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Work on optimal protocols for Eventual Byzantine Agreement (EBA)Ðprotocols that, in a precise sense, decide

as soon as possible in every run and guarantee that all nonfaulty agents decide on the same valueÐhas focused

on full-information protocols (FIPs), where agents repeatedly send messages that completely describe their

past observations to every other agent. While it can be shown that, without loss of generality, we can take an

optimal protocol to be an FIP, full information exchange is impractical to implement for many applications

due to the required message size. We separate protocols into two parts, the information-exchange protocol and

the action protocol, so as to be able to examine the effects of more limited information exchange. We then

define a notion of optimality with respect to an information-exchange protocol. Roughly speaking, an action

protocol 𝑃 is optimal with respect to an information-exchange protocol E if, with 𝑃 , agents decide as soon as

possible among action protocols that exchange information according to E. We present a knowledge-based

EBA program for omission failures all of whose implementations are guaranteed to be correct and are optimal

if the information exchange satisfies a certain safety condition. We then construct concrete programs that

implement this knowledge-based program in two settings of interest that are shown to satisfy the safety

condition. Finally, we show that a small modification of our program results in an FIP that is both optimal and

efficiently implementable, settling an open problem posed by Halpern, Moses, and Waarts (SIAM J. Comput.,

2001).

CCS Concepts: • Theory of computation → Distributed algorithms; • Computing methodologies

→ Reasoning about belief and knowledge; • Computer systems organization → Dependable and fault-

tolerant systems and networks.

Additional Key Words and Phrases: Distributed algorithms, Epistemic logic, Reasoning about knowledge,

Byzantine Agreement, Consensus, Fault tolerance

1 INTRODUCTION

Logics of knowledge (epistemic logics) have been shown to provide useful abstractions for reasoning
about distributed systems [5, 7], enabling a focus on the information that needs to be attained in
order to perform certain actions, independent of how that information is encoded in the states of the
system. The approach has, in particular, been used fruitfully to analyze agreement protocols, where
agents are required to make consistent decisions on some value, based on their initial preferences
[1, 4, 8, 12].
One particular focus of this work has been to develop protocols that make optimal use of

information. In the context of protocols for agreement, this has meant protocols that decide as
soon as possible. We say that a protocol 𝑃1 dominates a protocol 𝑃2 if, roughly speaking, for each
possible pattern of failures and inputs, 𝑃1 decides at least as soon as 𝑃2. An optimum protocol

is one that dominates every other protocol; an optimal protocol is one that is not dominated by
any other protocol. Optimum knowledge-based programs (i.e., programs with explicit tests for
knowledge) have been provided for simultaneous Byzantine agreement (SBA) with crash failures
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[1, 2, 4] and omission failures1 [12], and for consistent SBA with omission failures [13] (where
all agents that decide on an action must perform the same action, not just the nonfaulty agents).
Moreover, polynomial-time implementations of these programs were provided. For the problem of
eventual Byzantine agreement (EBA), it is well-known that there are no optimum protocols [12],
although there are optimal protocols. Optimal knowledge-based programs have been provided for
EBA in the case of crash failures [1] and sending-omission failures [8]. While a polynomial-time
implementation of the knowledge-based program was provided for the case of crash failures [1],
none was provided in the case of omission falures. Indeed, the problem of finding a polynomial-time
optimal algorithm for EBA in the presence of omission failures has been open for over 20 years.
Among other things, we solve this problem here.

The work on optimal (and optimum) protocols has focused on full-information protocols (FIPs),
ones where each agent repeatedly sends all other agents its complete state, containing its initial
state and all messages that it has received up to the present time. As far as optimal protocols go,
there is no loss of generality in considering only FIPs. As is well known [3], any protocol can be
simulated by an FIP, so for any protocol, there is an FIP that decides at least as soon. However,
while FIPs do provide optimality, they are expensive to implement due to their space requirements
and the length of messages sent, their analysis may be complex, and in some failure environments,
they may require that intractable properties be computed at each step of the protocol to attain
optimality. They are therefore not necessarily practical. The present paper is part of a program of
research in which we seek to overcome these difficulties with the full-information paradigm by
considering protocols in which less than full information is exchanged between the agents.

Our goal in this paper is to examine the effects of more limited information exchange. In order to
do so, we separate protocols into two parts, the information-exchange protocol, which specifies what
information agents maintain in their local states and what message they exchange at each step,
and the action protocol, which, in the case of agreement protocols, specifies what decision agents
make. We then define a notion of optimality with respect to an information-exchange protocol.
Roughly speaking, an action protocol 𝑃 is optimal for a particular specification with respect to
an information-exchange protocol E if agents decide as soon as possible with 𝑃 as they do with
any other protocol that satisfies the specification and exchanges information according to E. A
full-information protocol is a special case of an information-exchange protocol, but we allow far
more limited protocols, where agents keep track of less information and send less information in
their messages. We focus in this paper on optimal protocols for binary EBA, where agents have only
one of two possible initial preferences, and we assume sending-omission failures. For EBA, there
is a group of agents, each with an initial preference of 0 or 1. The nonfaulty agents are required
to reach agreement on a value, but different agents may decide at different times. The solution is
required to be non-trivial in the sense that if all initial preferences are 𝑥 ∈ {0, 1} then a nonfaulty
agent must decide 𝑥 .

Since with EBA, agents do not have to decide simultaneously, the literature has typically consid-
ered optimal protocols that are biased towards 0, in that an agent decides 0 as soon as it learns that
some agent started with an initial preference of 0, and protocols that are baised towards 1. In the
case of crash failures, it is known that there are optimal EBA protocols that are biased towards 0
(resp., 1) in this sense [1]. But it is easy to see that there cannot be an optimal EBA protocol that is
biased towards 0 (or 1) in the case of omissions failures. Consider a setting where there are at least
three agents, and a run 𝑟 where exactly one of these agents is faulty, say agent 1, all the remaining

1Recall that with crash failures, a faulty process behaves according to the protocol, except that it might crash at some round

(possibly after sending some messages), after which it sends no messages; with sending-omission failures, a faulty process

may omit to send an arbitrary set of messages in any given round, but otherwise behaves according to the protocol.
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agents have an initial preference of 1, and the faulty agent does not send any messages. In run 𝑟 ,
the nonfaulty agents must eventually decide 1, because the faulty agent’s initial preference may be
1, and in that case, EBA requires a decision of 1. Suppose that the first nonfaulty agent to decide in
run 𝑟 does so at round 𝑛, and without loss of generality, that 2 is a nonfaulty agent that decides 1 at
round 𝑛. Now consider a run 𝑟 ′ where agent 1 has an initial preference of 0, agent 1 is faulty, all
the remaining agents are nonfaulty and have an initial preference of 1, agent 1 does not send any
messages up to round 𝑛 − 1, and in round 𝑛 − 1 sends exactly one message, which is sent to agent 3,
and says (truthfully) that agent 1’s initial preference was 0. Since agent 2 cannot distinguish 𝑟 from
𝑟 ′, agent 2 must decide 1 in round 𝑛 of 𝑟 ′. Since agent 3 does not decide in the first 𝑛 − 1 rounds
of 𝑟 , it also does not decide in the first 𝑛 − 1 rounds of 𝑟 ′. Since it learns that some agent has an
initial preference of 0 in round 𝑛 − 1, agent 3 decides 0 in round 𝑛 of 𝑟 ′. Thus, two nonfaulty agents
decide on different values in 𝑟 ′, so EBA is not achieved. (Note a run like 𝑟 ′ is inconsistent with
crash failures; it really requires omission failures.)
To deal with this issue, in a 0-biased protocol, rather than requiring that an agent decide 0 as

soon as it hears about a 0, we require only that an agent decides 0 only if it hears about 0 via a chain
of agents (where the first agent in the chain has an initial preference of 0, and in round 𝑘 , the 𝑘th
agent in the chain decides 0 and tells the (𝑘 + 1)st agent about this). Note that in the case of crash
failures, an agent can hear about a 0 only via such a chain. We then provide a knowledge-based
action protocol P0 based on this (well-known) idea that we show is correct (in the sense that
all of its implementations satisfy the EBA specification, no matter what information-exchange
protocol is used) and is optimal in contexts that satisfy a certain safety condition. We then consider
two information-exchange protocols where agents exchange relatively short (and relatively few)
messages, and show that they satisfy the safety condition. Finally, we provide concrete polynomial-
time action protocols that implement P0 with respect to these two information-exchange protocols.

The knowledge-based program P0 is not optimal in the case of full-information contexts, but, as
we show, a small modification P1 of P0 is optimal. Moreover, P0 and P1 are equivalent in the two
limited-information contexts that we considered, so P1 is also optimal in these contexts. Roughly
speaking, P1 allows agents to decide if they get common knowledge of who the nonfaulty agents
are. Such common knowledge can’t be obtained in the limited-exchange contexts that we consider,
but it can be obtained if agents use a full-information protocol and keep track of everything
they have learned. The knowledge-based program P1 does not involve the (rather complicated)
continual common knowledge operator used by Halpern, Moses, and Waarts; rather, it uses more
standard knowledge and common knowledge operators. This allows us to provide a polynomial-time
implementation of it.
The rest of this paper is organized as follows. Section 2 reviews the epistemic framework of

[5]. In Section 3, we introduce the separation of information-exchange and action protocols along
with a representation of the failure model. Section 4 defines knowledge-based programs. The
specification of EBA and a formal definition of optimality with respect to an information-exchange
protocol are given in Section 5. In Section 6, we define the knowledge-based program P0, show that
it satisfies EBA, define the safety condition that suffices for P0 to be optimal, describe two natural
limited information-exchange protocols that satisfy the safety condition, and provide concrete
action protocols that implement P0 with respect to these two information-exchange protocols.
In Section 7, we define P1, a modification of P0 that is optimal for the full-information-exchange
protocol, and provide a polynomial-time implementation of it. We conclude with a discussion of
the cost of limited information exchange in Section 8. Proofs for all the results in the paper can be
found in the appendix.
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2 SEMANTIC MODEL

We assume that a set Agt of agents communicate using a message-passing network, which may
be subject to various types of failures. To model such systems semantically, we use the standard
runs-and-systems model [5, 6], which we briefly review.
Interpreted systems [5] model multi-agent scenarios in which some number 𝑛 of agents change

their states over time. An interpreted system is a pairI = (R, 𝜋), whereR is a set of runs, describing
how the system evolves over time, and 𝜋 : R × N→ P(𝑃𝑟𝑜𝑝) is an interpretation function that
indicates which atomic propositions are true at each point of the system, where a point is a pair
(𝑟,𝑚) consisting of a run 𝑟 ∈ R and time𝑚 ∈ N. The set R is called a system. Formally, a run 𝑟 ∈ R

is a function 𝑟 : N→ 𝐿𝑒 × Π𝑖∈Agt𝐿𝑖 , where 𝐿𝑒 is the set of possible local states of the environment
in which the agents operate, and each 𝐿𝑖 is the set of possible local states of agent 𝑖 . The elements
of 𝐿𝑒 × Π𝑖∈Agt𝐿𝑖 are called global states. Given a run 𝑟 , agent 𝑖 , and time𝑚, we write 𝑟𝑖 (𝑚) for the
(𝑖 + 1)st component of 𝑟 (𝑚), which is the local state of agent 𝑖 in the global state 𝑟 (𝑚), and 𝑟𝑒 (𝑚)

for the first component of 𝑟 (𝑚), which is the local state of the environment.
To reason about the knowledge of agents in interpreted systems, we use a standard language for

reasoning about knowledge and time. We start with a set Φ of primitive propositions, and close
off under ∧, ¬, the epistemic operators 𝐾𝑖 for 𝑖 = 1, . . . , 𝑛 (one for each agent) and 𝐶S (common
knowledge among the agents in an indexical set 𝑆 ; see below) and the temporal operators □, ⊡, ⃝,
and ⊖. The formula 𝐾𝑖𝜙 says that agent 𝑖 knows that formula 𝜙 holds, □𝜙 says that 𝜙 holds at all
times in the future, ⊡𝜙 says that 𝜙 holds at all times, ⃝𝜙 says that 𝜙 holds at the next time, and ⊖𝜙

says that 𝜙 holds at the previous time.
The semantics of the logic is given by a relation I, (𝑟,𝑚) |= 𝜙 , where I is an interpreted system,

(𝑟,𝑚) is a point of I, and 𝜙 is a formula. For formulas not of the form𝐶S𝜙 , the relation |= is defined
inductively as follows (we omit the obvious cases for the propositional operators):

• I, (𝑟,𝑚) |= 𝑝 if 𝑝 ∈ 𝜋 (𝑟,𝑚),
• I, (𝑟,𝑚) |= 𝐾𝑖𝜙 if I, (𝑟 ′,𝑚′) |= 𝜙 for all points (𝑟 ′,𝑚′) of I such that 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚

′),
• I, (𝑟,𝑚) |= □𝜙 if I, (𝑟,𝑚′) |= 𝜙 for all𝑚′ ≥ 𝑚,
• I, (𝑟,𝑚) |= ⊡𝜙 if I, (𝑟,𝑚′) |= 𝜙 for all𝑚′ ∈ N,
• I, (𝑟,𝑚) |= ⃝𝜙 if I, (𝑟,𝑚 + 1) |= 𝜙

• I, (𝑟,𝑚) |= ⊖𝜙 if𝑚 > 0 and I, (𝑟,𝑚 − 1) |= 𝜙 .

The intuition for the definition of the knowledge operator 𝐾𝑖𝜙 is that 𝑟 ′𝑖 (𝑚) = 𝑟𝑖 (𝑚) says that
agent 𝑖 considers it possible, when in the actual situation (𝑟,𝑚), that it is in situation (𝑟 ′,𝑚′), since
it has the same local state there. An agent then knows 𝜙 if 𝜙 is true in all the situations that the
agent considers to be possible.

We can now define the modal operator𝐶S . Intuitively,𝐶S𝜙 is true at a point (𝑟,𝑚) if𝜙 is common
knowledge among the agents in 𝑆 ; each of the agents in S knows that each of the agents in 𝑆
knows . . . that 𝜙 is true. The fact that S is an indexical set means that its membership can depend
on the point; that is, semantically, S(𝑟,𝑚) is a set of agents for each point (𝑟,𝑚). We define 𝐸S𝜙
(everyone in S knows 𝜙) as an abbreviation for

∧
𝑖∈S 𝐾𝑖𝜙 . That is,

I, (𝑟,𝑚) |= 𝐸S𝜙 if, for all 𝑗 ∈ S(𝑟,𝑚), we have I, (𝑟,𝑚) |= 𝐾 𝑗𝜙 .

Taking 𝐸1
S
𝜙 to be an abbreviation of 𝐸S𝜙 , and 𝐸

𝑚+1
S

𝜙 to be an abbreviation of 𝐸S (𝐸
𝑚
S
𝜙), we define

I, (𝑟,𝑚) |= 𝐶S𝜙 if, for all𝑚 ≥ 1, I, (𝑟,𝑚) |= 𝐸𝑚
S
𝜙 .

As usual, we say that 𝜙 is valid in I, and write I |= 𝜙 , if I, (𝑟,𝑚) |= 𝜙 for all points (𝑟,𝑚) in I.
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3 COMMUNICATION AND FAILURE MODELS

We now specialize the general model from the previous section to represent an omissions-failure
model. In our representation, we separate the information-exchange protocol, which characterizes
the information maintained by agents in their local states, and which messages are sent and when,
from the action protocol, which characterizes the rules for performing actions other than sending
messages. (In our case, these actions will be decisions.) In the literature, the information-exchange
protocol has often been the full-information protocol, in which at each step each agent sends all
other agents a complete description of everything it has learned up to that time. However, we will
be interested in protocols in which less information is exchanged, so it helps to separate out the
information-exchange protocol as a parameter of the interpreted systems we construct. A further
parameter is the failure model F , defined below.

We assume that information is exchanged by sending messages. Our focus will be on synchronous

message passing, in which agents operate in a sequence of synchronized rounds. In each round,
each agent performs some actions, sends a set of messages to the other agents, receives some of the
messages from the other agents that were sent in the same round, and updates its state depending
on these events. The information-exchange protocol describes the possible initial states of the agent
(which may include information such as the agent’s preference for the outcome of the consensus
decision to be made), how it chooses the messages to send at each time, and how it updates its state
in response to receiving messages.
We assume that each agent has a set 𝐴𝑖 of actions that it can perform. In our applications,

𝐴𝑖 = {decide𝑖 (𝑥) | 𝑥 ∈ {0, 1}}∪{noop}, but in general,𝐴𝑖 can be arbitrary. Formally, an information-
exchange protocol E for agents Agt = {1, . . . , 𝑛} is given by a tuple ⟨E1, . . . , E𝑛⟩ consisting of a
local information-exchange protocol E𝑖 for each each agent 𝑖 . Each local information-exchange
protocol E𝑖 is a tuple ⟨𝐿𝑖 , 𝐼𝑖 , 𝐴𝑖 , 𝑀𝑖 , 𝜇𝑖 , 𝛿𝑖⟩, where

• 𝐿𝑖 is a set of local states.
• 𝐼𝑖 ⊆ 𝐿𝑖 is a set of initial states.
• 𝑀𝑖 is a set of messages that can be sent by agent 𝑖 .
• 𝜇𝑖 : 𝐿𝑖 ×𝐴𝑖 → Π 𝑗 ∈Agt (𝑀𝑖 ∪ {⊥}) is a function mapping a local state 𝑠 and an action 𝑎 to the
messages to be sent in the current round, one to each agent 𝑗 . Intuitively, 𝜇𝑖 (𝑠, 𝑎) = 𝜎 means
that when action 𝑎 is performed in state 𝑠 , the information-exchange protocol transmits
message 𝜎 𝑗 to each agent 𝑗 . Here 𝜎 𝑗 = ⊥ represents that no message is sent by 𝑖 to 𝑗 . Let
𝜇𝑖 𝑗 (𝑠, 𝑎) denote the message that 𝑖 sends to 𝑗 in this tuple.

