submit/4887844 [cs.DC] 10 May 2023

arxiv

Optimal Eventual Byzantine Agreement Protocols with
Omission Failures

KAYA ALPTURER, Cornell University, USA
JOSEPH Y. HALPERN, Cornell University, USA
RON VAN DER MEYDEN, UNSW Sydney, Australia

Work on optimal protocols for Eventual Byzantine Agreement (EBA)—protocols that, in a precise sense, decide
as soon as possible in every run and guarantee that all nonfaulty agents decide on the same value—has focused
on full-information protocols (FIPs), where agents repeatedly send messages that completely describe their
past observations to every other agent. While it can be shown that, without loss of generality, we can take an
optimal protocol to be an FIP, full information exchange is impractical to implement for many applications
due to the required message size. We separate protocols into two parts, the information-exchange protocol and
the action protocol, so as to be able to examine the effects of more limited information exchange. We then
define a notion of optimality with respect to an information-exchange protocol. Roughly speaking, an action
protocol P is optimal with respect to an information-exchange protocol & if, with P, agents decide as soon as
possible among action protocols that exchange information according to &. We present a knowledge-based
EBA program for omission failures all of whose implementations are guaranteed to be correct and are optimal
if the information exchange satisfies a certain safety condition. We then construct concrete programs that
implement this knowledge-based program in two settings of interest that are shown to satisfy the safety
condition. Finally, we show that a small modification of our program results in an FIP that is both optimal and
efficiently implementable, settling an open problem posed by Halpern, Moses, and Waarts (SIAM J. Comput.,
2001).

CCS Concepts: « Theory of computation — Distributed algorithms; « Computing methodologies
— Reasoning about belief and knowledge; - Computer systems organization — Dependable and fault-
tolerant systems and networks.

Additional Key Words and Phrases: Distributed algorithms, Epistemic logic, Reasoning about knowledge,
Byzantine Agreement, Consensus, Fault tolerance

1 INTRODUCTION

Logics of knowledge (epistemic logics) have been shown to provide useful abstractions for reasoning
about distributed systems [5, 7], enabling a focus on the information that needs to be attained in
order to perform certain actions, independent of how that information is encoded in the states of the
system. The approach has, in particular, been used fruitfully to analyze agreement protocols, where
agents are required to make consistent decisions on some value, based on their initial preferences
(1,4, 8, 12].

One particular focus of this work has been to develop protocols that make optimal use of
information. In the context of protocols for agreement, this has meant protocols that decide as
soon as possible. We say that a protocol P; dominates a protocol P; if, roughly speaking, for each
possible pattern of failures and inputs, P; decides at least as soon as P,. An optimum protocol
is one that dominates every other protocol; an optimal protocol is one that is not dominated by
any other protocol. Optimum knowledge-based programs (i.e., programs with explicit tests for
knowledge) have been provided for simultaneous Byzantine agreement (SBA) with crash failures

Authors’ addresses: Kaya Alpturer, ki78@cornell.edu, Cornell University, Ithaca, NY, USA; Joseph Y. Halpern, halpern@cs.
cornell.edu, Cornell University, Ithaca, NY, USA; Ron van der Meyden, R.VanderMeyden@unsw.edu.au, UNSW Sydney,
Sydney, NSW, Australia.

2 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

[1, 2, 4] and omission failures' [12], and for consistent SBA with omission failures [13] (where
all agents that decide on an action must perform the same action, not just the nonfaulty agents).
Moreover, polynomial-time implementations of these programs were provided. For the problem of
eventual Byzantine agreement (EBA), it is well-known that there are no optimum protocols [12],
although there are optimal protocols. Optimal knowledge-based programs have been provided for
EBA in the case of crash failures [1] and sending-omission failures [8]. While a polynomial-time
implementation of the knowledge-based program was provided for the case of crash failures [1],
none was provided in the case of omission falures. Indeed, the problem of finding a polynomial-time
optimal algorithm for EBA in the presence of omission failures has been open for over 20 years.
Among other things, we solve this problem here.

The work on optimal (and optimum) protocols has focused on full-information protocols (FIPs),
ones where each agent repeatedly sends all other agents its complete state, containing its initial
state and all messages that it has received up to the present time. As far as optimal protocols go,
there is no loss of generality in considering only FIPs. As is well known [3], any protocol can be
simulated by an FIP, so for any protocol, there is an FIP that decides at least as soon. However,
while FIPs do provide optimality, they are expensive to implement due to their space requirements
and the length of messages sent, their analysis may be complex, and in some failure environments,
they may require that intractable properties be computed at each step of the protocol to attain
optimality. They are therefore not necessarily practical. The present paper is part of a program of
research in which we seek to overcome these difficulties with the full-information paradigm by
considering protocols in which less than full information is exchanged between the agents.

Our goal in this paper is to examine the effects of more limited information exchange. In order to
do so, we separate protocols into two parts, the information-exchange protocol, which specifies what
information agents maintain in their local states and what message they exchange at each step,
and the action protocol, which, in the case of agreement protocols, specifies what decision agents
make. We then define a notion of optimality with respect to an information-exchange protocol.
Roughly speaking, an action protocol P is optimal for a particular specification with respect to
an information-exchange protocol & if agents decide as soon as possible with P as they do with
any other protocol that satisfies the specification and exchanges information according to &. A
full-information protocol is a special case of an information-exchange protocol, but we allow far
more limited protocols, where agents keep track of less information and send less information in
their messages. We focus in this paper on optimal protocols for binary EBA, where agents have only
one of two possible initial preferences, and we assume sending-omission failures. For EBA, there
is a group of agents, each with an initial preference of 0 or 1. The nonfaulty agents are required
to reach agreement on a value, but different agents may decide at different times. The solution is
required to be non-trivial in the sense that if all initial preferences are x € {0, 1} then a nonfaulty
agent must decide x.

Since with EBA, agents do not have to decide simultaneously, the literature has typically consid-
ered optimal protocols that are biased towards 0, in that an agent decides 0 as soon as it learns that
some agent started with an initial preference of 0, and protocols that are baised towards 1. In the
case of crash failures, it is known that there are optimal EBA protocols that are biased towards 0
(resp., 1) in this sense [1]. But it is easy to see that there cannot be an optimal EBA protocol that is
biased towards 0 (or 1) in the case of omissions failures. Consider a setting where there are at least
three agents, and a run r where exactly one of these agents is faulty, say agent 1, all the remaining

1Recall that with crash failures, a faulty process behaves according to the protocol, except that it might crash at some round
(possibly after sending some messages), after which it sends no messages; with sending-omission failures, a faulty process
may omit to send an arbitrary set of messages in any given round, but otherwise behaves according to the protocol.

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 3

agents have an initial preference of 1, and the faulty agent does not send any messages. In run r,
the nonfaulty agents must eventually decide 1, because the faulty agent’s initial preference may be
1, and in that case, EBA requires a decision of 1. Suppose that the first nonfaulty agent to decide in
run r does so at round n, and without loss of generality, that 2 is a nonfaulty agent that decides 1 at
round n. Now consider a run r’ where agent 1 has an initial preference of 0, agent 1 is faulty, all
the remaining agents are nonfaulty and have an initial preference of 1, agent 1 does not send any
messages up to round n — 1, and in round n — 1 sends exactly one message, which is sent to agent 3,
and says (truthfully) that agent 1’s initial preference was 0. Since agent 2 cannot distinguish r from
r’, agent 2 must decide 1 in round n of r’. Since agent 3 does not decide in the first n — 1 rounds
of r, it also does not decide in the first n — 1 rounds of r’. Since it learns that some agent has an
initial preference of 0 in round n — 1, agent 3 decides 0 in round n of r’. Thus, two nonfaulty agents
decide on different values in r’, so EBA is not achieved. (Note a run like r’ is inconsistent with
crash failures; it really requires omission failures.)

To deal with this issue, in a 0-biased protocol, rather than requiring that an agent decide 0 as
soon as it hears about a 0, we require only that an agent decides 0 only if it hears about 0 via a chain
of agents (where the first agent in the chain has an initial preference of 0, and in round k, the kth
agent in the chain decides 0 and tells the (k + 1)st agent about this). Note that in the case of crash
failures, an agent can hear about a 0 only via such a chain. We then provide a knowledge-based
action protocol P° based on this (well-known) idea that we show is correct (in the sense that
all of its implementations satisfy the EBA specification, no matter what information-exchange
protocol is used) and is optimal in contexts that satisfy a certain safety condition. We then consider
two information-exchange protocols where agents exchange relatively short (and relatively few)
messages, and show that they satisfy the safety condition. Finally, we provide concrete polynomial-
time action protocols that implement P° with respect to these two information-exchange protocols.

The knowledge-based program P? is not optimal in the case of full-information contexts, but, as
we show, a small modification P! of P’ is optimal. Moreover, P and P! are equivalent in the two
limited-information contexts that we considered, so P! is also optimal in these contexts. Roughly
speaking, P! allows agents to decide if they get common knowledge of who the nonfaulty agents
are. Such common knowledge can’t be obtained in the limited-exchange contexts that we consider,
but it can be obtained if agents use a full-information protocol and keep track of everything
they have learned. The knowledge-based program P! does not involve the (rather complicated)
continual common knowledge operator used by Halpern, Moses, and Waarts; rather, it uses more
standard knowledge and common knowledge operators. This allows us to provide a polynomial-time
implementation of it.

The rest of this paper is organized as follows. Section 2 reviews the epistemic framework of
[5]. In Section 3, we introduce the separation of information-exchange and action protocols along
with a representation of the failure model. Section 4 defines knowledge-based programs. The
specification of EBA and a formal definition of optimality with respect to an information-exchange
protocol are given in Section 5. In Section 6, we define the knowledge-based program P°, show that
it satisfies EBA, define the safety condition that suffices for P’ to be optimal, describe two natural
limited information-exchange protocols that satisfy the safety condition, and provide concrete
action protocols that implement P® with respect to these two information-exchange protocols.
In Section 7, we define P!, a modification of P that is optimal for the full-information-exchange
protocol, and provide a polynomial-time implementation of it. We conclude with a discussion of
the cost of limited information exchange in Section 8. Proofs for all the results in the paper can be
found in the appendix.

4 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

2 SEMANTIC MODEL

We assume that a set Agt of agents communicate using a message-passing network, which may
be subject to various types of failures. To model such systems semantically, we use the standard
runs-and-systems model [5, 6], which we briefly review.

Interpreted systems [5] model multi-agent scenarios in which some number n of agents change
their states over time. An interpreted system is a pair I = (R, 7), where R is a set of runs, describing
how the system evolves over time, and 7 : R X N — P (Prop) is an interpretation function that
indicates which atomic propositions are true at each point of the system, where a point is a pair
(r,m) consisting of a run r € R and time m € N. The set R is called a system. Formally, arunr € R
is a function r : N — L, X IT;eag:L;, where L, is the set of possible local states of the environment
in which the agents operate, and each L; is the set of possible local states of agent i. The elements
of Le X Il;eag:L; are called global states. Given a run r, agent i, and time m, we write r;(m) for the
(i + 1)st component of r(m), which is the local state of agent i in the global state r(m), and r.(m)
for the first component of r(m), which is the local state of the environment.

To reason about the knowledge of agents in interpreted systems, we use a standard language for
reasoning about knowledge and time. We start with a set ® of primitive propositions, and close
off under A, —, the epistemic operators K; for i = 1,...,n (one for each agent) and Cg (common
knowledge among the agents in an indexical set S; see below) and the temporal operators O, @, O,
and ©. The formula K;¢ says that agent i knows that formula ¢ holds, O¢ says that ¢ holds at all
times in the future, @¢ says that ¢ holds at all times, O¢ says that ¢ holds at the next time, and 6¢
says that ¢ holds at the previous time.

The semantics of the logic is given by a relation 7, (r,m) | ¢, where 7 is an interpreted system,
(r,m) is a point of 7, and ¢ is a formula. For formulas not of the form Csd, the relation = is defined
inductively as follows (we omit the obvious cases for the propositional operators):

o I, (rym) Epifp € n(r,m),

o I,(r,m) EKi¢pifI,(r',m’) [¢ for all points (r’,m’) of I such that r;(m) = r/(m’),
o I, (r,m) EQ¢ifI,(r,m) E ¢forallm’ > m,

o I,(r,m)Em¢ifI,(r,m) E ¢forallm’ €N,

e I,(rm) EO¢IfI, (rm+1) E¢

e I, (rm)EFopifm>0and 7, (r,m—-1) E ¢.

The intuition for the definition of the knowledge operator K;¢ is that r/(m) = r;(m) says that
agent i considers it possible, when in the actual situation (r, m), that it is in situation (#’, m’), since
it has the same local state there. An agent then knows ¢ if ¢ is true in all the situations that the
agent considers to be possible.

We can now define the modal operator Cgs. Intuitively, Cs¢ is true at a point (r, m) if ¢ is common
knowledge among the agents in S; each of the agents in S knows that each of the agents in S
knows ...that ¢ is true. The fact that § is an indexical set means that its membership can depend
on the point; that is, semantically, S(r, m) is a set of agents for each point (r,m). We define Eg¢
(everyone in S knows ¢) as an abbreviation for A;cs K;¢. That is,

I,(r,m) | Es¢ if, for all j € S(r,m), we have 1, (r,m) | K;¢.
Taking Egg{) to be an abbreviation of Eg¢, and Eg‘“gb to be an abbreviation of Es(E'J¢), we define
I,(r,m) ECs¢if forallm > 1, 1, (r,m) E EG¢.

As usual, we say that ¢ is valid in I, and write I |= @, if T, (r,m) |= ¢ for all points (r,m) in 7.

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 5

3 COMMUNICATION AND FAILURE MODELS

We now specialize the general model from the previous section to represent an omissions-failure
model. In our representation, we separate the information-exchange protocol, which characterizes
the information maintained by agents in their local states, and which messages are sent and when,
from the action protocol, which characterizes the rules for performing actions other than sending
messages. (In our case, these actions will be decisions.) In the literature, the information-exchange
protocol has often been the full-information protocol, in which at each step each agent sends all
other agents a complete description of everything it has learned up to that time. However, we will
be interested in protocols in which less information is exchanged, so it helps to separate out the
information-exchange protocol as a parameter of the interpreted systems we construct. A further
parameter is the failure model 7, defined below.

We assume that information is exchanged by sending messages. Our focus will be on synchronous
message passing, in which agents operate in a sequence of synchronized rounds. In each round,
each agent performs some actions, sends a set of messages to the other agents, receives some of the
messages from the other agents that were sent in the same round, and updates its state depending
on these events. The information-exchange protocol describes the possible initial states of the agent
(which may include information such as the agent’s preference for the outcome of the consensus
decision to be made), how it chooses the messages to send at each time, and how it updates its state
in response to receiving messages.

We assume that each agent has a set A; of actions that it can perform. In our applications,
A; = {decide;(x) | x € {0, 1}}U{noop}, but in general, A; can be arbitrary. Formally, an information-
exchange protocol & for agents Agt = {1,...,n} is given by a tuple (&, ..., E,) consisting of a
local information-exchange protocol &; for each each agent i. Each local information-exchange
protocol &; is a tuple (L;, I, A;, M, p;, 8;), where

e L; is a set of local states.

e [; C L; is a set of initial states.

e M is a set of messages that can be sent by agent i.

® i Ly x Aj — Ijcag(M; U {1}) is a function mapping a local state s and an action a to the
messages to be sent in the current round, one to each agent j. Intuitively, y; (s, a) = o means
that when action a is performed in state s, the information-exchange protocol transmits
message o; to each agent j. Here o; = L represents that no message is sent by i to j. Let
uij (s, a) denote the message that i sends to j in this tuple.

® 8 : Li x Ay X Ijepq(M; U {1}) — L; is a function that updates the local state, given an
action and a tuple (my, ..., m,) of messages m; € M; U { L} (where m; = L if i receives no
message from j).

The failure model describes what failures can occur. Typically a failure model comes with a
parameter ¢ that indicates the maximum number agents that may be faulty. A failure pattern, or
adversary, defines the failures that actually occur in a particular run consistent with the failure
model. Formally, a failure pattern « is a pair (N, F), where N € Agt and F is a mapping F :
N x Agt x Agt — {0, 1}. Here N is the set of nonfaulty agents, and F(m, i, j) describes whether the
message sent from agent i to agent j in round m + 1 is delivered. (If it is not delivered, we assume
that the message L is delivered instead.) A failure model is a set of failure patterns. The sending-
omissions model SO(¢) for agents Agt is the set of all failure patterns (N, F) such that |Agt—N| < t,
so that there are at most t faulty agents, and for all m € N and j € Agt, if F(m,i, j) = 0 then
i € Agt — N. The crash-failures model is the special case where if F(m, i, j) = 0 then F(m’,i,j) =0
for all m’ > m and agents j’.

6 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

An action protocol P for an information-exchange protocol &, is a tuple (Py, ..., P,) containing,
for each agent i = 1...n, a local action protocol P; : L; — A; mapping the local states L; for agent i
in & to actions in A;.

To connect these definitions to the semantic model of Section 2, we describe how an information-
exchange protocol &, a failure model ¥, and an action protocol P determine a system Rg #p. In
this system, the set L, of possible local states of the environment consists of the possible failure
patterns. The local states L; of the agent are the states of the information-exchange protocol for
agent i. An initial state (s, s1, . .., Sp) is a global state, where s; € [; is an initial state of each agent
i’s information-exchange protocol. For each initial state, a run r with that initial state is uniquely
determined by the information-exchange protocol &, the failure model ¥, and the action protocol P.
In this run, the protocol &, the failure pattern «, and P determine at each step, in order, what actions
are taken, what messages are sent, and what messages are received. Each agent updates its local
state depending on the actions taken and the messages received in the round. Formally, the global
state r(k+1) = (s;,], ..., ;) at time k + 1 is determined from the global state (k) = (s, $1, . . ., S)
at time k as follows:

® s, = s, (so the failure pattern remains unchanged throughout the run).

e For each pair of agents i and j, let m; ; be the message that agent i sends to j, given that it
performs action P;(s;) in state s;, that is, m; ; = p; (si, Pi(s:)) ().

o For each pair of agents i and j, let m] ; be the result of applying the failure pattern to the
messages sent. Specifically, suppose that s = (N, F). If F(k, i, j) = 0 then m;; = 1 and if
F(k,i,j) = 1then ml’j =m;.

e Finally, for each agent i, s; = 5;(s;, Pi(s;), (m;l .. m;”))

The system Rg #p consists of all runs generated from some initial state.

4 KNOWLEDGE-BASED PROGRAMS

Knowledge-based programs specify how an agent’s actions are determined, given what the agent
knows. As defined by Fagin et al. [5], these programs are interpreted relative to an interpreted context
that defines the global states, how they are updated as a result of actions, and an interpretation
of atomic propositions. In our setting, we can take the interpreted context to be a tuple (&, F,)
consisting of an information-exchange protocol &, a failure model ¥, and an interpretation & of
atomic propositions in the set of all runs over global states constructed from & and .

