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ABSTRACT

Many studies have shown that humans are “predictably irrational”:
they do not act in a fully rational way, but their deviations from
rational behavior are quite systematic. Our goal is to see the extent
to which we can explain and justify these deviations as the outcome
of rational but resource-bounded agents doing as well as they
can, given their limitations. We focus on the well-studied ranger-
poacher game, where rangers are trying to protect a number of
sites from poaching. We capture the computational limitations by
modeling the poacher and the ranger as probabilistic finite automata
(PFAs). We show that, with sufficiently large memory, PFAs learn to
play the Nash equilibrium (NE) strategies of the game and achieve
the NE utility. However, if we restrict the memory, we get more
“human-like” behaviors, such as probability matching (i.e., visiting
sites in proportion to the probability of a rhino being there), and
avoiding sites where there was a bad outcome (e.g., the poacher
was caught by the ranger), that we also observed in experiments
conducted on Amazon Mechanical Turk. Interestingly, we find
that adding human-like behaviors such as probability matching
and overweighting significant events (like getting caught) actually

improves performance, showing that this seemingly irrational behavior

can be quite rational.
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1 INTRODUCTION

While standard economic theory assumes that people are rational,
many studies (see, e.g., [2]) have shown that humans are irrational
in a systematic way. We are interested in the extent to which
these behaviors can be explained by computational limitations.
Following a tradition that goes back to Rubinstein [19] and Neyman
[16], we model computationally bounded agents as probabilistic
finite automata (PFAs). Earlier work (see, e.g., [11, 15, 22]) has
shown that optimal finite automata for certain problems can exhibit
quite “human-like” behaviors, such as confirmation and a first-
impression bias. Our goal in this paper is to see the extent to which
computational limitations can explain and justify human behaviors
in security games [21].

Specifically, we consider a (finitely) repeated two-player ranger-
poacher game, based on the wildlife poaching game introduced by
Kar et al. [12]. At each stage of the repeated game, the poacher tries
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to catch a rhino at one of n sites, and the ranger tries to prevent
the poacher from doing so. We assume that there is a commonly-
known probability of a rhino being at any particular site, which
does not change over time. We can formulate the stage game (i.e.,
the game played at each step of the repeated game) as a zero-sum
normal-form game, which we show has a unique Nash equilibrium
(NE). An easy backward induction then shows that the unique NE
of the finitely repeated game is to play the NE of the stage game
repeatedly. We take “rational behavior” to be best responding to the
opponent (which will mean playing the NE strategy if the opponent
is).

There are several well-studied algorithms that lead to NE; we
focus on one of them here: fictitious play (FP) [4]. In FP, each player
keeps track of what the other player has done, and best responds to
the mixed strategy where the probability that an action is played is
the frequency with which that strategy has been played thus far.!
Robinson [18] showed that in two-player zero-sum game where
both players have only a finite number of strategies (which is what
we consider here), FP converges to NE strategy and utility. However,
the rate of convergence of FP is often slow, and is quite sensitive
to which strategy is chosen if there are multiple best responses.
Abernethy, Lai, and Wibisono [1] recently showed that for two-
player zero-sum games where the payoff matrix is a diagonal matrix,
after t steps, players’ estimates are within O(1/vt) of NE, if they use
a specific tie-breaking rule, while Daskalakis and Pan [6] showed
that with a random tie-breaking rule, after ¢ steps, for the same set of
games, the estimates might be only within O(1/t'/™) of NE, where
n is the number of possible strategies of one of the players. In any
case, the games that we consider do not necessarily have diagonal
payoff matrices. Moreover, there are algorithms that converge to
NE much faster than FP [5]. Despite this, we focus on FP; our goal
is not to find optimal algorithms, but to explain and justify human
behavior. FP has the advantage of being quite natural; it seems
plausible that people would do something in the spirit of FP (which
is partly why it has attracted so much attention in the literature).

To the extent that we model people as PFAs, they cannot implement
full-blown FP, since it requires an unbounded number of states
to keep track of the full history of play. Nevertheless, there are
straightforward ways for a finite automaton to approximate FP; we
start by considering that. Specifically, we approximate the probability
that the opponent will go to a particular site i by the fraction of
times he has gone to site i in the past M steps. Instead of keeping a
sliding window of size M, which requires keeping track of the order
in which sites were visited, and thus requires quite a few states,
each player keeps M pieces of information in total and decides
probabilistically what information to replace. Here M can be viewed
as a proxy for a player’s memory capacity. At each step, both the
poacher and the ranger play a best response to their beliefs of what

The term “fictitious play” is due to the fact that this procedure could in principle be
simulated by each player without the game actually being played. Note that there is
an implicit assumption here that all actions are observed.



their opponent is doing. More precisely, at each step, the player
calculates the expected utility of going to each site (based on their
estimate of the strategy of their opponent encoded in their memory)
and plays the action with the highest expected utility, randomly
choosing one if there are ties.