• 𝛿𝑖 : 𝐿𝑖 × 𝐴𝑖 × Π 𝑗 ∈Agt (𝑀 𝑗 ∪ {⊥}) → 𝐿𝑖 is a function that updates the local state, given an
action and a tuple (𝑚1, . . . ,𝑚𝑛) of messages𝑚 𝑗 ∈ 𝑀 𝑗 ∪ {⊥} (where𝑚 𝑗 = ⊥ if 𝑖 receives no
message from 𝑗 ).

The failure model describes what failures can occur. Typically a failure model comes with a
parameter 𝑡 that indicates the maximum number agents that may be faulty. A failure pattern, or
adversary, defines the failures that actually occur in a particular run consistent with the failure
model. Formally, a failure pattern 𝛼 is a pair (N , 𝐹 ), where N ⊆ Agt and 𝐹 is a mapping 𝐹 :

N×Agt ×Agt → {0, 1}. HereN is the set of nonfaulty agents, and 𝐹 (𝑚, 𝑖, 𝑗) describes whether the
message sent from agent 𝑖 to agent 𝑗 in round𝑚 + 1 is delivered. (If it is not delivered, we assume
that the message ⊥ is delivered instead.) A failure model is a set of failure patterns. The sending-
omissions model 𝑆𝑂 (𝑡) for agentsAgt is the set of all failure patterns (N , 𝐹 ) such that |Agt−N | ≤ 𝑡 ,
so that there are at most 𝑡 faulty agents, and for all 𝑚 ∈ N and 𝑗 ∈ Agt, if 𝐹 (𝑚, 𝑖, 𝑗) = 0 then
𝑖 ∈ Agt −N . The crash-failures model is the special case where if 𝐹 (𝑚, 𝑖, 𝑗) = 0 then 𝐹 (𝑚′, 𝑖, 𝑗 ′) = 0

for all𝑚′
> 𝑚 and agents 𝑗 ′.
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An action protocol 𝑃 for an information-exchange protocol E, is a tuple (𝑃1, . . . , 𝑃𝑛) containing,
for each agent 𝑖 = 1 . . . 𝑛, a local action protocol 𝑃𝑖 : 𝐿𝑖 → 𝐴𝑖 mapping the local states 𝐿𝑖 for agent 𝑖
in E to actions in 𝐴𝑖 .

To connect these definitions to the semantic model of Section 2, we describe how an information-
exchange protocol E, a failure model F , and an action protocol 𝑃 determine a system RE,F,𝑃 . In
this system, the set 𝐿𝑒 of possible local states of the environment consists of the possible failure
patterns. The local states 𝐿𝑖 of the agent are the states of the information-exchange protocol for
agent 𝑖 . An initial state (𝑠𝑒 , 𝑠1, . . . , 𝑠𝑛) is a global state, where 𝑠𝑖 ∈ 𝐼𝑖 is an initial state of each agent
𝑖’s information-exchange protocol. For each initial state, a run 𝑟 with that initial state is uniquely
determined by the information-exchange protocol E, the failure model F , and the action protocol 𝑃 .
In this run, the protocol E, the failure pattern 𝛼 , and 𝑃 determine at each step, in order, what actions
are taken, what messages are sent, and what messages are received. Each agent updates its local
state depending on the actions taken and the messages received in the round. Formally, the global
state 𝑟 (𝑘 + 1) = (𝑠 ′𝑒 , 𝑠

′
1
, . . . , 𝑠 ′𝑛) at time 𝑘 + 1 is determined from the global state 𝑟 (𝑘) = (𝑠𝑒 , 𝑠1, . . . , 𝑠𝑛)

at time 𝑘 as follows:

• 𝑠 ′𝑒 = 𝑠𝑒 (so the failure pattern remains unchanged throughout the run).
• For each pair of agents 𝑖 and 𝑗 , let𝑚𝑖, 𝑗 be the message that agent 𝑖 sends to 𝑗 , given that it
performs action 𝑃𝑖 (𝑠𝑖 ) in state 𝑠𝑖 , that is,𝑚𝑖, 𝑗 = 𝜇𝑖 (𝑠𝑖 , 𝑃𝑖 (𝑠𝑖 )) ( 𝑗).

• For each pair of agents 𝑖 and 𝑗 , let𝑚′
𝑖, 𝑗 be the result of applying the failure pattern to the

messages sent. Specifically, suppose that 𝑠𝑒 = (N , 𝐹 ). If 𝐹 (𝑘, 𝑖, 𝑗) = 0 then𝑚′
𝑖, 𝑗 = ⊥ and if

𝐹 (𝑘, 𝑖, 𝑗) = 1 then𝑚′
𝑖, 𝑗 =𝑚𝑖, 𝑗 .

• Finally, for each agent 𝑖 , 𝑠 ′𝑖 = 𝛿𝑖 (𝑠𝑖 , 𝑃𝑖 (𝑠𝑖 ), (𝑚
′
1,𝑖 , . . . ,𝑚

′
𝑛,𝑖 )).

The system RE,F,𝑃 consists of all runs generated from some initial state.

4 KNOWLEDGE-BASED PROGRAMS

Knowledge-based programs specify how an agent’s actions are determined, given what the agent
knows. As defined by Fagin et al. [5], these programs are interpreted relative to an interpreted context
that defines the global states, how they are updated as a result of actions, and an interpretation
of atomic propositions. In our setting, we can take the interpreted context to be a tuple (E, F , 𝜋)
consisting of an information-exchange protocol E, a failure model F , and an interpretation 𝜋 of
atomic propositions in the set of all runs over global states constructed from E and F .
For our purposes, it is convenient to take knowledge-based programs to have the form P =

(P1, . . . , P𝑛), where for each agent 𝑖 , the local knowledge-based program P𝑖 is in the language with
grammar

P𝑖 ::= 𝑎𝑖 | if 𝜙𝑖 then P𝑖 else P𝑖 ,

where 𝑎𝑖 denotes actions in the set 𝐴𝑖 of actions of agent 𝑖 , and 𝜙𝑖 is a Boolean combination of
formulas of the form 𝐾𝑖𝜓 . That is, the tests in agent 𝑖’s local knowledge-based program concern
agent 𝑖’s knowledge. Note that the truth of such a formula 𝜙𝑖 at a point (𝑟,𝑚) in an interpreted
system I depends only on agent 𝑖’s local state at that point. That is, for points (𝑟,𝑚), (𝑟 ′𝑚′) with
𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚

′), we have I, (𝑟,𝑚) |= 𝜙𝑖 iff I, (𝑟 ′,𝑚′) |= 𝜙𝑖 . Given a local state 𝑠 of agent 𝑖 , we may
therefore write I, 𝑠 |= 𝜙𝑖 to express that I, (𝑟,𝑚) |= 𝜙𝑖 for all points (𝑟,𝑚) of I with 𝑟𝑖 (𝑚) = 𝑠 .
To interpret a knowledge-based program semantically, we first define how a knowledge-based

program P = (P1, . . . , P𝑛) determines a concrete action protocol PI given an interpreted system

I. For each agent 𝑖 and local state 𝑠 of 𝑖 in I, we define PI
𝑖 (𝑠) to be the action resulting from

executing the program P𝑖 with its tests interpreted at local state 𝑠 in I. Formally, we define PI by
induction on the structure of P, taking (𝑎𝑖 )

I (𝑠) = 𝑎𝑖 , and for P𝑖 =łif 𝜙𝑖 then Q𝑖 else R𝑖ž, we define

P𝐼𝑖 (𝑠) = QI
𝑖 (𝑠) if I, 𝑠 |= 𝜙𝑖 , and P𝐼𝑖 (𝑠) = RI

𝑖 (𝑠) otherwise.
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Given a knowledge-based program P = (P1, . . . , P𝑛) and a concrete action protocol 𝑃 = (𝑃1, . . . , 𝑃𝑛)

for an information-exchange protocol E, we say that 𝑃 implements P in the context 𝛾 = (E, F , 𝜋)

if, for I = (RE,F,𝑃 , 𝜋), we have 𝑃𝑖 (𝑠) = PI
𝑖 (𝑠) for all agents 𝑖 = 1, . . . , 𝑛 and local states 𝑠 of agent 𝑖

that arise in I.

5 EVENTUAL BYZANTINE AGREEMENT

We briefly review the specification of the eventual Byzantine agreement problem that we consider
in this paper. The specification assumes that each agent starts with an independently selected
value init𝑖 ∈ {0, 1}. The actions in 𝐴𝑖 have the form decide𝑖 (𝑣), where 𝑣 ∈ {0, 1}, as well as a
łdo-nothingž action noop. We seek protocols (i.e., an information-exchange protocol and an action
protocol) such that every run satisfies the following four properties:

• Unique Decision: If agent 𝑖 performs an action decide𝑖 (𝑣) (for some 𝑣), then it does not
later perform decide𝑖 (1 − 𝑣).

• Agreement: If agents 𝑖 and 𝑗 are both nonfaulty, 𝑖 performs decide𝑖 (𝑣), and 𝑗 performs
decide𝑗 (𝑣

′), then 𝑣 = 𝑣 ′.
• Validity: If a nonfaulty agent 𝑖 performs decide𝑖 (𝑣) then init 𝑗 = 𝑣 for some agent 𝑗 .
• Termination: For all nonfaulty agents 𝑖 , eventually 𝑖 performs decide𝑖 (𝑣) for some value
𝑣 ∈ {0, 1}.

To relate this specification to our formal model, we define an EBA context to be a tuple (E, F , 𝜋)
consisting of an information-exchange protocol E, a failure model F , and an interpretation 𝜋 of a
set 𝑃𝑟𝑜𝑝 of propositions, such that the following conditions hold:

• The local states in E𝑖 have the form ⟨time𝑖 , init𝑖 , decided𝑖 , jd𝑖 , . . .⟩, where time𝑖 ∈ N, init𝑖 ∈

{0, 1}, decided𝑖 ∈ {0, 1,⊥} and jd𝑖 ∈ {0, 1,⊥}. Intuitively, jd𝑖 = 𝑣 if 𝑖 learned that some agent
just decided 𝑣 , for 𝑣 ∈ {0, 1}.

• The initial local states in E𝑖 have the form ⟨0, init𝑖 ,⊥, jd
0

𝑖 , . . .⟩, where jd𝑖 = ⊥.
• The message-selection value 𝜇𝑖 (𝑠, 𝑎) satisfies the following constraint: 𝑖 sends different
messages in the following three cases: (a) 𝑎 = decide𝑖 (0), (b) 𝑎 = decide𝑖 (1), and (c) the
remaining cases. That means that 𝑗 can tell from the message it receives from 𝑖 whether 𝑖 is
deciding 0 or 1 in the current round. Formally, this means that there are three disjoint sets
𝑀0,𝑀1, and𝑀2 with ⊥ ∉ 𝑀0 ∪𝑀1 such that if 𝑎 = decide𝑖 (0), then 𝑖 sends each agent 𝑗 a
message in𝑀0, if 𝑎 = decide𝑖 (1), then 𝑖 sends each agent 𝑗 a message in𝑀1, and otherwise,
𝑖 sends each agent 𝑗 a message in𝑀2.

• The transition function 𝛿𝑖 , when given as input state 𝑠 , action 𝑎, and a message tuple
(𝑚1, . . . ,𝑚𝑛), increases the time component time𝑖 of 𝑠 by 1; if 𝑎 = decide𝑖 (𝑣), it sets decided𝑖
to 𝑣 , and otherwise leaves decided𝑖 unchanged; it also sets jd𝑖 = 0 if 𝑖 received a message in
round𝑚 from an agent that performs action decide𝑖 (0) in that round, sets jd𝑖 = 1 if 𝑖 received
a message in round𝑚 from an agent that performs action decide𝑖 (1) in that round, and
otherwise sets jd𝑖 = ⊥ (the assumptions on 𝜇𝑖 ensure that such messages are distinguishable
from other messages). Note that the fact that the time component increases by 1 at every
step ensures that the system is synchronous; all agents 𝑖 have time𝑖 =𝑚 at time𝑚.

• 𝑃𝑟𝑜𝑝 contains at least the following propositions (all of which are necessary to define the
specification below) for each agent 𝑖 ∈ Agt:
– init𝑖 = 𝑣 for 𝑣 ∈ {0, 1},
– decided𝑖 = 𝑣 for 𝑣 ∈ {⊥, 0, 1},
– time𝑖 = 𝑘 for 𝑘 ∈ N, and
– 𝑖 ∈ N ;
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• 𝜋 interprets init𝑖 = 𝑣 , decided𝑖 = 𝑣 , and time𝑖 = 𝑘 in the obvious way from 𝑖’s local state
(e.g., 𝜋 (𝑟,𝑚) makes init𝑖 = 𝑣 true iff 𝑟𝑖 (𝑚) has its second component init𝑖 equal to 𝑣), and
interprets 𝑖 ∈ N in the obvious way from F (i.e., 𝜋 (𝑟,𝑚) makes 𝑖 ∈ N true iff 𝑖 ∈ N (𝑟 ),
where N(𝑟 ) is the set of nonfaulty agents in run 𝑟 ).

An EBA context satisfies some minimal properties that we expect all contexts that arise in the
analysis of EBA to satisfy.

We define decided𝑖 to be an abbreviation of decided𝑖 = 0 ∨ decided𝑖 = 1, take jdecided𝑖 = 𝑣 to be
an abbreviation for decided𝑖 = 𝑣 ∧ ⊖decided𝑖 = ⊥ (intuitively, 𝑖 just decided 𝑣), take deciding𝑖 = 𝑣
to be an abbreviation for decided𝑖 = ⊥ ∧ ⃝decided𝑖 = 𝑣 (intuitively, 𝑖 is deciding 𝑣 in the current
round) and take ∃𝑣 , for 𝑣 ∈ {0, 1} to be an abbreviation of

∨
𝑖∈Agt init𝑖 = 𝑣 .

Given an EBA context 𝛾 = (E, F , 𝜋) and an action protocol 𝑃 for E, we define the system
I𝛾,𝑃 = (RE,F,𝑃 , 𝜋). To satisfy the informal specification above, we now seek an EBA-context
𝛾 = (E, F , 𝜋) and an action protocol 𝑃 for E such that the following are valid in the system I𝛾,𝑃 for
all agents 𝑖 and 𝑗 :

• Unique Decision: decided𝑖 = 𝑣 ⇒ □¬(decided𝑖 = 1 − 𝑣), for 𝑣 ∈ {0, 1}.
• Agreement: ¬(𝑖 ∈ N ∧ 𝑗 ∈ N ∧ decided𝑖 = 𝑣 ∧ decided 𝑗 = 𝑣

′), for 𝑣 ≠ 𝑣 ′.
• Validity: (decided𝑖 = 𝑣 ∧ 𝑖 ∈ N) ⇒ ∃𝑣

• Termination: 𝑖 ∈ N ⇒ ^(decided𝑖 ≠ ⊥).

If these conditions are satisfied, we call 𝑃 an EBA decision protocol for the context 𝛾 . The tuple
(E, 𝑃, 𝜋) is an EBA-protocol for failure model F . That is, a protocol solving EBA in the failure model
consists of an information-exchange protocol, an action protocol that makes decisions, and an
interpretation of the basic propositions.

We are interested in protocols that are optimal given the information that is maintained by the
information-exchange protocol. The following definitions formalize this notion. Runs 𝑟, 𝑟 ′ of two
action protocols 𝑃, 𝑃 ′, respectively, correspond if 𝑟 (0) = 𝑟 ′(0). That is, the two runs have the same
failure pattern and the same initial states for all agents. Recall that the initial global state of a run,
the information-exchange, and the action protocol together determine the complete run. An action
protocol 𝑃 dominates action protocol 𝑃 ′ with respect to a context 𝛾 = (E, F , 𝜋), written 𝑃 ′ ≤𝛾 𝑃 if,
for all corresponding runs 𝑟 ∈ RE,F,𝑃 and 𝑟 ′ ∈ RE,F,𝑃 ′ and all agents 𝑖 that are nonfaulty in 𝑟 and
times𝑚, if 𝑃𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (𝑣) for 𝑣 ∈ {0, 1} then 𝑃 ′

𝑖 (𝑟
′
𝑖 (𝑚

′)) ≠ decide𝑖 (𝑤) for any𝑚′
< 𝑚

and𝑤 ∈ {0, 1}. That is, 𝑃 makes it decisions no later than 𝑃 ′. 𝑃 strictly dominates 𝑃 ′ with respect to
𝛾 if 𝑃 ′ ≤𝛾 𝑃 and it is not the case that that 𝑃 ≤𝛾 𝑃

′. An EBA decision protocol 𝑃 is optimal with
respect to an EBA context 𝛾 if no EBA decision protocol for 𝛾 strictly dominates 𝑃 .

6 OPTIMAL EBAWITH RESPECT TO LIMITED INFORMATION EXCHANGE

In this section, we describe a knowledge-based program for EBA that is somewhat biased towards 0,
show that it is correct, and show that it is optimal with respect to all information-exchange protocols
that satisfy a certain safety condition. As discussed in the introduction, there is no protocol for
EBA in the presence of omission failures where an agent decides 0 as soon as it hears that some
agent had an initial preference of 0. So we consider instead a program where an agent decides 0 if
it hears that some agent had an initial preference of 0 via a chain of agents; this is essentially the
condition used to decide 0 in the crash-failure case.

A sequence 𝑖0, . . . , 𝑖𝑚 of distinct agents is a 0-chain of length𝑚 in run 𝑟 of interpreted system I if
(a) I, (𝑟, 0) |= init𝑖0 = 0, (b) for all𝑚′ with 0 ≤ 𝑚′ ≤ 𝑚, agent 𝑖𝑚′ first decides 0 in round𝑚′ + 1 of
𝑟 , and (c) for all𝑚′ with 1 ≤ 𝑚′ ≤ 𝑚, 𝑖𝑚′ knows at the point (𝑟,𝑚′) that 𝑖𝑚′−1 has just decided 0.
We say that an agent 𝑖 receives a 0-chain in round𝑚 in run 𝑟 if there is a 0-chain of length𝑚 that
ends with agent 𝑖 in run 𝑟 .