For our purposes, it is convenient to take knowledge-based programs to have the form P =
(P14, ..., Py,), where for each agent i, the local knowledge-based program P; is in the language with
grammar

P; = q; | if §; then P; else P;,
where a; denotes actions in the set A; of actions of agent i, and ¢; is a Boolean combination of
formulas of the form K;i. That is, the tests in agent i’s local knowledge-based program concern
agent i’s knowledge. Note that the truth of such a formula ¢; at a point (r, m) in an interpreted
system J depends only on agent i’s local state at that point. That is, for points (r, m), (r'm’) with
ri(m) = r/(m’), we have I, (r,m) | ¢; iff 7, (r',m’) |£ ¢;. Given a local state s of agent i, we may
therefore write 7, s |= ¢; to express that 7, (r, m) | ¢; for all points (r, m) of 7 with r;(m) =s.

To interpret a knowledge-based program semantically, we first define how a knowledge-based
program P = (Py,...,P,) determines a concrete action protocol PZ given an interpreted system
I . For each agent i and local state s of i in 7, we define PZ.I (s) to be the action resulting from
executing the program P; with its tests interpreted at local state s in 7. Formally, we define PZ by
induction on the structure of P, taking (a;)? (s) = a;, and for P; =“if ¢; then Q; else R;”, we define
Pf(s) = QlI (s)if I,s = ¢, and Pf(s) = Rl?r (s) otherwise.

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 7

Given a knowledge-based program P = (Py, ..., P,) and a concrete action protocol P = (Py,..., Py,)
for an information-exchange protocol &, we say that P implements P in the context y = (&, F, 1)
if, for I = (Rg,#p,), we have P;(s) = Pif (s) for all agents i = 1,...,n and local states s of agent i
that arise in J .

5 EVENTUAL BYZANTINE AGREEMENT

We briefly review the specification of the eventual Byzantine agreement problem that we consider
in this paper. The specification assumes that each agent starts with an independently selected
value init; € {0, 1}. The actions in A; have the form decide;(v), where v € {0,1}, as well as a
“do-nothing” action noop. We seek protocols (i.e., an information-exchange protocol and an action
protocol) such that every run satisfies the following four properties:

e Unique Decision: If agent i performs an action decide;(v) (for some v), then it does not
later perform decide;(1 —v).

e Agreement: If agents i and j are both nonfaulty, i performs decide;(v), and j performs
decide;(v’), thenv = v’

e Validity: If a nonfaulty agent i performs decide;(v) then init; = v for some agent j.

e Termination: For all nonfaulty agents i, eventually i performs decide;(v) for some value
v € {0,1}.

To relate this specification to our formal model, we define an EBA context to be a tuple (&, 7,)
consisting of an information-exchange protocol &, a failure model 7, and an interpretation r of a
set Prop of propositions, such that the following conditions hold:

e The local states in &; have the form (time;, init;, decided;, jd;, . . .), where time; € N, init; €
{0, 1}, decided; € {0,1, L} and jd; € {0, 1, L}. Intuitively, jd; = v if i learned that some agent
just decided v, for v € {0, 1}.

e The initial local states in &; have the form (0, init;, J_,jd(i), ...), where jd; = L.

o The message-selection value p;(s, a) satisfies the following constraint: i sends different
messages in the following three cases: (a) a = decide;(0), (b) a = decide;(1), and (c) the
remaining cases. That means that j can tell from the message it receives from i whether i is
deciding 0 or 1 in the current round. Formally, this means that there are three disjoint sets
M°, M*, and M? with L ¢ M® U M! such that if a = decide;(0), then i sends each agent j a
message in M°, if a = decide;(1), then i sends each agent j a message in M!, and otherwise,
i sends each agent j a message in M2.

e The transition function §;, when given as input state s, action a, and a message tuple
(my,...,my), increases the time component time; of s by 1; if a = decide;(v), it sets decided;
to v, and otherwise leaves decided; unchanged; it also sets jd; = 0 if i received a message in
round m from an agent that performs action decide;(0) in that round, sets jd; = 1if i received
a message in round m from an agent that performs action decide;(1) in that round, and
otherwise sets jd; = L (the assumptions on y; ensure that such messages are distinguishable
from other messages). Note that the fact that the time component increases by 1 at every
step ensures that the system is synchronous; all agents i have time; = m at time m.

e Prop contains at least the following propositions (all of which are necessary to define the
specification below) for each agent i € Agt:

- init; = v forv € {0, 1},

— decided; = v forv e {1,0,1},
— time; = k for k € N, and
-ieN;

8 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

e 1 interprets init; = v, decided; = v, and time; = k in the obvious way from i’s local state
(e.g., m(r, m) makes init; = v true iff r;(m) has its second component init; equal to v), and
interprets i € N in the obvious way from F (i.e., 7(r,m) makes i € N true iff i € N(r),
where N (r) is the set of nonfaulty agents in run r).

An EBA context satisfies some minimal properties that we expect all contexts that arise in the
analysis of EBA to satisfy.

We define decided; to be an abbreviation of decided; = 0 V decided; = 1, take jdecided; = v to be
an abbreviation for decided; = v A ©decided; = L (intuitively, i just decided v), take deciding; = v
to be an abbreviation for decided; = L A Odecided; = v (intuitively, i is deciding v in the current
round) and take Jo, for v € {0, 1} to be an abbreviation of ;¢4 init; = v.

Given an EBA context y = (&, F, 7) and an action protocol P for &, we define the system
I,p = (RgFp,m). To satisfy the informal specification above, we now seek an EBA-context
y = (&, F, m) and an action protocol P for & such that the following are valid in the system 7, p for
all agents i and j:

e Unique Decision: decided; = v = O—(decided; = 1 —v), for v € {0, 1}.

e Agreement: (i € N A j € N A decided; = v A decided; = v"), forv # v’.
e Validity: (decided; =vAie N)= Fo

e Termination: i € N = O (decided; # 1).

If these conditions are satisfied, we call P an EBA decision protocol for the context y. The tuple
(&, P,) is an EBA-protocol for failure model 7. That is, a protocol solving EBA in the failure model
consists of an information-exchange protocol, an action protocol that makes decisions, and an
interpretation of the basic propositions.

We are interested in protocols that are optimal given the information that is maintained by the
information-exchange protocol. The following definitions formalize this notion. Runs r, 7’ of two
action protocols P, P’, respectively, correspond if r(0) = r’(0). That is, the two runs have the same
failure pattern and the same initial states for all agents. Recall that the initial global state of a run,
the information-exchange, and the action protocol together determine the complete run. An action
protocol P dominates action protocol P’ with respect to a context y = (&, ¥, x), written P’ <, P if,
for all corresponding runs » € Rg #p and ¥’ € Rg #p and all agents i that are nonfaulty in r and
times m, if P;(r;(m)) = decide;(v) for v € {0,1} then P/(r/(m’)) # decide;(w) for any m’ < m
and w € {0, 1}. That is, P makes it decisions no later than P’. P strictly dominates P’ with respect to
y if P’ <, P and it is not the case that that P <, P’. An EBA decision protocol P is optimal with
respect to an EBA context y if no EBA decision protocol for y strictly dominates P.

6 OPTIMAL EBA WITH RESPECT TO LIMITED INFORMATION EXCHANGE

In this section, we describe a knowledge-based program for EBA that is somewhat biased towards 0,
show that it is correct, and show that it is optimal with respect to all information-exchange protocols
that satisfy a certain safety condition. As discussed in the introduction, there is no protocol for
EBA in the presence of omission failures where an agent decides 0 as soon as it hears that some
agent had an initial preference of 0. So we consider instead a program where an agent decides 0 if
it hears that some agent had an initial preference of 0 via a chain of agents; this is essentially the
condition used to decide 0 in the crash-failure case.

A sequence iy, . .., ip, of distinct agents is a 0-chain of length m in run r of interpreted system I if
(@) 7, (r,0) [init;, = 0, (b) for all m” with 0 < m’ < m, agent i,y first decides 0 in round m’ + 1 of
r, and (c) for all m” with 1 < m’ < m, i,y knows at the point (r, m’) that i,,_; has just decided 0.
We say that an agent i receives a 0-chain in round m in run r if there is a 0-chain of length m that
ends with agent i in run r.

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 9

Variants of what we call a 0-chain exist in the literature [1, 8]. The 0-chain definition in [1],
defined for crash failures, requires only that i,, receives a message from i,y_; in round m’ for
m’ > 1. The 0-chain definition in [8] requires that iy, receives a message from iy,—; in round m’
for m’ > 1 and iy, considers it possible that i,,_; is nonfaulty when it receives the message (this
will automatically be the case with crash failures, which is all that are considered in [1], but is not
necessarily the case with omission failures, which are considered in [8]); moreover, iy, is required
to be nonfaulty.

Let P? be the following knowledge-based program for agent i:

Program: P!

if decided; # L then noop

else if init; =0 V K;(\ jeagy jdecided; = 0) then decide;(0)
else if K;(/\ jeaq —(deciding; = 0)) then decide;(1)

else noop

In words: as long as i hasn’t already decided, then i decides 0 if it has an initial preference of 0 or
knows that someone just decided 0; i decides 1 if it knows that no agent can be currently deciding
0; otherwise, it does nothing. P° is essentially the same as the knowledge-based program used
by Castafieda et al. [1] in the case of crash failures. We will show that the second condition for
deciding 0, that i knows that someone has just decided 0, holds iff i receives a 0-chain. It follows
that if i hasn’t already decided and is not deciding 0, then i decides 1 iff i knows that no agent is
receiving a 0-chain. This latter condition is very close in spirit to Castanfieda et al.s notion of there
being no hidden paths.
P satisfies all the EBA properties in all EBA contexts.

ProrosITION 6.1. Ify = (&, F, x) is an EBA context, then all implementations of the knowledge-
based program P with respect to y are EBA decision protocols for y. Indeed, all implementations of P°
terminate after at most t + 1 rounds of message exchange and Validity holds even for faulty agents.

We next prove that some implementations of P° are actually optimal EBA decision protocols
in certain EBA contexts. Instead of individually proving optimality of P° with respect to specific
information exchanges, we first give a sufficient condition for optimality in EBA contexts. We then
look at two specific contexts that satisfy this safety property and show that implementations of P°
in them are optimal.

Definition 6.2 (safety). A knowledge-based program P is safe with respect to an EBA contexty =
(&, F,) if, for all implementations P of P with respect to y and all points (r,m) of I = (Rg #p, 7),
the following two conditions hold:

(1) If i has not received a 0-chain by (r, m), then there exists a point (r’, m) such that r;(m) =

r{(m) and all agents have initial preference 1 in r’.
(@) I 1, (r.m) E =Ki(\jeag ﬂ(decidingj =0)) and i does not decide before round m + 1 in r,
then there exists a point (r’, m) such that:
(@) ri(m) = r{(m),
(b) i is nonfaulty in 7,
(c) some agent j that is nonfaulty in r” decides 0 in round m + 1 of r’; moreover, if m > 1, there
exists a run r’’ and an agent j’ such that j and j’ are nonfaulty in r”, r]f(m) = r]’/(m), and
j’ decides 0 in round m in round r”’.

10 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

Intuitively, (1) says that the only way that an agent learns that some agent had an initial
preference of 0 is via a 0-chain; thus, (1) implies that if i has not received a 0-chain by (r, m), then
I, (r,m) E —K;30. Clause (2) says that the only way an agent is unable to decide 1 (i.e., the test for
deciding 1 in P° does not hold) is if it considers it possible that some nonfaulty agent is deciding 0;
thus, (2) implies that if 7, (r,m) | =K;(/\ jeag —(deciding; = 0)) and i has not decided by round
m, then 7, (r,m) | =Ki(/\ jen —(deciding; = 0)).

Note that a knowledge-based program will in general not be safe with respect to an FIP, since an
agent i may learn that some agent j had an initial preference of 0 without receiving a 0-chain. As a
result, the first condition will not hold, since at all points that i considers possible, j has an initial
preference of 0. (In Section 7, we show that a small modification of P’ is optimal even with full
information exchange.) But, as we shall see, P? is safe with respect to two EBA contexts of interest,
where agents do not keep track of who is faulty.

THEOREM 6.3. Ify is an EBA context and P° is safe with respect toy, then all implementations of P°
are optimal with respect to y.

We now describe two families of concrete EBA contexts with respect to which P is safe, param-
eterized by the number n of agents involved. For the first, let Epi, (1) be the minimal information-
exchange protocol for n agents, where for each agent i, the following hold:

o The local states have the form (time;, init;, decided;, jd;). Thus, the local states include just
what is required in an EBA context

e The initial local states have the form (0, init;, 1, 1).

o M; ={0,1}, M* = {0}, M' = {1} and M? = {L}.

e For each agent j, if a = decide;(v) then p;;(s,a) = v; otherwise, p;;(s,a) = L. Note p;;
satisfies the constraint we imposed for EBA contexts. Intuitively, if y1;;(s,a) = v # L, then i
is about to decide v.

e The state-update component §; is defined on time;, init;, decided;, and jd; just as in EBA
contexts.

For the second, let Epgsic(n) be the basic information-exchange protocol for n agents, where the
local states of agents are like those in a minimal information-exchange protocol, except that, in
addition to the other messages allowed in a basic information-exchange protocol, each agent i can
send a message of the form (init, 1), and their local states have one additional component, #1;, that
intuitively counts how many messages of the form (init, 1) i received in the last round. In more
detail, for each agent i, the following hold:

o The local states have the form (time;, init;, decided;, jd;, #1;), where #1; € {0,...,n}.

e The initial local states have the form (0, init;, 1, 1, 0).

o M; ={0,1, (init, 1)}, M® = {0}, M* = {1}, and M? = {(init, 1), L}.

e For all agents j, if a = decide;(v) then p;;(s, a) = v for v € {0, 1}; if a = noop and s has the
form (m, 1, L, 1, k), then p;;(s, a) = (init, 1); otherwise, y;;(s,a) = L.

o The state-update component §; is defined as in EBA contexts, with the added constraint
that #1; is updated to the number of messages of the form (init, 1) that i receives in the
current round if decided; = L and i does not receive a message v € {0, 1} from some agent j;
otherwise, #1; is set to 0 (essentially, for technical reasons, once a decision is made, #1; is
ignored).

Let Yminnt = (Emin (1), SO(t), Tmin,») denote the family of minimal contexts where there are n
agents, at most ¢ < n faulty agents, the language includes jd; = v in addition to time; = k, init; = v,
decided;(v),and i € N, fori € {1,...,n}, and mmin , interprets these primitive propositions in the
obvious way. Similarly, let ypasicns = (Spasic(n), SO(t), Tpasicn) denote the family of basic contexts

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 11

with n agents and t < n faulty agents, where the language includes #1; = k in addition to all the
primitive proposition used in minimal contexts, where again, 7pgsic, interprets all the primitive
propositions in the obvious way.

PROPOSITION 6.4. P is safe with respect to all contexts yminn: and Ypasicn: Such thatn —t > 2.

Finally, we provide EBA decision protocols that implement P in the two contexts of interest. Let
P™in be the protocol implemented by the following (standard) program:

Program: P"'"

if decided; # 1L then noop

else if init; = 0 V jd; = 0 then decide;(0)
else if time; = t + 1 then decide;(1)

else noop

Intuitively, this EBA decision protocol decides 0 if the agent has initial value 0 or hears of a
0-decision by another agent. If the agent does not hear about a 0-decision by time ¢ + 1, then it
decides 1.

THEOREM 6.5. Ift < n — 2, then P™" implements P° in the EBA context Yminn.-

Finally, let P* be the EBA decision protocol that implements the following program:

. pbasic
Program: P;

if decided; # 1 then noop

else if init; = 0 V jd; = 0 then decide;(0)

else if #1; > n — time; V jd; = 1 then decide;(1)
else noop

THEOREM 6.6. Ift < n— 2, then phasic implements P in the EBA context Ypasicn.;-
We get the following immediate corollary to Theorems 6.3, 6.5, and 6.6.

COROLLARY 6.7. Pbasic g optimal with respect t0 Ypasicn,t and P™in is optimal with respect to Ymin.nz-

7 AN OPTIMAL FULL-INFORMATION PROTOCOL FOR EBA

While P° is optimal with respect to the basic and minimal information-exchange settings, it is not
optimal in the full-information setting, as the following example shows.

Example 7.1. Suppose that t = 10 and n = 20. Consider a run where all agents have initial value
1, agents 1-10 are faulty, and no faulty agent sends a message in any round. This means that, at
the end of the first round, each nonfaulty agent knows who the faulty agents are. At the end of
the second round, it is common knowledge among the nonfaulty agents who the faulty agents
are: each nonfaulty agent i will know at that point that each other nonfaulty agent j knows who
the nonfaulty agents are and (by the same reasoning) i knows that j knows that all the nonfaulty
agents know who the faulty agents are, and so on. Moreover, it is common knowedge among the
nonfaulty agents that no nonfaulty agent has already decided, and it is not common knowledge
among the nonfaulty agents that some agent had an initial preference of 0, while it is common

12 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

knowledge that some agent had an initial preference of 1. As we show below, this means that the
nonfaulty agents can decide on 1 in round 3. On the other hand, with P?#i¢ and P™", the nonfaulty
agents would not decide in this run until round 12.

Intuitively, we take Cn/(t-faulty) to hold when it is common knowledge among the nonfaulty
agents who the nonfaulty agents are. It turns out this can happen only if the nonfaulty agents
have common knowledge of ¢ agents that are faulty. Thus, we take Cy/(t-faulty A ¢), for each
formula ¢, to be an abbreviation for 3A € Agt(|A| =t A Ca(Ajea(i € N) A ¢)). We also define
no-decided n(x) as an abbreviation for /\ ;¢ » —(decided; = x) for x € {0,1}. We can now formalize
the situation in the example.

PROPOSITION 7.2. If P is an optimal protocol in the context yfipn: and Ipy, . . (r,m) | decided; =
1 A Ki(Cn(t-faulty A no-decided (1) A 30)), then all undecided agents in N (r) make a decision in
round m+ 1, and similarly if Ip , (r,m) | decided; = L A K;(Cn(t-faulty A no-decided 5 (0) A 31)).

It turns out that if we add a condition to P° that tests for this common knowledge and decides
appropriately if it holds, we get a program that is optimal even with full information exchange.
Specifically, let P} be the following knowledge-based program for agent i:

Program: P}

if decided; # 1 then noop

else if K;(Cn/(t-faulty A no-decided (1) A 30)) then decide;(0)
else if K;(Cn/(t-faulty A no-decidedn(0) A 31)) then decide;(1)
else if init; =0 V K;(\ jcay jdecided; = 0) then decide;(0)
else if Ki(/\ jeaq ~(deciding; = 0)) then decide;(1)

else noop

Note that in the basic and mininimal contexts, agents never learn who is faulty, so there is never
common knowledge among the nonfaulty agents who the faulty agents are. Thus, in the contexts
Yminnt and Yoasicnts P! is equivalent to P°, so P! is correct and optimal in these contexts. As we are
about to show, P! is also correct and optimal with full information exchange.