We can modify Robinson’s proof [18] to show that if the PFA
has sufficiently many states, players eventually converge to playing
the NE strategies of the stage game and achieve the NE utilities.
Since we are not particularly interested in the case where M is
large, rather than proving this result formally, we do simulations
that illustrate this behavior. More interesting from our perspective
is what happens if we limit the number of states of the PFA. Now
the situation changes significantly; as we show, the PFA acts more
human-like; the strategy it uses it somewhere between the NE
strategy and probability matching (i.e., visiting sites in proportion
to the probability of a rhino being there).

Things become even more interesting if we do not treat all
outcomes equally. From a human perspective, some events are
more significant than others. Observing a potentially poisonous
snake is far more significant than observing a beetle. We would
expect humans to treat significant events differently from less
significant events. In the context of the ranger-poacher game, it
seems reasonable to think that a poacher views getting caught by
the ranger as particularly significant, because it gives him negative
utility. (Although we do not model poachers’ snares being confiscated
in our abstraction of the game, Xu et al. [26] observed that real-
world poachers reacted quite strongly to this event which, from
their perspective, is quite significant.) Similarly, the ranger views
the poacher catching a rhino as a significant event, because that
is what gives her negative utility. We can capture this significance
by assuming that the poacher and the ranger assign more weight
to site i in their memory if it is related to an event with negative
utility. Our simulations show that taking significance into account,
even in this naive way, can lead to higher utility. We also show
that the greater the weight of significant events, the greater the
improvement in the utility, although the effect of the weightings
has diminishing returns. We can explain why this should be the case
here: If the ranger or the poacher use FP with a large memory, then
the site that they consider best will not change much, especially
if they got rewarded by going there. If the poacher overweights a
site where he has been caught, he is less likely to return there (and
thus less likely to be caught by the ranger, who will return there if
she is using FP). We would expect overweighting to have less of an
impact the smaller the memory of the poacher and ranger (since
smaller memory makes returning to the same site less likely), and
this is indeed the case. Interestingly, Lieder, Griffiths, and Hsu [14]
have argued that over-representation of extreme events leads to
better decision-making performance; our results suggest that this
phenomenon is not just limited to extreme events.

To understand the effects of bounded memory and taking significance

into account, for various choices of ranger strategy, we compared
the performance (in terms of utility) of various parameter settings
of our PFA to each other and to other poacher strategies. Our results
showed that probability matching and overweighting significance

can often lead to higher utility. This supports one of our key hypotheses:

It can be quite rational to be (somewhat) “irrational”, at least in the
ranger-poacher game!

To see how humans actually play the ranger-poacher game, we
ran experiments on Amazon Mechanical Turk (MTurk), using a
number of different rhino distributions, with people playing the
role of poacher for 100 rounds. The ranger in the experiment uses
a PFA with M = 100 and s = 0 (i.e., it does not take significance
into account; we take s = 1 if it does take significance into account).
When looking at the overall distribution (i.e., the fraction of times
the human player visits each site), we found that we could roughly
cluster players into three groups: level-0 poachers are non-strategic
and either visit all sites with equal probability or stick to one site
(they simply try to finish the game as quickly as possible); level-1
poachers best respond to level-0 rangers, which in our setting means
that they probability match; and level-2 poachers best respond to
level-1 rangers, which in our setting means that they best respond
under the assumption that rangers are probability matching. (These
names are intentionally chosen to match the level-k hierarchy of
Stahl [20]. Stahl defined level-0 players to be ones who choose a
strategy at random, just as our level-0 poachers do, while level-
(k + 1) players best respond under the assumption that they are
playing against level-k players.) Our experimental data show that
most human poachers tend to probability match. As we show, this
is also the case for poachers that use a PFA with small memory size
M. As M increases, our PFA will play a combination of probability
matching and NE strategy, which is closer to the level-2 strategy.
These and other observations suggest that modeling people as PFAs
does capture important aspects of human behavior.

The rest of the paper is organized as follows: in Section 2, we
formally define the ranger-poacher game as a normal-form game
and prove that it has a unique NE. In Section 3, we define our
PFA for the ranger-poacher game and show by simulations how
it converges to NE strategies with sufficiently large memory and
how it compares to other poacher strategies. We present the results
from MTurk experiments and compare them with the simulation
results in Section 4. We conclude in Section 5 with a discussion of
related work and plans for future work.

2 THE RANGER-POACHER GAME

As we said, our ranger-poacher game is based on the wildlife
poaching game of Kar et al. [12]. There are two players, a ranger
and a poacher, and a fixed number n of sites that rhinos might go to.
We assume that the rhino distributiond = (dy, . .., d,) is commonly
known, where d; € [0, 1] is the probability that there is a rhino at
site i (we do not assume that Zle d; = 1; there could be more than
one rhino!). We denote by I'K(d) the ranger-poacher game with
rhino distribution d and K stages, whose stage game is denoted
T'(d). (Note that the distribution also implicitly encodes the number
of sites.)

Formally, the stage game I'(d) can be viewed as a normal-form
game with players P and R, whose expected payoff matrix is given
in the following table, where the poacher is the row player and the
ranger is the column player.

