;

• 𝑞0 ∈ 𝑄 is the initial state;

• Σ is the input alphabet (in the case of the ranger-poacher

game, this will consist of the observations łvisited site 𝑖 ,

the opponent visited site 𝑗 , and received utility 𝑢ž for 𝑖, 𝑗 ∈
{1, . . . , 𝑛} and 𝑢 ∈ {−1, 0, 1});

• 𝑂 is the output alphabet (in our case this will be ł𝑖ž, which

is interpreted as visiting site 𝑖 , for 𝑖 ∈ {1, . . . , 𝑛});
• 𝛾 : 𝑄 → Δ(𝑂) is a probabilistic action function (as usual,

Δ(𝑋 ) denotes the set of probability distributions on 𝑋 );

• 𝛿 : 𝑄 × Σ → Δ(𝑄) is a probabilistic transition function.

Intuitively, the automaton starts in state𝑞0 and visits a site according

to distribution 𝛾 (𝑞0). It then observes the outcome 𝑜 of visiting the



site (an element of 𝑂) and transitions to a state 𝑞′ (according to

𝛿 (𝑞0, 𝑜)). It then visits a site according to the distribution 𝛾 (𝑞′), and
so on.

3.1 Fictitious play: a review

As we said in the introduction, with FP, the players best respond

at each step to the strategy their opponent has played so far. To

make this precise, given a two-player game, where player 1 has𝑚

possible strategies and player 2 has 𝑛 possible strategies, which we

take to be {1, . . . ,𝑚} and {1, . . . , 𝑛}, we define a sequence of mixed

strategies 𝑥1, 𝑥2, . . . and 𝑦1, 𝑦2, . . . for players 1 and 2, respectively,

and sequences of pure strategies 𝑠1, 𝑠2, 𝑠3, . . . and 𝑠
′
1
, 𝑠′
2
, 𝑠′
3
, . . . for

players 1 and 2, respectively, as follows. (Technically, these are all

random variables, not (mixed/pure) strategies.) Let 𝑠1 be a random

element of {1, . . . ,𝑚} and let 𝑠′
1
be a random element of {1, . . . , 𝑛}

(both chosen uniformly at random). Then let 𝑥𝑡 (𝑖) be the fraction of

times that strategy 𝑖 appears in 𝑠1, . . . , 𝑠𝑡 , let 𝑦
𝑡 ( 𝑗) be the fraction of

times that strategy 𝑗 appears in 𝑠′
1
, . . . , 𝑠′𝑡 , let 𝑠𝑡+1 be a best response

to 𝑦𝑡 (where if there are ties, 𝑠𝑡+1 is chosen at random), and let 𝑠′𝑡+1
be a best response to 𝑦𝑡 (where again, ties are broken at random).

This completes the description of FP.

3.2 The poacher’s PFA

Formally, we consider a family of possible PFAs for the poacher that

have the form 𝐴𝑛,𝑑,𝑀,𝑠 = (𝑄𝑛,𝑀 , 𝑞0, Σ𝑛,𝑂𝑛, 𝛾𝑛,𝑑,𝑠 , 𝛿𝑛,𝑀,𝑠 ), where
there are 4 parameters: 𝑛 is the total number of sites, 𝑑 is the rhino

distribution over sites,𝑀 is a bound on the poacher’s memory, and 𝑠

is either 0 or 1, depending on whether we want to take significance

into account. We assume that 𝑛 and 𝑑 are given as part of the

description of the game; we choose𝑀 and 𝑠 (and will examine the

effect of different choices). In more detail, the components of the

tuple are as follows:

• A state 𝑞 ∈ 𝑄𝑛,𝑀 has the form ( [𝑞1, . . . , 𝑞𝑛], 𝑖), where 𝑞1 +
· · · +𝑞𝑛 ≤ 𝑀 , as discussed earlier, and 𝑖 ∈ {1, . . . , 𝑛} is a best
response for the poacher with respect to the ranger strategy

(𝑞1/𝐾, . . . , 𝑞𝑛/𝐾), where 𝐾 = 𝑞1 + · · · + 𝑞𝑛 . (If 𝐾 = 0, then

𝑖 = 1.) Thus, there are 𝑛
(𝑀+𝑛
𝑛

)

possible states.