To prove correctness and optimality, we follow the approach of Halpern, Moses, and Waarts [8]
and consider a slightly nonstandard full-information context. We assume that each agent i’s local
state does not contain the variables decided; and jd;, but does contain a variable or variables that
keep track of all messages received from all agents. If agents keep track of all messages received in
their local state, then, given a decision protocol P, the variables decided; and jd; are redundant; their
values can be inferred from the messages received. Let yfy, s denote the family of full-information
contexts as described above. Not including decided; and jd; in the local state has the advantage that,
for all decision protocols P and P’, corresponding runs of P and P’ in yfy, , are actually identical;
although agents may make different decisions, their local states are the same at all times. (This
would not be the case if the local states had included information about decisions, and in particular,
if they had included the variables decided; and jd;.) It is critical that we are dealing with FIPs here;
the claim is not true for arbitrary information-exchange protocols.

PROPOSITION 7.3. All implementations of P' with respect to yspn: are EBA decision protocols for
Yfipn,t-

We need to recall some material from [8] in order to use the characterization of optimality with
respect to yfpns. Given an indexical set S of agents, a point (r’,m’) is S-@-reachable from (r, m)

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 13
if there exist runs r°, . . ., r¥, times my, my,...,mg, m,’c, and agents iy, ..., ix_; such that (r°, mg) =
(f, m), (r*,m}) = (r’,m’),andfor 0 < j < k-1, we have i; € S(r/, m;)NS(r/*,mjs1) and r;(m;.) =
r;+1(mj+1).2 Using the notation of [8], let N' A O denote the indexical set where (N A O)(r, m)

consists of all agents that are nonfaulty and about to decide 1 or have already decided 1 at the point
(r,m). Let (N A Z) be the analogous set for 0.

Definition 7.4 (weak safety). A knowledge-based protocol P is weakly safe with respect to an EBA
context y if, for all implementations P of P and all points (r,m) of I = (Rg, #p,) and all agents
i,if I, .,.p, (r,m) F i € N A O(decided; = 1), then there exist points ', m), (*" m), (r'', m),
and (', m) such that:

- ri(m) =1 (m) = r}’ (m),

. i is nonfaulty in r*” and r’,

. (r"”,m”) is (N’ A Z)-m-reachable from (r°', m),
. (r'”,m"”) is (N A O)-E-reachable from (r'’, m),
. all agents have initial preference 0 in r°”,

QN U W DN =

. all agents have initial preference 1in r'”.

Our interest in weak safety is motivated by the following result proved by Halpern, Moses,
and Waarts [8]. The statement of the result uses two operators, B{V Cg. BlN is an abbreviation of
Ki(i e N = ¢). Thus, I, (r,m) BIN¢ if and only if 7, (r',m’) |= ¢ for all points (r’, m’) such
that r;(m) = r/(m’) and i € N(r’). Intuitively, B{V holds if i knows that if it is nonfaulty, then ¢
holds. The CF‘S. operator has a characterization in terms of S-E-reachability. In [8], it is shown that
I,(r,m)E Cf‘gg{) if and only if 7, (r’,m’) | ¢ for all points (', m”) that are S-E-reachable from
(r, m). We are interested in the cases that S is either N A O or N A Z.

THEOREM 7.5. [8, Theorem 5.4] An EBA protocol P is optimal with respect to ypp n+ iff the following
two conditions hold:

Lyppnp E i €N = (O(decided; = 0) & B{V(EIO A C)E‘VAOEIO A =(O(decided; = 1))))

Lyppnp E i €N = (O(decided; = 1) & B{V(Ell A C)DVAZEH A =(O(decided; = 0)))).

Using Theorem 7.5, we can prove that weak safety implies optimality for P.

THEOREM 7.6. IfP' is weakly safe with respect to yfipn: then all implementations of P* are optimal
with respect to Yfipn,s.

To show that the knowledge-based program P! satisfies weak safety with respect to the full-
information context, we give a constructive proof that explicitly constructs the sequences of points
witnessing the conditions of the definition of weak safety.

The main idea of the proof comes from the following observation. If a nonfaulty agent i is unable
to decide, then the common knowledge conditions in P! do not hold. Then, roughly speaking, we
can show that there exists points (ro’, m) and (rl', m), as in the definition of weak safety, such that
a faulty agent k acts nonfaulty throughout the run.> Moreover, since this faulty agent k did not

2Halpern, Moses, and Waarts [8] introduced a family of continual common knowledge operators Cg such that ngﬁ holds at
a point (r, m) iff ¢ is true at all points (r/, m’) that are S-m-reachable from (r, m). We get standard (indexical) common
knowledge by taking my = mj_in the definition of continual common knowledge; since we are working with synchronous
systems, we could restrict to taking m;. =mj1.

3Note that since the set of faulty agents in a run is determined by the failure pattern, it is consistent that an agent i is faulty
in a run although it acts nonfaulty throughout the run. Since all that really matters for our result is that no agent can detect
that agent i is faulty, we could obtain our result by assuming that i’s faulty behavior involved only not sending messages to
itself.

14 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

display faulty behavior, all runs where another agent is faulty instead of k are indistinguishable
from this point. The existence of a faulty agent that acts nonfaulty turns out to be a strong condition
that allows the construction of a sequence of @-reachable points where the end point has a modified
message pattern in addition to satisfying the same condition on k. This is possible by temporarily
making k exhibit faulty behavior in intermediate points of the sequence. Therefore we use the
existence of such k as an invariant that allows taking steps through the @-path.

THEOREM 7.7. P! is weakly safe with respect to yfp n;.
Proposition 7.3, Theorem 7.6, and Theorem 7.7 together imply the following corollary.
COROLLARY 7.8. All implementations of P! with respect to yfpn; are optimal with respect to yfip ;-

Implementing P! in polynomial time is possible using the compact communication graph rep-
resentation of the full-information exchange due to [12]. Intuitively, the common knowledge
conditions are implemented using the observation that if an agent’s faultiness is common knowl-
edge among the nonfaulty agents, it must be distributed knowledge at the previous time (where a
fact ¢ is distributed knowledge among an indexical set S of agents if the agents would know ¢ if
they pooled their knowledge together; for example, the set of faulty agents is distributed knowledge
among the nonfaulty agents if, between them, the nonfaulty agents know who the faulty agents
are). Since nonfaulty agents send messages describing their complete state in every round, we can
check whether Cn (t-faulty) holds at a point (r, m) by considering the local states at (r, m — 1) of
the agents that nonfaulty agents heard from in round m.

PROPOSITION 7.9. There exists a polynomial-time implementation P°P' of P' with respect to a
full-information exchange.

8 DISCUSSION

We introduced the notion of limited information exchange, examined optimality for EBA with
respect to various information-exchange protocols and described an efficiently implementable
optimal FIP. There is clearly far more to be done. There are two short-term directions we are
currently pursuing. First, we hope to explore the impact of limited information exchange on other
protocols of interest. Second, we are exploring the application of epistemic synthesis techniques
that allow the automated derivation of protocols from a knowledge-based program in the context
of limited information-exchange models. This seems to give the techniques far more scope (cf.
[9, 10]).

We conclude this discussion by taking a closer look at the costs and benefits of limited information
exchange for EBA. We focus on the two settings considered in Section 6, as well as the full-
information context, and consider the cost both in terms of the number of bits sent and the
number of rounds required to reach a decision in the most likely case, where there are no failures.
While the results are straightforward, they help highlight the tradeoffs involved. Let yf, s be a
full-information EBA context with omission failures and let P be an implementation of P! in
Yfipnt-

We start by considering message complexity in terms of bits. In the minimal information-
exchange protocol P™", each message can be represented using a single bit and agents send a
message only when they first decide, otherwise staying silent. Since each agent sends exactly one
message in each run, and sends it to all the other agents, n? bits are sent altogether. In the basic
information-exchange protocol P?%, we still require only a constant number of bits to represent
messages and agents send messages to all other agents as long as they are undecided, which means
for at most t + 1 rounds. We then get the following result:

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 15

PROPOSITION 8.1. In each run of P™™ n? bits are sent in total; in each run of P®, at most O(n’t)
bits are sent in total.

By way of contrast, a standard communication graph implementation of a full-information
exchange uses O(n*t?) bits [12].

We next consider decision times. We focus on the failure-free case as, in most applications, the
most common runs are runs with no failures.

ProrosITION 8.2. Ifr is a failure-free run, then

(a) If there is at least one agent with an initial preference of 0 in r, then all agents decide by round 2
with pmin pbasic opd pfip,

(b) If all agents have an initial preference of 1, then all agents decide by round t + 2 with P™" and by
round 2 with P*® and Pfe.

Thus, for failure-free runs, the agents in the basic context and the full-information context decide
at the same time. The only failure-free run where the basic context results in an earlier decision
than the minimal context is the run where every agent starts with an initial preference of 1. As a
result, implementing full-information and incurring a quadratic overhead in the number of bits
never leads to an improvement for failure-free runs. If we assume that each configuration of initial
preferences is equally likely, using the basic context over the minimal context for failure-free runs
is only an improvement 1/2" of the time.

If failure-free runs are sufficiently common, this suggests that the gain of using an FIP may not
be worth the cost; even the tradeoff between P?% and P™" is not so clear. We conjecture that
even in runs with failures, P*** may not be much worse than P/, This emphasizes the advantages
of considering limited information exchange, and further motivates considering optimal protocols
with limited information exchange more broadly.

A PROOFS
A.1 Proofs for Section 6

ProposiTiON 6.1. Ify = (&, F, m) is an EBA context, then all implementations of the knowledge-
based program P with respect to y are EBA decision protocols for y. Indeed, all implementations of P°
terminate after at most t + 1 rounds of message exchange and Validity holds even for faulty agents.

Proor. Fix an implementation P of P° in yf, ;.

Unique-Decision follows from the fact that P; makes at most one decision per round and the fact
that whether a decision was made is recorded in the local state variable decided;.

To see that Agreement holds, we first show by induction on m that if i has not decided before
round m+1and 7, (r,m) [init; = 0V K;(\ jeaq jdecided; = 0), then i receives a 0-chain in round
m. If m = 0, then it must be the case that 7, (r,m) [= init; = 0 which is a 0-chain with i; = i. If
m > 0, we cannot have I, (r,m) [init; = 0 (as i would have decided earlier) so we must have
I, (r,m) E K;(jdecided; = 0) for some j € Agt. Then, I, (r,m) [= jdecided; = 0 and the result
follows from the induction hypothesis.

Suppose by way of contradiction that r is a run where there exist nonfaulty agents i and j and
a time m such that 7, (r,m) |= decided; = 0 A decided; = 1. Suppose that j decides 1 in round
mj + 1 and i decides 0 in round m; + 1, so that the decision conditions first hold at times m; and m;;,
respectively. If m; < m;, must have either 7, (r,m;) [init; = 0 or I, (r,m;) = K;(jdecided; = 0)
for some k € Agt. Using our observation, we can conclude that i receives a 0-chain at time
m;, which implies that there exists an agent i’ such that 7, (r,m;) | deciding, = 0. Hence,
I, (r,mj) E =K;(—(deciding; = 0)), so j cannot decide 1 at m;. If m; > m;, since i decides 0 in

16 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

round m; + 1, we must have 7, (r,m;) [init; = 0\ jeaq Ki(jdecided; = 0). We can again use our
observation to conclude that i receives a 0-chain at time m; in r. As i is nonfaulty, j must hear from
iinround m; +1,s0 I, (r,m;) | K;(jdecided; = 0). It follows that agent j should decide 0 in this
run, contradicting the assumption that j decides 1.

For Validity, observe that if i decides 0, using the previous observation, there must be a 0-chain,
and hence an agent that had an initial preference of 0. If agent i decides 1, then i did not decide 0
in the first round and therefore we must have init; = 1. Note that this argument holds even if i is
faulty.

Finally, we prove Termination by showing that in all runs, all nonfaulty agents must decide by
round ¢ + 2 after at most ¢ + 1 rounds of message exchange. To see this, we first show that if some
agent decides 0 in run r, then all agents that decide 0 must do so by round ¢ + 2 after at most ¢ + 1
rounds of message exchange. For suppose by way of contradiction that some agent i decides 0 in
round m > t + 2. Then there must be a 0-chain iy, . . ., i;, with i, = i. All the agents on the 0-chain
are distinct. Since there are at most ¢ faulty agents in a run, one of iy, . . ., izy; must be nonfaulty,
say i;. But that means that all agents (including i) would have received a message from i; in round
Jj < t+1 from which they could infer that i; is about to decide 0 (by our assumption regarding
p in an EBA context), and they would all decide 0 in round j + 1 < m if they have not done so
yet. This gives the desired contradiction. It follows that if i has not decided 0 by round ¢ + 2, then
I, (r,t +2) E Ki(/\jeag ~(deciding; = 0)), so i will decide 1 in round ¢ + 2 if it has not already
decided. O

THEOREM 6.3. Ify is an EBA context and P° is safe with respect to y, then all implementations of
P° are optimal with respect to y.

PrOOF. Suppose by way of contradiction that P is an implementation of P’ with respect to an
EBA context y and EBA-protocol P’ strictly dominates P with respect to y. If P’ strictly dominates
P, by definition, there exist corresponding runs r of 7, p and r’ of 1, p, a nonfaulty agent i, and a
round k such that P’ decides in round k of r” and P does not decide before round k + 1 in r. Clearly,
there also exist corresponding runs r and r’, an agent i (possibly faulty) and a round k such that P’
decides in round k of r’, and P either does not decide before round k + 1 of r, or decides differently
in round k of r. Let k be the earliest such round, and let r and r’ be the corresponding runs of P
and P’, respectively, where in r’, P’ decides in round k and in r, P either does not decide by round
k or reaches a different decision in round k than P’. (Note that the k we use here may be smaller
than the smallest k such that P’ decides in round k and P does not decide before round k + 1 in
corresponding runs.) Since the same information-exchange protocol is used in both systems, all
agents must have exactly the same state up to time k — 1 in corresponding runs of the two systems:
either they have not decided yet, or they have decided and made the same decision, so they will
send the same messages and undergo the same state transitions in corresponding runs of P and P’
up to time k — 1. We now consider two cases.

Suppose that i decides 0 in round k of r’. Since i either does not decide at or before round
k of r or decides 1 in this round, i did not receive a 0-chain by (r,k — 1). Since P° is safe with
respect to y, by the first part of the safety condition, it follows that there is a run r; of P such
that r;(k — 1) = (r);(k — 1) and all agents have initial preference 1 in r;. Let r; be the run of P’
corresponding to ry. As observed above, i must have the same state at (r;,k — 1) and (r], k — 1).
Since i also has the same state in (r,k — 1) and (r’, k — 1), i has the same state in (r’,k — 1) and
(r{,k—1), so must decide 0 in round k of r;. We now get the desired contradiction by observing that
the decision rule for deciding 0 in P° requires that there exists an agent with an initial preference 0.
Note that this is because, as shown in Proposition 6.1, Validity holds even for faulty agents.

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 17

Suppose that i decides 1 in round k of r’, does not decide 1 in round k of r, and does not decide
earlier than round k in r. Then we must have that 7, p, (r,k—1) £ =Ki(/\ jeaq —(deciding; = 0)):If
i decides 0 in round k, then clearly i considers it possible that some agent is deciding 0; and if i does
not decide 0 and does decide 1 (the only other possibility), then this formula must also hold. Since
P is safe with respect to y, it follows that there is a run r; of P such that r;(k — 1) = (r1);(k — 1), i
is nonfaulty in ry, and there exists a nonfaulty agent j that decides 0 in round k of r;. Again, let r|
be the run of P’ corresponding to ry. As above, i has the same state in (v, k — 1) and (r{, k — 1), so
must decide 1 in round k of r|. Since P’ dominates P, j must also decide in round k of r{, and must
decide 1 (since i is deciding 1).

If k = 1, since j decides 0 in ry, j must have an initial value of 0 in both r; and r]. Let r;" be
the run of P’ where all agents have initial value 0 and are nonfaulty. Since (r{");(0) = (r{);(0),
Jj must decide 1 with P’ in run r{’, giving us the desired contradiction. If k > 1, by the second
half of condition 2(c) of the safety condition, there exists a run r; of P and an agent j’ such that
(r2)j(k = 1) = (r1)j(k = 1), j and j’ are nonfaulty in r;, and j’ decides 0 in round k — 1 of r,.
Let r, be the run of P’ corresponding to r;. As observed above, (rz);(k — 1) = (rz)j’. (k = 1). Thus,
(rl)J’.(k -1)= (rz)J’.(k — 1), so j must decide 1 in round k of r;. Since j’ is nonfaulty and decides
in round k — 1 of r;, and P’ dominates P, agent j’ must also decide at or before round k — 1 of
r;. Since, by construction, round k is the earliest round that P and P’ reach different decisions in
corresonding runs, j must decide 0 in round k — 1 of r;. But this means that j and j* make different
decisions in r,, despite both being nonfaulty. This gives us the desired contradiction. O

PROPOSITION 6.4. P° is safe with respect to all contexts Yminnr and Yoasicns Such thatn —t > 2.

Proor. We do the argument simultaneously for yminn: and and ypgsicn s Let P be an implemen-
tation of P® in yin s (t€Sp., Ypasicn,r) and let r be a run in Iy ionp (xesp., Iy, . p). We first show
that the first part of the safety condition holds. Suppose that i has not received a 0-chain by (r, m).
We want to show that there exists a point (7', m) such that r;(m) = r/(m) and all agents have initial
preference 1in r’. Let 7’ be the run where all agents start with initial preference 1 and the adversary
is the same as in r. An easy argument by induction on k, using the fact that the failure pattern is
the same in r and r’, shows that that for all agents j and times k, if j has not received a 0-chain by
(r,k) then rj(k) = rj’. (k). It immediately follows that r;(m) = r/(m), which completes the proof of
the first part of the argument.

To prove that the second part of the safety condition holds, suppose that 7, (r,m) | =(Ki(A jeag:
ﬂ(decidingj = 0)) and i does not decide before round m + 1 of r. The second part of the safety
condition is easily seen to hold if m = 0, so we assume that m > 1. This implies that init; = 1,
otherwise agent i would have already decided in round 1. There must exist a point (r*, m) such
that r;(m) = r} (m) and some agent j decides 0 in round m + 1 of r*. Since n — t > 2, there must
be agents, say i’ and j’, that are nonfaulty in r*, where we can take i = i’ if i is nonfaulty in r*,
and j = j’ if j is nonfaulty in r*. If m > 1 then the initial preferences of i’ and j’ in r* are 1,
for otherwise i would decide 0 at or before round 2 in r*, and hence also in r, contradicting the
assumption i does not decide before round m + 1 in r. The initial preference of j must also be 1, for
otherwise j decides in round 1 # m + 1, given that m > 1.