1 2 n
(-1,1) | (d1,-d1) (dq, —d1)
2 | (da,=dy) | (-1,1) (d2, —da)
n (dn) _dn) (dn, _dn) (_1’ 1)




We take the poacher’s utility in TX (d) to be his average utility in
each of the K stage games, and similarly for the ranger.

Although, in general, zero-sum games can have multiple equilibria,
the ranger-poacher game has a unique NE.

PROPOSITION 2.1. For alld, T'(d) has a unique NE.

ProoF. We now show that the stage game I'(d) has a unique NE.
Suppose that the poacher and the ranger use the mixed strategies
op = (p1,...,pn) and og = (r1,...,rn), respectively, in the stage
game, where p; is the probability that the poacher goes to site i
and r; is the probability that the ranger goes to site i, for all sites
i€(1,...,n].Let visil‘fJ and visith denote the pure strategies where
the poacher and the ranger, respectively to visit site i. Taking up
and ug to denote the poacher’s and ranger’s expected utility, note
that

up(visitf, or) = (1 -r;)d; — ri and
ug(op,visitR) = pi = ¥4 djp).

)

For (op, oR) to be a NE, the poacher has to be indifferent among
all the pure strategies in the support of op if the ranger plays og,
and similarly for the ranger. Thus, we require that

up(Uisitf, OR) = up(visitf, oR) if p; > 0 and p; > 0,
up(aisith, OR) > up(aisitf, og) if p; > 0 and pj =0, @
and similarly for the ranger. Using (1) and (2), it is straightforward
to solve for a NE of I'(d). As we now show, the NE is unique.

It is well known that a two-player zero-sum game I' has a unique
value v > 0. If each player i plays a maximin strategy (intuitively, a
strategy that guarantees the best possible result for player i under
the assumption that the other player is trying to hurt him as much
as possible), then one player will get an expected utility of v and the
other player will get an expected utility of —v. Moreover, (o1, 02)
is a NE of T if and only if o; is a maximin strategy for player i, for
i = 1, 2. It follows that, while there may be more than one NE in T,
one of the players gets v in all the NE, while the other player gets
—v. (See, e.g., [10] for proofs of these results.)

We show that there is in fact a unique NE in I'(d). Suppose,
by way of contradiction, that there are two equilibria (op, og)
and (0'1’,, O'I’Q), where ap = (p1, . ,.,pn)T, cr;, = (pi, . ..,p;l)T, OR =
(re,..., r,,)T, and (7}'2 = (r{, e r;l)T. Further suppose that the value
of the game is v. Thus, we can assume without loss of generality
that in all NE, the poacher gets expected utility v and the ranger
gets expected utility —o. Since all of op, O'},), oR, and 01’2 must be
maximin strategies, it follows that (ap, o) and (o}, 0%) must also
be NE. While op and o, may have different supports, the mixture
%op + %0}, is also a maximin strategy, and its support is the union
of that of op and a},. It follows for all pure strategies visith and
visitj!J in the support of either op or o7, by (1), we have that —r; +
(1-r))d; = up(visitip, OR) = up(visitf, op) = —r]+(1=r])d;. Thus,
di = (1+dj)ri =di = (1+dy)r], so r; = rj. Thus, og = 0p,.

We have to work a little harder to show that op = 0'1’3. Note that
ug(op, visith) = ug(op, visitf), so

Pi—zdkpk=Pj—de~

ki =y

Similarly, uR(O'I’J,uisitfe) = uR(O'l’D, visit}z), so

pi= > dkpp=pl = . dip}
k+#i k#j

Simple algebra shows that
(pi = pj) +dipi —djpj = 0= (p; — p}) +dip; — d;p.

Therefore,

(1+di)(pi —p)) = (1+dj)(pj — p)). 3)
If op # o}, then there must be some site i in the support of ap such
that p; > p]. Thus, (1+d;)(pi —p;) > 0. But then it follows from (3)
that p; > p;. for all sites j in the support of either gp or ap,. Since
2ipi = X;p; = 1, this is clearly a contradiction. Thus, p; = p; for
all sites i, so op = 0p,. o

It now easily follows by backward induction on K that the only
NE in I'X (d) is for the ranger and poacher to play the NE in each
stage game. Thus, the poacher’s expected utility in TX (d) if the
NE is played is exactly the same as his expected utility in the stage
game I'(d) if the NE of that game is played, and similarly for the
ranger.

It is not hard to construct distributions such that the poacher’s
expected utility in the NE of T'(d) is negative. Typically, this happens
if the probability of finding a rhino is low. To take a simple example,
in the extreme case where d; = 0 for all i, since there is a positive
probability that the poacher is caught, no matter what strategy he
uses, his expected utility will be negative. Of course, in the real
world, if this were the situation, poachers simply wouldn’t poach at
all. For simplicity, we have not given the poacher an action of “no
poaching” (with a payoff of 0 to both the ranger and poacher if it is
played). In our experiments, we consider only distributions d such
that the poacher has positive expected utility in the NE of T'(d).