Optimal Eventual Byzantine Agreement Protocols with Omission Failures 9

Variants of what we call a 0-chain exist in the literature [1, 8]. The 0-chain definition in [1],
defined for crash failures, requires only that 𝑖𝑚′ receives a message from 𝑖𝑚′−1 in round 𝑚′ for
𝑚′ ≥ 1. The 0-chain definition in [8] requires that 𝑖𝑚 receives a message from 𝑖𝑚−1 in round𝑚′

for𝑚′ ≥ 1 and 𝑖𝑚 considers it possible that 𝑖𝑚−1 is nonfaulty when it receives the message (this
will automatically be the case with crash failures, which is all that are considered in [1], but is not
necessarily the case with omission failures, which are considered in [8]); moreover, 𝑖𝑚 is required
to be nonfaulty.
Let P0𝑖 be the following knowledge-based program for agent 𝑖:

Program: P0𝑖

if decided𝑖 ≠ ⊥ then noop

else if init𝑖 = 0 ∨ 𝐾𝑖 (
∨

𝑗 ∈Agt jdecided 𝑗 = 0) then decide𝑖 (0)

else if 𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)) then decide𝑖 (1)

else noop

In words: as long as 𝑖 hasn’t already decided, then 𝑖 decides 0 if it has an initial preference of 0 or
knows that someone just decided 0; 𝑖 decides 1 if it knows that no agent can be currently deciding
0; otherwise, it does nothing. P0 is essentially the same as the knowledge-based program used
by Castañeda et al. [1] in the case of crash failures. We will show that the second condition for
deciding 0, that 𝑖 knows that someone has just decided 0, holds iff 𝑖 receives a 0-chain. It follows
that if 𝑖 hasn’t already decided and is not deciding 0, then 𝑖 decides 1 iff 𝑖 knows that no agent is
receiving a 0-chain. This latter condition is very close in spirit to Castanñeda et al.’s notion of there
being no hidden paths.
P0 satisfies all the EBA properties in all EBA contexts.

Proposition 6.1. If 𝛾 = (E, F , 𝜋) is an EBA context, then all implementations of the knowledge-

based program P0 with respect to 𝛾 are EBA decision protocols for 𝛾 . Indeed, all implementations of P0

terminate after at most 𝑡 + 1 rounds of message exchange and Validity holds even for faulty agents.

We next prove that some implementations of P0 are actually optimal EBA decision protocols
in certain EBA contexts. Instead of individually proving optimality of P0 with respect to specific
information exchanges, we first give a sufficient condition for optimality in EBA contexts. We then
look at two specific contexts that satisfy this safety property and show that implementations of P0

in them are optimal.

Definition 6.2 (safety). A knowledge-based program P is safe with respect to an EBA context 𝛾 =

(E, F , 𝜋) if, for all implementations 𝑃 of P with respect to 𝛾 and all points (𝑟,𝑚) of I = (RE,F,𝑃 , 𝜋),
the following two conditions hold:

(1) If 𝑖 has not received a 0-chain by (𝑟,𝑚), then there exists a point (𝑟 ′,𝑚) such that 𝑟𝑖 (𝑚) =

𝑟 ′𝑖 (𝑚) and all agents have initial preference 1 in 𝑟 ′.
(2) If I, (𝑟,𝑚) |= ¬𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)) and 𝑖 does not decide before round𝑚 + 1 in 𝑟 ,

then there exists a point (𝑟 ′,𝑚) such that:
(a) 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚),
(b) 𝑖 is nonfaulty in 𝑟 ′,
(c) some agent 𝑗 that is nonfaulty in 𝑟 ′ decides 0 in round𝑚 + 1 of 𝑟 ′; moreover, if𝑚 ≥ 1, there

exists a run 𝑟 ′′ and an agent 𝑗 ′ such that 𝑗 and 𝑗 ′ are nonfaulty in 𝑟 ′′, 𝑟 ′𝑗 (𝑚) = 𝑟 ′′𝑗 (𝑚), and

𝑗 ′ decides 0 in round𝑚 in round 𝑟 ′′.
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Intuitively, (1) says that the only way that an agent learns that some agent had an initial
preference of 0 is via a 0-chain; thus, (1) implies that if 𝑖 has not received a 0-chain by (𝑟,𝑚), then
𝐼 , (𝑟,𝑚) |= ¬𝐾𝑖∃0. Clause (2) says that the only way an agent is unable to decide 1 (i.e., the test for
deciding 1 in P0 does not hold) is if it considers it possible that some nonfaulty agent is deciding 0;
thus, (2) implies that if I, (𝑟,𝑚) |= ¬𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)) and 𝑖 has not decided by round

𝑚, then I, (𝑟,𝑚) |= ¬𝐾𝑖 (
∧

𝑗 ∈N ¬(deciding 𝑗 = 0)).
Note that a knowledge-based program will in general not be safe with respect to an FIP, since an

agent 𝑖 may learn that some agent 𝑗 had an initial preference of 0 without receiving a 0-chain. As a
result, the first condition will not hold, since at all points that 𝑖 considers possible, 𝑗 has an initial
preference of 0. (In Section 7, we show that a small modification of P0 is optimal even with full
information exchange.) But, as we shall see, P0 is safe with respect to two EBA contexts of interest,
where agents do not keep track of who is faulty.

Theorem 6.3. If 𝛾 is an EBA context and P0 is safe with respect to 𝛾 , then all implementations of P0

are optimal with respect to 𝛾 .

We now describe two families of concrete EBA contexts with respect to which P0 is safe, param-
eterized by the number 𝑛 of agents involved. For the first, let Emin (𝑛) be the minimal information-
exchange protocol for 𝑛 agents, where for each agent 𝑖 , the following hold:

• The local states have the form ⟨time𝑖 , init𝑖 , decided𝑖 , jd𝑖⟩. Thus, the local states include just
what is required in an EBA context

• The initial local states have the form ⟨0, init𝑖 ,⊥,⊥⟩.
• 𝑀𝑖 = {0, 1},𝑀0

= {0},𝑀1
= {1} and𝑀2

= {⊥}.
• For each agent 𝑗 , if 𝑎 = decide𝑖 (𝑣) then 𝜇𝑖 𝑗 (𝑠, 𝑎) = 𝑣 ; otherwise, 𝜇𝑖 𝑗 (𝑠, 𝑎) = ⊥. Note 𝜇𝑖 𝑗
satisfies the constraint we imposed for EBA contexts. Intuitively, if 𝜇𝑖 𝑗 (𝑠, 𝑎) = 𝑣 ≠ ⊥, then 𝑖
is about to decide 𝑣 .

• The state-update component 𝛿𝑖 is defined on time𝑖 , init𝑖 , decided𝑖 , and jd𝑖 just as in EBA
contexts.

For the second, let Ebasic (𝑛) be the basic information-exchange protocol for 𝑛 agents, where the
local states of agents are like those in a minimal information-exchange protocol, except that, in
addition to the other messages allowed in a basic information-exchange protocol, each agent 𝑖 can
send a message of the form (init, 1), and their local states have one additional component, #1𝑖 , that
intuitively counts how many messages of the form (init, 1) 𝑖 received in the last round. In more
detail, for each agent 𝑖 , the following hold:

• The local states have the form ⟨time𝑖 , init𝑖 , decided𝑖 , jd𝑖 , #1𝑖⟩, where #1𝑖 ∈ {0, . . . , 𝑛}.
• The initial local states have the form ⟨0, init𝑖 ,⊥,⊥, 0⟩.
• 𝑀𝑖 = {0, 1, (init, 1)},𝑀0

= {0},𝑀1
= {1}, and𝑀2

= {(init, 1),⊥}.
• For all agents 𝑗 , if 𝑎 = decide𝑖 (𝑣) then 𝜇𝑖 𝑗 (𝑠, 𝑎) = 𝑣 for 𝑣 ∈ {0, 1}; if 𝑎 = noop and 𝑠 has the
form ⟨𝑚, 1,⊥,⊥, 𝑘⟩, then 𝜇𝑖 𝑗 (𝑠, 𝑎) = (init, 1); otherwise, 𝜇𝑖 𝑗 (𝑠, 𝑎) = ⊥.

• The state-update component 𝛿𝑖 is defined as in EBA contexts, with the added constraint
that #1𝑖 is updated to the number of messages of the form (init, 1) that 𝑖 receives in the
current round if decided𝑖 = ⊥ and 𝑖 does not receive a message 𝑣 ∈ {0, 1} from some agent 𝑗 ;
otherwise, #1𝑖 is set to 0 (essentially, for technical reasons, once a decision is made, #1𝑖 is
ignored).

Let 𝛾min,𝑛,𝑡 = (Emin (𝑛), 𝑆𝑂 (𝑡), 𝜋min,𝑛) denote the family of minimal contexts where there are 𝑛
agents, at most 𝑡 < 𝑛 faulty agents, the language includes jd𝑖 = 𝑣 in addition to time𝑖 = 𝑘 , init𝑖 = 𝑣 ,
decided𝑖 (𝑣), and 𝑖 ∈ N , for 𝑖 ∈ {1, . . . , 𝑛}, and 𝜋min,𝑛 interprets these primitive propositions in the
obvious way. Similarly, let 𝛾basic,𝑛,𝑡 = (Ebasic (𝑛), 𝑆𝑂 (𝑡), 𝜋basic,𝑛) denote the family of basic contexts



Optimal Eventual Byzantine Agreement Protocols with Omission Failures 11

with 𝑛 agents and 𝑡 < 𝑛 faulty agents, where the language includes #1𝑖 = 𝑘 in addition to all the
primitive proposition used in minimal contexts, where again, 𝜋basic,𝑛 interprets all the primitive
propositions in the obvious way.

Proposition 6.4. P0 is safe with respect to all contexts 𝛾min,𝑛,𝑡 and 𝛾basic,𝑛,𝑡 such that 𝑛 − 𝑡 ≥ 2.

Finally, we provide EBA decision protocols that implement P0 in the two contexts of interest. Let
𝑃𝑚𝑖𝑛 be the protocol implemented by the following (standard) program:

Program: 𝑃𝑚𝑖𝑛
𝑖

if decided𝑖 ≠ ⊥ then noop

else if init𝑖 = 0 ∨ jd𝑖 = 0 then decide𝑖 (0)

else if time𝑖 = 𝑡 + 1 then decide𝑖 (1)

else noop

Intuitively, this EBA decision protocol decides 0 if the agent has initial value 0 or hears of a
0-decision by another agent. If the agent does not hear about a 0-decision by time 𝑡 + 1, then it
decides 1.

Theorem 6.5. If 𝑡 ≤ 𝑛 − 2, then 𝑃𝑚𝑖𝑛 implements P0 in the EBA context 𝛾min,𝑛,𝑡 .

Finally, let 𝑃basic be the EBA decision protocol that implements the following program:

Program: 𝑃𝑏𝑎𝑠𝑖𝑐𝑖

if decided𝑖 ≠ ⊥ then noop

else if init𝑖 = 0 ∨ jd𝑖 = 0 then decide𝑖 (0)

else if #1𝑖 > 𝑛 − time𝑖 ∨ jd𝑖 = 1 then decide𝑖 (1)

else noop

Theorem 6.6. If 𝑡 ≤ 𝑛 − 2, then 𝑃basic implements P0 in the EBA context 𝛾basic,𝑛,𝑡 .

We get the following immediate corollary to Theorems 6.3, 6.5, and 6.6.

Corollary 6.7. 𝑃basic is optimal with respect to 𝛾basic,𝑛,𝑡 and 𝑃
𝑚𝑖𝑛 is optimal with respect to 𝛾min,𝑛,𝑡 .

7 AN OPTIMAL FULL-INFORMATION PROTOCOL FOR EBA

While P0 is optimal with respect to the basic and minimal information-exchange settings, it is not
optimal in the full-information setting, as the following example shows.

Example 7.1. Suppose that 𝑡 = 10 and 𝑛 = 20. Consider a run where all agents have initial value
1, agents 1ś10 are faulty, and no faulty agent sends a message in any round. This means that, at
the end of the first round, each nonfaulty agent knows who the faulty agents are. At the end of
the second round, it is common knowledge among the nonfaulty agents who the faulty agents
are: each nonfaulty agent 𝑖 will know at that point that each other nonfaulty agent 𝑗 knows who
the nonfaulty agents are and (by the same reasoning) 𝑖 knows that 𝑗 knows that all the nonfaulty
agents know who the faulty agents are, and so on. Moreover, it is common knowedge among the
nonfaulty agents that no nonfaulty agent has already decided, and it is not common knowledge
among the nonfaulty agents that some agent had an initial preference of 0, while it is common
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knowledge that some agent had an initial preference of 1. As we show below, this means that the
nonfaulty agents can decide on 1 in round 3. On the other hand, with 𝑃𝑏𝑎𝑠𝑖𝑐 and 𝑃𝑚𝑖𝑛 , the nonfaulty
agents would not decide in this run until round 12.

Intuitively, we take 𝐶N (t-faulty) to hold when it is common knowledge among the nonfaulty
agents who the nonfaulty agents are. It turns out this can happen only if the nonfaulty agents
have common knowledge of 𝑡 agents that are faulty. Thus, we take 𝐶N (t-faulty ∧ 𝜙), for each
formula 𝜙 , to be an abbreviation for ∃𝐴 ⊆ Agt ( |𝐴| = 𝑡 ∧𝐶N (

∧
𝑖∈𝐴 (𝑖 ∉ N) ∧ 𝜙)). We also define

no-decidedN (𝑥) as an abbreviation for
∧

𝑗 ∈N ¬(decided 𝑗 = 𝑥) for 𝑥 ∈ {0, 1}. We can now formalize
the situation in the example.

Proposition 7.2. If 𝑃 is an optimal protocol in the context 𝛾fip,𝑛,𝑡 and I𝑃,𝛾fip,𝑛,𝑡 , (𝑟,𝑚) |= decided𝑖 =

⊥ ∧ 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)), then all undecided agents in N(𝑟 ) make a decision in

round𝑚 + 1, and similarly if I𝑃,𝛾 , (𝑟,𝑚) |= decided𝑖 = ⊥∧𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1)).

It turns out that if we add a condition to P0 that tests for this common knowledge and decides
appropriately if it holds, we get a program that is optimal even with full information exchange.
Specifically, let P1𝑖 be the following knowledge-based program for agent 𝑖:

Program: P1𝑖

if decided𝑖 ≠ ⊥ then noop

else if 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)) then decide𝑖 (0)

else if 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1)) then decide𝑖 (1)

else if init𝑖 = 0 ∨ 𝐾𝑖 (
∨

𝑗 ∈Agt jdecided 𝑗 = 0) then decide𝑖 (0)

else if 𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)) then decide𝑖 (1)

else noop

Note that in the basic and mininimal contexts, agents never learn who is faulty, so there is never
common knowledge among the nonfaulty agents who the faulty agents are. Thus, in the contexts
𝛾min,𝑛,𝑡 and 𝛾basic,𝑛,𝑡 , P

1 is equivalent to P0, so P1 is correct and optimal in these contexts. As we are
about to show, P1 is also correct and optimal with full information exchange.

To prove correctness and optimality, we follow the approach of Halpern, Moses, and Waarts [8]
and consider a slightly nonstandard full-information context. We assume that each agent 𝑖’s local
state does not contain the variables decided𝑖 and jd𝑖 , but does contain a variable or variables that
keep track of all messages received from all agents. If agents keep track of all messages received in
their local state, then, given a decision protocol 𝑃 , the variables decided𝑖 and jd𝑖 are redundant; their
values can be inferred from the messages received. Let 𝛾fip,𝑛,𝑡 denote the family of full-information
contexts as described above. Not including decided𝑖 and jd𝑖 in the local state has the advantage that,
for all decision protocols 𝑃 and 𝑃 ′, corresponding runs of 𝑃 and 𝑃 ′ in 𝛾fip,𝑛,𝑡 are actually identical;
although agents may make different decisions, their local states are the same at all times. (This
would not be the case if the local states had included information about decisions, and in particular,
if they had included the variables decided𝑖 and jd𝑖 .) It is critical that we are dealing with FIPs here;
the claim is not true for arbitrary information-exchange protocols.

Proposition 7.3. All implementations of P1 with respect to 𝛾fip,𝑛,𝑡 are EBA decision protocols for

𝛾fip,𝑛,𝑡 .

We need to recall some material from [8] in order to use the characterization of optimality with
respect to 𝛾fip,𝑛,𝑡 . Given an indexical set S of agents, a point (𝑟 ′,𝑚′) is S-⊡-reachable from (𝑟,𝑚)
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if there exist runs 𝑟 0, . . . , 𝑟𝑘 , times𝑚0,𝑚
′
0
, . . . ,𝑚𝑘 ,𝑚

′
𝑘
, and agents 𝑖0, . . . , 𝑖𝑘−1 such that (𝑟 0,𝑚0) =

(𝑟,𝑚), (𝑟𝑘 ,𝑚′
𝑘
) = (𝑟 ′,𝑚′), and for 0 ≤ 𝑗 ≤ 𝑘−1, we have 𝑖 𝑗 ∈ S(𝑟 𝑗 ,𝑚′

𝑗 )∩S(𝑟 𝑗+1,𝑚 𝑗+1) and 𝑟
𝑗
𝑗 (𝑚

′
𝑗 ) =

𝑟
𝑗+1
𝑗 (𝑚 𝑗+1).

2 Using the notation of [8], let N ∧ O denote the indexical set where (N ∧ O)(𝑟,𝑚)

consists of all agents that are nonfaulty and about to decide 1 or have already decided 1 at the point
(𝑟,𝑚). Let (N ∧Z) be the analogous set for 0.