• The initial state 𝑞0 = ( [0, . . . , 0], 1).
• Σ𝑛 consist of observations of the form ( 𝑗, 𝑢) ∈ {1, . . . , 𝑛} ×
{−1, 0, 1}; intuitively, 𝑗 is the site where where the ranger
last went and 𝑢 is the poacher’s utility in the last round.

• 𝑂𝑛 = {1, . . . , 𝑛}: the poacher can visit any site.

• The action function 𝛾𝑛,𝑑,𝑠 goes to site 𝑗 in a state of the form

(·, 𝑗).
• The transition function 𝛿𝑛,𝑀,0 proceeds as follows. In state

( [𝑞1, . . . , 𝑞𝑛], 𝑖), given the observation ( 𝑗, 𝑢), the new state

has the form ( [𝑞′
1
, . . . , 𝑞′𝑛], 𝑖′), where 𝑖′ is a best response

(chosen at random among all the best responses) to the

strategy [𝑞′
1
/𝐾 ′, . . . , 𝑞′𝑛/𝐾 ′], where 𝐾 ′

= 𝑞′
1
+ · · · + 𝑞′𝑛 , and

[𝑞′
1
, . . . , 𝑞′𝑛] is computed using the following procedure: If

𝐾 = 𝑞1 + · · · + 𝑞𝑘 < 𝑀 , then 𝑞′𝑗 = 𝑞 𝑗 + 1 and 𝑞′
𝑗 ′ = 𝑞 𝑗 ′ if

𝑗 ′ ≠ 𝑗 , and if 𝐾 ≥ 𝑀 , then 𝑗 ′ is chosen at random according

to the distribution [𝑞1/𝐾, . . . , 𝑞𝑛/𝐾]. If 𝑗 ′ ≠ 𝑗 , 𝑞′
𝑗 ′ = 𝑞 𝑗 ′ − 1,

𝑞′𝑗 = 𝑞 𝑗 + 1, and 𝑞′
𝑗 ′′ = 𝑞 𝑗 ′′ for 𝑗

′′
∉ { 𝑗, 𝑗 ′}, whereas if

𝑗 ′ = 𝑗 , then 𝑞′
𝑗 ′′ = 𝑞 𝑗 ′′ for all 𝑗

′′. The transition function

𝛿𝑛,𝑀,1 proceeds the same way, except in the case that 𝑢 = −1
(which means that the poacher was caught). In this case,

rather than choosing one site at random to decrement, two

sites are chosen, and 𝑞 𝑗 is increased by 2.

The ranger’s PFA is similar in spirit. The idea is straightforward:

If the poacher knew the fraction 𝑟𝑖 of times that the ranger has

visited each site 𝑖 by time 𝑡 , he could construct the ranger’s strategy

𝑦𝑡 by taking 𝑦𝑡 (𝑖) = 𝑟𝑖 . He could then calculate a best response to

𝑦𝑡 by calculating the utility of visiting each site, and then choosing

the site that gives the highest utility, randomizing in the case of

ties. Since calculating 𝑟𝑖 exactly requires unbounded memory, we

instead approximate it in a way that uses relatively few states.

Suppose there are a total of𝑛 sites and the poacher can remember

up to 𝑀 events. Suppose that the game has been played for 𝑀′

rounds. Roughly speaking, we want the poacher to remember what

happened in the past𝑀 rounds (or the last𝑀′ rounds if𝑀′ ≤ 𝑀).

We take the poacher’s memory to have the form [𝑞1, . . . , 𝑞𝑛], where
𝑞𝑖 is an approximation to the number of times that the ranger has

visited site 𝑖 in the past𝑀 rounds (or the exact number of times that

the ranger has visited site 𝑖 in the past𝑀′ rounds, if𝑀′ ≤ 𝑀). Note

that there are
(𝑀+𝑛
𝑛

)