3 PFAS PLAY THE RANGER-POACHER GAME

In this section, we present a family of PFAs for the ranger-poacher
game, and discuss their performance; in the next section, we compare
their performance to that of people playing the ranger-poacher
game. A PFA is just like the deterministic finite automaton, except
its action and transition functions are probabilistic. Since we want
our automata to produce an output (a site to visit), rather than
accepting a language, we are technically looking at what have been
called probabilistic finite automata with output. Formally, we can
define a PFA with output as a tuple (Q, qo, 2, O, y, §), where

e Q is a finite set of states;

® go € Q is the initial state;

e X is the input alphabet (in the case of the ranger-poacher
game, this will consist of the observations “visited site i,
the opponent visited site j, and received utility u” for i, j €
{1,...,n}and u € {-1,0,1});

e O is the output alphabet (in our case this will be “i”, which
is interpreted as visiting site i, for i € {1,...,n});

e y: Q — A(O) is a probabilistic action function (as usual,
A(X) denotes the set of probability distributions on X);

® §5: Q%X — A(Q) is a probabilistic transition function.

Intuitively, the automaton starts in state g and visits a site according
to distribution y(qo). It then observes the outcome o of visiting the



site (an element of O) and transitions to a state q’ (according to
8(qo, 0)). It then visits a site according to the distribution y(q”), and
so on.

3.1 Fictitious play: a review

As we said in the introduction, with FP, the players best respond
at each step to the strategy their opponent has played so far. To
make this precise, given a two-player game, where player 1 has m
possible strategies and player 2 has n possible strategies, which we
take to be {1,...,m} and {1,..., n}, we define a sequence of mixed
strategies x!,x%, ... and y1, ... for players 1 and 2, respectively,
and sequences of pure strategies s1, sz, 53, ... and si,s',sg, ... for
players 1 and 2, respectively, as follows. (Technically, these are all
random variables, not (mixed/pure) strategies.) Let s; be a random
element of {1,...,m} and let s] be a random element of {1,...,n}
(both chosen uniformly at random). Then let x* (i) be the fraction of
times that strategy i appears in sy, . . ., sy, let y? (j) be the fraction of
times that strategy j appears insj,. .., s;, let s;+1 be a best response
to y’ (where if there are ties, s¢+1 is chosen at random), and let s; 1
be a best response to y’ (where again, ties are broken at random).

This completes the description of FP.

3.2 The poacher’s PFA

Formally, we consider a family of possible PFAs for the poacher that
have the form A, gas = (Qn,M. 90. Zn, On, Ynd,s: nm,s), Where
there are 4 parameters: n is the total number of sites, d is the rhino
distribution over sites, M is a bound on the poacher’s memory, and s
is either 0 or 1, depending on whether we want to take significance
into account. We assume that n and d are given as part of the
description of the game; we choose M and s (and will examine the
effect of different choices). In more detail, the components of the
tuple are as follows:

o A state g € Qp p has the form ([q1,...,qn], i), where g1 +
-+ +qn < M, as discussed earlier, and i € {1,...,n} is a best
response for the poacher with respect to the ranger strategy
(q1/K,...,qn/K), where K = q1 + - - - + qn. (If K = 0, then
i = 1.) Thus, there are n(M;{ ™) possible states.

e The initial state go = ([0,...,0], 1).

e 3, consist of observations of the form (j,u) € {1,...,n} X
{-1,0,1}; intuitively, j is the site where where the ranger
last went and u is the poacher’s utility in the last round.

e O, ={1,...,n}: the poacher can visit any site.

e The action function y,, 4 s goes to site j in a state of the form
(CW)

e The transition function &y, a9 proceeds as follows. In state
([q1,---.qnl. i), given the observation (j, u), the new state
has the form ([qi, .osqnl, i), where i’ is a best response
(chosen at random among all the best responses) to the
strategy [q7/K’,...,q,/K’'], where K’ = ¢} +--- + g3, and
[97, -, qy] is computed using the following procedure: If
K=qg+ +gqr < M,thenq;. = qj+landq}, = qjr if
j’ # j,and if K > M, then j’ is chosen at random according
to the distribution [q1/K,...,qn/K]. If j’ # j, q}, =qj -1,
q;. =gqj+1,and q;.,, = qj» for j” ¢ {j,j'}, whereas if
j’ = j, then q},, = g;» for all j”. The transition function

On,m,1 proceeds the same way, except in the case that u = —1
(which means that the poacher was caught). In this case,
rather than choosing one site at random to decrement, two
sites are chosen, and g; is increased by 2.

The ranger’s PFA is similar in spirit. The idea is straightforward:
If the poacher knew the fraction r; of times that the ranger has
visited each site i by time t, he could construct the ranger’s strategy
y! by taking y (i) = r;. He could then calculate a best response to
y” by calculating the utility of visiting each site, and then choosing
the site that gives the highest utility, randomizing in the case of
ties. Since calculating r; exactly requires unbounded memory, we
instead approximate it in a way that uses relatively few states.