Definition 7.4 (weak safety). A knowledge-based protocol P is weakly safe with respect to an EBA

context 𝛾 if, for all implementations 𝑃 of P and all points (𝑟,𝑚) of I = (RE,F,𝑃 , 𝜋) and all agents

𝑖 , if I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= 𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥), then there exist points (𝑟 0
′
,𝑚), (𝑟 0

′′
,𝑚), (𝑟 1

′
,𝑚),

and (𝑟 1
′′
,𝑚) such that:

1. 𝑟𝑖 (𝑚) = 𝑟 0𝑖
′
(𝑚) = 𝑟 1𝑖

′
(𝑚),

2. 𝑖 is nonfaulty in 𝑟 0
′
and 𝑟 1

′
,

3. (𝑟 0
′′
,𝑚′′) is (N ∧Z)-⊡-reachable from (𝑟 0

′
,𝑚),

4. (𝑟 1
′′
,𝑚′′) is (N ∧ O)-⊡-reachable from (𝑟 1

′
,𝑚),

5. all agents have initial preference 0 in 𝑟 0
′′
,

6. all agents have initial preference 1 in 𝑟 1
′′
.

Our interest in weak safety is motivated by the following result proved by Halpern, Moses,
and Waarts [8]. The statement of the result uses two operators, 𝐵N

𝑖 𝐶⊡
S
. 𝐵N

𝑖 is an abbreviation of

𝐾𝑖 (𝑖 ∈ N ⇒ 𝜙). Thus, I, (𝑟,𝑚) |= 𝐵N
𝑖 𝜙 if and only if I, (𝑟 ′,𝑚′) |= 𝜙 for all points (𝑟 ′,𝑚′) such

that 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚
′) and 𝑖 ∈ N (𝑟 ′). Intuitively, 𝐵N

𝑖 holds if 𝑖 knows that if it is nonfaulty, then 𝜙
holds. The 𝐶⊡

S
. operator has a characterization in terms of S-⊡-reachability. In [8], it is shown that

I, (𝑟,𝑚) |= 𝐶⊡
S
𝜙 if and only if I, (𝑟 ′,𝑚′) |= 𝜙 for all points (𝑟 ′,𝑚′) that are S-⊡-reachable from

(𝑟,𝑚). We are interested in the cases that S is either N ∧ O or N ∧Z.

Theorem 7.5. [8, Theorem 5.4] An EBA protocol 𝑃 is optimal with respect to 𝛾fip,𝑛,𝑡 iff the following

two conditions hold:

I𝛾fip,𝑛,𝑡 ,𝑃 |= 𝑖 ∈ N ⇒ (⃝(decided𝑖 = 0) ⇔ 𝐵N
𝑖 (∃0 ∧𝐶⊡

N∧O
∃0 ∧ ¬(⃝(decided𝑖 = 1))))

I𝛾fip,𝑛,𝑡 ,𝑃 |= 𝑖 ∈ N ⇒ (⃝(decided𝑖 = 1) ⇔ 𝐵N
𝑖 (∃1 ∧𝐶⊡

N∧Z
∃1 ∧ ¬(⃝(decided𝑖 = 0)))) .

Using Theorem 7.5, we can prove that weak safety implies optimality for P1.

Theorem 7.6. If P1 is weakly safe with respect to 𝛾fip,𝑛,𝑡 then all implementations of P1 are optimal

with respect to 𝛾fip,𝑛,𝑡 .

To show that the knowledge-based program P1 satisfies weak safety with respect to the full-
information context, we give a constructive proof that explicitly constructs the sequences of points
witnessing the conditions of the definition of weak safety.

The main idea of the proof comes from the following observation. If a nonfaulty agent 𝑖 is unable
to decide, then the common knowledge conditions in P1 do not hold. Then, roughly speaking, we
can show that there exists points (𝑟 0

′
,𝑚) and (𝑟 1

′
,𝑚), as in the definition of weak safety, such that

a faulty agent 𝑘 acts nonfaulty throughout the run.3 Moreover, since this faulty agent 𝑘 did not

2Halpern, Moses, and Waarts [8] introduced a family of continual common knowledge operators𝐶⊡
S
such that𝐶⊡

S
𝜙 holds at

a point (𝑟,𝑚) iff 𝜙 is true at all points (𝑟 ′,𝑚′) that are S-⊡-reachable from (𝑟,𝑚) . We get standard (indexical) common

knowledge by taking𝑚𝑘 =𝑚′
𝑘
in the definition of continual common knowledge; since we are working with synchronous

systems, we could restrict to taking𝑚′
𝑗 =𝑚 𝑗+1.

3Note that since the set of faulty agents in a run is determined by the failure pattern, it is consistent that an agent 𝑖 is faulty

in a run although it acts nonfaulty throughout the run. Since all that really matters for our result is that no agent can detect

that agent 𝑖 is faulty, we could obtain our result by assuming that 𝑖’s faulty behavior involved only not sending messages to

itself.
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display faulty behavior, all runs where another agent is faulty instead of 𝑘 are indistinguishable
from this point. The existence of a faulty agent that acts nonfaulty turns out to be a strong condition
that allows the construction of a sequence of ⊡-reachable points where the end point has a modified
message pattern in addition to satisfying the same condition on 𝑘 . This is possible by temporarily
making 𝑘 exhibit faulty behavior in intermediate points of the sequence. Therefore we use the
existence of such 𝑘 as an invariant that allows taking steps through the ⊡-path.

Theorem 7.7. P1 is weakly safe with respect to 𝛾fip,𝑛,𝑡 .

Proposition 7.3, Theorem 7.6, and Theorem 7.7 together imply the following corollary.

Corollary 7.8. All implementations of P1 with respect to 𝛾fip,𝑛,𝑡 are optimal with respect to 𝛾fip,𝑛,𝑡 .

Implementing P1 in polynomial time is possible using the compact communication graph rep-
resentation of the full-information exchange due to [12]. Intuitively, the common knowledge
conditions are implemented using the observation that if an agent’s faultiness is common knowl-
edge among the nonfaulty agents, it must be distributed knowledge at the previous time (where a
fact 𝜙 is distributed knowledge among an indexical set S of agents if the agents would know 𝜙 if
they pooled their knowledge together; for example, the set of faulty agents is distributed knowledge
among the nonfaulty agents if, between them, the nonfaulty agents know who the faulty agents
are). Since nonfaulty agents send messages describing their complete state in every round, we can
check whether 𝐶N (t-faulty) holds at a point (𝑟,𝑚) by considering the local states at (𝑟,𝑚 − 1) of
the agents that nonfaulty agents heard from in round𝑚.

Proposition 7.9. There exists a polynomial-time implementation 𝑃opt of P1 with respect to a

full-information exchange.

8 DISCUSSION

We introduced the notion of limited information exchange, examined optimality for EBA with
respect to various information-exchange protocols and described an efficiently implementable
optimal FIP. There is clearly far more to be done. There are two short-term directions we are
currently pursuing. First, we hope to explore the impact of limited information exchange on other
protocols of interest. Second, we are exploring the application of epistemic synthesis techniques
that allow the automated derivation of protocols from a knowledge-based program in the context
of limited information-exchange models. This seems to give the techniques far more scope (cf.
[9, 10]).

We conclude this discussion by taking a closer look at the costs and benefits of limited information
exchange for EBA. We focus on the two settings considered in Section 6, as well as the full-
information context, and consider the cost both in terms of the number of bits sent and the
number of rounds required to reach a decision in the most likely case, where there are no failures.
While the results are straightforward, they help highlight the tradeoffs involved. Let 𝛾fip,𝑛,𝑡 be a

full-information EBA context with omission failures and let 𝑃fip be an implementation of P1 in
𝛾fip,𝑛,𝑡 .

We start by considering message complexity in terms of bits. In the minimal information-
exchange protocol 𝑃𝑚𝑖𝑛 , each message can be represented using a single bit and agents send a
message only when they first decide, otherwise staying silent. Since each agent sends exactly one
message in each run, and sends it to all the other agents, 𝑛2 bits are sent altogether. In the basic
information-exchange protocol 𝑃basic , we still require only a constant number of bits to represent
messages and agents send messages to all other agents as long as they are undecided, which means
for at most 𝑡 + 1 rounds. We then get the following result:
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Proposition 8.1. In each run of 𝑃𝑚𝑖𝑛 , 𝑛2 bits are sent in total; in each run of 𝑃basic , at most𝑂 (𝑛2𝑡)

bits are sent in total.

By way of contrast, a standard communication graph implementation of a full-information
exchange uses 𝑂 (𝑛4𝑡2) bits [12].
We next consider decision times. We focus on the failure-free case as, in most applications, the

most common runs are runs with no failures.

Proposition 8.2. If 𝑟 is a failure-free run, then

(a) If there is at least one agent with an initial preference of 0 in 𝑟 , then all agents decide by round 2

with 𝑃𝑚𝑖𝑛 , 𝑃basic , and 𝑃fip.

(b) If all agents have an initial preference of 1, then all agents decide by round 𝑡 + 2 with 𝑃𝑚𝑖𝑛 and by

round 2 with 𝑃basic and 𝑃fip.

Thus, for failure-free runs, the agents in the basic context and the full-information context decide
at the same time. The only failure-free run where the basic context results in an earlier decision
than the minimal context is the run where every agent starts with an initial preference of 1. As a
result, implementing full-information and incurring a quadratic overhead in the number of bits
never leads to an improvement for failure-free runs. If we assume that each configuration of initial
preferences is equally likely, using the basic context over the minimal context for failure-free runs
is only an improvement 1/2𝑛 of the time.

If failure-free runs are sufficiently common, this suggests that the gain of using an FIP may not
be worth the cost; even the tradeoff between 𝑃basic and 𝑃𝑚𝑖𝑛 is not so clear. We conjecture that
even in runs with failures, 𝑃basic may not be much worse than 𝑃fip . This emphasizes the advantages
of considering limited information exchange, and further motivates considering optimal protocols
with limited information exchange more broadly.

A PROOFS

A.1 Proofs for Section 6

Proposition 6.1. If 𝛾 = (E, F , 𝜋) is an EBA context, then all implementations of the knowledge-

based program P0 with respect to 𝛾 are EBA decision protocols for 𝛾 . Indeed, all implementations of P0

terminate after at most 𝑡 + 1 rounds of message exchange and Validity holds even for faulty agents.

Proof. Fix an implementation 𝑃 of P0 in 𝛾fip,𝑛,𝑡 .
Unique-Decision follows from the fact that 𝑃𝑖 makes at most one decision per round and the fact

that whether a decision was made is recorded in the local state variable decided𝑖 .
To see that Agreement holds, we first show by induction on𝑚 that if 𝑖 has not decided before

round𝑚 + 1 and I, (𝑟,𝑚) |= init𝑖 = 0∨𝐾𝑖 (
∨

𝑗 ∈Agt jdecided 𝑗 = 0), then 𝑖 receives a 0-chain in round
𝑚. If𝑚 = 0, then it must be the case that I, (𝑟,𝑚) |= init𝑖 = 0 which is a 0-chain with 𝑖1 = 𝑖 . If
𝑚 > 0, we cannot have I, (𝑟,𝑚) |= init𝑖 = 0 (as 𝑖 would have decided earlier) so we must have
I, (𝑟,𝑚) |= 𝐾𝑖 (jdecided 𝑗 = 0) for some 𝑗 ∈ Agt. Then, I, (𝑟,𝑚) |= jdecided 𝑗 = 0 and the result
follows from the induction hypothesis.
Suppose by way of contradiction that 𝑟 is a run where there exist nonfaulty agents 𝑖 and 𝑗 and

a time 𝑚 such that I, (𝑟,𝑚) |= decided𝑖 = 0 ∧ decided 𝑗 = 1. Suppose that 𝑗 decides 1 in round
𝑚 𝑗 + 1 and 𝑖 decides 0 in round𝑚𝑖 + 1, so that the decision conditions first hold at times𝑚𝑖 and𝑚 𝑗 ,
respectively. If𝑚 𝑗 ≤ 𝑚𝑖 , must have either I, (𝑟,𝑚𝑖 ) |= init𝑖 = 0 or I, (𝑟,𝑚𝑖 ) |= 𝐾𝑖 (jdecided𝑘 = 0)

for some 𝑘 ∈ Agt. Using our observation, we can conclude that 𝑖 receives a 0-chain at time
𝑚𝑖 , which implies that there exists an agent 𝑖 ′ such that I, (𝑟,𝑚 𝑗 ) |= deciding𝑖′ = 0. Hence,
I, (𝑟,𝑚 𝑗 ) |= ¬𝐾 𝑗 (¬(deciding𝑖′ = 0)), so 𝑗 cannot decide 1 at𝑚 𝑗 . If𝑚 𝑗 > 𝑚𝑖 , since 𝑖 decides 0 in
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round𝑚𝑖 + 1, we must have I, (𝑟,𝑚𝑖 ) |= init𝑖 = 0
∨

𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0). We can again use our
observation to conclude that 𝑖 receives a 0-chain at time𝑚𝑖 in 𝑟 . As 𝑖 is nonfaulty, 𝑗 must hear from
𝑖 in round𝑚𝑖 + 1, so I, (𝑟,𝑚 𝑗 ) |= 𝐾 𝑗 (jdecided𝑖 = 0). It follows that agent 𝑗 should decide 0 in this
run, contradicting the assumption that 𝑗 decides 1.

For Validity, observe that if 𝑖 decides 0, using the previous observation, there must be a 0-chain,
and hence an agent that had an initial preference of 0. If agent 𝑖 decides 1, then 𝑖 did not decide 0
in the first round and therefore we must have init𝑖 = 1. Note that this argument holds even if 𝑖 is
faulty.
Finally, we prove Termination by showing that in all runs, all nonfaulty agents must decide by

round 𝑡 + 2 after at most 𝑡 + 1 rounds of message exchange. To see this, we first show that if some
agent decides 0 in run 𝑟 , then all agents that decide 0 must do so by round 𝑡 + 2 after at most 𝑡 + 1

rounds of message exchange. For suppose by way of contradiction that some agent 𝑖 decides 0 in
round𝑚 > 𝑡 + 2. Then there must be a 0-chain 𝑖1, . . . , 𝑖𝑚 with 𝑖𝑚 = 𝑖 . All the agents on the 0-chain
are distinct. Since there are at most 𝑡 faulty agents in a run, one of 𝑖1, . . . , 𝑖𝑡+1 must be nonfaulty,
say 𝑖 𝑗 . But that means that all agents (including 𝑖) would have received a message from 𝑖 𝑗 in round
𝑗 ≤ 𝑡 + 1 from which they could infer that 𝑖 𝑗 is about to decide 0 (by our assumption regarding
𝜇 in an EBA context), and they would all decide 0 in round 𝑗 + 1 < 𝑚 if they have not done so
yet. This gives the desired contradiction. It follows that if 𝑖 has not decided 0 by round 𝑡 + 2, then
I, (𝑟, 𝑡 + 2) |= 𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)), so 𝑖 will decide 1 in round 𝑡 + 2 if it has not already

decided. □

Theorem 6.3. If 𝛾 is an EBA context and P0 is safe with respect to 𝛾 , then all implementations of

P0 are optimal with respect to 𝛾 .

Proof. Suppose by way of contradiction that 𝑃 is an implementation of P0 with respect to an
EBA context 𝛾 and EBA-protocol 𝑃 ′ strictly dominates 𝑃 with respect to 𝛾 . If 𝑃 ′ strictly dominates
𝑃 , by definition, there exist corresponding runs 𝑟 of I𝛾,𝑃 and 𝑟 ′ of I𝛾,𝑃 ′ , a nonfaulty agent 𝑖 , and a
round 𝑘 such that 𝑃 ′ decides in round 𝑘 of 𝑟 ′ and 𝑃 does not decide before round 𝑘 + 1 in 𝑟 . Clearly,
there also exist corresponding runs 𝑟 and 𝑟 ′, an agent 𝑖 (possibly faulty) and a round 𝑘 such that 𝑃 ′

decides in round 𝑘 of 𝑟 ′, and 𝑃 either does not decide before round 𝑘 + 1 of 𝑟 , or decides differently
in round 𝑘 of 𝑟 . Let 𝑘 be the earliest such round, and let 𝑟 and 𝑟 ′ be the corresponding runs of 𝑃
and 𝑃 ′, respectively, where in 𝑟 ′, 𝑃 ′ decides in round 𝑘 and in 𝑟 , 𝑃 either does not decide by round
𝑘 or reaches a different decision in round 𝑘 than 𝑃 ′. (Note that the 𝑘 we use here may be smaller
than the smallest 𝑘 such that 𝑃 ′ decides in round 𝑘 and 𝑃 does not decide before round 𝑘 + 1 in
corresponding runs.) Since the same information-exchange protocol is used in both systems, all
agents must have exactly the same state up to time 𝑘 − 1 in corresponding runs of the two systems:
either they have not decided yet, or they have decided and made the same decision, so they will
send the same messages and undergo the same state transitions in corresponding runs of 𝑃 and 𝑃 ′

up to time 𝑘 − 1. We now consider two cases.
Suppose that 𝑖 decides 0 in round 𝑘 of 𝑟 ′. Since 𝑖 either does not decide at or before round

𝑘 of 𝑟 or decides 1 in this round, 𝑖 did not receive a 0-chain by (𝑟, 𝑘 − 1). Since P0 is safe with
respect to 𝛾 , by the first part of the safety condition, it follows that there is a run 𝑟1 of 𝑃 such
that 𝑟𝑖 (𝑘 − 1) = (𝑟1)𝑖 (𝑘 − 1) and all agents have initial preference 1 in 𝑟1. Let 𝑟

′
1
be the run of 𝑃 ′

corresponding to 𝑟1. As observed above, 𝑖 must have the same state at (𝑟1, 𝑘 − 1) and (𝑟 ′
1
, 𝑘 − 1).