memories of this form, since we can associate

a state with a string of 𝑛 0s and𝑀 1s: 𝑞1 is the number of 1s to the

left of the first 0; for 2 ≤ 𝑖 ≤ 𝑛, 𝑞𝑖 is the number of 1s between

the (𝑖 − 1)st and 𝑖th 0s; and the number of 1s after the last 0 is

max(𝑀 −𝑀′, 0).2
We update the memory using ideas similar to those used by

Liu and Halpern [15]. As long as the memory is not full (i.e., as

long as 𝑞1 + · · · + 𝑞𝑛 ≤ 𝑀), if the ranger goes to site 𝑗 , then 𝑞 𝑗 is

increased by 1. Once the memory is full, the poacher first decreases

some 𝑞 𝑗 ′ chosen at random according to (the poacher’s estimate

of) the ranger’s current strategy by 1 (e.g., if the current strategy

is (0, 0.4, 0.6), then 𝑞2 is decreased by 1 with probability 0.4 and

𝑞3 is decreased by 1 with probability 0.6), then 𝑞 𝑗 is increased by

1. As we show by simulation, this approach to approximating the

ranger’s strategy is reasonably accurate. In Figure 1, we fix the

ranger’s strategy to be (0.2, 0.3, 0.5) and compare that with the

poacher’s estimate for the first 1000 steps, for𝑀 = 100 and𝑀 = 10.

(In the figure, the łactual linesž represent the frequencies of visits

by the ranger; the łestimate linesž are the poacher’s estimate of

those frequencies, given his memory limitations.) In both cases, the

estimate fluctuates around the true strategy, with the amount of

fluctuation increasing as the𝑀 decreases, as we would expect. The

results are similar for other rhino distributions.

To take significance into account, if the ranger and the poacher

both go to site 𝑖 (so the poacher was caught), then 𝑞 𝑗 and 𝑞 𝑗 ′ are

decreased by 1 for two sites 𝑗 and 𝑗 ′ chosen at random according

to the current strategy, instead of just one site (we may have 𝑗 = 𝑗 ′,
in which case 𝑞 𝑗 is decreased by 2), and 𝑞𝑖 is increased by 2 (rather

than 1). By doing this, the poacher is effectively overweighting sites

where he was caught by the ranger.

To further investigate the effect of taking significance into account,

we fixed both the poacher and ranger to use a PFA with𝑀 = 1000

2We could have also taken a state to be a sliding window of the last𝑀 observations

made by the poacher. But then there would be 𝑛𝑀 possible states. Since in our cases 𝑛

is small (typically 3ś5), while𝑀 is relatively large (10ś199), 𝑛𝑀 is significantly larger

than
(

𝑀+𝑛
𝑛

)

.



Figure 1: Comparing the poacher’s estimation to the ranger’s

actual strategy for various memory sizes.

for games with 1000 rounds and various rhino distributions. The

parameter 𝑠 indicates the weighting for significance; the poacher

does not take significance into account when 𝑠 = 0. When 𝑠 =

1, the poacher overweights significant events by increasing the

count by 2 (instead of 1 if 𝑠 = 0). Similarly, the poacher will

increase the count by 𝑠 + 1 for other values of 𝑠 . In this case,

we can control the weighting for significance through parameter

𝑠 . Table 1 shows the poacher’s utilities for various significance

weightings and rhino distributions. All results are averaged over

100 repetitions. Our simulations show that the greater the weight,

the greater the improvement in the poacher’s utility, although the

effect has diminishing returns.

rhino distribution 𝑠 = 0 𝑠 = 1 𝑠 = 2 𝑠 = 3 𝑠 = 4

(0.2, 0.4, 0.6, 0.8) 0.098 0.165 0.188 0.203 0.205

(0.3, 0.8, 0.7, 0.5) 0.165 0.233 0.259 0.271 0.275

(0.9, 0.9, 0.9) 0.267 0.375 0.415 0.425 0.435

(0.9, 0.6, 0.4, 0.9) 0.509 0.605 0.626 0.641 0.652

Table 1: Poacher’s utility for various significance weightings

under different rhino distributions.

Intuitively, taking significance into account improves the poacher’s

utility because by overweighting sites where the poacher was

caught by the ranger, the poacher is more likely to avoid going to

those sites in future rounds, and hence be less likely to get caught.

Roughly speaking, by overweighting, the poacher is doing the

right thing faster. This intuitions is reinforced by our simulations,

which show that, not only does the poacher get higher utility by

taking significance into account, but the poacher converges faster

to the NE strategy. We are currently working on formalizing these

observations (see Section 5).