Suppose there are a total of n sites and the poacher can remember
up to M events. Suppose that the game has been played for M’
rounds. Roughly speaking, we want the poacher to remember what
happened in the past M rounds (or the last M’ rounds if M’ < M).
We take the poacher’s memory to have the form [qy, ..., qn], where
qi is an approximation to the number of times that the ranger has
visited site i in the past M rounds (or the exact number of times that
the ranger has visited site i in the past M’ rounds, if M’ < M). Note
that there are (M:l' ") memories of this form, since we can associate
a state with a string of n 0s and M 1s: g; is the number of 1s to the
left of the first 0; for 2 < i < n, q; is the number of 1s between
the (i — 1)st and ith 0s; and the number of 1s after the last 0 is
max(M — M’,0).2

We update the memory using ideas similar to those used by
Liu and Halpern [15]. As long as the memory is not full (i.e., as
long as q1 + - - - + gn < M), if the ranger goes to site j, then g; is
increased by 1. Once the memory is full, the poacher first decreases
some ¢ chosen at random according to (the poacher’s estimate
of) the ranger’s current strategy by 1 (e.g., if the current strategy
is (0,0.4,0.6), then g is decreased by 1 with probability 0.4 and
g3 is decreased by 1 with probability 0.6), then g; is increased by
1. As we show by simulation, this approach to approximating the
ranger’s strategy is reasonably accurate. In Figure 1, we fix the
ranger’s strategy to be (0.2,0.3,0.5) and compare that with the
poacher’s estimate for the first 1000 steps, for M = 100 and M = 10.
(In the figure, the “actual lines” represent the frequencies of visits
by the ranger; the “estimate lines” are the poacher’s estimate of
those frequencies, given his memory limitations.) In both cases, the
estimate fluctuates around the true strategy, with the amount of
fluctuation increasing as the M decreases, as we would expect. The
results are similar for other rhino distributions.

To take significance into account, if the ranger and the poacher
both go to site i (so the poacher was caught), then g; and g are
decreased by 1 for two sites j and j’ chosen at random according
to the current strategy, instead of just one site (we may have j = j’,
in which case q; is decreased by 2), and g; is increased by 2 (rather
than 1). By doing this, the poacher is effectively overweighting sites
where he was caught by the ranger.

To further investigate the effect of taking significance into account,
we fixed both the poacher and ranger to use a PFA with M = 1000

2We could have also taken a state to be a sliding window of the last M observations
made by the poacher. But then there would be ™ possible states. Since in our cases n
is small (typically 3-5), while M is relatively large (10-199), n™ is significantly larger
than (M':").
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Figure 1: Comparing the poacher’s estimation to the ranger’s
actual strategy for various memory sizes.

for games with 1000 rounds and various rhino distributions. The
parameter s indicates the weighting for significance; the poacher
does not take significance into account when s = 0. When s =
1, the poacher overweights significant events by increasing the
count by 2 (instead of 1 if s = 0). Similarly, the poacher will
increase the count by s + 1 for other values of s. In this case,
we can control the weighting for significance through parameter
s. Table 1 shows the poacher’s utilities for various significance
weightings and rhino distributions. All results are averaged over
100 repetitions. Our simulations show that the greater the weight,
the greater the improvement in the poacher’s utility, although the
effect has diminishing returns.

rhino distribution s=0 s=1 s=2 s=3 s=4
(0.2,0.4,0.6,0.8) 0.098 0.165 0.188 0.203 0.205
(0.3,0.8,0.7,0.5) 0.165 0.233 0.259 0.271 0.275
(0.9,0.9,0.9) 0.267 0.375 0.415 0.425 0435
(0.9,0.6,0.4,0.9) 0.509 0.605 0.626 0.641 0.652

Table 1: Poacher’s utility for various significance weightings
under different rhino distributions.

Intuitively, taking significance into account improves the poacher’

utility because by overweighting sites where the poacher was
caught by the ranger, the poacher is more likely to avoid going to
those sites in future rounds, and hence be less likely to get caught.
Roughly speaking, by overweighting, the poacher is doing the
right thing faster. This intuitions is reinforced by our simulations,
which show that, not only does the poacher get higher utility by
taking significance into account, but the poacher converges faster
to the NE strategy. We are currently working on formalizing these
observations (see Section 5).

3.3 The effect of different memory sizes

As we said in the introduction, Robinson [18] showed that in a
two-player zero-sum game where both players have only a finite
number of strategies, FP converges to NE. That is, the frequency
that the players go to site i over the first N rounds converges to the
probability of going to site i according to the NE. The utilities also
converge to these in NE. Not surprisingly, we also get approximate
convergence using our PFA with sufficiently many states. We did
simulations with various rhino distributions, for games with 1000
rounds. Figure 2 describes the results for the rhino distribution

%)

(0.2,0.4, 0.6, 0.8) (the results were the same for all other distributions
we considered). As shown in Figures 2(a) and 2(b), we get quite
a good approximation with M = 1000 since FP converges to NE
strategies. However, as the memory size decreases, the poacher gets
closer and closer to probability matching. (As we discuss below,
the ranger is close to probability matching all along.) As shown in
Figure 2(d), if M = 100, after about 600 steps, the frequency with
which the ranger goes to site 1 is almost identical to the frequency
with which the ranger goes to site 1 in NE. As shown in Figure 2(f),
even with M = 10, the ranger is quite close to NE. On the other
hand, as shown in Figure 2(e), with M = 10, the poacher is much
closer to probability matching. Actually, as we now explain, the
behavior of both the poacher and the ranger can be thought of as a
convex combination of probability matching and playing the NE.