Since 𝑖 also has the same state in (𝑟, 𝑘 − 1) and (𝑟 ′, 𝑘 − 1), 𝑖 has the same state in (𝑟 ′, 𝑘 − 1) and
(𝑟 ′

1
, 𝑘 −1), so must decide 0 in round 𝑘 of 𝑟 ′

1
. We now get the desired contradiction by observing that

the decision rule for deciding 0 in P0 requires that there exists an agent with an initial preference 0.
Note that this is because, as shown in Proposition 6.1, Validity holds even for faulty agents.
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Suppose that 𝑖 decides 1 in round 𝑘 of 𝑟 ′, does not decide 1 in round 𝑘 of 𝑟 , and does not decide
earlier than round 𝑘 in 𝑟 . Then we must have that I𝛾,𝑃 , (𝑟, 𝑘 −1) |= ¬𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)): If

𝑖 decides 0 in round 𝑘 , then clearly 𝑖 considers it possible that some agent is deciding 0; and if 𝑖 does
not decide 0 and does decide 1 (the only other possibility), then this formula must also hold. Since
P0 is safe with respect to 𝛾 , it follows that there is a run 𝑟1 of 𝑃 such that 𝑟𝑖 (𝑘 − 1) = (𝑟1)𝑖 (𝑘 − 1), 𝑖
is nonfaulty in 𝑟1, and there exists a nonfaulty agent 𝑗 that decides 0 in round 𝑘 of 𝑟1. Again, let 𝑟

′
1

be the run of 𝑃 ′ corresponding to 𝑟1. As above, 𝑖 has the same state in (𝑟 ′, 𝑘 − 1) and (𝑟 ′
1
, 𝑘 − 1), so

must decide 1 in round 𝑘 of 𝑟 ′
1
. Since 𝑃 ′ dominates 𝑃 , 𝑗 must also decide in round 𝑘 of 𝑟 ′

1
, and must

decide 1 (since 𝑖 is deciding 1).
If 𝑘 = 1, since 𝑗 decides 0 in 𝑟1, 𝑗 must have an initial value of 0 in both 𝑟1 and 𝑟

′
1
. Let 𝑟 ′′

1
be

the run of 𝑃 ′ where all agents have initial value 0 and are nonfaulty. Since (𝑟 ′′
1
) 𝑗 (0) = (𝑟 ′

1
) 𝑗 (0),

𝑗 must decide 1 with 𝑃 ′ in run 𝑟 ′′
1
, giving us the desired contradiction. If 𝑘 > 1, by the second

half of condition 2(c) of the safety condition, there exists a run 𝑟2 of 𝑃 and an agent 𝑗 ′ such that
(𝑟2) 𝑗 (𝑘 − 1) = (𝑟1) 𝑗 (𝑘 − 1), 𝑗 and 𝑗 ′ are nonfaulty in 𝑟2, and 𝑗

′ decides 0 in round 𝑘 − 1 of 𝑟2.
Let 𝑟 ′

2
be the run of 𝑃 ′ corresponding to 𝑟2. As observed above, (𝑟2) 𝑗 (𝑘 − 1) = (𝑟2)

′
𝑗 (𝑘 − 1). Thus,

(𝑟1)
′
𝑗 (𝑘 − 1) = (𝑟2)

′
𝑗 (𝑘 − 1), so 𝑗 must decide 1 in round 𝑘 of 𝑟 ′

2
. Since 𝑗 ′ is nonfaulty and decides

in round 𝑘 − 1 of 𝑟2, and 𝑃
′ dominates 𝑃 , agent 𝑗 ′ must also decide at or before round 𝑘 − 1 of

𝑟 ′
2
. Since, by construction, round 𝑘 is the earliest round that 𝑃 and 𝑃 ′ reach different decisions in

corresonding runs, 𝑗 ′ must decide 0 in round 𝑘 − 1 of 𝑟 ′
2
. But this means that 𝑗 and 𝑗 ′ make different

decisions in 𝑟 ′
2
, despite both being nonfaulty. This gives us the desired contradiction. □

Proposition 6.4. P0 is safe with respect to all contexts 𝛾min,𝑛,𝑡 and 𝛾basic,𝑛,𝑡 such that 𝑛 − 𝑡 ≥ 2.

Proof. We do the argument simultaneously for 𝛾min,𝑛,𝑡 and and 𝛾basic,𝑛,𝑡 . Let 𝑃 be an implemen-
tation of P0 in 𝛾min,𝑛,𝑡 (resp., 𝛾basic,𝑛,𝑡 ) and let 𝑟 be a run in I𝛾min,𝑛,𝑡 ,𝑃 (resp., I𝛾basic,𝑛,𝑡 ,𝑃 ). We first show
that the first part of the safety condition holds. Suppose that 𝑖 has not received a 0-chain by (𝑟,𝑚).
We want to show that there exists a point (𝑟 ′,𝑚) such that 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚) and all agents have initial
preference 1 in 𝑟 ′. Let 𝑟 ′ be the run where all agents start with initial preference 1 and the adversary
is the same as in 𝑟 . An easy argument by induction on 𝑘 , using the fact that the failure pattern is
the same in 𝑟 and 𝑟 ′, shows that that for all agents 𝑗 and times 𝑘 , if 𝑗 has not received a 0-chain by
(𝑟, 𝑘) then 𝑟 𝑗 (𝑘) = 𝑟

′
𝑗 (𝑘). It immediately follows that 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚), which completes the proof of

the first part of the argument.
To prove that the second part of the safety condition holds, suppose that I, (𝑟,𝑚) |= ¬(𝐾𝑖 (

∧
𝑗 ∈Agt

¬(deciding 𝑗 = 0)) and 𝑖 does not decide before round𝑚 + 1 of 𝑟 . The second part of the safety
condition is easily seen to hold if𝑚 = 0, so we assume that𝑚 ≥ 1. This implies that init𝑖 = 1,
otherwise agent 𝑖 would have already decided in round 1. There must exist a point (𝑟+,𝑚) such
that 𝑟𝑖 (𝑚) = 𝑟+𝑖 (𝑚) and some agent 𝑗 decides 0 in round𝑚 + 1 of 𝑟+. Since 𝑛 − 𝑡 ≥ 2, there must
be agents, say 𝑖 ′ and 𝑗 ′, that are nonfaulty in 𝑟+, where we can take 𝑖 = 𝑖 ′ if 𝑖 is nonfaulty in 𝑟+,
and 𝑗 = 𝑗 ′ if 𝑗 is nonfaulty in 𝑟+. If 𝑚 > 1 then the initial preferences of 𝑖 ′ and 𝑗 ′ in 𝑟+ are 1,
for otherwise 𝑖 would decide 0 at or before round 2 in 𝑟+, and hence also in 𝑟 , contradicting the
assumption 𝑖 does not decide before round𝑚 + 1 in 𝑟 . The initial preference of 𝑗 must also be 1, for
otherwise 𝑗 decides in round 1 ≠𝑚 + 1, given that𝑚 ≥ 1.
Observe that in 𝑟+, (a) no agent decides 1 at or before round𝑚 + 1 (for if agent 𝑗 ′′ decides 1

in round 𝑘 of 𝑟+, then I, (𝑟+, 𝑘 − 1) |= 𝐾 𝑗 ′′ (
∨

𝑗 ′′′∈Agt ¬(deciding 𝑗 ′′′ = 0)), and this contradicts the
fact that 𝑗 decides 0 in round𝑚 + 1 of 𝑟 , so there must be a 0-chain of length𝑚 ending with 𝑗 in
𝑟 ), (b) no nonfaulty agent decides 0 before round𝑚 in 𝑟+ (otherwise 𝑖 and 𝑗 would decide 0 at or
before round𝑚 in 𝑟+), (c) 𝑖 and 𝑗 do not decide 0 at or before round𝑚 in 𝑟+, and (d) 𝑖 , 𝑗 , and all
the nonfaulty agents send no message (i.e., send ⊥) in 𝛾min,𝑛,𝑡 and send (init, 1) in 𝛾basic,𝑛,𝑡 up to
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and including round𝑚 − 1; 𝑖 and 𝑗 also send ⊥ (resp., (init, 1)) in round𝑚 of 𝑟 in 𝛾min (𝑛) (resp.,
(𝛾basic,𝑛,𝑡 ). Note that 𝑖

′ or 𝑗 ′ may decide 0 in round𝑚 of 𝑟+, in which case they will send 0; otherwise,
like 𝑖 and 𝑗 , they send ⊥ (resp., (init, 1)) in round𝑚 of 𝑟 in 𝛾min,𝑛,𝑡 (resp., (𝛾basic,𝑛,𝑡 ).
We want to modify 𝑟+ to get a run 𝑟 ′ such that (a) 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚), (b) 𝑖 and 𝑗 are nonfaulty in

𝑟 ′, and (c) 𝑗 decides 0 in round𝑚 + 1 of 𝑟 ′. Let 𝛼 = (N ′, 𝐹 ′) be the adversary in 𝑟 ′. We define 𝑟 ′

by assuming that all agents have the same initial preferences in 𝑟 ′ as in 𝑟+, and the adversary
(N ′′, 𝐹 ′′) in 𝑟 ′ is defined as follows: N ′′

= N ′ − {𝑖 ′, 𝑗 ′} ∪ {𝑖, 𝑗} (so that 𝑖 and 𝑗 are nonfaulty in 𝑟 ′)
and, roughly speaking, 𝐹 ′′ interchange the failures of 𝑖 and 𝑖 ′ and of 𝑗 and 𝑗 ′ in 𝑟+ and 𝑟 ′. More
precisely, for all agents 𝑗 ′′, (a) if 𝑗 ′′ does not receive a message from 𝑖 (resp., 𝑗 ) in round 𝑘 of 𝑟+

according to 𝐹 ′, and, in the special case that 𝑘 =𝑚, neither 𝑖 ′ nor 𝑗 ′ sends the message 0, then 𝑗 ′′

does not receive a message from 𝑖 ′ (resp., 𝑗 ′) in round 𝑘 of 𝑟 ′ according to 𝐹 ′′; (b) if 𝑗 ′′ receives
a message from 𝑖 (resp., 𝑗 ) in round of 𝑟+ according to 𝐹 ′ or if 𝑘 = 𝑚 and either 𝑖 ′ or 𝑗 ′ send the
message 0 in round𝑚 of 𝑟 , then 𝑗 ′′ receives a message from 𝑖 ′ (resp., 𝑗 ′) in round 𝑘 of 𝑟 ′ according
to 𝐹 ′′.
We claim that for all 𝑘 ≤ 𝑚, all agents 𝑗 ′′ have the same state at time 𝑘 of runs 𝑟+ and 𝑟 ′. We

prove this by induction on 𝑘 . In the case that 𝑘 = 0, this is immediate since all agents have the
same initial preferences in 𝑟+ and 𝑟 ′. If 0 < 𝑘 < 𝑚, this follows from the fact that all agents have
the same state at time 𝑘 − 1, and the only way in which the runs differ is that 𝑗 ′′ does not receive
a message from 𝑖 (resp., 𝑗 ) in round 𝑘 of 𝑟+, then 𝑗 ′′ does not receive a message from 𝑖 ′ (resp., 𝑗 ′)
in round 𝑘 of 𝑟 ′. These message are either ⊥ (if the context is 𝛾min,𝑛,𝑡 ) or (init, 1) (if the context
is 𝛾basic,𝑛,𝑡 ). But clearly this difference does not affect the state of 𝑗 ′′; in particular, if the context
is 𝛾basic,𝑛,𝑡 , then 𝑗

′′ gets the same number of messages of the form (init, 1) in both cases, and this
is all it keeps track of in its state. The same argument applies if 𝑘 = 𝑚 and neither 𝑖 ′ or 𝑗 ′ send
the message 0 in round𝑚 of 𝑟+. If 𝑖 ′ or 𝑗 ′ do send the message 0 in round𝑚 of 𝑟+, since they are
nonfaulty in 𝑟+, all agents will get the message. By construction, they will also send this message
in round𝑚 of 𝑟 ′ and all agents will get it in 𝑟 ′. The transition function then guarantees that all
agents will have the same state in round𝑚 of 𝑟+ and 𝑟 ′. In particular, it follows that 𝑟+𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚)

and 𝑗 decides 0 in round𝑚 + 1 of 𝑟 ′, as desired.
Finally, if𝑚 ≥ 1, we must construct a run 𝑟 ′′ as required in the second part of condition 2(c).

Since 𝑗 decides 0 in 𝑟 ′ in round𝑚 + 1, as shown earlier, 𝑗 must receive a 0-chain at time𝑚 in 𝑟 . Let
𝑗 ′ be the last agent on that chain. Thus, 𝑗 ′ decides 0 in round𝑚 in 𝑟 ′. If 𝑗 ′ is nonfaulty in 𝑟 ′, we are
done. If 𝑗 ′ is faulty, then we consider two cases. If𝑚 = 1, then we must have init 𝑗 ′ = 0. We consider
a run 𝑟 ′′ where all agents have the same initial values as in 𝑟 ′, and if (𝑁 ′, 𝐹 ′) is the adversary in 𝑟 ′,
then the adversary in 𝑟 ′′ is (𝑁 ′ − { 𝑗 ′}, 𝐹 ′′), where 𝐹 ′′ agrees with 𝐹 ′ on all the agents in 𝑁 ′ − { 𝑗 ′}.
It is easy to see that 𝑟 ′𝑗 (1) = 𝑟

′′
𝑗 (1), completing the argument. If𝑚 > 1, then there must be some

nonfaulty agent 𝑗 ′′ other than 𝑖 , since 𝑛 − 𝑡 ≥ 2. As in the argument above, the initial values of 𝑗 ′

and 𝑗 ′′ must be 1 (otherwise 𝑗 ′ would have decided in round 1 and 𝑖 would have decided in round 2
in 𝑟 ′). We now proceed much as in the previous argument to construct 𝑟 ′′: all agents have the same
initial values in 𝑟 ′ and 𝑟 ′′, and we take the the adversary in 𝑟 ′′ to be (𝑁 ′ ∪ { 𝑗 ′′} − { 𝑗 ′}, 𝐹 ′′), where
𝐹 ′′ interchanges the roles of 𝑗 ′ and 𝑗 ′′. We leave details to the reader. □

Theorem 6.5. If 𝑡 ≤ 𝑛 − 2 then 𝑃𝑚𝑖𝑛 implements P0 in the EBA context 𝛾min,𝑛,𝑡 .

Proof. Let I be the system I𝛾min,𝑛,𝑡 ,P0 . We show that for all runs 𝑟 and times 𝑚, we have

𝑃𝑚𝑖𝑛
𝑖 (𝑟𝑖 (𝑚)) = (P0𝑖 )

I (𝑟𝑖 (𝑚)).

• If 𝑃𝑚𝑖𝑛
𝑖 (𝑟𝑖 (𝑚)) = noop because decided𝑖 ≠ ⊥ in 𝑟𝑖 (𝑚), we clearly also have (P0𝑖 )

I (𝑟𝑖 (𝑚)) =

noop, because I, (𝑟,𝑚) |= 𝐾𝑖 (decided𝑖 ≠ ⊥).
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• If 𝑃𝑚𝑖𝑛
𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (0), we must have decided𝑖 = ⊥ in 𝑟𝑖 (𝑚), and either init𝑖 = 0 or

jd𝑖 = 0. If init𝑖 = 0 in 𝑟𝑖 (𝑚), then I, (𝑟,𝑚) |= 𝐾𝑖 (init𝑖 = 0), so (P0𝑖 )
I (𝑟𝑖 (𝑚)) = decide𝑖 (0).

If jd𝑖 = 0 and init𝑖 ≠ 0 in 𝑟𝑖 (𝑚), then we must have time𝑖 > 0 in 𝑟𝑖 (𝑚) and jd𝑖 = ⊥ in
𝑟𝑖 (𝑚

′) for𝑚′
< 𝑚, for otherwise, agent 𝑖 would have decided 0 earlier and we would have

decided𝑖 ≠ ⊥ in 𝑟𝑖 (𝑚). Moreover, 𝑖 must have received the message 0 from some agent 𝑗 .
Thus, I, (𝑟,𝑚) |= 𝐾𝑖 (

∨
𝑗 ∈Agt jdecided 𝑗 = 0). It follows that (P0𝑖 )

I (𝑟𝑖 (𝑚)) = decide𝑖 (0).

• If 𝑃𝑚𝑖𝑛
𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (1), we must have decided𝑖 = ⊥, init𝑖 = 1, jd𝑖 ≠ 0, and time𝑖 = 𝑡 + 1

in 𝑟𝑖 (𝑚). As shown in the argument for Termination in the proof of Proposition 6.1, we have
I, (𝑟,𝑚) |= 𝐾𝑖 (

∧
𝑗 ∈Agt ¬(jdecided 𝑗 = 0)). Thus, (P0𝑖 )

I (𝑟𝑖 (𝑚)) = decide𝑖 (1).

• Finally, if 𝑃𝑚𝑖𝑛
𝑖 (𝑟𝑖 (𝑚)) = noop by the final line of 𝑃𝑚𝑖𝑛

𝑖 , we must have time𝑖 < 𝑡 + 1, init𝑖 = 1,
decided𝑖 = ⊥, and jd𝑖 = ⊥ in 𝑟𝑖 (𝑚). (Note that 𝑡 ′ = 𝑚.) Consider a run 𝑟 ′ where all agents
have initial preference 1 and are nonfaulty. It is easy to see that 𝑖 receives the same messages
up to time𝑚 in 𝑟 and 𝑟 ′, so 𝑟𝑖 (𝑚) = 𝑟 ′𝑖 (𝑚). Hence, we must have I, (𝑟,𝑚) |= ¬𝐾𝑖 (init𝑖 =

0 ∨
∨

𝑗 ∈Agt decided 𝑗 = 0). Thus, (P0𝑖 )
I (𝑟𝑖 (𝑚)) ≠ decide𝑖 (0). It is also not hard to construct

a run 𝑟 ′′ that 𝑖 considers possible where there are exactly 𝑡 ′ faulty agents such that some
nonfaulty agent 𝑗 in 𝑟 ′′ gets a 0-chain of length 𝑡 ′ in round 𝑡 ′ of 𝑟 ′′. Thus, I, (𝑟,𝑚) |=

¬𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)), so (P0𝑖 )
I (𝑟𝑖 (𝑚)) ≠ decide𝑖 (1). Therefore, (P

0

𝑖 )
I (𝑟𝑖 (𝑚)) = ⊥.

It follows that 𝑃𝑚𝑖𝑛 implements P0 in 𝛾min,𝑛,𝑡 . □

Theorem 6.6. If 𝑡 ≤ 𝑛 − 2, then 𝑃basic implements P0 in the EBA context 𝛾basic,𝑛,𝑡 .