Observe that in r*, (a) no agent decides 1 at or before round m + 1 (for if agent j’* decides 1
in round k of r*, then 7, (r*,k — 1) |£ Kj»(V jmcaq —(deciding;,,» = 0)), and this contradicts the
fact that j decides 0 in round m + 1 of r, so there must be a 0-chain of length m ending with j in
r), (b) no nonfaulty agent decides 0 before round m in r* (otherwise i and j would decide 0 at or
before round m in r*), (c) i and j do not decide 0 at or before round m in r*, and (d) i, j, and all
the nonfaulty agents send no message (i.e., send L) in yminn; and send (init, 1) in Ypasicn s up to

18 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

and including round m — 1; i and j also send L (resp., (init, 1)) in round m of r in ypin(n) (resp.,
(Ybasicnt)- Note that i’ or j’ may decide 0 in round m of r*, in which case they will send 0; otherwise,
like i and j, they send L (resp., (init, 1)) in round m of r in yuinns (tesp., (Yoasicn.t)-

We want to modify r* to get a run r’ such that (a) r;(m) = r/(m), (b) i and j are nonfaulty in
r’, and (c) j decides 0 in round m + 1 of r’. Let « = (N’, F’) be the adversary in r’. We define r’
by assuming that all agents have the same initial preferences in r’ as in r*, and the adversary
(N, F"”) in r’ is defined as follows: N = N" — {i’, j’} U{i, j} (so that i and j are nonfaulty in ’)
and, roughly speaking, F” interchange the failures of i and i’ and of j and j’ in r* and r’. More
precisely, for all agents j”, (a) if j” does not receive a message from i (resp., j) in round k of r*
according to F’, and, in the special case that k = m, neither i’ nor j’ sends the message 0, then j"’
does not receive a message from i’ (resp., j’) in round k of r” according to F”’; (b) if j”’ receives
a message from i (resp., j) in round of r* according to F’ or if k = m and either i’ or j’ send the
message 0 in round m of r, then j”’ receives a message from i’ (resp., j’) in round k of " according
to F”.

We claim that for all k < m, all agents j”” have the same state at time k of runs r* and r’. We
prove this by induction on k. In the case that k = 0, this is immediate since all agents have the
same initial preferences in r* and r’. If 0 < k < m, this follows from the fact that all agents have
the same state at time k — 1, and the only way in which the runs differ is that j”’ does not receive
a message from i (resp., j) in round k of r*, then j”’ does not receive a message from i’ (resp., j’)
in round k of r’. These message are either L (if the context iS yminn¢) or (init, 1) (if the context
iS Ybasicn,t)- But clearly this difference does not affect the state of j”’; in particular, if the context
iS Ypasicn,t» then j' gets the same number of messages of the form (init, 1) in both cases, and this
is all it keeps track of in its state. The same argument applies if k = m and neither i’ or j’ send
the message 0 in round m of r*. If i’ or j’ do send the message 0 in round m of r*, since they are
nonfaulty in r*, all agents will get the message. By construction, they will also send this message
in round m of r” and all agents will get it in #’. The transition function then guarantees that all
agents will have the same state in round m of r* and r’. In particular, it follows that r] (m) = r/(m)
and j decides 0 in round m + 1 of 1/, as desired.

Finally, if m > 1, we must construct a run r”’ as required in the second part of condition 2(c).
Since j decides 0 in r’ in round m + 1, as shown earlier, j must receive a 0-chain at time m in r. Let
Jj' be the last agent on that chain. Thus, j’ decides 0 in round m in r’. If j’ is nonfaulty in r’, we are
done. If j” is faulty, then we consider two cases. If m = 1, then we must have init; = 0. We consider
arun r”’ where all agents have the same initial values as in r’, and if (N’, F’) is the adversary in r’,
then the adversary in r”” is (N’ — {j’}, "), where F”’ agrees with F’ on all the agents in N" — {j’}.
It is easy to see that r}(1) = r/’(1), completing the argument. If m > 1, then there must be some
nonfaulty agent j” other than i, since n — ¢ > 2. As in the argument above, the initial values of j’
and j” must be 1 (otherwise j* would have decided in round 1 and i would have decided in round 2
in r’). We now proceed much as in the previous argument to construct r’’: all agents have the same
initial values in r” and r”’, and we take the the adversary in r”’ to be (N’ U {j”’} — {j’}, F”’), where
F”" interchanges the roles of j” and j”’. We leave details to the reader. o

THEOREM 6.5. Ift < n—2 then pmin implements PO in the EBA context Yminn.z-

Proor. Let I be the system 7, .
P (ri(m)) = (B (ri(m)).

e If P™"(r;(m)) = noop because decided; # L in r;(m), we clearly also have (P?)I(ri(m)) =
noop, because 7, (r,m) | K;(decided; + 1).

po. We show that for all runs r and times m, we have

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 19

o If P""(r;(m)) = decide;(0), we must have decided; = L in r;(m), and either init; = 0 or

jd; = 0. If init; = 0 in r;(m), then 7, (r,m) |= K;(init; = 0), so (P?)I(ri(m)) = decide;(0).

If jd; = 0 and init; # 0 in r;(m), then we must have time; > 0 in r;(m) and jd; = L in

ri(m’) for m" < m, for otherwise, agent i would have decided 0 earlier and we would have

decided; # L in r;(m). Moreover, i must have received the message 0 from some agent j.

Thus, 7, (r,m) | Ki(V jeag jdecided; = 0). It follows that (P?)I(rl-(m)) = decide;(0).

If P/""(r;(m)) = decide;(1), we must have decided; = 1, init; = 1, jd; # 0, and time; =t + 1

in r;(m). As shown in the argument for Termination in the proof of Proposition 6.1, we have

Z,(r,m) E Ki(/\ jeaq: —(jdecided; = 0)). Thus, (P?)I(ri(m)) = decide;(1).

e Finally, ifP;"i”(ri(m)) = noop by the final line ofPl.mi", we must have time; < t + 1, init; = 1,
decided; = 1, and jd; = L in r;(m). (Note that t’ = m.) Consider a run r’ where all agents
have initial preference 1 and are nonfaulty. It is easy to see that i receives the same messages
up to time m in r and r’, so r;(m) = r/(m). Hence, we must have 7, (r,m) | —K;(init; =
0V V jeag decided; = 0). Thus, (P?)I(ri(m)) #+ decide;(0). It is also not hard to construct
arun r” that i considers possible where there are exactly ¢’ faulty agents such that some
nonfaulty agent j in r’’ gets a 0-chain of length ¢’ in round ¢’ of r”’. Thus, 7, (r,m) [
=Ki(Ajeag —(deciding; = 0)), so (P?)I(ri(m)) # decide;(1). Therefore, (P?)I(ri(m)) =1

It follows that P™" implements P° in yiin n.s- O
THEOREM 6.6. Ift < n —2, then phasic implements P° in the EBA context Ypasicn.s-

Proor. We proceed just as in the previous argument. If Pib“SiC(ri(m)) = 1 or Pl.b“Sic(ri(m)) =
decide;(0), then the argument is identical to that for P™". If Pl.b““c(r,-(m)) = decide;(1), then we
proceed by induction to show that when we have decided; = L, init; = 1, and either jd; = 1 or
#1; > n— minr;(m), then we also have 7, (r,m) £ Ki(/\ jeaq —(deciding; = 0)).

So suppose that decided; = L and init; = 1 are in r;(m). If #1; > n — m in r;(m), then it is easy to
see that there cannot be a 0-chain of length m in r (since the only agents that can be involved in this
0-chain are ones that did not send an (init, 1) message). Thus, 7, (r,m) = Ki(\ jeaq ﬂ(decidingj =
0)). On the other hand, if jd; = 1 is in r;(m), then we must have that jd; = L in r;(m’) for
m’ < m, for otherwise, agent i would have decided 1 earlier and we would have decided; # L in
ri(m). Moreover, i must have received the message 1 from some agent j in round m of r. Thus,
j decides 1 in round m of r, so we must have decided; = L, init; = 1, and either jdj =1or
#1; > n—minr;(m—1). By the inductive hypothesis, 7, (r,m—1) |£ K;(/\ jcag ~(deciding;, = 0)).
If some agent j’ decides 0 in round m + 1 of r, then there must be a 0-chain that ends 0 with j’,
so j/ must get a message from an agent that decides 0 in round m, contradicting the fact that
Z,(r,m=1) E Kj(\jcag ~(deciding;, = 0)). It thus follows from the information in r(m) that no
agent decides 0 in round m+ 1 of r, so 7, (r,m) | Ki(\ jeag ﬂ(decidingj =0)). In either case, we
have (P%)7 (r;(m)) = decide;(1).

Finally, if Pil’“s"c(ri(m)) = noop by the final line of Pib“s"C, then arguments similar in spirit to
those used above show that agent i considers it possible that all agents started with an initial
preference of 1, and hence does not know that there is a 0-chain, but also cannot rule out the
possibility of a 0-chain. We must have decided; = jd; = L, init; = 1, and #1; < n — m in r;(m).
Since init; = 1 and jd; = L are in r;(m), at the point (r, m), i considers possible the run r’ where
every agent started with an initial preference of 1 and the message pattern is identical to r. We
then have 7, (r,m) | =Ki(/\ jeaq (jdecided; = 0)), so (P?)I(ri(m)) #+ decide;(0). Similarly, since
#1; < n—m, i considers it possible that a there is a 0-chain consisting of the agents that i didn’t

20 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

hear a 1 from. Hence, 7, (r,m) E "Ki(/\je_Agt ﬁ(decidingj =0)), so (P‘i))](ri(m)) # decide;(1). It
follows that (P?)] (ri(m)) = L. Thus, pbasic implements P° in ypusic.n.;-]

A.2 Proofs for Section 7
A.2.1 Motivating the KBP.

ProposITION 7.2. IfP is an optimal protocol in the context yfipn, and Ipy,, . ,, (r,m) |= decided; =
L A Ki(Cn(t-faulty A no-decidedp (1) A 30)), then all undecided agents in N (r) make a decision in
round m+ 1, and similarly if Ip , (r,m) k decided; = L A K;(Cn(t-faulty A no-decided 5(0) A 31)).

Proor. For ease of exposition, let y = yfyn,. Suppose that Ipy, (r,m) [decided; = L A
K;(Cn(t-faulty A no-decided (1) A 30)). Let P’ be the protocol for context y obtained by mod-
ifying P as follows. For each agent i and local state s € L;, we define P;(s) to be decide;(0)
if Ipy, (r,m) | Ki(Cn(t-faulty A no-decided (1) A 30)) for points (r,m) with r;(m) = s, and
P!(s) = Pi(s) otherwise. We claim that P’ < P and P’ is an EBA-protocol in context y.

Let r and r’ be corresponding runs of 7p, and Ip ,, respectively. We show by induction on k that
r(k) = r’(k) if k is less than or equal to the earliest time m such that 7p, (r,m) | Cn/(t-faulty A
no-decided x(1) A 30). The base case is trivial, and the inductive case follows the fact that if r(k) =
r’(k) and Ipy, (r, k) [Cn(t-faulty A no-decided (1) A 30)), then for all agents i, Ip, (r, k)
KiCn (t-faulty A no-decided (1) A30) (the fact that Ip , (1, k) ¥ K;Cn (t-faulty A no-decided (1) A
30) for all agents i follows from Lemma A.3, proved below), so P;(r;(k)) = P;(r{(k)) for all agents
i. Since the failure patterns are the same in these runs, it follows that r(k + 1) = r’(k + 1).
Moreover, since 7 = (Cy(¢) Ai € N) = Ki(Cn(¢)) (see [5]), it follows that once Ip,, (r,m) |
Cn(t-faulty A no-decided (1) A 30), all undecided agents in N (r’) decide 0 simultaneously using
P’

It is immediate from these facts that P’ <, P.If a nonfaulty agent i decides in r” at a time m
before the common knowledge condition has become true in r, then r(m) = r’(m’) and agent i
makes the same decision at time m in r. Once the common knowledge condition becomes true, an
undecided nonfaulty agent i decides using P’, so does so at least as soon as it does using P. Recall
that if i is faulty, then the definition of P’ <, P allows that agent i decides using P before it does so
using P’, so we do not need to consider this case.

Next, we show that P’ is an EBA protocol in context y. Unique Decision follows from the fact
that the context y records decisions in the local state, and P;(s) = L for states s that record that a
decision has already been made. For Validity, consider runs r’ of P’ and the corresponding run r
of P in context y. If the common knowledge condition has not yet become true at a point where
nonfaulty agent i makes its decision on value v using P’, then r(m) = r’(m), and i makes the same
decision using P. It follows from Validity for P that some agent has initial value v. Alternately, if
nonfaulty agent i decides 0 at (r’, m) because it knows at (r, m) in Zp,, that the common knowledge
condition has become true, then in fact Zp, (r, m) 30, and the same fact holds at (r’, m).

For Agreement, consider a run r’ of P’ where agent i € N(r’) decides 0 in round mg + 1 and
agent j € N(r’) decides 1 in round m; + 1. If the common knowledge condition has not become
true in the corresponding run r of P by time max(my, m;), then since r and r’ are identical up to at
least this time, we have a contradiction to Agreement for P. If the common knowledge condition
becomes true at time k < mj, then according to P’, all nonfaulty agents undecided by time k decide
0 in round k + 1. That means that agent j, which is undecided at time k, decides 0 in round k of r’
and decides on a different value in round m; + 1, contradicting the fact that, as we have shown, P’
satisfies Unique Decision. On the other hand, the common knowledge condition cannot become
true after time my, since it implies no-decided 5 (1) and j € N (r’) has decided 1 in round m; + 1.
Thus, P’ satisfies Agreeement(N).

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 21

Finally, Termination for P” follows from P’ <, P and the fact that P satisfies Termination.

Since we have P’ < P and P’ is an EBA protocol for context y, it follows that P < P’, so in Zp,,
all undecided nonfaulty agents make a decision as soon as they know that the common knowledge
condition holds. O

Note that the result does not tell us what decision the nonfaulty agents must make when the
common knowledge condition holds. There may be situations where no nonfaulty agent has made
a decision, and both common knowledge conditions hold. Either a 0 or a 1 decision would be
acceptable in this case.

We now prove all the required properties of P!. We start by examining what each of the conditions
is P! tells us.

A.2.2 The common knowledge conditions. As a first step to understanding P!, we characterize
the common knowledge conditions (i.e., the second and third lines). The next proposition gives
necessary and sufficient conditions for these conditions to hold. These conditions show that the
problem of computing when the common knowledge conditions hold is tractable.

Define dist 5/(t-faulty) to be an abbreviation for

JAC Agt(JA| =t AVie ATje N (K;(i ¢ N))).

Roughly speaking, dist 5 (t-faulty) holds if, between them, the nonfaulty agents know about ¢ faulty
agents.

Definition A.1 (hears-from). We define a one-step hears-from relation in a run r on pairs (j, m)
consisting of agents j and times m by saying that (j’, m’) one-step hears from (j, m) in r if agent
Jj sends j’ a non-L message in round m + 1 of r that j”’ receives and m + 1 < m’. The hears-from
relation is the transitive closure of the one-step hears-from relation. We write (j, m) —, (j',m’) if
(j’,m’) hears-from (j, m)

Those familiar with the Lamport causality relation [11] will recognize that the hears-from relation
is similar in spirit.
PrOPOSITION A.2. For all implementations P of the knowledge-based program P! with respect to
Yfip.n,ts
@) Zy,,.,.p time > 0 = (Odisty(t-faulty) & Cn(t-faulty)).
(b) 2y, F time > 0 = (no-decidedy(v) = Ajen © (KjOno-decided;(v))) and 1, . p F
(Cn(t-faulty) A (no-decided n(v))) & Cn(t-faulty A no-decided n(v)), forv € {0,1}.

(c) Iyﬁpynybp E time > 0 = ((Cn(t-faulty) A ©(VjenK;(F0))) & Cn(t-faulty A Fv)), for
v € {0,1}.

PrOOF. Let P be an implementation of P! and let 7 = LypniP-

For part (a), first suppose by way of contradiction that 7, (r,m) E - © disty(t-faulty) A
Cn(t-faulty). Let A’ = {i : 3j € N(r)(Z,(r,m—1) E K;(i ¢ N))}. By assumption, |[A’| < t.
There must exist some set A with |A| = t such that 7, (r,m) | Cx(Ajea(i € N)). Moreover, A’ is
a strict subset of A, since each nonfaulty agent in r will learn in round m (if they did not already
know it) that each agent in A’ is faulty (by getting a message from a nonfaulty agent from which it
can infer this). Let r’ be a run where N'(r’) = A’, all agents have the same initial state in r and r’,
and for all agents in A’, the same messages are delivered in r and 7’. It is easy to check that for all
agents in N'(r), we must have (r,m — 1) ~; (+’,m — 1). (Formally, we show by induction on k that
ifje N(r)and k < m’ < m—1,then (j',m' —k) —, (j,m’") iff (j/,m" —k) —, (j,m’). That is, all
agents in N (r) consider possible a run, namely r’, where the only nonfaulty agents are those in A”.
Now even though i may learn about other other nonfaulty agents in round m of r, for all j € N (r)

22 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

such that j # i, i must consider it possible that at (r, m), j considers (r’, m) possible, because j
hears from all agents other than those in A’ in round m. Thus, -faulty is not commnon knowledge
among the nonfaulty agents at (r, m). (Note that here we are using the fact that n — ¢ > 2, so that
there is an agent j € N (r) such that j # i.)

Conversely, suppose that 7, (r,m — 1) |= dist5(t-faulty). Thus, there exists some set A with
|A| =t such that T, (r, m — 1) | distnx(t-faulty ,), where dist(t-faulty,) is the formula Vi € A3j €
N(K;(i ¢ N))). Moreover, for all runs r’, if 7, (r',m — 1) | dist 5 (t-faulty,), then N (r) = Agt — A.

It is well known (see [5]) that, for all formulas ¢ and ¢, if 7 = ¢ = En(Y A p), then T ¢ =
Cny. Thus, it suffices to show I |= edistn(t-faulty ,) = En(t-faulty A &dist (t-faulty).

For all points (r',m’),if I, (r',m’) | &dist 5 (t-faulty,), then at (r’, m), all the nonfaulty agents
know that the agents in A are faulty and that these are the only faulty agents. Since |A| = ¢, we
have that 7, (r’,m’) |= En(t-faulty). Moreover, since all the nonfaulty agents hear from all the
other nonfaulty agents in round m of r’, they all know ©dist 5 (t-faulty,). This completes the proof
of part (a).