Note that when the ranger plays her part of the NE, all the
poacher’s responses are equally good. This might suggest that
if the poacher is best responding, he should just go to all sites
with equal likelihood. This clearly does not happen. A closer look
explains why. As shown in Figure 1, the poacher’s estimation of
the ranger’s strategy will fluctuate around the actual strategy. The
smaller M is, the greater the fluctuation. If the fluctuation at round
t is such that only one site gets lower probability than it does in
NE, then the best response for the poacher at round t is to go to
that site. But if at round ¢ there are two sites, say j and j’, such
that the ranger goes to sites j and j* with frequency less than
in NE (according to the poacher’s estimate), then the poacher’s
best response depends on how much below the NE strategy the
frequency of the ranger going to each of site j and j’ is, and the
probability of finding rhinos at sites j and j’. For example, an equal
decrease in the probability of going to j and j* makes the site
with higher rhino probability the best option. In particular, this
means that symmetric fluctuations result in the poacher preferring
sites with higher rhino probabilities, roughly in proportion to their
respective probability. Thus, decreasing memory results in a greater
likelihood of probability matching for the poacher, even though
the poacher continues to behave rationally (i.e., by best responding
to his estimate)! Put another way, rational but resource-bounded
agents will act like probability matchers, and the more resource-
bounded they are, the more marked this behavior will be.

This effect is less marked with the ranger. To see why, note that
with the rhino distribution (0.2, 0.4, 0.6, 0.8), the ranger’s strategy
in NE, 0;2 = (0.08,0.22,0.31,0.39), is quite close to the probability-
matching strategy, (0.1, 0.2, 0.3, 0.4). This is a general phenomenon
in the ranger-poacher game, and not just an artifact of this rhino
distribution. Thus, even though the ranger’s strategy is also affected
by probability matching as memory size decreases, the effect is not
as noticeable. (We remark that Erev and Barron [8] also pointed out
the connection between probability matching and small samples in
a simpler setting.)

3.4 Comparing strategies

To understand the effects of memory and taking significance into
account, we compared the performance (in terms of utility) of
various parameter settings of our PFA to each other and to other
poacher strategies for various choices of ranger strategies. We
considered eight poacher strategies: (1) the NE strategy, which can
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Figure 2: PFA strategies with various memory sizes.

be viewed as a baseline; (2) FP with unbounded memory (although
this leads to the NE strategy if the ranger also uses it, it does
not in general); (3) multiplicative weight updating (MWU) [3], a
strategy that has been shown to lead to NE quickly; (4) utility
matching (UM) (instead of best responding, a site is chosen with
probability proportional to its expected utility); (5) PFA1: a PFA
with limited memory and no overweighting of significant events
(M = 100,s = 0); (6) PFA2: a PFA with limited memory that
overweights significant events (M = 100,s = 1); (7) PFA3: a PFA
with very limited memory and no overweighting (M = 10,s =
0); (8) PFA4: a PFA with very limited memory that overweights
significant events (M = 10,s = 1). We want to see how each of
these eight poacher strategies plays against the various ranger
strategies. We consider four ranger strategies: (a) the NE strategy;
(b) probability matching (PM) based on the rhino distribution; (c)
FP with unbounded memory; (d) PFA with small memory and no
overweighting (M = 10,s = 0). Notice that ranger strategies (a)
and (b) are nonadaptive; the ranger visits a site according to a
predetermined distribution at each step. In contrast, strategies
(c) and (d) are adaptive; The ranger decides which site to visit
next based on what the poacher has done in previous rounds. For
each ranger-poacher pair, we simulated the game for 1000 rounds,
using various rhino distributions, and repeated each game 100

times. Figure 5 shows the boxplots 3 for the rhino distribution
(0.2,0.4,0.6,0.8).

We get similar results for other rhino distributions. Figures 3
and 4 show the boxplots of poacher’s utilities for various poacher
and ranger strategies for rhino distributions (0.3, 0.8, 0.7,0.5) and
(0.9,0.9,0.9), respectively.
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Figure 3: Poacher’s utility for various poacher and ranger
strategies and rhino distribution (0.3, 0.8, 0.7, 0.5).
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Figure 4: Poacher’s utility for various poacher and ranger
strategies and rhino distribution (0.9, 0.9, 0.9).

3A boxplot is a standard way of displaying the dataset. The box in the middle shows the
range from the lower quartile (25" percentile) to the upper quartile (75! percentile),
with the red line marking the median. The interquartile range (IQR) is the difference
between values at the 75" and 25!” percentile. A whisker is drawn from the top of
the box to the largest observed point that is within 1.5 times the IQR of the value at the
75t quartile. Similarly, a whisker is drawn from the bottom of the box to the smallest
observed point that is within 1.5 times the IQR of the value at the 25th quartile. (See
Dekking [7, pp. 234-238].)