3.3 The effect of different memory sizes

As we said in the introduction, Robinson [18] showed that in a

two-player zero-sum game where both players have only a finite

number of strategies, FP converges to NE. That is, the frequency

that the players go to site 𝑖 over the first 𝑁 rounds converges to the

probability of going to site 𝑖 according to the NE. The utilities also

converge to these in NE. Not surprisingly, we also get approximate

convergence using our PFA with sufficiently many states. We did

simulations with various rhino distributions, for games with 1000

rounds. Figure 2 describes the results for the rhino distribution

(0.2, 0.4, 0.6, 0.8) (the results were the same for all other distributions

we considered). As shown in Figures 2(a) and 2(b), we get quite

a good approximation with 𝑀 = 1000 since FP converges to NE

strategies. However, as the memory size decreases, the poacher gets

closer and closer to probability matching. (As we discuss below,

the ranger is close to probability matching all along.) As shown in

Figure 2(d), if 𝑀 = 100, after about 600 steps, the frequency with

which the ranger goes to site 1 is almost identical to the frequency

with which the ranger goes to site 1 in NE. As shown in Figure 2(f),

even with 𝑀 = 10, the ranger is quite close to NE. On the other

hand, as shown in Figure 2(e), with 𝑀 = 10, the poacher is much

closer to probability matching. Actually, as we now explain, the

behavior of both the poacher and the ranger can be thought of as a

convex combination of probability matching and playing the NE.

Note that when the ranger plays her part of the NE, all the

poacher’s responses are equally good. This might suggest that

if the poacher is best responding, he should just go to all sites

with equal likelihood. This clearly does not happen. A closer look

explains why. As shown in Figure 1, the poacher’s estimation of

the ranger’s strategy will fluctuate around the actual strategy. The

smaller𝑀 is, the greater the fluctuation. If the fluctuation at round

𝑡 is such that only one site gets lower probability than it does in

NE, then the best response for the poacher at round 𝑡 is to go to

that site. But if at round 𝑡 there are two sites, say 𝑗 and 𝑗 ′, such
that the ranger goes to sites 𝑗 and 𝑗 ′ with frequency less than

in NE (according to the poacher’s estimate), then the poacher’s

best response depends on how much below the NE strategy the

frequency of the ranger going to each of site 𝑗 and 𝑗 ′ is, and the

probability of finding rhinos at sites 𝑗 and 𝑗 ′. For example, an equal

decrease in the probability of going to 𝑗 and 𝑗 ′ makes the site

with higher rhino probability the best option. In particular, this

means that symmetric fluctuations result in the poacher preferring

sites with higher rhino probabilities, roughly in proportion to their

respective probability. Thus, decreasing memory results in a greater

likelihood of probability matching for the poacher, even though

the poacher continues to behave rationally (i.e., by best responding

to his estimate)! Put another way, rational but resource-bounded

agents will act like probability matchers, and the more resource-

bounded they are, the more marked this behavior will be.

This effect is less marked with the ranger. To see why, note that

with the rhino distribution (0.2, 0.4, 0.6, 0.8), the ranger’s strategy
in NE, 𝜎∗

𝑅
= (0.08, 0.22, 0.31, 0.39), is quite close to the probability-

matching strategy, (0.1, 0.2, 0.3, 0.4). This is a general phenomenon

in the ranger-poacher game, and not just an artifact of this rhino

distribution. Thus, even though the ranger’s strategy is also affected

by probability matching as memory size decreases, the effect is not

as noticeable. (We remark that Erev and Barron [8] also pointed out

the connection between probability matching and small samples in

a simpler setting.)

3.4 Comparing strategies

To understand the effects of memory and taking significance into

account, we compared the performance (in terms of utility) of

various parameter settings of our PFA to each other and to other

poacher strategies for various choices of ranger strategies. We

considered eight poacher strategies: (1) the NE strategy, which can



Figure 2: PFA strategies with various memory sizes.

be viewed as a baseline; (2) FP with unbounded memory (although

this leads to the NE strategy if the ranger also uses it, it does

not in general); (3) multiplicative weight updating (MWU) [3], a

strategy that has been shown to lead to NE quickly; (4) utility

matching (UM) (instead of best responding, a site is chosen with

probability proportional to its expected utility); (5) PFA1: a PFA

with limited memory and no overweighting of significant events

(𝑀 = 100, 𝑠 = 0); (6) PFA2: a PFA with limited memory that

overweights significant events (𝑀 = 100, 𝑠 = 1); (7) PFA3: a PFA

with very limited memory and no overweighting (𝑀 = 10, 𝑠 =

0); (8) PFA4: a PFA with very limited memory that overweights

significant events (𝑀 = 10, 𝑠 = 1). We want to see how each of

these eight poacher strategies plays against the various ranger

strategies. We consider four ranger strategies: (a) the NE strategy;