For part (b), the first part is immediate: if a nonfaulty agent i does not decide on a value v
by round m, then at time m — 1, i knows this will be the case. The if direction of the second
part is immediate from the fact that, since N # 0, I = Cy¢ = ¢ for all formulas ¢ [5]. For
the only-if direction, suppose that 7, (r,m) |= Cn(t-faulty) A no-decidedn(v). For each agent
i € N(r), as we obseved, i knows at time m — 1 in r that it will not decide v in round m. Since
we are using a full-information protocol, all the nonfaulty agents will know at time m in r that
no-decided;(v) holds. Thus, I, (r,m) = Ex(no-decided 5 (v)). It is a standard property of Cp that
I ECnd = ENCN¢ [5]. Thus, I, (r,m) |= En(no-decided n(v) ACpt-faulty). We have just shown
that 7 |= Cn(t-faulty) A no-decided n(v)) = EnCp(t-faulty) A no-decided n(v)). It follows that
I | (Cn(t-faulty) A (no-decided n(v))) = Cp(no-decidedn(v)), as desired.

For part (c), the proof of the only-if direction is similar in spirit to that of part (b); we leave
details to the reader. For the if direction, suppose that 7, (r, m) |= Cn(t-faulty) A v and, by way
of contradiction, 1, (r,m) }£ V;jen(©K;(Fv)). Let r’ be a run where all the agents have initial
state 1 — v, N(r’) = N(r), and the failure pattern is the same in r and r’, except that in round
m of r’, all agents hear only from the nonfaulty agents. We claim that, for all i € N'(r), we have
(r,m—1) ~; (r’,m —1).For clearly, if j € N(r) and k < m’ < m — 1, then (j',m’ — k) —, (j,m’)
iff (j',m’ — k) —, (j,m’). Since (j, m") does not hear from any agent with initial value v in r, it
follows that this must also be the case in r’. Now a straightforward induction on m”’ shows that
ifje N(r),m" <m’ <m-1,and (j',m"”) —, (j,m’), then (r,m"”) ~j (r',m’). As in part (a),
even though i may learn Jv in round m of r, for all j € N(r) such that j # i, i must consider it
possible that at (r,m), j considers (r’, m) possible, so does not learn Jv. Thus, Jov is not commnon
knowledge among the nonfaulty agents at (r, m).

O

LEmMA A.3. For all implementations P of the knowledge-based program P with respect to yfipn,s,
if Ly niops (rom) | Cn(t-faulty A no-decided (1 —v) A Jv), then for alli € Agt, 1, ., p,(r,m) E
Ki(Cn(t-faulty Ano-decided 5 (1-v) ATv)). Moreover, for all agentsi, I, . p, (r,m) |= Cn(t-faulty)
= K;(Cn(t-faulty).

Proor. Let I = 7, , p and suppose that 7, (r,m) | Cn(t-faulty A no-decided (1 - v) A Jo)
for some v € {0,1} and (r,m) ~; (r’,m). We clearly must have m > 0, since we cannot have
common knowledge of the faulty agents at time 0. By Proposition A.2, it follows that 7, (r,m—1) |
dist 5 (t-faulty) A (Ajen(KjOno-decided;(v)) A (VjenK;(3v)). Since the nonfaulty agents send
messages to all agents in round m, all agents (not just the nonfaulty agents) will know at time m

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 23

that this was true at time m — 1. It now follows from Proposition A.2 that, for all agents i, we have

Ly > (rsm) | Ki(Cn(t-faulty A no-decided i (1 —0) A Jv)). O

We next show that once the nonfaulty agents know about ¢ faulty agents, every agent decides
by the end of the following round.

LEmMA A.4. For all implementations P of the knowledge-based program P with respect to yfip ns,
Ly P E Cn(t-faulty) = Njepq O—(decided; = L).

Proor. Let I = 1, . p and suppose that i € Agt, j € N, and 7, (r,m) | Cn(t-faulty). If j
decides 0 in round m’ < m, then i must decide by round m’ + 1, because it will hear from j in round
m’ that it is deciding, so that 7, (r,m’) [£ K;(jdecided; = 0). (Note that i may decide earlier or due
to one of the common knowledge conditions, but it will surely decide by round m’ + 1.) If j decides
1 at some round m’ < m, then either

o 1,(r,m'—1) | K;(Cn(t-faulty A no-decided 5 (0) A31),s0 I, (r,m’ —1) = K;(Cp(t-faulty A
no-decided n(0) A 31) by Lemma A.3, and i must also decide by round m’;

o I,(r,m" = 1) E Kj(Ageag ~(deciding; = 0)), so, since P is a full-information protocol,
I, (r,m’) E ©K;(/\reag ~(deciding; = 0)). Since P is a FIP, i hears from j in round m’ that
no agent decides 0 in round m’. Thus, i knows that no agent will decide 0 in round m’ + 1
due to line 4 of P. If some agent decides 0 due to the common knowledge condition in round
m’ + 1, then, by the argument above, i also decides 0 in round m’ + 1. If not, then line 5 of P
applies, and i decides 1 in round m’ + 1.

We have just shown that that i decides by round m + 1 if some nonfaulty agent j decides by round
m. If no nonfaulty agent decides by round m, then 1, (r, m) |= no-decidedn(0) A no-decided n(1).
We must have m > 0 since Cy/(#-faulty) cannot hold at time 0, and clearly 7, (r,m — 1) [
(Vikend0) V (Viend1). It now follows easily from Proposition A.2 that 7, (r,m) = Cn/(t-faulty A
no-decided (1) A30) or I, (r,m) | Cn/(t-faulty A no-decided 5/(0) A31); that is, one of the common
knowledge conditions must hold. Hence, by Lemma A.3, agent i must decide by round m+1. O

A.2.3 Characterizing the condition for deciding 0.

LemMA A.5. For all implementations P of the knowledge-based program P with respect t0 yfip s, if
Ly ips (rom) | =K (Cn(t-faulty A no-decided (1) A30)) A =K;(Cn/(t-faulty A no-decided 5 (0) A
31)), then agent i receives a O-chain in round m if and only if I, . p,(r,m) [init; = 0V

V jeag: Ki(jdecided; = 0) and i has not decided before round m + 1.

Proor. We proceed by induction on m. Let I = 1, p and suppose that 7, (r,m) [—K;(
Cn (t-faulty Ano-decided (1) A30)) A=K; (Cp (2-faulty A no—deczdedN(O) Ad1)).By Lemma A.3, we
then have 7, (r, m) |E =Cy/(t-faulty A no-decided (1) A30) A =C p (t-faulty A no-decided 5 (0) A31).

If m = 0, then the only-if direction follows from the fact that agent i receives a 0-chain in round
01iff 7, (r,0) k= init; = 0. Obviously, i has not decided at time 0. For the converse, we first observe
that 7, (r,0) | —K;(jdecided; = 0) for all j € Agt as at time 0, 7, (r,0) | —(jdecided; = 0) for all
Jj € Agt. Thus, 7, ., p, (r,0) [init; = 0V V jcaq Ki(jdecided; = 0) iff 7, p,(r,0) [init; = 0.
So agent i decides 0 in round 1 and receives a 0-chain in round 0.

If m > 0, then the only-if direction follows immediately from the definition of a 0-chain, as
the last agent i decides for the first time after hearing from an agent that just decided 0. For the
converse, suppose that 7, (r,m) [init; =0V V jeag: Ki(jdecided ; = 0) holds for the first time at
time m. Since m > 0 is the first time this formula holds and i did not decide before round m + 1, we
must have 7, (r,m) [init; # 0. Thus, 7, (r,m) [K;(jdecided; = 0) for some j € Agt, so agent j
decides 0 in round m. We must have 7, (r,m — 1) |= =Cx/(t-faulty) since otherwise, by Lemma A .4,

24 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

i would have decided by round m. Thus, j could not have decided 0 due to the common knowledge
condition. It follows from P! that 7, (r,m — 1) [init; = 0 V V jreag Kj(jdecided; = 0). By the
inductive hypothesis, j receieves a 0-chain in round m — 1. Since 7, (r,m) [K;(jdecided; = 0),
agent i receives the message sent by j in round m. Because the common knowledge conditions are
not satisfied and i has not already decided, agent i also decides 0 in round m + 1. Thus. i receives a
0-chain in round m + 1. O

A.2.4 Characterizing the condition for deciding 1. To characterize when an agent is unable to decide
1 (excluding the decisions made using one of the common knowledge conditions), we need some
additional definitions.

Definition A.6. Let len;(r, m) be the length of the longest 0-chain that i knows about at time m in
run r (where len;(r, m) = 0 if i does not know about any 0-chains), let last;;(r, m) be the last time
m’ for which (j,m") —, (i, m) (where last;;(r,m) = —1if (i, m) does not hear from (j, m’) at all)
and let latest0;(r, m) to be the last time m’ such that, for some agent j, we have (j,m") —, (i,m)
and 7, (r,m’) E deciding; = 0 (where latest0;(r, m) = —1 if there is no such time).

Intuitively, if the common knowledge conditions do not hold by time m, then an agent i is unable
to decide 1 if and only if there are enough agents that could potentially extend the longest 0-chain
that i knows about, so that it has length at least m. The following lemma formalizes this intuition.

ProOPOSITION A.7. For all implementations P of the knowledge-based program P! with respect to
Yeipnts if Ly, (rom) |= —Ki(Cn(t-faulty A no-decidedn(0) A 31)), 1, p, (r,m) |E —Ki(Cp(
t-faulty A no-decided (1) A 30)), and I, yipns, P, (r, m) | decided; = L, then the following holds:

® Lyponeps (nm) E =Ki=(3j € Agt(decidingj = 0)) if and only if for all m” with len;(r,m) <
m” < m, there exist at least m"’ — len;(r,m) agents j such that last;j(r,m) < m’ and
I,(r, last;j(r,m) + 1) |= decided; = L.

Proor. Let I = 1, ., pandsupposethat 7, (r,m) | =K;(Cn(t-faulty A no-decided 5 (1) A30)) A
=K (Cn(t-faulty A no-decided 5 (0) A31)). By Lemma A.3, we have that 7, (r, m) | =Cun(t-faulty A
no-decided n (1) A 30) A =Cn/(t-faulty A no-decided 5 (0) A 31). Note that the common knowledge
conditions also do not hold for any earlier time, as otherwise i would have decided earlier by
Lemma A.4.

For the only-if direction, suppose that 7, (r,m) = =K;—(deciding; = 0) for some j € Agt. There
must exist a run r’ such that (r,m) ~; (r',m) and 7, (r’,m) deciding; = 0.

Since (r,m) ~; (r’,m) and i the common knowledge conditions do not hold for i in (r, m),
they do not hold in (r’, m) either. By Lemma A.5, j must receive a 0-chain in round m of r’. Let
ig, - - ., Iy be this 0-chain. For all m* such that len;(r,m) < m* < m, consider the agent iy,- in the
0-chain. We claim that (ip,-, m’) />, (i,m) for all m’" > m*. For suppose that (i, m’) —, (i,m).
Then, since (r,m) ~; (r’,m), we also have (i,,+,m’) —, (i,m). Since i, receives a 0-chain at
time m”* in r’, this must also be the case in r and i learns about it, contradicting the assumption
that len;(r, m) < m*. We must have last;; . (r,m) < m* (otherwise len;(r, m) would be at least m").
It follows that 7, (r, last;; . (r,m) + 1) | decided;>, = L, for otherwise i,,+ would not be on the
0-chain. Thus, for all m” with len;(r,m) < m” < m, there exist at least m"’ — len;(r, m) agents j
such that last;;(r,m) < m”, namely, the agents ip,- with len;(r,m) < m* < m".

Conversely, suppose that for all m"” where len;(r,m) < m’’ < m, there exist at least m"’—len; (r, m)
agents j such that last;; < m’ and I, (r, last;j(r,m) + 1) |= decided; = L. Let iy, iy, ..., ifen; (r,m) be
the longest 0-chain that i knows about at time m in run r.

By assumption, there must exist agents ijen, (r.m)+1, - - - » im such that for all m” with len; (r, m) <
m’ < m, we have last;; , <m” and T, (r, last;; ,(r,m) + 1) |= decided; , = 1. Consider a run r”

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 25

such that the initial state of all agents is the same in r and r”/, N(r) = N (r""), and the failure pattern
in r and r’ is the same except for the messages received by and from the agents ijen, (, m)+1, s ime
Each agent i,,» with len;(r, m) < m’" < m receives messages from the same agents in r and r’" up to
and including round last;;_ , and the same agents receive messages from i,,» up to round last;;,_,;
after round last;; ,,agent ip» receives only one message, from agent i+,»_; at round m”, and if

" < m, only one message is received from iy~ after round last;; ,:a message is received by ip 41
from ip at round m” + 1. (If m” = m, no messages are received from i,, after round last;; ,.) It is

easy to check that (r,m) ~; (r"",m) and iy, .. ., i,, is a 0-chain in r”". O

CoRrOLLARY A.8. For all implementations P of the knowledge-based program P! with respect to
Yfipnts iff},ﬁp’n’[,p, (r,m) | =Cn(t-faulty), Iyﬁp’n’t,p, (r,m) E decided; = L, len;(r,m) < m — 2, and
agent i hears from all but one agent in round m of r, then 1,,, ., p, (r,m) |= deciding; = 1.

PRroOF. Suppose that 7, p, (r,m) £ —Cu(t-faulty), len;(r,m) < m—2, and agent i hears from
all but one agent in round m of r. For all agents j that i heard from in round m, last;;(r,m) > m.
So there is only one agent that could satisfy last;;j(r,m) < m. But since m — len;(r,m) > 2,
Proposition A.7 implies that 7, p, (r,m) | Ki=(3j € Agt(deciding; = 0)). Therefore agent i

decides 1 in round m + 1.]

A.2.5 P! satisfies the EBA conditions.
PROPOSITION 7.3. All implementations of P' with respect to yfy,n are EBA decision protocols for
Yﬁp,n,t'

Proor. Fix an implementation P of P! in yf, ;.

Unique Decision follows from essentially the same argument as in the P° case. The only difference
is since P is a FIP, the decisions can be inferred from the local state without explicitly storing them.

To see that Agreement holds, suppose by way of contradiction that r is a run where there
exist nonfaulty agents i and j and a time m such that 7, (r,m) |= decided; = 0 A decided; = 1.
Suppose that j decides 1 in round m; + 1 and i decides 0 in round m; + 1, so that the decision
conditions first hold at times m; and m;, respectively. We first observe that if either i or j decides
using one of the common knowledge conditions, then we get a contradiction. If 7, (r,m;) |
Ki(Cn(t-faulty A no-decidedn(1) A 30)) then j couldn’t have decided 1 at or before round m;,
since j € N and 7, (r,m;) | no-decidedn(1). Agent j would then decide 0 at round m; + 1,
since I, (r,m;) E K;(Cn(t-faulty A no-decided(1) A 30)), contradicting the assumption that j
decides 1 in this run. If 7, (r, m;) | —Ki(Cn(t-faulty A no-decided (1) A 30)) and 7, (r,m;) |
K;(Cn(t-faulty A no-decided(0) A 31)), then i could not have decided 0 before m; as i € N and
I, (r,mj) | no-decided n(0). Since I, (r,m;) | Ki(Cn(t-faulty A no-decidedp(0) A 31)), and the
other common knowledge condition for deciding 0 does not hold for i at time m;, by the argument
above, i decides 1 in round m; + 1, contradicting the assumption that i decides 0 in round m; + 1.

It remains to consider the cases where neither i nor j decides using one of the common knowledge
conditions.

If m; < m;, must have either 7, (r,m;) | init; = 0 or 7, (r,m;) | K;(jdecided; = 0) for some
k € Agt. Since, agent i does not decide using a common knowledge condition, we can apply
Lemma A.5 to conclude that i receives a 0-chain at time m;, which implies that there exists an agent
i’ such that 7, (r,m;) |= deciding; = 0. Hence, I, (r,m;) | =K;(—(deciding; = 0)), so j cannot
decide 1 at m;.

If mj > m;, since i decides 0 in round m; + 1 without using the common knowledge condition,
we must have 7, (r,m;) | init; = 0 jeaq Ki(jdecided; = 0). We can again apply Lemma A.5 to
conclude that i receives a 0-chain at time m; in r. As i is nonfaulty, j must hear from i in round m; +1,

26 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

so ., (r,m;) | K;(jdecided; = 0). It follows that agent j should decide 0 in this run, contradicting
the assumption that j decides 1.

For Validity, observe that if an agent i decides v using the common knowledge condition, it
follows that some agent had an initial preference of v. If i decides 0 without using the common
knowledge condition, by Lemma A.5, there must be a 0-chain, and hence an agent that had an
initial preference of 0. Finally, if agent i decides 1 without using a common knowledge condition,
then i did not decide 0 in the first round and therefore we must have init; = 1.

For Termination, we must show that all nonfaulty agents decide by round ¢ + 2. Suppose that a
nonfaulty agent i does not decide by round ¢ + 1 in run r, and that r’ is a run such that (+, t + 1) ~;
(r,t +1). Since we are using a full-information protocol, it easily follows that (r, m) ~; (r’, m) for
allm < t+1. Since i does not decide by round ¢ + 1 of r, we do not have 7, (r, m) = K;Cn/(t-faulty A
no-decided (1 —v) A Jv) forv € {0,1} and m < t. By Lemma A.3, it easily follows that 7 (r’,m) =
—Cn(t-faulty A no-decidedp (1 — v) A Jv) for v € {0,1} and m < t. This implies that no agent j
decides in r” using the common knowledge conditions at or before round ¢ + 1.

By Lemma A.5, if any agent j decides 0 in round ¢ + 1 in r’, then that agent receives a 0-chain
ig, - - -, iy at time ¢ in r’. Since agents on a chain are distinct, and there are at most ¢ faulty agents,
this chain contains at least one nonfaulty agent iy that decides 0. But then i must receive a message
(and a 0-chain) from i in round k + 1, which means that i decides 0 by round ¢ + 2, as claimed.

We have shown if an agent decides by round ¢ + 1 using the commnon knowledge conditions or
decides 0 by line 4 of P! in a run r’ that i considers possible, then i decides by round ¢ + 2 in r. If this
is not the case, then 7, (r, 1 + 1) £ Ki(/\ jeay ~(deciding; = 0)), so i decides 1inround t +2. O

A.2.6 P! isoptimal. To show that P! is optimal, we first show that it suffices to prove that weak
safety implies optimality, and then show P! is weakly safe.

THEOREM 7.6. IfP' is weakly safe with respect to yfipn; then all implementations of P' are optimal
with respect to Ypn:-

PRrOOF. Suppose that P! is weakly safe with respect to yfy, . To prove that all implementations
of P! are optimal with respect to yf,n ¢, we use Theorem 7.5. It suffices to prove the only if direction,
since Proposition 4.3 in [8] shows that the if direction holds for EBA protocols, and Proposition 7.3
shows that P! is an EBA protocol.