Proof. We proceed just as in the previous argument. If 𝑃basic𝑖 (𝑟𝑖 (𝑚)) = ⊥ or 𝑃basic𝑖 (𝑟𝑖 (𝑚)) =

decide𝑖 (0), then the argument is identical to that for 𝑃𝑚𝑖𝑛 . If 𝑃basic𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (1), then we
proceed by induction to show that when we have decided𝑖 = ⊥, init𝑖 = 1, and either jd𝑖 = 1 or
#1𝑖 > 𝑛 −𝑚 in 𝑟𝑖 (𝑚), then we also have I, (𝑟,𝑚) |= 𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)).

So suppose that decided𝑖 = ⊥ and init𝑖 = 1 are in 𝑟𝑖 (𝑚). If #1𝑖 > 𝑛 −𝑚 in 𝑟𝑖 (𝑚), then it is easy to
see that there cannot be a 0-chain of length𝑚 in 𝑟 (since the only agents that can be involved in this
0-chain are ones that did not send an (init, 1) message). Thus, I, (𝑟,𝑚) |= 𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 =

0)). On the other hand, if jd𝑖 = 1 is in 𝑟𝑖 (𝑚), then we must have that jd𝑖 = ⊥ in 𝑟𝑖 (𝑚
′) for

𝑚′
< 𝑚, for otherwise, agent 𝑖 would have decided 1 earlier and we would have decided𝑖 ≠ ⊥ in

𝑟𝑖 (𝑚). Moreover, 𝑖 must have received the message 1 from some agent 𝑗 in round𝑚 of 𝑟 . Thus,
𝑗 decides 1 in round 𝑚 of 𝑟 , so we must have decided 𝑗 = ⊥, init 𝑗 = 1, and either jd 𝑗 = 1 or
#1𝑗 > 𝑛−𝑚 in 𝑟 𝑗 (𝑚−1). By the inductive hypothesis, I, (𝑟,𝑚−1) |= 𝐾 𝑗 (

∧
𝑗 ′∈Agt ¬(deciding 𝑗 ′ = 0)).

If some agent 𝑗 ′ decides 0 in round𝑚 + 1 of 𝑟 , then there must be a 0-chain that ends 0 with 𝑗 ′,
so 𝑗 ′ must get a message from an agent that decides 0 in round 𝑚, contradicting the fact that
I, (𝑟,𝑚 − 1) |= 𝐾 𝑗 (

∧
𝑗 ′∈Agt ¬(deciding 𝑗 ′ = 0)). It thus follows from the information in 𝑟 (𝑚) that no

agent decides 0 in round𝑚 + 1 of 𝑟 , so I, (𝑟,𝑚) |= 𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)). In either case, we

have (P0𝑖 )
I (𝑟𝑖 (𝑚)) = decide𝑖 (1).

Finally, if 𝑃basic𝑖 (𝑟𝑖 (𝑚)) = noop by the final line of 𝑃basic𝑖 , then arguments similar in spirit to
those used above show that agent 𝑖 considers it possible that all agents started with an initial
preference of 1, and hence does not know that there is a 0-chain, but also cannot rule out the
possibility of a 0-chain. We must have decided𝑖 = jd𝑖 = ⊥, init𝑖 = 1, and #1𝑖 ≤ 𝑛 −𝑚 in 𝑟𝑖 (𝑚).
Since init𝑖 = 1 and jd𝑖 = ⊥ are in 𝑟𝑖 (𝑚), at the point (𝑟,𝑚), 𝑖 considers possible the run 𝑟 ′ where
every agent started with an initial preference of 1 and the message pattern is identical to 𝑟 . We
then have I, (𝑟,𝑚) |= ¬𝐾𝑖 (

∧
𝑗 ∈Agt (jdecided 𝑗 = 0)), so (P0𝑖 )

I (𝑟𝑖 (𝑚)) ≠ decide𝑖 (0). Similarly, since
#1𝑖 ≤ 𝑛 −𝑚, 𝑖 considers it possible that a there is a 0-chain consisting of the agents that 𝑖 didn’t
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hear a 1 from. Hence, I, (𝑟,𝑚) |= ¬𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)), so (P0𝑖 )
I (𝑟𝑖 (𝑚)) ≠ decide𝑖 (1). It

follows that (P0𝑖 )
I (𝑟𝑖 (𝑚)) = ⊥. Thus, 𝑃basic implements P0 in 𝛾basic,𝑛,𝑡 . □

A.2 Proofs for Section 7

A.2.1 Motivating the KBP.

Proposition 7.2. If 𝑃 is an optimal protocol in the context 𝛾fip,𝑛,𝑡 and I𝑃,𝛾fip,𝑛,𝑡 , (𝑟,𝑚) |= decided𝑖 =

⊥ ∧ 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)), then all undecided agents in N(𝑟 ) make a decision in

round𝑚 + 1, and similarly if I𝑃,𝛾 , (𝑟,𝑚) |= decided𝑖 = ⊥∧𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1)).

Proof. For ease of exposition, let 𝛾 = 𝛾fip,𝑛,𝑡 . Suppose that I𝑃,𝛾 , (𝑟,𝑚) |= decided𝑖 = ⊥ ∧

𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)). Let 𝑃 ′ be the protocol for context 𝛾 obtained by mod-
ifying 𝑃 as follows. For each agent 𝑖 and local state 𝑠 ∈ 𝐿𝑖 , we define 𝑃 ′

𝑖 (𝑠) to be decide𝑖 (0)

if I𝑃,𝛾 , (𝑟,𝑚) |= 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)) for points (𝑟,𝑚) with 𝑟𝑖 (𝑚) = 𝑠 , and
𝑃 ′
𝑖 (𝑠) = 𝑃𝑖 (𝑠) otherwise. We claim that 𝑃 ′ ≤ 𝑃 and 𝑃 ′ is an EBA-protocol in context 𝛾 .
Let 𝑟 and 𝑟 ′ be corresponding runs of I𝑃,𝛾 and I𝑃 ′,𝛾 , respectively. We show by induction on 𝑘 that

𝑟 (𝑘) = 𝑟 ′(𝑘) if 𝑘 is less than or equal to the earliest time𝑚 such that I𝑃,𝛾 , (𝑟,𝑚) |= 𝐶N (t-faulty ∧

no-decidedN (1) ∧ ∃0). The base case is trivial, and the inductive case follows the fact that if 𝑟 (𝑘) =
𝑟 ′(𝑘) and I𝑃,𝛾 , (𝑟, 𝑘) ̸|= 𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)), then for all agents 𝑖 , I𝑃,𝛾 , (𝑟, 𝑘) ̸|=

𝐾𝑖𝐶N (t-faulty∧no-decidedN (1)∧∃0) (the fact that I𝑃,𝛾 , (𝑟, 𝑘) ̸|= 𝐾𝑖𝐶N (t-faulty∧no-decidedN (1)∧

∃0) for all agents 𝑖 follows from Lemma A.3, proved below), so 𝑃𝑖 (𝑟𝑖 (𝑘)) = 𝑃
′
𝑖 (𝑟

′
𝑖 (𝑘)) for all agents

𝑖 . Since the failure patterns are the same in these runs, it follows that 𝑟 (𝑘 + 1) = 𝑟 ′(𝑘 + 1).
Moreover, since I |= (𝐶N (𝜙) ∧ 𝑖 ∈ N) ⇒ 𝐾𝑖 (𝐶N (𝜙)) (see [5]), it follows that once I𝑃,𝛾 , (𝑟,𝑚) |=

𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0), all undecided agents in N(𝑟 ′) decide 0 simultaneously using
𝑃 ′.
It is immediate from these facts that 𝑃 ′ ≤𝛾 𝑃 . If a nonfaulty agent 𝑖 decides in 𝑟 ′ at a time𝑚

before the common knowledge condition has become true in 𝑟 , then 𝑟 (𝑚) = 𝑟 ′(𝑚′) and agent 𝑖
makes the same decision at time𝑚 in 𝑟 . Once the common knowledge condition becomes true, an
undecided nonfaulty agent 𝑖 decides using 𝑃 ′, so does so at least as soon as it does using 𝑃 . Recall
that if 𝑖 is faulty, then the definition of 𝑃 ′ ≤𝛾 𝑃 allows that agent 𝑖 decides using 𝑃 before it does so
using 𝑃 ′, so we do not need to consider this case.
Next, we show that 𝑃 ′ is an EBA protocol in context 𝛾 . Unique Decision follows from the fact

that the context 𝛾 records decisions in the local state, and 𝑃𝑖 (𝑠) = ⊥ for states 𝑠 that record that a
decision has already been made. For Validity, consider runs 𝑟 ′ of 𝑃 ′ and the corresponding run 𝑟
of 𝑃 in context 𝛾 . If the common knowledge condition has not yet become true at a point where
nonfaulty agent 𝑖 makes its decision on value 𝑣 using 𝑃 ′, then 𝑟 (𝑚) = 𝑟 ′(𝑚), and 𝑖 makes the same
decision using 𝑃 . It follows from Validity for 𝑃 that some agent has initial value 𝑣 . Alternately, if
nonfaulty agent 𝑖 decides 0 at (𝑟 ′,𝑚) because it knows at (𝑟,𝑚) in I𝑃,𝛾 that the common knowledge
condition has become true, then in fact I𝑃,𝛾 , (𝑟,𝑚) |= ∃0, and the same fact holds at (𝑟 ′,𝑚).
For Agreement, consider a run 𝑟 ′ of 𝑃 ′ where agent 𝑖 ∈ N (𝑟 ′) decides 0 in round𝑚0 + 1 and

agent 𝑗 ∈ N (𝑟 ′) decides 1 in round𝑚1 + 1. If the common knowledge condition has not become
true in the corresponding run 𝑟 of 𝑃 by time max(𝑚0,𝑚1), then since 𝑟 and 𝑟 ′ are identical up to at
least this time, we have a contradiction to Agreement for 𝑃 . If the common knowledge condition
becomes true at time 𝑘 ≤ 𝑚1, then according to 𝑃 ′, all nonfaulty agents undecided by time 𝑘 decide
0 in round 𝑘 + 1. That means that agent 𝑗 , which is undecided at time 𝑘 , decides 0 in round 𝑘 of 𝑟 ′

and decides on a different value in round𝑚1 + 1, contradicting the fact that, as we have shown, 𝑃 ′

satisfies Unique Decision. On the other hand, the common knowledge condition cannot become
true after time𝑚1, since it implies no-decidedN (1) and 𝑗 ∈ N (𝑟 ′) has decided 1 in round𝑚1 + 1.
Thus, 𝑃 ′ satisfies Agreeement(N).
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Finally, Termination for 𝑃 ′ follows from 𝑃 ′ ≤𝛾 𝑃 and the fact that 𝑃 satisfies Termination.
Since we have 𝑃 ′ ≤ 𝑃 and 𝑃 ′ is an EBA protocol for context 𝛾 , it follows that 𝑃 ≤ 𝑃 ′, so in I𝑃,𝛾 ,

all undecided nonfaulty agents make a decision as soon as they know that the common knowledge
condition holds. □

Note that the result does not tell us what decision the nonfaulty agents must make when the
common knowledge condition holds. There may be situations where no nonfaulty agent has made
a decision, and both common knowledge conditions hold. Either a 0 or a 1 decision would be
acceptable in this case.

We now prove all the required properties of P1. We start by examining what each of the conditions
is P1 tells us.

A.2.2 The common knowledge conditions. As a first step to understanding P1, we characterize
the common knowledge conditions (i.e., the second and third lines). The next proposition gives
necessary and sufficient conditions for these conditions to hold. These conditions show that the
problem of computing when the common knowledge conditions hold is tractable.
Define distN (t-faulty) to be an abbreviation for

∃𝐴 ⊆ Agt ( |𝐴| = 𝑡 ∧ ∀𝑖 ∈ 𝐴 ∃ 𝑗 ∈ N (𝐾 𝑗 (𝑖 ∉ N))) .

Roughly speaking, distN (t-faulty) holds if, between them, the nonfaulty agents know about 𝑡 faulty
agents.

Definition A.1 (hears-from). We define a one-step hears-from relation in a run 𝑟 on pairs ( 𝑗,𝑚)

consisting of agents 𝑗 and times𝑚 by saying that ( 𝑗 ′,𝑚′) one-step hears from ( 𝑗,𝑚) in 𝑟 if agent
𝑗 sends 𝑗 ′ a non-⊥ message in round𝑚 + 1 of 𝑟 that 𝑗 ′′ receives and𝑚 + 1 ≤ 𝑚′. The hears-from
relation is the transitive closure of the one-step hears-from relation. We write ( 𝑗,𝑚) →𝑟 ( 𝑗 ′,𝑚′) if
( 𝑗 ′,𝑚′) hears-from ( 𝑗,𝑚)

Those familiar with the Lamport causality relation [11] will recognize that the hears-from relation
is similar in spirit.

Proposition A.2. For all implementations 𝑃 of the knowledge-based program P1 with respect to

𝛾fip,𝑛,𝑡 ,

(a) I𝛾fip,𝑛,𝑡 ,𝑃 |= time > 0 ⇒ (⊖distN (t-faulty) ⇔ 𝐶N (t-faulty)).

(b) I𝛾fip,𝑛,𝑡 ,𝑃 |= time > 0 ⇒ (no-decidedN (𝑣) ⇒ ∧𝑗 ∈N ⊖ (𝐾 𝑗⃝no-decided 𝑗 (𝑣))) and I𝛾fip,𝑛,𝑡 ,𝑃 |=

(𝐶N (t-faulty) ∧ (no-decidedN (𝑣))) ⇔ 𝐶N (t-faulty ∧ no-decidedN (𝑣)), for 𝑣 ∈ {0, 1}.

(c) I𝛾fip,𝑛,𝑡 ,𝑃 |= time > 0 ⇒ ((𝐶N (t-faulty) ∧ ⊖(∨𝑗 ∈N𝐾 𝑗 (∃𝑣))) ⇔ 𝐶N (t-faulty ∧ ∃𝑣)), for

𝑣 ∈ {0, 1}.

Proof. Let 𝑃 be an implementation of P1 and let I = I𝛾fip,𝑛,𝑡 ,𝑃 .
For part (a), first suppose by way of contradiction that I, (𝑟,𝑚) |= ¬ ⊖ distN (t-faulty) ∧

𝐶N (t-faulty). Let 𝐴′
= {𝑖 : ∃ 𝑗 ∈ N (𝑟 ) (I, (𝑟,𝑚 − 1) |= 𝐾 𝑗 (𝑖 ∉ N))}. By assumption, |𝐴′ | < 𝑡 .

There must exist some set 𝐴 with |𝐴| = 𝑡 such that I, (𝑟,𝑚) |= 𝐶N (
∧

𝑖∈𝐴 (𝑖 ∉ N)). Moreover, 𝐴′ is
a strict subset of 𝐴, since each nonfaulty agent in 𝑟 will learn in round𝑚 (if they did not already
know it) that each agent in 𝐴′ is faulty (by getting a message from a nonfaulty agent from which it
can infer this). Let 𝑟 ′ be a run where N(𝑟 ′) = 𝐴′, all agents have the same initial state in 𝑟 and 𝑟 ′,
and for all agents in 𝐴′, the same messages are delivered in 𝑟 and 𝑟 ′. It is easy to check that for all
agents in N(𝑟 ), we must have (𝑟,𝑚 − 1) ∼𝑗 (𝑟

′,𝑚 − 1). (Formally, we show by induction on 𝑘 that
if 𝑗 ∈ N (𝑟 ) and 𝑘 < 𝑚′ ≤ 𝑚 − 1, then ( 𝑗 ′,𝑚′ −𝑘) →𝑟 ( 𝑗,𝑚′) iff ( 𝑗 ′,𝑚′ −𝑘) →𝑟 ′ ( 𝑗,𝑚

′). That is, all
agents inN(𝑟 ) consider possible a run, namely 𝑟 ′, where the only nonfaulty agents are those in 𝐴′.
Now even though 𝑖 may learn about other other nonfaulty agents in round𝑚 of 𝑟 , for all 𝑗 ∈ N (𝑟 )



22 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

such that 𝑗 ≠ 𝑖 , 𝑖 must consider it possible that at (𝑟,𝑚), 𝑗 considers (𝑟 ′,𝑚) possible, because 𝑗
hears from all agents other than those in 𝐴′ in round𝑚. Thus, t-faulty is not commnon knowledge
among the nonfaulty agents at (𝑟,𝑚). (Note that here we are using the fact that 𝑛 − 𝑡 ≥ 2, so that
there is an agent 𝑗 ∈ N (𝑟 ) such that 𝑗 ≠ 𝑖 .)
Conversely, suppose that I, (𝑟,𝑚 − 1) |= distN (t-faulty). Thus, there exists some set 𝐴 with

|𝐴| = 𝑡 such that I, (𝑟,𝑚 − 1) |= distN (t-faulty𝐴), where dist (t-faulty𝐴) is the formula ∀𝑖 ∈ 𝐴∃ 𝑗 ∈
N (𝐾 𝑗 (𝑖 ∉ N))).Moreover, for all runs 𝑟 ′, if I, (𝑟 ′,𝑚− 1) |= distN (t-faulty𝐴), thenN(𝑟 ) = Agt −𝐴.
It is well known (see [5]) that, for all formulas 𝜙 and𝜓 , if I |= 𝜙 ⇒ 𝐸N (𝜓 ∧ 𝜙), then I |= 𝜙 ⇒