(b) probability matching (PM) based on the rhino distribution; (c)

FP with unbounded memory; (d) PFA with small memory and no

overweighting (𝑀 = 10, 𝑠 = 0). Notice that ranger strategies (a)

and (b) are nonadaptive; the ranger visits a site according to a

predetermined distribution at each step. In contrast, strategies

(c) and (d) are adaptive; The ranger decides which site to visit

next based on what the poacher has done in previous rounds. For

each ranger-poacher pair, we simulated the game for 1000 rounds,

using various rhino distributions, and repeated each game 100

times. Figure 5 shows the boxplots 3 for the rhino distribution

(0.2, 0.4, 0.6, 0.8).
We get similar results for other rhino distributions. Figures 3

and 4 show the boxplots of poacher’s utilities for various poacher

and ranger strategies for rhino distributions (0.3, 0.8, 0.7, 0.5) and
(0.9, 0.9, 0.9), respectively.

Figure 3: Poacher’s utility for various poacher and ranger

strategies and rhino distribution (0.3, 0.8, 0.7, 0.5).

Figure 4: Poacher’s utility for various poacher and ranger

strategies and rhino distribution (0.9, 0.9, 0.9).

3A boxplot is a standard way of displaying the dataset. The box in the middle shows the

range from the lower quartile (25𝑡ℎ percentile) to the upper quartile (75𝑡ℎ percentile),
with the red line marking the median. The interquartile range (IQR) is the difference

between values at the 75𝑡ℎ and 25𝑡ℎ percentile. A whisker is drawn from the top of
the box to the largest observed point that is within 1.5 times the IQR of the value at the

75𝑡ℎ quartile. Similarly, a whisker is drawn from the bottom of the box to the smallest

observed point that is within 1.5 times the IQR of the value at the 25𝑡ℎ quartile. (See
Dekking [7, pp. 234ś238].)



The results show that if the ranger uses a nonadaptive strategy

(NE or PM), then all the poacher’s strategies do equallywell, whereas

if the ranger uses an adaptive strategy (FP or PFA), a PFA with small

memory size that overweights significance (PFA4) does extremely

well.

Figure 5: Poacher’s utility for various poacher and ranger

strategies and rhino distribution (0.2, 0.4, 0.6, 0.8).

As shown in Figures 5(a) and 5(b), when the ranger plays a non-

adaptive strategy, all the poacher strategies do roughly equally

well. That means, for example, the poacher does not suffer due

to the reduced memory size of 10 when the ranger plays the NE

strategy; he still gets essentially the same payoff as he would when

playing the NE strategy, or using a strategy like MWU or FP that

requires unbounded memory. However, as shown in Figure 5(c)

and 5(d), using a PFAwith limitedmemory can significantly improve

performance, especially when significance is taken into account, if

the ranger’s strategy is adaptive. It is not hard to explain why this

should be so: If the ranger is playing FP with unlimited memory, she

tends to be łstickyž; if she views site 𝑖 as the best site at time 𝑡 , she

is likely to still view 𝑖 as the best site at time 𝑡 +1. If the poacher was
caught at site 𝑖 at time 𝑡 , he is more likely to avoid 𝑖 if he overweights

being caught (i.e., if 𝑠 = 1), and if he does some probability matching

rather than just going to what he views as the best site. Thus,

far from being irrational, overweighting significant events and

probability matching are completely rational if the ranger is using

FP. If the ranger is also using PFA with a relatively small memory

size, the ranger will also switch more often, so using FP or PFA with

a larger memory (PFA1) will make the poacher stickier and lead to

lower utility for the poacher. However, overweighting significance

and probability matching still help improve the poacher’s utility

significantly.

4 EXPERIMENTS

We wanted to understand the extent to which our PFAs capture

human behavior in the ranger-poacher game.We conducted experiments

on MTurk. In these experiments, human subjects play the role of

the poacher; they must decide which site to visit in each round.