The results show that if the ranger uses a nonadaptive strategy
(NE or PM), then all the poacher’s strategies do equally well, whereas
if the ranger uses an adaptive strategy (FP or PFA), a PFA with small
memory size that overweights significance (PFA4) does extremely
well.
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Figure 5: Poacher’s utility for various poacher and ranger
strategies and rhino distribution (0.2, 0.4, 0.6, 0.8).

As shown in Figures 5(a) and 5(b), when the ranger plays a non-
adaptive strategy, all the poacher strategies do roughly equally
well. That means, for example, the poacher does not suffer due
to the reduced memory size of 10 when the ranger plays the NE
strategy; he still gets essentially the same payoff as he would when
playing the NE strategy, or using a strategy like MWU or FP that
requires unbounded memory. However, as shown in Figure 5(c)
and 5(d), using a PFA with limited memory can significantly improve
performance, especially when significance is taken into account, if
the ranger’s strategy is adaptive. It is not hard to explain why this
should be so: If the ranger is playing FP with unlimited memory, she
tends to be “sticky”; if she views site i as the best site at time ¢, she
is likely to still view i as the best site at time ¢+ 1. If the poacher was
caught at site i at time ¢, he is more likely to avoid i if he overweights
being caught (i.e., if s = 1), and if he does some probability matching
rather than just going to what he views as the best site. Thus,
far from being irrational, overweighting significant events and
probability matching are completely rational if the ranger is using
FP. If the ranger is also using PFA with a relatively small memory
size, the ranger will also switch more often, so using FP or PFA with
a larger memory (PFA1) will make the poacher stickier and lead to
lower utility for the poacher. However, overweighting significance
and probability matching still help improve the poacher’s utility
significantly.

4 EXPERIMENTS

We wanted to understand the extent to which our PFAs capture

human behavior in the ranger-poacher game. We conducted experiments

on MTurk. In these experiments, human subjects play the role of
the poacher; they must decide which site to visit in each round.

Each game lasts for 100 rounds. Subjects get $1 for completing the
task plus a bonus of $0.10 for each point they obtain. Since the
game lasts for 100 rounds, the bonus is usually significantly more
than the fixed payment. Thus, they are (somewhat) incentivized to
maximize their payoff by playing strategically. We submitted an
IRB consent form and qualified for exemption from IRB review.

Subjects are given the rhino distribution and are told that the
ranger knows it as well. They are also told that, in each round,
they and the ranger will simultaneously choose a site to visit. After
these choices are made, they are revealed, and the subjects discover
where the rhinos were, so they can see whether they caught a rhino
or were caught. They get 1 point if they catch a rhino without being
caught, —1 point if they are caught, and 0 points otherwise. See the
supplementary material for the exact instructions and screenshots
of the game interface.

The experiments involved 94 participants, each playing two 100-
round games with two rhino distributions. We considered four
rhino distributions: (a) (0.9, 0.6,0.2), (b) (0.9,0.6,0.4,0.9,0.1), (c)
(0.8,0.3,0.8,0.3), and (d) (0.3,0.8,0.7,0.5). We used the PFA to play
the role of the ranger, with M = 100 and s = 0 (i.e., it does not take
significance into account). s = 0.

Since there might be some learning during the game, we treat the
first 75 of the 100 rounds as the learning period, and average only the
decisions in the last 25 rounds to get the poacher’s overall strategy.
Applying k-means clustering, we clustered players on MTurk into
three groups: (1) level-0 poachers, who visit all sites with equal
probability or simply stick to one site; (2) level-1 poachers, who
visit each site with probability roughly proportional to the rhino
distribution; and (3) level-2 poachers, who seem to visit sites with
probability proportional to their utility under the assumption that
the rangers are playing a level-1 strategy.

We suspect that level-0 players are often ones who simply want to
get the game done as quickly as possible, so that they can collect the
fixed payment. Therefore, we focus on level-1 and level-2 players.
We can best approximate level-1 poacher behavior using a PFA with
M = 2ands = 1; as explained earlier, a PFA that has a small memory
will do more probability matching. We can best approximate level-2
poacher with a PFA with M = 10 and s = 0. The comparisons in
overall strategy are illustrated in Figure 6 for rhino distribution
(0.8,0.3,0.8,0.3). We include results for other rhino distributions
in the supplementary material.

Each PFA was simulated 100 times. In the figure, we again
use boxplots to describe the distributions. Since the means here
are occasionally significantly different from the medians in these
examples, we include the means as well as the medians (using a
green triangle for the mean). As the figure shows, our PFAs do
a relatively good job of capturing these two types of behaviors,
despite using only two features: the memory size and whether we
take significance into account.