Suppose that P! is weakly safe with respect to yfipn. Let P be an implementation of P! and let
I = Iyﬁp’n’t,p, We give the argument for the N' A O case. We first assume that 7, (r,m) i € N
for some point (r, m). In terms of (N A O)-B-reachability, we want to show that if for all points
(r’,m) such thati € N(r’), I, (r',m) = 30 A =(O(decided; = 1)), and for all points (r”/, m’) that
are (N A O)-m-reachable from (r’, m), we have 7, (r”’,m’) | 30, then 7, (r, m) E O(decided; = 0).
Suppose by way of contradiction that for all (r’, m) such that i € N (r’) the condition above holds
but 7, (r,m) = —QO(decided; = 0). Then, I,(r,m) £ i € N A O(decided; = 1) and by weak
safety, there exist points (r'’,m) and (r'”’, m) such that r;(m) = r';(m), i € N(r'), (r'”,m’) is
(N A O)-m-reachable from (r'',m), and 7, (r'”",m’) E =30. This is a contradiction. Since this
holds for all (r, m), the only-if direction of the first optimality condition holds. The argument for
the N'A Z case is completely analogous.

Therefore all implementations P of P! with respect to yf,,; are optimal. O

Let P be an implementation on P! and let 7 = Ly i We want to show that P! is weakly safe.
So suppose that I, (r,m) =i € N A O(decided; = 1). We need to show that there exist points
(r",m), (r”,m), (r'',m), and (r'”', m) satisfying the conditions of weak safety. Before we do this,

we introduce an invariant.

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 27

Definition A.9 (Invariant condition forv € {0,1}). I, (r,m) E inv,(i, j, k) if and only if there
exist distinct agents i, j, k such that:
e 1,(r,m) [(decided; = L) A (deciding; = v) A (decidedy = L),
e I, (rm)Eie NAje NAk¢ N, and
e k does not exhibit any faulty behaviour throughout r.

The motivation for the constraint on k in the definition is the following:

LEmMaA A.10. Ifk & N (r) andk does not exhibit faulty behavior inr, then I, (r, m) |= =C (t-faulty)
forallm.

Proor. If If k ¢ N (r) but does not exhibit fauilty behavior, let r’ be a run such that N (r’) =
N (r)—{k}, the failure pattern in r and r’ is the same, and all agents have the same initial preferences
in r and r’. Clearly, for all times m, (r,m) ~; (r’,m) and I, (r’,m) | t-faulty, so I,(r,m) [
—Cn (t-faulty). O

It follows immediately that 7, (r,m) | invi(i, j, k), then no agent decides using the common
knowledge conditions in 7.

We are now ready to construct the points (r?”, m) and (r'", m) required for weak safety. The
main part of the argument for this case is done by Lemmas A.15 and A.16. Lemma A.15 shows that
once we are at a point where the invariant condition for 1 holds, we can (N A O)-B-reach a point
where every agent has initial preference 1. Lemma A.16 shows that if a nonfaulty agent i is unable
to decide, i must consider possible a run where the invariant condition for 1 holds. The desired
result follows from these two lemmas.

The following technical lemma will play a key role in our proof of weak safety. For a point (r, m),
we write E(r, m) for the set of edges (i,k — 1) —, (j, k) with 1 < k < m.

LemMma A11. Ifi € N(r), I, (r,m) | =Cn(t-faulty), latest0;(r,m) = £ < m, and I, (r,m) |
decided; = L, then there exists a runr’ such that
e (r,m) ~; (r',m),
e N(r)=N(r'),
e E(r’,m) C E(r,m),
e all 0-chains in r’ are known to agent i at time m; that is, if iy, . .. ir is a O-chain in r’, then
(iks k) —r (i, m),

e all agents that do not exhibit faulty behavior in r also do no not exhibit faulty behavior inr’.

Proor. Note that since 7, (r,m) E decided; = L and latest0;(r,m) < m, we cannot have
I, (r,m) [deciding; = 0, so in fact agent i cannot hear from any agent that decides 0 in round
m. This means that we must have ¢ = latest0;(r, m) < m — 1. We construct r’ by modifying r
appropriately. For all (j,m") /, (i,m),if m" = 0and 7, (,0) [init; = 0, then we modify init; to 1
inr’, and if m’ > 0, we restrict the messages arriving at (j, m’) to be only those from the nonfaulty
agents in N (r), and the agents that exhibit no faulty behavior in r. We have N (r") = N (r).

Clearly, E(r’,m) C E(r, m). Since we do not modify the failure pattern for messages correspond-
ing to pairs on the path (j,m’) —, (i,m), we have (r,m) ~; (r’, m). Moreover, the construction
changes only the failure behaviour of agents who exhibit faulty behavior in r, so all agents that do
not exhibit faulty behavior in r also do not exhibit faulty behavior in ’.

Note that because Z, (r,m) =i € N A =Cn/(t-faulty) and (r,m) ~; (r’,m), we have I, (r',m) |
—Cx(t-faulty), so in r’, no agent decides using the common knowledge conditions before round
m + 2. In particular, any 0-decisions made before this round must be made using the fourth line of
the knowledge-based program.

28 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

The construction guarantees that if iy, . . ., i, is a 0-chain in r’, then (is, £) —, (i, m). To see this,
first note that none of iy, . . ., iy can be nonfaulty, otherwise i would receive a 0-chain in r and r’,
and decide 0 before time m, contradicting the assumption that 7, (r, m) [deciding; = L. If ¢ > 0,
then the fact that i, received a message from i,_; in r’ and i,_; is faulty means that (i,, £) —, (i, m).
It easily follows that (iy, £) —, (i, m). Thus, i knows about this 0-chain in r’. If £ = 0, then either
(ig, 0) — (i, m), hence (iy,0) —,+ (i, m), or the initial value of iy was changed to 1 in r’, so this is
not in fact a 0-chain.

It remains to show that r’ has no 0-chains of length greater than ¢. Suppose to the contrary that
that i, . . ., ip1 is @ O-chain in r’ of length £ + 1. If ¢ > 0, then since latest0;(r, m) = ¢, we must have
(ip41, £ + 1) >, (i, m), for otherwise we would have (ig41, £+ 1) —, (i,m) and iy, ..., ipy; would
be a 0-chain in r of length ¢ + 1 > latest0;(r, m), a contradiction. If £ = —1 (i.e., i does not know
about any 0-chains in r), suppose there is 0-chain in r’. Then there must be some agent iy with an
initial preference of 0 in r’. We cannot have (i, 0) —, (i, m), for otherwise i would know about a
0-chain in r. But then our construction guarantees that the initial preference of i, in r" is 1, not 0.
We conclude that r’ contains no 0-chains of length at least ¢ + 1, as desired. m]

LEMMA A12. Ifm > 2, 1, (r,m) | invy(i, j, k), and latest0;(r,m) < m — 3, then there exists a run
r* such that I, (r*,m — 1) | inv1(i’, j’, k') for somei’, j’, k' € Agt, E(r*,m —2) C E(r,m — 2), and
N(r)yu{k}=N(*) U {k'}.

PROOF. By Lemma A.11, there exists a point (r', m) ~j (r,m) such that N(r) = N(r"), the
longest 0-chain in r' has length at most m—3, and E (¥, m) C E(r, m). Moreover, since k exhibits no
faulty behavior in r, the same holds in rT. In addition, since 7, (r, m) k= decided; = L A decided; =
1 A decidedy, = L, we also have that T, (rT, m) | decided; = L A decided; = L A decided) = L.

We construct a run r’ by modifying r so that agent i is faulty, k is nonfaulty, and agent k hears
from every other agent except agent i in round m. Since the only modifications are in round m, we
have E(r’,m — 1) = E(r',m — 1) C E(r,m — 1). Agent j is nonfaulty in both r and r’ and has the
same local state in both (r, m) and (r’, m). Hence, j € (N A O)(r,m) U (N A O)(r’, m); therefore,
(r’,m) is (N A O)-E-reachable from (r, m) through agent j. Moreover, the length of the longest
0-chain in r’ is m — 3, because we do not modify ' in round m — 2 or earlier in constructing r’.
Since m > 2 and latestOr (r’,m) < m — 3, in r’, agent k decides 1 in round m + 1 by Corollary A.38.

Next consider the run r”’ that is identical to r” except that agent i hears from every agent in
round m — 1. Here we have E(r"',m — 2) = E(r’,m — 2) C E(r, m — 2). Since the messages received
by agent k are identical in round m, we have k € (N A O)(r',m) U (N A O)(r”, m). Thus, (r”’, m)
is (N A O)-E-reachable from (r’, m) through agent k. Because the longest 0-chain in r” has length
m — 3, and we make no change to r’ in round m — 2 or earlier in constructing r”, the longest 0-chain
in r’ aiso has length m — 3. By Corollary A.8, agent i decides 1 in round m of "’ upon hearing from
every agent in round m — 1. Since agent j heard from agent i and j did not decide earlier in run r”,
agent j decides 1 inround m + 1 in r”.

Now consider the run r* that is identical to r”” except that agent i is in AV (so that agent k does get
a message from agent i in round m), and k is faulty in NV (but does not exhibit any faulty behavior.)
Clearly, E(r*,m — 2) = E(r”’,m — 2) C E(r,m — 2). Since j has the same local state in both (r", m)
and (r*, m), and is nonfaulty in both r”" and r*, we have j € (N A O)(r"”,m) U (N A O)(r*, m).
Therefore, (r*,m) is (N A O)-E-reachable from (r”’, m) through agent j.

Finally, observe that in run r*, i is nonfaulty and decides 1 in round m, k is nonfaulty and
does not decide before round m, and j is faulty but exhibits no faulty behavior and does not
decide before round m. Hence, 7, (r*,m — 1) |= inv;(k, i, j). By the transitivity of the (N A O)-
m-reachability relation, (r*,m — 1) is (N A O)-E-reachable from (r, m), and the claim holds with
(i’,j', k") = (k, 1, j). Each step of the construction involved a swap of faultiness between a faulty

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 29

and nonfaulty agent among i, j, and k, leaving the faultiness of other agents invariant, so we have

N) U{k’'} = N(r) U {k}.]

In the following, we write r[0..m] for the prefix of the run r up to and including to time m, but
removing the information about which agents are nonfaulty from the environment state, and write
Sends;(r, m) for the set of agents j such that (i,m — 1) —, (j, m).

Lemma A13. If 1, (r,m) |= inv;(i, j, k) and the longest 0-chain in r has length at most m — 2, then
forallp ¢ N (r)U{k}, there exists a (N AO)-@-reachable point (r’,m’) withm’ € {m, m+1} such that
r[0.m—1] =r'[0.m - 1], I, (r',m’) E inv; (', j', k"), p € {i’, j*, k’}, and (p,m — 1) />, (j',m’).

Proor. We construct an (N A O)-E-path that establishes the result. We remark that inv; is
generally not maintained along this path: we falsify inv;, but re-establish it in the final step. The
construction has several branches, depicted in Figure 1, in which we show just the changes made
to obtain each successive run, and track failure edges in the causality graph. Agent timelines are
depicted horizontally. Failure edges are indicated by dashed lines, and nodes labelled 1 indicate
that the agent is deciding 1 at that node.

If (p,m — 1) /4, (j, m), we can take (r’,m’) = (r,m) and (i’, j*,k’) = (i, j, k), and we are done.
Otherwise, consider the run r! obtained by modifying r so that in round m, p’s messages to all agents
but j and itself fail, that is, Sends, (r',m) = {p, j}. We have N'(r') = N(r). Since (r,m) ~; (r',m)
and j € (N AO)(r,m) N (N AO)(r!, m), we have that (r!, m) is (N A O)-& reachable from (r, m).

It remains the case that i, j and k exhibit no faulty behavior in !, and that they are undecided at
time m. Since k is faulty but exhibits no faulty behavior in r!, by Lemma A.10, no agent decides using
the common knowledge conditions in r!. It also remains the case that there is no 0-chain with length
greater than m—2, so no agent decides 0 after round m—1in rLIET, (rhm) E deciding; = 1, then we
are done, taking (v, m’) = (r!,m) and (i’, j', k') = (j,1,k), sincei € N(r!) but (p, m—1) />, (i,m)
and r[0..m — 1] = r'[0..m — 1] by construction. On the other hand, if 7, (r!, m) [deciding;, = 1,
then we would similarly be done, taking (r’, m’) = (rl/, m) and (i, j, k") = (J, k, i), where r is the
run obtained from r! by setting N (r') = N'(r) U {k} \ {i}.

If 7,(r',m) E deciding, = L A deciding, = L, we have 7, (r',m + 1) | deciding; = 1, since
I,(r',m) [deciding; = 1 and j € N(r'). Let r* be the run obtained by modifying r' so that
in round m + 1, agent i receives messages from all agents but p. We have N (r?) = N(r). Since
(r,m) ~; (r*m)and j € (N A O)(r,m) N (N A O)(r',m), we have that (r>,m) is (N A O)-&
reachable from (r, m).

It remains the case that k is faulty but exhibits no faulty behavior in 2, hence no agent decides
using the common knowledge conditions in r2. Note that 72[0..m — 1] = r![0..m — 1] = r[0,m — 1]
and Sends, (r,m) = Sends,(r',m) = {p, j}. We also have r?(m) = r}(m) and r7(m) = r\(m), so
I,(r'm) E deciding; = L A deciding;, = L. Thus, using Corollary A.8, we have that 7, (r’,m+1)
deciding; = 1, because the longest 0-chain in r? has length at most m — 2.

Let r* be the run obtained by modifying r? so that N'(r®) = N(r) U {k} \ {j}, and agent k
receives a message from all agents but j in round m + 1. Since (r%,m) + 1 ~; (r},m + 1) and
ie (NAO)(rEm+1) N (N AO)(r3, m+1), we have that (r3,m) is (N' A O)-& reachable from
(r, m). We remark that inv; does not hold in r* with a permutation of , j, k, since j now exhibits
faulty behavior. However, we still have I, (1}, m + 1) & ~Cn(t-faulty), because i € N (r?) and
i does not observe j’s faulty behavior. It follows that no agent decides in r> using the common
knowledge conditions before round m + 3.

Note that Sends,(r*,m) = Sends,(r?, m) \ {j} = {p. j} and Sends;(r*,m + 1) = Agt \ {k}. We
have r3[0..m — 1] = r?[0..m — 1] = r[0, m — 1]. This implies that none of i, j, k has decided at time
m. In addition, r; (m) = r?(m) and r}(m) = ri(m), so neither i nor k decides in round m + 1. By

30

Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

Fig. 1. Construction for Lemma A.13

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 31

Corollary A.8, we have that 7, (r3,m+1) | deciding; = 1, because the longest 0-chain in r3 has
length at most m — 2.

Let r* be the run obtained by modifying r* so that agent p does not send any messages to
agent j in round m, and in round m + 1, all agents except p send a message to agent i. We have
NG = N = N(r) U {k} \ {j} and r*[0..m — 1] = ¥*[0..m — 1] = r[0,m — 1]. In addition,
Sends, (r*, m) = Sends, (r*,m)\{j} = {p, j}\ {j} = {p}, and Sends;(r*, m+1) = Sends;(r*,m+1) =
Agt \ {k}. Since in r®, agent j does not send a message to agent k in round m + 1, the change in
round m is not visible to agent k at time m+ 1, nor is the round m+ 1 change visible to k at time m+1.
Thus, we have (r3,m+1) ~¢ (r*, m+1). In addition,k € (N AO)(r*, m+1) N (N AO)(r*, m+1),
so (r*,m+1) is (N’ A O)-& reachable from (r, m). We have ri(m) = r?(m), so agent i does not
decide in round m + 1 in r*. By Corollary A.8, we get that 7, (r*, m + 1) [deciding; = 1.

It is still the case in r* that agent j exhibits faulty behavior. To reinstate invy, let r° be the run
obtained from r* by changing the failed message from j to k in round m + 1 to be successfully
transmitted. Since this was the only failure of j introduced earlier, this ensures that j does not
exhibit faulty behavior in r°. We have N (r°) = N(r%) = N(r) U {k} \ {j} and r*[0.m — 1] =
r3[0..m — 1] = r[0, m — 1]. The latter means that no agent decides 0 after round m — 1. The change
made in constructing r° is not visible to agent i at time m + 1, so we have (r*, m + 1) ~; (r>,m + 1).
We have i € (N A O)(rt,m) N (N A O)(r®,m), so (r’,m) is (N' A O)-0 reachable from (r, m).

In addition, r}(m) = r}(m), so agent i does not decide in round m + 1 of run r°, since it did not
do so in round m + 1 of r*. Similarly, rZ(m) = rl‘i(m), so agent k does not decide in round m + 1 of
run r°. With respect to agent j, we have two possibilities.

o If 7,(r>,m) [deciding; = 1, then let r° be the run identical to r° except that N'(r®) =
N (r). (That is, we switch k from being nonfaulty in r° to faulty in r¢, and j from being
faulty to being nonfaulty.) We still have that (r{,m + 1) ~; (rm+1) andi € (N A
O (rtm+1)N(NAO)(, m+1),s0 (r®,m+1)is (N A O)-& reachable from (r, m). We
also have that 7, (r®, m) £ deciding; = 1, because r?(m) = rjs(m) Since (r,m) ~; (r° m)
andi € (N AO)(r®, m) N (N AO)(r®, m), we have that (r, m) is (N A O)-& reachable from
(r,m). Note that (p,m — 1) />,s (j, m). Hence we are done, taking (r’,m’) = (r m) and
(i, ', k") = (i, j. k).

o If7T,(r’,m) E ~deciding; = 1, then we have 7, (r’, m+1) [decided; = decided; = decided. =
L,and 7, (r’, m+1) [deciding; = 1. Moreover, Sends,,(r>,m) = {p} and i ¢ Sends, (r*>, m+1).
Thus (p, m—1) /5,5 (i, m+1). Hence we are done, taking (r’,m’) = (r°, m+1) and (i’, j’, k") =
(k, i,).

O

The following lemma allows us to reduce the size of the set S,,—1(r), so that there are fewer paths
by which a 0-chain reaching time m — 2 is visible at time m.

LemMma A.14. If I, (r,m) | invi(i, j, k) and the longest 0-chain in r has length at least m — 2,
then there exists a run v’ and a permutation i’, j', k" of i, j, k such that I,(r’,m) invi(i’, j’, k'),
N(r)U{k} = N(r") U {k’}, the point (r',m) is (N A O)-B-reachable from (r, m), and there are no
0-chains inr’ of length m — 2.

Proor. Consider an agent q € Agt(N(r) U {k}). We write Fy(r, m — 1) for the set of edges of
the form (p,m —2) — (¢,m—1) in E(r,m — 1), where p € Agt \ N(r) U {k, q}.

We first show that there exists a point (r4, m) that is (N A O)-@-reachable from (r, m) such
that 7, (r9,m) E inv((i9, j9,k9), where {i, j,k} = {i%, j9, k9}, N(r) U {k} = N(r?) U {k?}, and
E(ri,m —1) C E(r,m — 1) \ Fy(r,m — 1). To do this, we first apply Lemma A.13 to (r,m) and

32 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

(N A O)-@-reach a point (r!, my) such that 7, (r', m1) & invi(iy, j1, k1), N(r) U {k} = N(r}) U {k:},
E(rl,m—-1)=E(r,m—1),(¢gm—1) /.1 (ji,m;), and my is either m or m + 1.