Each game lasts for 100 rounds. Subjects get $1 for completing the

task plus a bonus of $0.10 for each point they obtain. Since the

game lasts for 100 rounds, the bonus is usually significantly more

than the fixed payment. Thus, they are (somewhat) incentivized to

maximize their payoff by playing strategically. We submitted an

IRB consent form and qualified for exemption from IRB review.

Subjects are given the rhino distribution and are told that the

ranger knows it as well. They are also told that, in each round,

they and the ranger will simultaneously choose a site to visit. After

these choices are made, they are revealed, and the subjects discover

where the rhinos were, so they can see whether they caught a rhino

or were caught. They get 1 point if they catch a rhino without being

caught, −1 point if they are caught, and 0 points otherwise. See the

supplementary material for the exact instructions and screenshots

of the game interface.

The experiments involved 94 participants, each playing two 100-

round games with two rhino distributions. We considered four

rhino distributions: (a) (0.9, 0.6, 0.2), (b) (0.9, 0.6, 0.4, 0.9, 0.1), (c)
(0.8, 0.3, 0.8, 0.3), and (d) (0.3, 0.8, 0.7, 0.5). We used the PFA to play

the role of the ranger, with𝑀 = 100 and 𝑠 = 0 (i.e., it does not take

significance into account). 𝑠 = 0.

Since there might be some learning during the game, we treat the

first 75 of the 100 rounds as the learning period, and average only the

decisions in the last 25 rounds to get the poacher’s overall strategy.

Applying 𝑘-means clustering, we clustered players on MTurk into

three groups: (1) level-0 poachers, who visit all sites with equal

probability or simply stick to one site; (2) level-1 poachers, who

visit each site with probability roughly proportional to the rhino

distribution; and (3) level-2 poachers, who seem to visit sites with

probability proportional to their utility under the assumption that

the rangers are playing a level-1 strategy.

We suspect that level-0 players are often oneswho simplywant to

get the game done as quickly as possible, so that they can collect the

fixed payment. Therefore, we focus on level-1 and level-2 players.

We can best approximate level-1 poacher behavior using a PFA with

𝑀 = 2 and 𝑠 = 1; as explained earlier, a PFA that has a small memory

will do more probability matching. We can best approximate level-2

poacher with a PFA with 𝑀 = 10 and 𝑠 = 0. The comparisons in

overall strategy are illustrated in Figure 6 for rhino distribution

(0.8, 0.3, 0.8, 0.3). We include results for other rhino distributions

in the supplementary material.

Each PFA was simulated 100 times. In the figure, we again

use boxplots to describe the distributions. Since the means here

are occasionally significantly different from the medians in these

examples, we include the means as well as the medians (using a

green triangle for the mean). As the figure shows, our PFAs do

a relatively good job of capturing these two types of behaviors,

despite using only two features: the memory size and whether we

take significance into account.

In addition to the overall strategy, we also considered another

metric of decision-making dynamics: stickiness. Our experiments

show that people were stickier when they obtained 0 or 1 point,

compared to when they get caught; we observe qualitatively similar

behavior with PFAs. We define stickiness as the probability of

visiting the same site at round 𝑡 + 1 as at round 𝑡 . Stickiness is

inherent in FP; if going to site 𝑖 was a best response for the poacher,

and the poacher caught a rhino there without being caught, then



Figure 6: Comparing level-1 (left) and level-2 (right)

behaviors (in frequency of visiting each site) between

humans and PFAs for rhino distribution (0.8, 0.3, 0.8, 0.3).

going to site 𝑖 will continue to be a best response. On the other hand,

if the poacher is caught at site 𝑖 , this will increase the poacher’s

estimate of the ranger being at site 𝑖 (particularly if we take significance

into account), and thus make it less likely that the poacher will

return to site 𝑖 . We consider how sticky humans and the PFA were

as a function of the reward received at round 𝑡 . In Table 2, we

illustrate the degree of stickiness of the poacher. Again, we played

the game for 100 rounds and took the ranger’s strategy to be a PFA

with𝑀 = 100 and 𝑠 = 0. As shown in Table 2, people were stickier

when they obtained 0 or 1 point than when they got -1 points; we

observe qualitatively similar behavior with our PFAs.