𝐶N𝜓 . Thus, it suffices to show I |= ⊖distN (t-faulty𝐴) ⇒ 𝐸N (t-faulty ∧ ⊖distN (t-faulty𝐴)).
For all points (𝑟 ′,𝑚′), if I, (𝑟 ′,𝑚′) |= ⊖distN (t-faulty𝐴), then at (𝑟 ′,𝑚), all the nonfaulty agents

know that the agents in 𝐴 are faulty and that these are the only faulty agents. Since |𝐴| = 𝑡 , we
have that I, (𝑟 ′,𝑚′) |= 𝐸N (t-faulty). Moreover, since all the nonfaulty agents hear from all the
other nonfaulty agents in round𝑚 of 𝑟 ′, they all know ⊖distN (t-faulty𝐴). This completes the proof
of part (a).
For part (b), the first part is immediate: if a nonfaulty agent 𝑖 does not decide on a value 𝑣

by round 𝑚, then at time 𝑚 − 1, 𝑖 knows this will be the case. The if direction of the second
part is immediate from the fact that, since N ≠ ∅, I |= 𝐶N𝜙 ⇒ 𝜙 for all formulas 𝜙 [5]. For
the only-if direction, suppose that I, (𝑟,𝑚) |= 𝐶N (t-faulty) ∧ no-decidedN (𝑣). For each agent
𝑖 ∈ N (𝑟 ), as we obseved, 𝑖 knows at time𝑚 − 1 in 𝑟 that it will not decide 𝑣 in round𝑚. Since
we are using a full-information protocol, all the nonfaulty agents will know at time𝑚 in 𝑟 that
no-decided𝑖 (𝑣) holds. Thus, I, (𝑟,𝑚) |= 𝐸N (no-decidedN (𝑣)). It is a standard property of 𝐶N that
I |= 𝐶N𝜙 ⇒ 𝐸N𝐶N𝜙 [5]. Thus,I, (𝑟,𝑚) |= 𝐸N (no-decidedN (𝑣)∧𝐶Nt-faulty). We have just shown
that I |= 𝐶N (t-faulty) ∧ no-decidedN (𝑣)) ⇒ 𝐸N𝐶N (t-faulty) ∧ no-decidedN (𝑣)). It follows that
I |= (𝐶N (t-faulty) ∧ (no-decidedN (𝑣))) ⇒ 𝐶N (no-decidedN (𝑣)), as desired.
For part (c), the proof of the only-if direction is similar in spirit to that of part (b); we leave

details to the reader. For the if direction, suppose that I, (𝑟,𝑚) |= 𝐶N (t-faulty) ∧ ∃𝑣 and, by way
of contradiction, I, (𝑟,𝑚) ̸|= ∨𝑗 ∈N (⊖𝐾 𝑗 (∃𝑣)). Let 𝑟

′ be a run where all the agents have initial
state 1 − 𝑣 , N(𝑟 ′) = N(𝑟 ), and the failure pattern is the same in 𝑟 and 𝑟 ′, except that in round
𝑚 of 𝑟 ′, all agents hear only from the nonfaulty agents. We claim that, for all 𝑖 ∈ N (𝑟 ), we have
(𝑟,𝑚 − 1) ∼𝑖 (𝑟

′,𝑚 − 1). For clearly, if 𝑗 ∈ N (𝑟 ) and 𝑘 < 𝑚′ ≤ 𝑚 − 1, then ( 𝑗 ′,𝑚′ − 𝑘) →𝑟 ( 𝑗,𝑚′)

iff ( 𝑗 ′,𝑚′ − 𝑘) →𝑟 ′ ( 𝑗,𝑚
′). Since ( 𝑗,𝑚′) does not hear from any agent with initial value 𝑣 in 𝑟 , it

follows that this must also be the case in 𝑟 ′. Now a straightforward induction on𝑚′′ shows that
if 𝑗 ∈ N (𝑟 ),𝑚′′ ≤ 𝑚′

< 𝑚 − 1, and ( 𝑗 ′,𝑚′′) →𝑟 ( 𝑗,𝑚′), then (𝑟,𝑚′′) ∼𝑗 ′ (𝑟
′,𝑚′′). As in part (a),

even though 𝑖 may learn ∃𝑣 in round𝑚 of 𝑟 , for all 𝑗 ∈ N (𝑟 ) such that 𝑗 ≠ 𝑖 , 𝑖 must consider it
possible that at (𝑟,𝑚), 𝑗 considers (𝑟 ′,𝑚) possible, so does not learn ∃𝑣 . Thus, ∃𝑣 is not commnon
knowledge among the nonfaulty agents at (𝑟,𝑚).

□

Lemma A.3. For all implementations 𝑃 of the knowledge-based program P1 with respect to 𝛾fip,𝑛,𝑡 ,

if I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= 𝐶N (t-faulty ∧ no-decidedN (1 − 𝑣) ∧ ∃𝑣), then for all 𝑖 ∈ Agt, I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |=

𝐾𝑖 (𝐶N (t-faulty∧no-decidedN (1−𝑣)∧∃𝑣)). Moreover, for all agents 𝑖 ,I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= 𝐶N (t-faulty)

⇒ 𝐾𝑖 (𝐶N (t-faulty).

Proof. Let I = I𝛾fip,𝑛,𝑡 ,𝑃 and suppose that I, (𝑟,𝑚) |= 𝐶N (t-faulty ∧ no-decidedN (1 − 𝑣) ∧ ∃𝑣)

for some 𝑣 ∈ {0, 1} and (𝑟,𝑚) ∼𝑖 (𝑟 ′,𝑚). We clearly must have 𝑚 > 0, since we cannot have
common knowledge of the faulty agents at time 0. By Proposition A.2, it follows that I, (𝑟,𝑚− 1) |=

distN (t-faulty) ∧ (∧𝑗 ∈N (𝐾 𝑗⃝no-decided 𝑗 (𝑣)) ∧ (∨𝑗 ∈N𝐾 𝑗 (∃𝑣)). Since the nonfaulty agents send
messages to all agents in round𝑚, all agents (not just the nonfaulty agents) will know at time𝑚
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that this was true at time𝑚 − 1. It now follows from Proposition A.2 that, for all agents 𝑖 , we have
I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1 − 𝑣) ∧ ∃𝑣)). □

We next show that once the nonfaulty agents know about 𝑡 faulty agents, every agent decides
by the end of the following round.

Lemma A.4. For all implementations 𝑃 of the knowledge-based program P1 with respect to 𝛾fip,𝑛,𝑡 ,

I𝛾fip,𝑛,𝑡 ,𝑃 |= 𝐶N (t-faulty) ⇒
∧

𝑖∈Agt ⃝¬(decided𝑖 = ⊥).

Proof. Let I = I𝛾fip,𝑛,𝑡 ,𝑃 and suppose that 𝑖 ∈ Agt, 𝑗 ∈ N , and I, (𝑟,𝑚) |= 𝐶N (t-faulty). If 𝑗
decides 0 in round𝑚′ ≤ 𝑚, then 𝑖 must decide by round𝑚′ + 1, because it will hear from 𝑗 in round
𝑚′ that it is deciding, so that I, (𝑟,𝑚′) |= 𝐾𝑖 (jdecided 𝑗 = 0). (Note that 𝑖 may decide earlier or due
to one of the common knowledge conditions, but it will surely decide by round𝑚′ + 1.) If 𝑗 decides
1 at some round𝑚′ ≤ 𝑚, then either

• I, (𝑟,𝑚′−1) |= 𝐾 𝑗 (𝐶N (t-faulty∧no-decidedN (0) ∧∃1), so I, (𝑟,𝑚′−1) |= 𝐾𝑖 (𝐶N (t-faulty∧
no-decidedN (0) ∧ ∃1) by Lemma A.3, and 𝑖 must also decide by round𝑚′;

• I, (𝑟,𝑚′ − 1) |= 𝐾 𝑗 (
∧

𝑘∈Agt ¬(deciding𝑘 = 0)), so, since 𝑃 is a full-information protocol,
I, (𝑟,𝑚′) |= ⊖𝐾 𝑗 (

∧
𝑘∈Agt ¬(deciding𝑘 = 0)). Since 𝑃 is a FIP, 𝑖 hears from 𝑗 in round𝑚′ that

no agent decides 0 in round𝑚′. Thus, 𝑖 knows that no agent will decide 0 in round𝑚′ + 1

due to line 4 of 𝑃 . If some agent decides 0 due to the common knowledge condition in round
𝑚′ + 1, then, by the argument above, 𝑖 also decides 0 in round𝑚′ + 1. If not, then line 5 of 𝑃
applies, and 𝑖 decides 1 in round𝑚′ + 1.

We have just shown that that 𝑖 decides by round𝑚+1 if some nonfaulty agent 𝑗 decides by round
𝑚. If no nonfaulty agent decides by round𝑚, then I, (𝑟,𝑚) |= no-decidedN (0) ∧ no-decidedN (1).
We must have 𝑚 > 0 since 𝐶N (t-faulty) cannot hold at time 0, and clearly I, (𝑟,𝑚 − 1) |=

(∨𝑘∈N∃0) ∨ (∨𝑘∈N∃1). It now follows easily from Proposition A.2 that I, (𝑟,𝑚) |= 𝐶N (t-faulty ∧

no-decidedN (1)∧∃0) orI, (𝑟,𝑚) |= 𝐶N (t-faulty∧no-decidedN (0)∧∃1); that is, one of the common
knowledge conditions must hold. Hence, by Lemma A.3, agent 𝑖 must decide by round𝑚 + 1. □

A.2.3 Characterizing the condition for deciding 0.

Lemma A.5. For all implementations 𝑃 of the knowledge-based program P1 with respect to 𝛾fip,𝑛,𝑡 , if

I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= ¬𝐾𝑖 (𝐶N (t-faulty∧no-decidedN (1) ∧∃0)) ∧¬𝐾𝑖 (𝐶N (t-faulty∧no-decidedN (0) ∧

∃1)), then agent 𝑖 receives a 0-chain in round 𝑚 if and only if I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= init𝑖 = 0 ∨∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0) and 𝑖 has not decided before round𝑚 + 1.

Proof. We proceed by induction on 𝑚. Let I = I𝛾fip,𝑛,𝑡 ,𝑃 and suppose that I, (𝑟,𝑚) |= ¬𝐾𝑖 (

𝐶N (t-faulty∧no-decidedN (1)∧∃0))∧¬𝐾𝑖 (𝐶N (t-faulty∧no-decidedN (0)∧∃1)). By LemmaA.3, we
then have I, (𝑟,𝑚) |= ¬𝐶N (t-faulty∧no-decidedN (1)∧∃0)∧¬𝐶N (t-faulty∧no-decidedN (0)∧∃1).

If𝑚 = 0, then the only-if direction follows from the fact that agent 𝑖 receives a 0-chain in round
0 iff I, (𝑟, 0) |= init𝑖 = 0. Obviously, 𝑖 has not decided at time 0. For the converse, we first observe
that I, (𝑟, 0) |= ¬𝐾𝑖 (jdecided 𝑗 = 0) for all 𝑗 ∈ Agt as at time 0, I, (𝑟, 0) |= ¬(jdecided 𝑗 = 0) for all
𝑗 ∈ Agt. Thus, I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟, 0) |= init𝑖 = 0 ∨

∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0) iff I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟, 0) |= init𝑖 = 0.

So agent 𝑖 decides 0 in round 1 and receives a 0-chain in round 0.
If 𝑚 > 0, then the only-if direction follows immediately from the definition of a 0-chain, as

the last agent 𝑖 decides for the first time after hearing from an agent that just decided 0. For the
converse, suppose that I, (𝑟,𝑚) |= init𝑖 = 0 ∨

∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0) holds for the first time at

time𝑚. Since𝑚 > 0 is the first time this formula holds and 𝑖 did not decide before round𝑚 + 1, we
must have I, (𝑟,𝑚) |= init𝑖 ≠ 0. Thus, I, (𝑟,𝑚) |= 𝐾𝑖 (jdecided 𝑗 = 0) for some 𝑗 ∈ Agt, so agent 𝑗
decides 0 in round𝑚. We must have I, (𝑟,𝑚 − 1) |= ¬𝐶N (t-faulty) since otherwise, by Lemma A.4,
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𝑖 would have decided by round𝑚. Thus, 𝑗 could not have decided 0 due to the common knowledge
condition. It follows from P1 that I, (𝑟,𝑚 − 1) |= init 𝑗 = 0 ∨

∨
𝑗 ′∈Agt 𝐾 𝑗 (jdecided 𝑗 ′ = 0). By the

inductive hypothesis, 𝑗 receieves a 0-chain in round𝑚 − 1. Since I, (𝑟,𝑚) |= 𝐾𝑖 (jdecided 𝑗 = 0),
agent 𝑖 receives the message sent by 𝑗 in round𝑚. Because the common knowledge conditions are
not satisfied and 𝑖 has not already decided, agent 𝑖 also decides 0 in round𝑚 + 1. Thus. 𝑖 receives a
0-chain in round𝑚 + 1. □

A.2.4 Characterizing the condition for deciding 1. To characterize when an agent is unable to decide
1 (excluding the decisions made using one of the common knowledge conditions), we need some
additional definitions.

Definition A.6. Let len𝑖 (𝑟,𝑚) be the length of the longest 0-chain that 𝑖 knows about at time𝑚 in
run 𝑟 (where len𝑖 (𝑟,𝑚) = 0 if 𝑖 does not know about any 0-chains), let last𝑖 𝑗 (𝑟,𝑚) be the last time
𝑚′ for which ( 𝑗,𝑚′) →𝑟 (𝑖,𝑚) (where last𝑖 𝑗 (𝑟,𝑚) = −1 if (𝑖,𝑚) does not hear from ( 𝑗,𝑚′) at all)
and let latest0𝑖 (𝑟,𝑚) to be the last time𝑚′ such that, for some agent 𝑗 , we have ( 𝑗,𝑚′) →𝑟 (𝑖,𝑚)

and I, (𝑟,𝑚′) |= deciding 𝑗 = 0 (where latest0𝑖 (𝑟,𝑚) = −1 if there is no such time).

Intuitively, if the common knowledge conditions do not hold by time𝑚, then an agent 𝑖 is unable
to decide 1 if and only if there are enough agents that could potentially extend the longest 0-chain
that 𝑖 knows about, so that it has length at least𝑚. The following lemma formalizes this intuition.

Proposition A.7. For all implementations 𝑃 of the knowledge-based program P1 with respect to

𝛾fip,𝑛,𝑡 , if I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= ¬𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1)), I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= ¬𝐾𝑖 (𝐶N (

t-faulty ∧ no-decidedN (1) ∧ ∃0)), and I, 𝛾fip,𝑛,𝑡 , 𝑃, (𝑟,𝑚) |= decided𝑖 = ⊥, then the following holds:

• I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= ¬𝐾𝑖¬(∃ 𝑗 ∈ Agt (deciding 𝑗 = 0)) if and only if for all𝑚′′ with len𝑖 (𝑟,𝑚) <

𝑚′′ ≤ 𝑚, there exist at least 𝑚′′ − len𝑖 (𝑟,𝑚) agents 𝑗 such that last𝑖 𝑗 (𝑟,𝑚) < 𝑚′′ and

I, (𝑟, last𝑖 𝑗 (𝑟,𝑚) + 1) |= decided 𝑗 = ⊥.

Proof. LetI = I𝛾fip,𝑛,𝑡 ,𝑃 and suppose thatI, (𝑟,𝑚) |= ¬𝐾𝑖 (𝐶N (t-faulty∧no-decidedN (1)∧∃0))∧

¬𝐾𝑖 (𝐶N (t-faulty∧no-decidedN (0)∧∃1)). By Lemma A.3, we have that I, (𝑟,𝑚) |= ¬𝐶N (t-faulty∧
no-decidedN (1) ∧ ∃0) ∧ ¬𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1). Note that the common knowledge
conditions also do not hold for any earlier time, as otherwise 𝑖 would have decided earlier by
Lemma A.4.

For the only-if direction, suppose that I, (𝑟,𝑚) |= ¬𝐾𝑖¬(deciding 𝑗 = 0) for some 𝑗 ∈ Agt. There

must exist a run 𝑟 ′ such that (𝑟,𝑚) ∼𝑖 (𝑟
′,𝑚) and I, (𝑟 ′,𝑚) |= deciding 𝑗 = 0.

Since (𝑟,𝑚) ∼𝑖 (𝑟 ′,𝑚) and 𝑖 the common knowledge conditions do not hold for 𝑖 in (𝑟,𝑚),
they do not hold in (𝑟 ′,𝑚) either. By Lemma A.5, 𝑗 must receive a 0-chain in round𝑚 of 𝑟 ′. Let
𝑖0, . . . , 𝑖𝑚 be this 0-chain. For all𝑚∗ such that len𝑖 (𝑟,𝑚) < 𝑚∗ ≤ 𝑚, consider the agent 𝑖𝑚∗ in the
0-chain. We claim that (𝑖𝑚∗ ,𝑚′) ̸→𝑟 (𝑖,𝑚) for all𝑚′ ≥ 𝑚∗. For suppose that (𝑖𝑚∗ ,𝑚′) →𝑟 (𝑖,𝑚).
Then, since (𝑟,𝑚) ∼𝑖 (𝑟 ′,𝑚), we also have (𝑖𝑚∗ ,𝑚′) →𝑟 ′ (𝑖,𝑚). Since 𝑖𝑚∗ receives a 0-chain at
time𝑚∗ in 𝑟 ′, this must also be the case in 𝑟 and 𝑖 learns about it, contradicting the assumption
that len𝑖 (𝑟,𝑚) < 𝑚∗. We must have last𝑖𝑖𝑚∗ (𝑟,𝑚) < 𝑚∗ (otherwise len𝑖 (𝑟,𝑚) would be at least𝑚∗).
It follows that I, (𝑟, last𝑖𝑖𝑚∗ (𝑟,𝑚) + 1) |= decided𝑖∗𝑚 = ⊥, for otherwise 𝑖𝑚∗ would not be on the
0-chain. Thus, for all𝑚′′ with len𝑖 (𝑟,𝑚) < 𝑚′′ ≤ 𝑚, there exist at least𝑚′′ − len𝑖 (𝑟,𝑚) agents 𝑗
such that last𝑖 𝑗 (𝑟,𝑚) < 𝑚′′, namely, the agents 𝑖𝑚∗ with len𝑖 (𝑟,𝑚) < 𝑚∗ ≤ 𝑚∗.