Let r? be the run obtained from r! by converting all edges (p, m—2) —,1 (g m—1) in Fy(r,m—1)
to failures, so that E(r,m — 1) = E(r',m — 1) \ Fg(r,m — 1) = E(r,m — 1) \ Fg(r,m — 1). We
have (r?,m;) ~;, (r',my), and N'(r') = N(r?), so (r?, my) is (N A O)-B-reachable from (r', m). It
remains the case that none of iy, ji, ki have decided at (7%, m,), since the state of these agents at time
my — 1 is visible to j; at time m; in r' and (r%,m;) ~;, (r',m;). Hence 7, (r%, my) E inv; (i1, j1, k1)
and N (r) U {k} = N(r? U {k;}.

If m; = m we are done, taking r9 = r?; otherwise, m; = m + 1 and we apply Lemma A.12
to obtain a point (r9,m) (N A O)-@ reachable from (r,m) with 7, (r9, m;) [inv (ig, jq, kq) and
N U{k?) = N(rH)U{k:} = N(r)U{k}. Wehave E(r9, m—1) = E(r%,m; —2) C E(r>, m; —2) =
E(r’m-1)=E(r,m—1)\ Fg(r,m—1).

We successively repeat the steps above for all agents in Agt \ (N (r) U {k}), thereby (N A O)-
@-reaching a point (r3,m) with I, (r3,m) E invy(is, j3, k3), N(r*) U {ks} = N(r) U {k}, and
E(r*,m—1) € E(r,m = 1) \ (Ugeagn(N(ruik}y) Fq(r,m —1)). That is, in round m — 1 of r*, no
messages are transmitted between distinct (faulty) agents in Agt \ (N (r) U {k}).

It may still be the case that we have faulty agents g that decide in round m — 1 of r3, for which
(gom—1) —,s (j’,m). In this case, we again apply Lemma A.13 to (r*, m) and (N A O)-B-reach
a point (r!, my) where T, (r*, my) E invi(iy, js, ka), {is, ja ka} = {i,j, k}, and N(r*) U {ky} =
NEH ULk} = Nr) Uik}, r*[0...m—1] =r3[0...m—1], (g m = 1) />, (j1,my), and my is
either m or m + 1. At this point we apply the construction of Lemma A.11 to produce from r* a run
r® such that (r°, my) is (N A O)-@-reachable from (r*, my) via agent jy, 7, (r5, mg) E invi (i, js, ka),
N U {ks} = N(r*) U {ks} = N(r) U {k}, all 0-chains are visible to (jy, m4), and E(r’,m — 1) C
E(rt,m—=1) CE(r,m = 1)\ (Ugeagn(~(ruixy Fa(rom—1)).

We claim that g does not decide in round m — 1 of r°. Obviously, we do not have an edge from
(g.m —2) into (N(r) U {k}) x {m — 1} in r*, otherwise r would have a 0-chain of length at least
m — 1. We also do not have an edge in r* from (g, m — 2) into (N(r) U {k}) x {m — 1}, since
all such edges have been eliminated. Thus, the only edge from (g, m — 2) is to (g, m — 1). Since
(ggm —1) 424 (ju, my), it follows that (g, m — 2) #>,4 (js, m4), and the construction of r° ensures
that 7, (r’,m-2) ~deciding,, = 0.

If my = m+ 1, we apply Lemma A.12 to obtain a point (r°, m) that is (N' A O)-B reachable
from (r, m) such that E(r®, m — 1) C E(r’,m — 1), I, (r*, m) k& invy(is, j. k), {is, je» ke } = {i j, k},
N(r®) U {ks} = N(r) U {k}, and q does not decide in round m — 1. And if my = m, we already have
this conclusion with r® = r°.

We successively apply this construction for all g € Agt\ (N (r) U {k}) until we have an (N A O)-
@-reachable point (17, m) such that 7, (r’, m) &= invi (i, j7, k), {i7, j. k7} = {i, j, k}, N (7Y U{ks} =
N () Uiks} = N(r) Uik}, E(r',m=1) C E(r',m~1),and I, (r',m —2) |F ~deciding,, = 0 for all
q € Agt\ (N(r) U {k}). Since 7, (r’,m) [inv,(iy, j;, k7) implies that no agent in N (r7) U {k;} =
N (r) U{k} decides in round m— 1, we conclude that r’ has no 0-chains of length m — 2. We therefore
have the result with r’ = 7. m]

LEmMa A.15. If I, (r,m) [invi(i, j, k), then there exists a run 7 such that (7,0) is (N A O)-3-
reachable from (r,m) and I, (7,0) E —30.

Proor. We proceed by induction on m. Suppose that 7, (r,m) |= invi(i, j, k), so that j decides 1
in round m + 1 of r. No agent can decide 1 in round 1, so we have m > 1.

If m = 1, agent j can’t know 30 at time 1 right before j decides 1 in round 2, as otherwise j
would have gotten a 0-chain and, by Lemma A.5, would decide 0. Hence, j considers possible the

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 33

run 7 where no agent has an initial preference of 0 and the message pattern is identical to r. Clearly,
(7,1) is (N A O)-m-reachable from (r, 1) through agent j.

If m > 0, suppose that len) j(r,m) = m’. Note that j can’t know about a 0-chain of length m — 1
or greater, as in that case j would decide 0 in round m + 1. If m’ < m — 2, then we can immediately
apply Lemma A.12 to (N A O)-BE-reach a point (r*,m — 1) where the invariant condition for 1
holds. We can then apply the inductive hypothesis to conclude that there exists a run 7 such
that 7, (7,0) = =30 and (7, 0) is (N A O)-@-reachable from (r*, m — 1). By the transitivity of the
(N A O)-m-reachability relation, (7, 0) is also (N A O)-&-reachable from (r, m) and the claim holds.
And if m" = m — 2, then by Lemma A.14, there exists a point (r’, m) that is (N A O)-& reachable
from (r,m) such that 7, (r’,m) k= inv;(iy, j1, k1) and all 0-chains in r” have length less than m — 2.
The previous case applied to (r’, m) then yields the result. O

LEmMma A.16. If 1, (r,m) | (i € N A O(decided; = 1)), then i considers a point (r’, m) possible
at (r,m) where I, (r’,m) E inv,(i, j, k).

PRrOOF. Suppose that at some point (r,m), I, (r,m) | i € N A O(decided; = L). We first
observe that we must have 7, (r,m) | —~Cx(t-faulty), since otherwise, by Lemma A.4, we get
a contradiction. To show that i considers a point (r’/, m) possible at (r,m) where 7, (r',m) |
inv1(i, j, k), we consider two cases:

e Suppose that 7, (r,m) = —K;(t-faulty). By definition, there exists an agent k such that
I, (r,m) E =Ki=(k € N) A =K;=(k ¢ N). Let r’ be a run identical to r except k ¢ N, k does
not exhibit any nonfaulty behavior in r’, some agent j € N hears from all other agents in
round m, and the only 0-chains in run r’ are the ones that i knows about. This means that
the 0-chains in r’ have length at most m — 2, so eventually all agents should decide 1. We
claim that (r,m) ~; (r’, m). Suppose by way of contradiction that i has different local states
in (r,m) and (r’, m). Then either i hears in r’ from an agent that didn’t receive a message
from k in round m of r that heard from k in round m of r’ or i hears about a 0-chain in round
m of r’ that it did not know about at time m in r. In the first case, i would have known that k
is faulty in (r, m), which is a contradiction; the second case contradicts the assumption that i
doesn’t know about such 0-chains in 7’

By Corollary A.8, agent j decides 1 in round m + 1 upon hearing from all other agents in
round m. Thus, 7, (r’,m) E invi(i, j, k) and (r,m) ~; (r’,m).

o If 7, (r,m) [K;(t-faulty), we make use of the observation that 7, (r,m) = —=Cx (t-faulty).
By Proposition A.2, it must be the case that 7, (r,m — 1) | —dist 5 (t-faulty); equivalently,
I,(r,m) EVje N(=K;=(k € N)) for some faulty agent k. Since i € N, we must have
I, (r,m-1) | -K;=(k € N).Since I, (r,m) | K;(t-faulty), it must be the case that agent i
learned that k is faulty in round m, either by not getting a message from k for the first time or
by getting a message from some faulty agent k’ that knew about agent k being faulty. Agent
k’ can’t be a nonfaulty agent, since no nonfaulty agent knows that k is faulty at time m — 1.
If i learned that k is faulty by not hearing from k in round m, then at (r, m), agent i considers
possible the point (r’, m), where in round m of r’, some nonfaulty agent j received a message
from all other agents. By Corollary A.8, in r’, j decides 1 in round m. Thus, 7, (r',m) |
invi(i, j, k), as desired.

If i learned that k is faulty by hearing from some faulty agent k’ that k is faulty, then i
considers possible the run r’ which is identical to r except that j and k receive a message
from all other agents except k” in round m. By Corollary A.8, both agents j and k are about
to decide 1 at (r’, m), since all 0-chains in 7’ have length at most m — 2 and they both receive
a message from all agents but k’. We must have (r,m) ~; (r’, m), as the only change between

34 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

the runs is in round m, and i receives the same messages in both runs. Moreover, i is nonfaulty
in both runs.

Now consider a run r”” where i does not hear from k’ in round m or later, and otherwise
receives all messages from the other agents. Thus, i, j, and k hear from all agents but k” in
roundsmandm+1inr”. Asje (NAO)(r",m") U (N AO)(r',m’), (r'",m’) is (N A O)-
m-reachable from (r/, m).

Since j does not hear from k’ after round m in r”, it does not discover that k is faulty. Therefore,
there exists a run r’” that is identical to r’ except that agent k does not exhibit nonfaulty
behavior. Thus, 7, (r"”’,m’) k invi(i, j, k). Moreover, j € (NAO)(r""",m"YUNAO)(r"”,m’),
so (r'”’,m’) is (N A O)-E-reachable from (r"’, m’).

]

Finally, we construct the points (r?l, m) and (r', m) required for weak safety. The argument
for this case is simpler than that of the previous case. Most of the work for this case is done by
Lemmas A.17 and A.18, which are analogues of Lemmas A.15 and A.16.

LemMma A.17. If 1, (r,m) k= invo(i, j, k), then there exists a run 7 such that (7,0) is (N A Z)-3-
reachable from (r,m) and I, (,0) | —-31.

Proor. We proceed by induction on m.

If m = 0, then since agent j decides 0 in round 1, it must be the case that 7, (r,0) |= init; = 0.
Hence, agent j considers a run 7 where every agent has initial preference 0 possible. Clearly, (7, 0)
is (N A Z)-m-reachable from (r,0). If m > 1, since agent k is faulty but does not exhibit faulty
behavior in r, I, (r,m) = =Cn/(t-faulty). By Lemma A.5, agent j must have received at least one
0-chain of length m in order to decide 0. Let k” be an agent from whom j received a 0-chain. Note
that k’ can’t be i or j, since i and j do not decide before round m + 1. Let r’ be a run identical to r,
except that i is faulty instead of k, k hears from k’, and k does not hear from i in round m of r’.
Since j € (N A Z)(r,m) N (N A Z)(r’,m) and j has the same local state at both points, (r’, m) is
(N A Z)-m-reachable from (r, m).

In r’, agent k is nonfaulty and receives a 0-chain from k’ in round m. Let k* be an agent that
sent a 0-chain to k’ in round m — 1. Consider a run r”’ that is identical to r’ except that agent i
receives a 0-chain in round m — 1 from k™ and agent j receives a message from agent i in round
m. (If m = 1, then we take r’”” to be a run where i has initial preference 0 and j receives a message
from i in round 1.) Agent i decides 0 in round m of r”’. Since k has the same local state in both
(r'ym)and (r"",m),and k € (N A Z)(r',m) 0" (N A2Z)(r"",m), (r"",m) is (N A Z)-B-reachable
from (r’, m). Because j received a message from i in round m of r”” and j is nonfaulty, j decides 0
inround m+1ofr”.

Let r’”” be a run that is identical to r” except that agent i is nonfaulty. Then j has the same
local state in both (r”/,m) and (r"”’,m),and j € (N AZ)(r”,m) N (N A Z)(r"”’,m). Thus, (', m)
is (N A Z)-m-reachable from (r,m) and in r’”’, agent i decides 0 in round m, i € N, j € N,
k ¢ N, and k acts nonfaulty throughout run r’”’. Moreover, I, (r'”’,m — 1) |= invo(J, i, k). By the
inductive hypothesis, it follows that there exists a run 7 such that (7, 0) is (N A Z)-E-reachable
from (r"”’,m — 1) and 7, (,0) |= —=31. By the transitivity of the (N A Z)-E-reachability relation,
(7,0) is also (N A Z)-E-reachable from (r, m) and the claim holds. O

LEmMma A.18. If 1, (r,m) | (i € N A O(decided; = 1)), then i considers a point (r’, m) possible
at (r,m) where I, (r’,m) E invo(i, j, k).

ProoF. Suppose that 7,(r,m) E i € N A O(decided; = 1). We must have 7, (r,m) [
—Cy (t-faulty)), since otherwise, by Lemma A .4, we get a contradiction. We next show that, whether

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 35

or not i knows which agents are faulty, i considers a point (r’, m) possible at (r, m) from which a
point (r””’,;m) is (N’ A O)-E-reachable from (r, m) such that I, (r’"”',m) |= invy(i, j, k).

o If 7, (r,m) | —=K;(t-faulty) then, by definition, there exists a k € Agt such that 7, (r,m) |

-K;j=(k € N) A=K;=(k ¢ N). Let r’ be a run identical to r except that k ¢ N and k does not
exhibit faulty behavior in r’. We claim that (r, m) ~; (r’, m). Suppose by way of contradiction
that i has different local states in (r, m) and (r’, m). Since the only difference between these
runs are the blocked messages sent by k that are no longer blocked, i must have heard from
an agent (either directly or indirectly) that did not receive a message from k in r but did in r’.
But in that case, i would have known that k is faulty in r, which is a contradiction.
Since i has not yet decided by (7', m) and does not decide in round m (as i has the same local
state at (r,m) and (', m)), we have that 7, (r',m) £ =Ki(/\ jeaq ~(deciding; = 0)). That is,
i considers it possible that there exists an agent j’ that decides 0 in round m + 1. Let r”” be
the run that is identical to r” except that j’ decides 0 in round m + 1 of r”’. By Lemma A.5, if
m > 1, j’ receives a 0-chain in r”” from some agent k’ in round m, and if m = 0, init; = 0.
Let r’”” be a run that is identical to "* except that agent j (who is also nonfaulty) receives a
message from k’ in round m if m > 1 and has initial preference 0 if m = 0. Hence, agent j
decides 0 in round m + 1 of ’”’. By the transitivity of the knowledge relation, we then have
(r,m) ~; (r"',m).

o If 7, (r,m) | K;(t-faulty), we use the observation that I, (r,m) | =Cx/(t-faulty). As in the
proof of Lemma A.16, we must have that 7, (r,m — 1) £ =K;=(k € N)) for some nonfaulty
agent k.

It must be the case that agent i learned that k is faulty in round m, due to either not getting a
message from k for the first time or getting a message from some faulty agent k’ that knew
that k was faulty. (Agent k’ can’t be nonfaulty, since no nonfaulty agent knows that k is
faulty at time m — 1.) Since agent i has not decided yet and does not decide in round m + 1 of
r, agent i knows that the other nonfaulty agents did not decide in an earlier round. Moreover,
in (r,m), i considers a point (r’, m) possible where 7, (r’,m) | (decidingj, = 0) for some
agent j’, since i does not decide 1 in round m + 1 of .

If agent i learned that k is faulty due to not hearing from k in round m of r’, then at the
point (r’, m), agent i considers (r"/, m) possible, where r”’ is such that some nonfaulty agent
Jj received a message from k in round m and k decides 0 in round m — 1 (due to hearing
from the agent that sent a message to the agent that sent a message to j’ in the 0-chain).
In r”, j receives a 0-chain in round m and thus decides 0 in round m + 1. It follows that
I,(r",m) = invy(i, j, k).

If agent i learned that k is faulty due to hearing it from some faulty agent k’, then agent
i considers a point (r”/, m) possible at (r’, m), where r”’ is identical to r’ except that in r”,
agent j does not hear from agent k’ at or after round m and receives a 0-chain from agent j’
in round m. If k # k', then again we have I, (r",m) | invo(i, j, k).

If k = k’, then I, (r”, m) |£ invo(i, j, k), because k does not act nonfaulty throughout run r”.
In that case, consider a run r* that is identical to r”’ except that agent k sends a message to all
agents but j in round m of r*. Since j € (N AZ)(r"”",m)N (N AZ)(r*, m) and j has the same
local state at both points, (r*,m) is (N A Z)-@-reachable from (r”’, m). Let r’”’ be the run
that is identical to r* except that agent k does not exhibit faulty behavior in r’”” and i receives
a 0-chain from j’. By construction, 7, (r’”/,m) | invy(i, j, k) Since agent i did not know k
was faulty inr*, i € (NAZ)(r',m)N (N AZ)(r"",m) and (r"”’,m) is (N A Z)-B-reachable
from (r*, m). Again, this suffices for the desired result.

36 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

This completes the proof that P! is weakly safe and we get the following result:
THEOREM 7.7. P! is weakly safe with respect to yfipn..

A.2.7 Implementation. We now explicitly define the full-information context using communication
graphs similar to those used by Moses and Tuttle [12]. Intuitively, a communication graph for agent
i is a labeled graph that provides a compact description of all messages sent and received by agent i.
Formally, the communication graph G; m is defined as follows. The set V(G;,) of vertices consists
of all pairs of the form (j, m’) for all m” < m and agents j; the set E(G;) of edges consists of all
edges from (j,m’ —1) to (j’,m’) for j, j’ € Agt and m’ < m; there is a message label I;,,, € {0,1,?}
for each edge (see below), and an initial preference label pg,,, € {0,1,?} for each j € Agt (which
can be viewed as a label on vertices of the form (j, 0)). An edge from (j, m’ —1) to (j’,m’) is labeled
with a 1 if i knows that j sent a message to j’ in round m’; it is labeled with a 0 if i knows that j
did not send a message to j’ in round m’; and it is labeled with a ? if i does not know whether j
sent a message to j’ in round m’. Note that with a full-information protocol, if i knows the initial
preferences of agents, and which agents sent round m” messages for m”” < m’, then it is easy for i
to figure out what the content of a message that was sent would be. A preference label of v € {0, 1}
on (J,0) indicates that i knows that j’s initial preference was v, while a label of ? indicates that i
does not know j’s initial preference. We write G; ,,(r) for the communication graph of agent i at
time m in a run r in a full-information exchange and G; ,, for the set of all time-m communication
graphs for agent i.