-1 points 0 points 1 point

Humans 0.3546 0.3820 0.4936

PFA𝑀=2,𝑠=0 0.0040 0.7479 0.8756

PFA𝑀=2,𝑠=1 0.0 0.7416 0.8653

PFA𝑀=10,𝑠=0 0.4323 0.8488 0.9238

PFA𝑀=10,𝑠=1 0.1021 0.8250 0.9117

Table 2: The probability that the poacher goes to same site at

round 𝑡 + 1 conditional on the poacher receiving −1 points
(resp., 0 points, 1 point) at round 𝑡 .

5 DISCUSSION AND RELATED WORK

There has been a great deal of recent interest in modeling human

behavior in the ranger-poacher game. Perhaps most relevant to us is

a sequence of papers by Tambe and his collaborators. Nguyen et al.

[17] proposed the Subjective Utility Quantal Response (SUQR) model.

This model already allows for poachers that are boundedly rational,

in the sense of not necessarily best responding. It assumes that

a poacher’s subjective utility is characterized by various features

(e.g., the ranger’s coverage probability, the poacher’s own reward

and penalty at each target), and tries to learn the weights of these

features from available attack data so as to predict the behavior of

poachers. It further assumes that there is a homogeneous population

of poachers; Yang et al. [27] refined the model by allowing different

poachers to be characterized by different weight vectors. Kar et

al. [12] further refined the model by considering successes and

failures of the poacher’s past actions. Feng et al. [9] considered

poachers with a fixed memory Γ, which is the number of rounds

of past observations they respond to, similar to our use of 𝑀 in

this paper. Kar et al. [13] presented a behavior model based on an

ensemble of decision trees. The goal of all this work was essentially

to learn and predict human behavior. This is part of a more general

thrust of trying to model human play in games (see, e.g., [23ś

25]). By way of contrast, our goal is to see the extent to which

we can explain and justify apparently irrational human behavior

(like probability matching and overweighting of significant events)

as the outcome of computational limitations. To that end, we model

resource-bounded poachers and rangers as PFAs. We showed that

quite rational behavior (i.e., best responding) can lead to behaviors

that have been viewed as irrational, namely, probability-matching

and overweighting, as we limit the memory size. However, our

results show that this so-called irrational behavior actually leads to

better outcomes.

In future work, we would like to consider the effect of another

trait: stubbornness. We can model this by assuming that there is a

stubbornness parameter 𝛼 ∈ [0, 1]: with probability 𝛼 , the poacher

ignores the current information (regarding where the ranger went),

and just plays according to (his estimate of) his own current strategy.

It seems reasonable to expect people to grow more stubborn over

time. After all, after they have played for a while, they feel that they

understand what is going on and have already settled on a strategy.

There is no point in putting in the cognitive effort of looking at

what the ranger is doing and updating. Indeed, we find that if we

slowly increase the poacher’s stubbornness over time, we get better

behavior: the strategy curve is smoother, and fluctuates less around

NE. Of course, if we increase it too quickly, then the poacher will

settle into a łbadž strategy and not converge to NE. Moreover, using

stubbornness requires the poacher to keep track of his own strategy,

which squares the number of states needed. We hope to explore the

tradeoffs involved with considering stubbornness in future work.

The fact that computational limitations lead both to more human-

like behavior and (often) to better outcomes in the ranger-poacher

game reinforces similar results obtained in other contexts [11, 15,

22]. This suggests a rather rich line of future research. For one

thing, it would be of interest to see if behavior in other games,

such as coordination games, can be explained and justified by

computational limitations. For example, people are quite good at

coordinating, but do not alwaysmanage.We suspect that computational

limitations play a fundamental role here. Understanding the effect of

computational limitations better in a number of games of interest

better would lead to the design of better mechanisms for these

games. Moving up a level, getting such a deeper understanding

might lead a more general theory formalizing when and the extent

to which behaviors such as probability matching are consequences

of computational limitations andwhen behaviors such as overweighting

lead to better outcomes. For example, we gave a somewhat informal

argument earlier for why we see probability matching in the ranger-

poacher game. It should not be hard to formalize this, but it would be

more interesting to get a general result explaining when we would

expect to see probabilitymatching as an outgrowth of computational

limitations.We look forward to investigating and reporting on these

issues in the future.
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