In addition to the overall strategy, we also considered another
metric of decision-making dynamics: stickiness. Our experiments
show that people were stickier when they obtained 0 or 1 point,
compared to when they get caught; we observe qualitatively similar
behavior with PFAs. We define stickiness as the probability of
visiting the same site at round ¢ + 1 as at round ¢. Stickiness is
inherent in FP; if going to site i was a best response for the poacher,
and the poacher caught a rhino there without being caught, then
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Figure 6: Comparing level-1 (left) and level-2 (right)
behaviors (in frequency of visiting each site) between
humans and PFAs for rhino distribution (0.8, 0.3, 0.8, 0.3).

going to site i will continue to be a best response. On the other hand,
if the poacher is caught at site i, this will increase the poacher’s

estimate of the ranger being at site i (particularly if we take significance

into account), and thus make it less likely that the poacher will
return to site i. We consider how sticky humans and the PFA were
as a function of the reward received at round ¢. In Table 2, we
illustrate the degree of stickiness of the poacher. Again, we played
the game for 100 rounds and took the ranger’s strategy to be a PFA
with M = 100 and s = 0. As shown in Table 2, people were stickier
when they obtained 0 or 1 point than when they got -1 points; we
observe qualitatively similar behavior with our PFAs.

-1 points 0 points 1 point

Humans 0.3546 03820  0.4936
PFAp—z5— 0.0040 07479  0.8756
PFAp—25=1 0.0 07416 0.8653

PFAp—105—0 04323 08488 09238
PFAp-105=1 0.1021 08250  0.9117
Table 2: The probability that the poacher goes to same site at

round ¢ + 1 conditional on the poacher receiving —1 points
(resp., 0 points, 1 point) at round ¢.

5 DISCUSSION AND RELATED WORK

There has been a great deal of recent interest in modeling human
behavior in the ranger-poacher game. Perhaps most relevant to us is
a sequence of papers by Tambe and his collaborators. Nguyen et al.
[17] proposed the Subjective Utility Quantal Response (SUQR) model.
This model already allows for poachers that are boundedly rational,
in the sense of not necessarily best responding. It assumes that
a poacher’s subjective utility is characterized by various features
(e.g., the ranger’s coverage probability, the poacher’s own reward
and penalty at each target), and tries to learn the weights of these
features from available attack data so as to predict the behavior of
poachers. It further assumes that there is a homogeneous population
of poachers; Yang et al. [27] refined the model by allowing different
poachers to be characterized by different weight vectors. Kar et
al. [12] further refined the model by considering successes and
failures of the poacher’s past actions. Feng et al. [9] considered
poachers with a fixed memory T, which is the number of rounds
of past observations they respond to, similar to our use of M in
this paper. Kar et al. [13] presented a behavior model based on an
ensemble of decision trees. The goal of all this work was essentially

to learn and predict human behavior. This is part of a more general
thrust of trying to model human play in games (see, e.g., [23—
25]). By way of contrast, our goal is to see the extent to which
we can explain and justify apparently irrational human behavior
(like probability matching and overweighting of significant events)
as the outcome of computational limitations. To that end, we model
resource-bounded poachers and rangers as PFAs. We showed that
quite rational behavior (i.e., best responding) can lead to behaviors
that have been viewed as irrational, namely, probability-matching
and overweighting, as we limit the memory size. However, our
results show that this so-called irrational behavior actually leads to
better outcomes.

In future work, we would like to consider the effect of another
trait: stubbornness. We can model this by assuming that there is a
stubbornness parameter « € [0, 1]: with probability @, the poacher
ignores the current information (regarding where the ranger went),
and just plays according to (his estimate of) his own current strategy.
It seems reasonable to expect people to grow more stubborn over
time. After all, after they have played for a while, they feel that they
understand what is going on and have already settled on a strategy.
There is no point in putting in the cognitive effort of looking at
what the ranger is doing and updating. Indeed, we find that if we
slowly increase the poacher’s stubbornness over time, we get better
behavior: the strategy curve is smoother, and fluctuates less around
NE. Of course, if we increase it too quickly, then the poacher will
settle into a “bad” strategy and not converge to NE. Moreover, using
stubbornness requires the poacher to keep track of his own strategy,
which squares the number of states needed. We hope to explore the
tradeoffs involved with considering stubbornness in future work.

The fact that computational limitations lead both to more human-
like behavior and (often) to better outcomes in the ranger-poacher
game reinforces similar results obtained in other contexts [11, 15,
22]. This suggests a rather rich line of future research. For one
thing, it would be of interest to see if behavior in other games,
such as coordination games, can be explained and justified by
computational limitations. For example, people are quite good at

coordinating, but do not always manage. We suspect that computational

limitations play a fundamental role here. Understanding the effect of
computational limitations better in a number of games of interest
better would lead to the design of better mechanisms for these
games. Moving up a level, getting such a deeper understanding
might lead a more general theory formalizing when and the extent
to which behaviors such as probability matching are consequences

of computational limitations and when behaviors such as overweighting

lead to better outcomes. For example, we gave a somewhat informal
argument earlier for why we see probability matching in the ranger-
poacher game. It should not be hard to formalize this, but it would be
more interesting to get a general result explaining when we would
expect to see probability matching as an outgrowth of computational
limitations. We look forward to investigating and reporting on these
issues in the future.
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