Let Epp(n) be the full information-exchange protocol for n agents, where for each agent i, the

following hold:

o The local states have the form (time;, decided;, init;, G; time,), Where G; time, is a communication
graph.

o The initial local states of each agent i have the form (0, L, init;, G o), where G;y € Gio. (Note
that that in G;, we must have pg,,(j) = ? for all agents j # i and pg,, (i) = init;.)

® M; = Gi time;-

e For all agents j and actions a, ;;({time;, decided;, init;, G; time;), @) = Gi time,-

o 5;((time;, decided,, init;, G;), a, (my, ..., my,)) = (time; + 1, decided;, init;, G; jime,;+1), Where
Gi time;+1 € Gi.time;+1 18 obtained by adding vertices and edges for round time;+1 and combining
the labels from all graphs that were received by i and G; sime,. More precisely, if RG; consists
of all the graphs that i received up to and including round time; + 1, then

v if 3G € RGi(Ig((j,m), (j',m+1)) =v) Av € {0,1},
1 ifm=time;Aj=iAm;#L
Ig, i,m),(j’,m+1)) = ! J ’
Gl,nmei+1((]) (])) 0 ifm= time; A j, —iA m; = n
?

otherwise.

if 3G € S,v € {0, 1} ((pc(j) =v)),

otherwise.

. 0
pGi,timei+1 (-]) = {?

Finally, decided; is determined by the action g, just as in the standard EBA context.

Let yapn: = (Epp(n), SO(1), wfipn), where 75, , interprets the standard propositions in the stan-
dard way. To check the knowledge conditions in P, it is useful to define the following sets, which
can be computed in polynomial time from the communication graph:

e For m’ < m, f(j,m’,G;m) is the set of faulty agents that i knows that j knows about at
time m’, given G;,. The set f(j,m’,Gi,) is the union of (a) f(j’,m" — 1,G;y) for all j’
that sent a message to j in round m’ in G;,, if m’ > 0, (b) {j’} for each agent j’ that did

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 37

not send a message to j in round m’ in G; ,, and (c) f(j,m’ — 1,G;) if m” > 0. (Note that
f(,0,Gim) =0.)

e Form’ < m, D(S,m’,G;) is the set of faulty agents that i knows that the agents in S know
about at time m’, given Gj ;. D(S,m’, Gim) = Ugesf(k,m’,Gim).

In addition to f and D, agent i can compute the actions of each agent j at time m’ < m if
(j,m") —, (i, m) where r is the current run, since we are using a full-information protocol. Let
d(j,m’,Gim) € {0,1, L, ?} represent what i knows about the action of agent j in round m’ + 1. If
d(j,m’,Gim) =v € {0,1}, then i knows that that j decides v in round m’ + 1; if d(j, m’, G) = L,
then i knows that j does not decide in round m’ + 1; finally, if d(j, m’, Gi) = ?, then (j,m’) /5,
(i,m).

The set of values known by each agent that sent a message either directly or indirectly to i can
be also computed from the communication graph in polynomial time. Let V (j, m’, G; ,) be the set
of values that i knows that j knows about at time m’ if (j, m") —, (i, m) according to G, and 0
otherwise.

We next define families common, (i, m, G;) and cond; (i, m, G; ,) of Booleans that can also be
computed in polynomial time.

Definition A.19 (common, and cond,). Intuitively, common, holds if K;(disty (t-faulty) A
(A jen(KjOno-decided;(v))) A (V jen Kj(F0))) holds at time m (which means that C (¢-faulty A
no-decided 5/ (1) A Jv) holds at time m + 1), given G; ,,. We compute common,, as follows. If either
of the following three conditions hold, then commong (i, m, G;) = false:

e |ID(f(i,m,Gim),m —1,Gim)| # t, where f(j,m’,Gimm) = Agt — f(j,m’,G;m) (these are the
agents that i thinks might be nonfaulty at time m’, given G; ,,,);
o there exists an agent j ¢ f (i, m, G;,) such that d(j,m’, G ;) = 1 — v for some m’ < m.
e for all agents j ¢ D(f(i,m,Gim),m—1,Gim), 0 &€ V(j,m —1,Gim)
Otherwise, common, (i, m, G ;) = true.

The first condition for taking common, (i, m, G) = false corresponds to agent i thinking that the
agents who might be nonfaulty at time m do not have distributed knowledge of t faulty agents
at time m — 1. If so, certainly the agents who are actually nonfaulty will not have distributed
knowledge of who the faulty agents are at time m — 1, so there will not be common knowledge
among the nonfaulty agents of who the faulty agents are at time m—see Lemma 5. The second
condition holds if some agent j that that i considers possibly nonfaulty at time m has decided 1 —v.
We can assume that |D(f(i,m, Gipm),m — 1,Gjm)| = t (otherwise common, (i, m, G) = false by the
first condition). Thus, i knows who the nonfaulty agents are at time m, so i knows that a nonfaulty
agent has decided 1 — v, so it cannot be common knowledge among the nonfaulty agents that no
nonfaulty agent decided 1 —v.

The Boolean condy = true holds if the formula init; = 0 V' \/ je a4 Ki(jdecided; = 0) holds at time
m, given G; ,,. Formally,

e condy(i,0,Gip) = (init; = 0).
e For m > 0, condy (i, m, G;,) = true if there exists an agent j such that d(j,m — 1,G;,,) =0
and Ig,,, ((j,m — 1), (i,m)) = 1; otherwise, condy (i, m, G) = false.
The Boolean cond, (i, m, G; ;) = true holds if Ki(/\ jeaq ﬂ(decidingj = 0)) holds at time m, given
Gim. Formally,
e condy(i,0,Gip) = false.
e For m > 0, let m’ be the latest time such that d(j, m’, G;m) = 0 for some agent j (as usual,
m’ = -1if d(j,m’,G;,,) # 0 for all agents j), and let m; be the latest time that (j,m;) —,
(i, m), where r is a run for which G;,, describes i’s view at time m in r. (There are many

38 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

such runs; it does not matter which one we choose, since they all agree on the whether
(j,mj) — (i,m).) Intuitively, m” = len;(r, m). If, for all m"" with m" < m” < m, there exist
at least m” —m’ agents j such that d(j, m”, G;) = ?, then cond; (i, m, G;o) = true; otherwise
cond (i,m, Go) = false.

Using these definitions, we can define an implementation of P! in the full-information context.
Let P°" be the EBA decision protocol implemented by the following program:

. popt
Program: P,

if decided; # L then noop

else if commony (i, time; — 1, G time;) then decide;(0)
else if common; (i, time; — 1, G time;) then decide; (1)
else if cond(i, time;, Gj time;) then decide;(0)

else if cond; (i, time;, G; time;) then decide;(1)

else noop

The following lemma shows that the initial conditions that are checked in the definition of
common, correspond to checking for Cn/(¢-faulty).

LEMMA A.20. |f(i,m,Gim(r))| = |D(f(i,m, Gim(r)),m = 1,Gim(r))| = t for some agent i if and
only l:fIYﬁp'nvt’Pl, (r,m) = Cn(t-faulty).

Proor. Let I = Iyﬁpynyt’})l and G = G (7). Suppose that | f(i,m, G)| = |D(f(i,m,G),m—1,G)| = t
for some agent i. We first observe that Agt— f (i, m, G) = N, as there are ¢ faulty agents. This implies
that the set D(f(i,m, G),m — 1,G) is the set of all faulty agents that are known by the nonfaulty
agents at time m— 1. Since |D(f (i, m, G), m—1,G)| = t, it must be the case that for all faulty agents j,
there exists a nonfaulty agent that knows that agent j is faulty. Hence, 7, (r, m) = odist 5 (t-faulty).
By Proposition A.2, we have 7, (r,m) |= Cn(t-faulty).

Conversely, suppose that 7, (r,m) | Cn(t-faulty). Again, by Proposition A.2, we get that
I, (r,m) [odist ;(t-faulty). By definition, the union of all faulty agents known by nonfaulty agents
at time m—1 is the set of all faulty agents. Hence, |D(N, m—1,G)| = t. Therefore, N = f(i, m,G). O

THEOREM A.21. Ifn —t > 2, then PP implements P' in the full-information EBA context yfipn,;.

Proor. Let I = Iyﬁp,n
(P (ri(m)).
o If pr[(r,-(m)) = noop because decided; # L in r;(m), we clearly also have (P})I(r,-(m)) =
noop, because 7, (r,m) | K;(decided; #).
o If prt(ri(m)) = decide;(0) by the second line, we must have decided; = L in r;(m) and
m > 0. By the definition of commony, we must also have (a) |D(f(i, m-1,G),mG)| =t,
(b) d(j,m’,G) # 1forall j ¢ f(i,m,G) and m" < m, and (c) 0 € V(j,m — 1,G) for some
j € f(i,m,G). From (a), it follows that 7, (r, m) Cn(t-faulty) using Lemma A.20. From (b),
it follows that no nonfaulty agent decides 1 at any round m’ < m + 1. Hence, 7, (r,m) |
no-decided(1). Finally, (c) implies that i knows that a nonfaulty agent j had an initial
preference 0 at time m — 1; that is, 7, (r,m) |= ©K;(30). Combining these observations,
using Proposition A.2, we can conclude that 7, (r,m) | Cn(t-faulty A no-decided 5 (1) A 30).
By Lemma A.3, I, (r,m) | K;(Cy(t-faulty A no-decided (1) A 30)), so (P})I(ri(m)) =
decide;(0).

pt and G = Gj;(r). We show that for all points (r, m), Pl."pt(rl-(m)) =

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 39

° IfPl.OPt(ri(m)) = decide;(1) by the third line, we must have decided; = L inr;(m), commony(i,m,G) =
false, common; (i, m,G) = true, and m > 0. As before, common; (i, m, G) = true implies that
I,(r,m) E Cn(t-faulty) A no-decidedn(0) A ©K;(31), so I, (r,m) E Ki(Cn(t-faulty A
no-decided 5 (0) A 31)).

It thus suffices to show that 7, (r, m) | =Cu/(t-faultyAno-decided 5 (1) A30). Since commong (i, m, G) =
false, we must either have (a) |[D(f(i,m—1,G),m—1,G)| # t, (b) |ID(f(i,m,G),m—-1,G)| =t
and for some j ¢ f(i,m,G) and m’ < m,d(j,m’,G) = 1,0r (c) [D(f(i,m-1,G),m-1,G)| =t
and for all j ¢ f(i,m,G), 0 ¢ V(j,m — 1,G). If (a) holds, then Lemma A.20 implies that
I, (r,m) | =Cn(t-faulty). If (b) holds, then, as we have observed, 7, (r,m) | =Cx(t-faulty)
and, in addition, d(j,m’,G) = 1 for some nonfaulty j and m’" < m. Hence, I, (r,m) [
—no-decidedn(1). If (c) holds, then we again have I, (r,m) | —no-decidedx(1); more-
over, 0 ¢ V(j,m — 1,G) for all nonfaulty j. Hence, i considers it possible that none of
the nonfaulty agents knows about a 0 at time m — 01 given G, so by Proposition A.2,
I, (r,m) E =Cn(30). Thus, in all cases 1, (r,m) | =Cn/(t-faulty A no-decided (1) A 30),
so (PH)? (r;(m)) = decide;(1).

If P;pt(rl-(m)) = decide;(0) by the fourth line, we must have decided; = L in r;(m),
commony (i, m, G) = common; (i, m, G) = false, and cond, (i, m, G) = true. Again, commony (i,
m,G) = false implies that 7, (r,m) | —Cu(t-faulty A no-decided (1) A 30). Similarly,
commony (i, m, G) = false implies that I, (r, m) = =Cn/(t-faulty A no-decided 5 (0) A 31). We
thus need to show only that 7, (r,m) [init; = 0V jeaq Ki(jdecided; = 0). We proceed by
induction on m. For the base case, if cond, (i, 0, G) = true, by definition, it must be the case
that init; = 0. For the inductive step, suppose that cond, (i, m, G) = true for some m > 0. By
definition, this implies that d(j,m — 1,G) = 0 and Ig((j, m — 1), (i, m)) = 1 for some agent j.
Thus, (P})I(r,—(m)) = decide;(0). Then agent j decides 0 and agent i hears from agent j in
round m. It follows that 7, (r,m) | K;(jdecided; = 0), so (P})I(ri(m)) = decide;(0).
Ifprt(rl-(m)) = decide;(1) by the fifth line, we must have decided; = L in r;(m), commony (i,
m,G) = commony (i,m,G) = cond, (i, m,G) = false, and cond, (i, m,G) = true. We also have
m > 0 since cond, (i, m,G) = true. As before, commony (i, m,G) = commony (i, m,G) = false
implies that the common knowledge conditions don’t hold. We thus need to show that
I, (r,m) | =(init; = 0V \/ jepq Ki(jdecided; = 0)) and 7, (r,m) |= Ki(\ jeaq ~(deciding; =
0)).

By definition, cond, (i, m, G) = false implies that for all j € Agt,d(j,m—1,G) # 0or lg((j,m—
1), (i, m)) # 1, so either j did not decide 0 in round m or i did not receive a message from
agent j in round m. In either case, 7, (r,m) | —=K;(jdecided; = 0), so I, (r,m) | =(init; =
0 V'V jeagt Ki(jdecided; = 0)). Finally, if cond, (i, m,G) = true, by Proposition A.7. we can
conclude that 7, (r,m) = Ki(/\ jeay —(deciding; = 0)), so (P})I(r,-(m)) = decide;(1).

If prt(ri(m)) = noop by the last line, we must have decided; = L in r;(m), and commony (i,
m,G) = commony(i,m,G) = condy(i,m,G) = cond(i,m,G) = false. If m = 0, none of
the conditions in P! can hold except 7, (r,m) [k init; = 0V V jeag Ki(jdecided; = 0).
However, since cond(i, 0,G) = false, we must have init; # 0 and (P})I(rl-(O)) = noop. If
m > 0, then arguments above show that the common knowledge conditions don’t hold
and 7, (r,m) | =(init; = 0V \/ jepq Ki(jdecided; = 0)). We thus need to show only that
I, (r,m) | =Ki(Ajeag —(deciding; = 0)). Since the common knowledge conditions don’t
hold, we can apply Proposition A.7 to conclude that this is the case. Thus, none of the
conditions in P! hold and we have (P})7 (r;(m)) = noop.

40 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

We can then conclude that P is also optimal with respect to full-information exchange. Since
each condition in P' can be checked in polynomial time in the size of the communication graph,
and the communication graph itself uses O(n?t) bits, we then get the following result:

ProPOSITION 7.9. There exists a polynomial-time implementation P%* of P! with respect to a
full-information exchange.

A.3 Proof for Section 8

ProposiTiON 8.2. Ifr is a failure-free run, then

(a) If there is at least one agent with an initial preference of 0 in r, then all agents decide by round 2.
(b) If all agents have an initial preference of 1, then all agents decide by round t + 2 with P™" and by
round 2 with P*%¢ and pfip,

Proor. For the first part, suppose that some nonfaulty agent has an initial preference of 0. Clearly
that agent decides 0 in the first round and tells all the other agents, who decide in the second round
(for all three protocols).

For the second part, suppose that all the agents are nonfaulty and have an initial preference of 1.
Then with P™", since no agent will decide 0 or hear about a decision of 0, the agents will wait for
t + 1 rounds of information exchange decide 1 in round t + 2. With P?® and Pf?, no agent will
decide right away and since all agents i will get a message from every other agent j in the first
round from which they can conclude that j’s initial preference was 1 ((init, 1) in the case of P
and an explicit message saying that j’s initial preference was 1 in the case of P/P), agents can all
decide on 1 in round 2. O

ACKNOWLEDGMENTS

Alpturer and Halpern were supported in part by AFOSR grant FA23862114029. Halpern was
additionally supported in part by ARO grants W911NF-19-1-0217 and W911NF-22-1-0061. The
Commonwealth of Australia (represented by the Defence Science and Technology Group) supported
this research through a Defence Science Partnerships agreement. We thank Yoram Moses for useful
comments on the paper.

REFERENCES

[1] A. Castafieda, Y. A. Gonczorowski, and Y. Moses. 2014. Unbeatable consensus. In Proc. 28th International Conference on
Distributed Computing (DISC °14). 91-106.

[2] A. Castafieda, Y. Moses, M. Raynal, and M. Roy. 2017. Early decision and stopping in synchronous consensus: a
predicate-based guided tour. In Proc. 5th International Conference on Networked Systems (NETYS 2017). 206-221.

[3] B. Coan. 1986. A communication-efficient canonical form for fault-tolerant distributed protocols. In Proc. 5th ACM
Symposium on Principles of Distributed Computing. 63-72.

[4] C. Dwork and Y. Moses. 1990. Knowledge and common knowledge in a Byzantine environment: crash failures.
Information and Computation 88, 2 (1990), 156—186.

[5] R.Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. 1995. Reasoning About Knowledge. MIT Press, Cambridge, MA. A
slightly revised paperback version was published in 2003..

[6] J. Y. Halpern and R. Fagin. 1985. A formal model of knowledge, action, and communication in distributed systems:
preliminary report. In Proc. 4th ACM Symposium on Principles of Distributed Computing. 224-236.

[7] J. Y. Halpern and Y. Moses. 1990. Knowledge and common knowledge in a distributed environment. J. ACM 37, 3
(1990), 549-587.

[8] J. Y. Halpern, Y. Moses, and O. Waarts. 2001. A characterization of eventual Byzantine agreement. SIAM 7. Comput.
31, 3 (2001), 838-865. https://doi.org/10.1137/S0097539798340217 A preliminary version of the paper appeared in
Proc. 9th ACM Symposium on Principles of Distributed Computing, 1990, pp. 333-346..

[9] X. Huang and R. van der Meyden. 2013. Symbolic synthesis of knowledge-based program implementations with
synchronous semantics. In Theoretical Aspects of Rationality and Knowledge: Proc. Fourteenth Conference (TARK 2013).

Optimal Eventual Byzantine Agreement Protocols with Omission Failures 41

[10] X.Huang and R. van der Meyden. 2014. Symbolic synthesis for epistemic specifications with observational semantics.
In Proc. 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2014). 455-469.

[11] L. Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7 (1978),
558-565.

[12] Y. Moses and M. R. Tuttle. 1988. Programming simultaneous actions using common knowledge. Algorithmica 3 (1988),
121-169. https://doi.org/10.1007/BF01762112

[13] G.Neiger and M. R. Tuttle. 1993. Common knowledge and consistent simultaneous coordination. Distributed Computing
6,3 (1993), 334-352.

	Abstract
	1 Introduction
	2 Semantic Model
	3 Communication and Failure Models
	4 Knowledge-Based Programs
	5 Eventual Byzantine agreement
	6 Optimal EBA with respect to limited information exchange
	7 An optimal full-information protocol for EBA
	8 Discussion
	A Proofs
	A.1 Proofs for Section 6
	A.2 Proofs for Section 7
	A.3 Proof for Section 8

	Acknowledgments
	References