Conversely, suppose that for all𝑚′′where len𝑖 (𝑟,𝑚) < 𝑚′′ ≤ 𝑚, there exist at least𝑚′′−len𝑖 (𝑟,𝑚)

agents 𝑗 such that last𝑖 𝑗 < 𝑚
′′ and I, (𝑟, last𝑖 𝑗 (𝑟,𝑚) + 1) |= decided 𝑗 = ⊥. Let 𝑖0, 𝑖1, ..., 𝑖len𝑖 (𝑟,𝑚) be

the longest 0-chain that 𝑖 knows about at time𝑚 in run 𝑟 .
By assumption, there must exist agents 𝑖len𝑖 (𝑟,𝑚)+1, . . . , 𝑖𝑚 such that for all𝑚′′ with len𝑖 (𝑟,𝑚) <

𝑚′′ ≤ 𝑚, we have last𝑖𝑖𝑚′′ < 𝑚
′′ and I, (𝑟, last𝑖𝑖𝑚′′ (𝑟,𝑚) + 1) |= decided𝑖𝑚′′ = ⊥. Consider a run 𝑟 ′′
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such that the initial state of all agents is the same in 𝑟 and 𝑟 ′′,N(𝑟 ) = N(𝑟 ′′), and the failure pattern
in 𝑟 and 𝑟 ′ is the same except for the messages received by and from the agents 𝑖len𝑖 (𝑟,𝑚)+1, . . . , 𝑖𝑚 .
Each agent 𝑖𝑚′′ with len𝑖 (𝑟,𝑚) < 𝑚′′ ≤ 𝑚 receives messages from the same agents in 𝑟 and 𝑟 ′′ up to
and including round last𝑖,𝑖𝑚′′ and the same agents receive messages from 𝑖𝑚′′ up to round last𝑖,𝑖𝑚′′ ;
after round last𝑖,𝑖𝑚′′ , agent 𝑖𝑚′′ receives only one message, from agent 𝑖+𝑚′′−1 at round𝑚

′′, and if
𝑚′′

< 𝑚, only one message is received from 𝑖𝑚′′ after round last𝑖,𝑖𝑚′′ : a message is received by 𝑖𝑚′′+1

from 𝑖𝑚′′ at round𝑚′′ + 1. (If𝑚′′
=𝑚, no messages are received from 𝑖𝑚′′ after round last𝑖,𝑖𝑚′′ .) It is

easy to check that (𝑟,𝑚) ∼𝑖 (𝑟
′′,𝑚) and 𝑖0, . . . , 𝑖𝑚 is a 0-chain in 𝑟 ′′. □

Corollary A.8. For all implementations 𝑃 of the knowledge-based program P1 with respect to

𝛾fip,𝑛,𝑡 , if I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= ¬𝐶N (t-faulty), I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= decided𝑖 = ⊥, len𝑖 (𝑟,𝑚) ≤ 𝑚 − 2, and

agent 𝑖 hears from all but one agent in round𝑚 of 𝑟 , then I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= deciding𝑖 = 1.

Proof. Suppose that I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= ¬𝐶N (t-faulty), len𝑖 (𝑟,𝑚) ≤ 𝑚− 2, and agent 𝑖 hears from
all but one agent in round𝑚 of 𝑟 . For all agents 𝑗 that 𝑖 heard from in round𝑚, last𝑖 𝑗 (𝑟,𝑚) ≥ 𝑚.
So there is only one agent that could satisfy last𝑖 𝑗 (𝑟,𝑚) < 𝑚. But since 𝑚 − len𝑖 (𝑟,𝑚) ≥ 2,
Proposition A.7 implies that I𝛾fip,𝑛,𝑡 ,𝑃 , (𝑟,𝑚) |= 𝐾𝑖¬(∃ 𝑗 ∈ Agt (deciding 𝑗 = 0)). Therefore agent 𝑖
decides 1 in round𝑚 + 1. □

A.2.5 P1 satisfies the EBA conditions.

Proposition 7.3. All implementations of P1 with respect to 𝛾fip,𝑛,𝑡 are EBA decision protocols for

𝛾fip,𝑛,𝑡 .

Proof. Fix an implementation 𝑃 of P1 in 𝛾fip,𝑛,𝑡 .

Unique Decision follows from essentially the same argument as in the P0 case. The only difference
is since 𝑃 is a FIP, the decisions can be inferred from the local state without explicitly storing them.
To see that Agreement holds, suppose by way of contradiction that 𝑟 is a run where there

exist nonfaulty agents 𝑖 and 𝑗 and a time 𝑚 such that I, (𝑟,𝑚) |= decided𝑖 = 0 ∧ decided 𝑗 = 1.
Suppose that 𝑗 decides 1 in round 𝑚 𝑗 + 1 and 𝑖 decides 0 in round 𝑚𝑖 + 1, so that the decision
conditions first hold at times𝑚𝑖 and𝑚 𝑗 , respectively. We first observe that if either 𝑖 or 𝑗 decides
using one of the common knowledge conditions, then we get a contradiction. If I, (𝑟,𝑚𝑖 ) |=

𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)) then 𝑗 couldn’t have decided 1 at or before round 𝑚𝑖 ,
since 𝑗 ∈ N and I, (𝑟,𝑚𝑖 ) |= no-decidedN (1). Agent 𝑗 would then decide 0 at round 𝑚𝑖 + 1,
since I, (𝑟,𝑚𝑖 ) |= 𝐾 𝑗 (𝐶N (t-faulty ∧ no-decided (1) ∧ ∃0)), contradicting the assumption that 𝑗
decides 1 in this run. If I, (𝑟,𝑚𝑖 ) |= ¬𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)) and I, (𝑟,𝑚 𝑗 ) |=

𝐾 𝑗 (𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1)), then 𝑖 could not have decided 0 before𝑚 𝑗 as 𝑖 ∈ N and
I, (𝑟,𝑚 𝑗 ) |= no-decidedN (0). Since I, (𝑟,𝑚 𝑗 ) |= 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1)), and the
other common knowledge condition for deciding 0 does not hold for 𝑖 at time𝑚 𝑗 , by the argument
above, 𝑖 decides 1 in round𝑚 𝑗 + 1, contradicting the assumption that 𝑖 decides 0 in round𝑚𝑖 + 1.

It remains to consider the cases where neither 𝑖 nor 𝑗 decides using one of the common knowledge
conditions.
If𝑚 𝑗 ≤ 𝑚𝑖 , must have either I, (𝑟,𝑚𝑖 ) |= init𝑖 = 0 or I, (𝑟,𝑚𝑖 ) |= 𝐾𝑖 (jdecided𝑘 = 0) for some

𝑘 ∈ Agt. Since, agent 𝑖 does not decide using a common knowledge condition, we can apply
Lemma A.5 to conclude that 𝑖 receives a 0-chain at time𝑚𝑖 , which implies that there exists an agent
𝑖 ′ such that I, (𝑟,𝑚 𝑗 ) |= deciding𝑖′ = 0. Hence, I, (𝑟,𝑚 𝑗 ) |= ¬𝐾 𝑗 (¬(deciding𝑖′ = 0)), so 𝑗 cannot
decide 1 at𝑚 𝑗 .
If𝑚 𝑗 > 𝑚𝑖 , since 𝑖 decides 0 in round𝑚𝑖 + 1 without using the common knowledge condition,

we must have I, (𝑟,𝑚𝑖 ) |= init𝑖 = 0
∨

𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0). We can again apply Lemma A.5 to
conclude that 𝑖 receives a 0-chain at time𝑚𝑖 in 𝑟 . As 𝑖 is nonfaulty, 𝑗 must hear from 𝑖 in round𝑚𝑖 +1,
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so I, (𝑟,𝑚 𝑗 ) |= 𝐾 𝑗 (jdecided𝑖 = 0). It follows that agent 𝑗 should decide 0 in this run, contradicting
the assumption that 𝑗 decides 1.
For Validity, observe that if an agent 𝑖 decides 𝑣 using the common knowledge condition, it

follows that some agent had an initial preference of 𝑣 . If 𝑖 decides 0 without using the common
knowledge condition, by Lemma A.5, there must be a 0-chain, and hence an agent that had an
initial preference of 0. Finally, if agent 𝑖 decides 1 without using a common knowledge condition,
then 𝑖 did not decide 0 in the first round and therefore we must have init𝑖 = 1.

For Termination, we must show that all nonfaulty agents decide by round 𝑡 + 2. Suppose that a
nonfaulty agent 𝑖 does not decide by round 𝑡 + 1 in run 𝑟 , and that 𝑟 ′ is a run such that (𝑟 ′, 𝑡 + 1) ∼𝑖

(𝑟, 𝑡 + 1). Since we are using a full-information protocol, it easily follows that (𝑟,𝑚) ∼𝑖 (𝑟
′,𝑚) for

all𝑚 ≤ 𝑡 +1. Since 𝑖 does not decide by round 𝑡 +1 of 𝑟 , we do not have I, (𝑟,𝑚) |= 𝐾𝑖𝐶N (t-faulty∧
no-decidedN (1 − 𝑣) ∧ ∃𝑣) for 𝑣 ∈ {0, 1} and𝑚 ≤ 𝑡 . By Lemma A.3, it easily follows that I(𝑟 ′,𝑚) |=

¬𝐶N (t-faulty ∧ no-decidedN (1 − 𝑣) ∧ ∃𝑣) for 𝑣 ∈ {0, 1} and𝑚 ≤ 𝑡 . This implies that no agent 𝑗
decides in 𝑟 ′ using the common knowledge conditions at or before round 𝑡 + 1.
By Lemma A.5, if any agent 𝑗 decides 0 in round 𝑡 + 1 in 𝑟 ′, then that agent receives a 0-chain

𝑖0, . . . , 𝑖𝑡 at time 𝑡 in 𝑟 ′. Since agents on a chain are distinct, and there are at most 𝑡 faulty agents,
this chain contains at least one nonfaulty agent 𝑖𝑘 that decides 0. But then 𝑖 must receive a message
(and a 0-chain) from 𝑖𝑘 in round 𝑘 + 1, which means that 𝑖 decides 0 by round 𝑡 + 2, as claimed.

We have shown if an agent decides by round 𝑡 + 1 using the commnon knowledge conditions or
decides 0 by line 4 of P1 in a run 𝑟 ′ that 𝑖 considers possible, then 𝑖 decides by round 𝑡 + 2 in 𝑟 . If this
is not the case, then I, (𝑟, 𝑡 + 1) |= 𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)), so 𝑖 decides 1 in round 𝑡 + 2. □

A.2.6 P1 is optimal. To show that P1 is optimal, we first show that it suffices to prove that weak
safety implies optimality, and then show P1 is weakly safe.

Theorem 7.6. If P1 is weakly safe with respect to 𝛾fip,𝑛,𝑡 then all implementations of P1 are optimal

with respect to 𝛾fip,𝑛,𝑡 .

Proof. Suppose that P1 is weakly safe with respect to 𝛾fip,𝑛,𝑡 . To prove that all implementations

of P1 are optimal with respect to 𝛾fip,𝑛,𝑡 , we use Theorem 7.5. It suffices to prove the only if direction,
since Proposition 4.3 in [8] shows that the if direction holds for EBA protocols, and Proposition 7.3
shows that P1 is an EBA protocol.
Suppose that P1 is weakly safe with respect to 𝛾fip,𝑛,𝑡 . Let 𝑃 be an implementation of P1 and let

I = I𝛾fip,𝑛,𝑡 ,𝑃 , We give the argument for the N ∧ O case. We first assume that I, (𝑟,𝑚) |= 𝑖 ∈ N

for some point (𝑟,𝑚). In terms of (N ∧ O)-⊡-reachability, we want to show that if for all points
(𝑟 ′,𝑚) such that 𝑖 ∈ N (𝑟 ′), I, (𝑟 ′,𝑚) |= ∃0 ∧ ¬(⃝(decided𝑖 = 1)), and for all points (𝑟 ′′,𝑚′) that
are (N ∧ O)-⊡-reachable from (𝑟 ′,𝑚), we have I, (𝑟 ′′,𝑚′) |= ∃0, then I, (𝑟,𝑚) |= ⃝(decided𝑖 = 0).
Suppose by way of contradiction that for all (𝑟 ′,𝑚) such that 𝑖 ∈ N (𝑟 ′) the condition above holds
but I, (𝑟,𝑚) |= ¬⃝(decided𝑖 = 0). Then, I, (𝑟,𝑚) |= 𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥) and by weak
safety, there exist points (𝑟 1

′
,𝑚) and (𝑟 1

′′
,𝑚) such that 𝑟𝑖 (𝑚) = 𝑟 1

′
𝑖 (𝑚), 𝑖 ∈ N (𝑟 1

′
), (𝑟 1

′′
,𝑚′) is

(N ∧ O)-⊡-reachable from (𝑟 1
′
,𝑚), and I, (𝑟 1

′′
,𝑚′) |= ¬∃0. This is a contradiction. Since this

holds for all (𝑟,𝑚), the only-if direction of the first optimality condition holds. The argument for
the N ∧Z case is completely analogous.

Therefore all implementations 𝑃 of P1 with respect to 𝛾fip,𝑛,𝑡 are optimal. □

Let 𝑃 be an implementation on P1 and let I = I𝛾fip,𝑛,𝑡 ,𝑃 .. We want to show that P1 is weakly safe.
So suppose that I, (𝑟,𝑚) |= 𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥). We need to show that there exist points
(𝑟 0

′
,𝑚), (𝑟 0

′′
,𝑚), (𝑟 1

′
,𝑚), and (𝑟 1

′′
,𝑚) satisfying the conditions of weak safety. Before we do this,

we introduce an invariant.
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Definition A.9 (Invariant condition for 𝑣 ∈ {0, 1}). I, (𝑟,𝑚) |= inv𝑣 (𝑖, 𝑗, 𝑘) if and only if there
exist distinct agents 𝑖, 𝑗, 𝑘 such that:

• I, (𝑟,𝑚) |= (decided𝑖 = ⊥) ∧ (deciding 𝑗 = 𝑣) ∧ (decided𝑘 = ⊥),

• I, (𝑟,𝑚) |= 𝑖 ∈ N ∧ 𝑗 ∈ N ∧ 𝑘 ∉ N , and
• 𝑘 does not exhibit any faulty behaviour throughout 𝑟 .

The motivation for the constraint on 𝑘 in the definition is the following:

LemmaA.10. If𝑘 ∉ N(𝑟 ) and𝑘 does not exhibit faulty behavior in 𝑟 , thenI, (𝑟,𝑚) |= ¬𝐶N (t-faulty)

for all𝑚.

Proof. If If 𝑘 ∉ N(𝑟 ) but does not exhibit fauilty behavior, let 𝑟 ′ be a run such that N(𝑟 ′) =

N(𝑟 )−{𝑘}, the failure pattern in 𝑟 and 𝑟 ′ is the same, and all agents have the same initial preferences
in 𝑟 and 𝑟 ′. Clearly, for all times 𝑚, (𝑟,𝑚) ∼𝑖 (𝑟 ′,𝑚) and I, (𝑟 ′,𝑚) ̸|= t-faulty, so I, (𝑟,𝑚) |=

¬𝐶N (t-faulty). □

It follows immediately that I, (𝑟,𝑚) |= inv1 (𝑖, 𝑗, 𝑘), then no agent decides using the common
knowledge conditions in 𝑟 .
We are now ready to construct the points (𝑟 0

′′

𝑖 ,𝑚) and (𝑟 1
′′
,𝑚) required for weak safety. The

main part of the argument for this case is done by Lemmas A.15 and A.16. Lemma A.15 shows that
once we are at a point where the invariant condition for 1 holds, we can (N ∧ O)-⊡-reach a point
where every agent has initial preference 1. Lemma A.16 shows that if a nonfaulty agent 𝑖 is unable
to decide, 𝑖 must consider possible a run where the invariant condition for 1 holds. The desired
result follows from these two lemmas.

The following technical lemma will play a key role in our proof of weak safety. For a point (𝑟,𝑚),
we write 𝐸 (𝑟,𝑚) for the set of edges (𝑖, 𝑘 − 1) →𝑟 ( 𝑗, 𝑘) with 1 ≤ 𝑘 ≤ 𝑚.

Lemma A.11. If 𝑖 ∈ N (𝑟 ), I, (𝑟,𝑚) |= ¬𝐶N (t-faulty), latest0𝑖 (𝑟,𝑚) = ℓ < 𝑚, and I, (𝑟,𝑚) |=

decided𝑖 = ⊥, then there exists a run 𝑟 ′ such that

• (𝑟,𝑚) ∼𝑖 (𝑟
′,𝑚),

• N (𝑟 ) = N(𝑟 ′),

• 𝐸 (𝑟 ′,𝑚) ⊆ 𝐸 (𝑟,𝑚),

• all 0-chains in 𝑟 ′ are known to agent 𝑖 at time 𝑚; that is, if 𝑖0, . . . 𝑖𝑘 is a 0-chain in 𝑟 ′, then

(𝑖𝑘 , 𝑘) →𝑟 ′ (𝑖,𝑚),

• all agents that do not exhibit faulty behavior in 𝑟 also do no not exhibit faulty behavior in 𝑟 ′.

Proof. Note that since I, (𝑟,𝑚) |= decided𝑖 = ⊥ and latest0𝑖 (𝑟,𝑚) < 𝑚, we cannot have
I, (𝑟,𝑚) |= deciding𝑖 = 0, so in fact agent 𝑖 cannot hear from any agent that decides 0 in round
𝑚. This means that we must have ℓ = latest0𝑖 (𝑟,𝑚) < 𝑚 − 1. We construct 𝑟 ′ by modifying 𝑟
appropriately. For all ( 𝑗,𝑚′) ̸→𝑟 (𝑖,𝑚), if𝑚′

= 0 and I, (𝑟, 0) |= init 𝑗 = 0, then we modify init 𝑗 to 1
in 𝑟 ′, and if𝑚′

> 0, we restrict the messages arriving at ( 𝑗,𝑚′) to be only those from the nonfaulty
agents in N(𝑟 ), and the agents that exhibit no faulty behavior in 𝑟 . We have N(𝑟 ′) = N(𝑟 ).

Clearly, 𝐸 (𝑟 ′,𝑚) ⊆ 𝐸 (𝑟,𝑚). Since we do not modify the failure pattern for messages correspond-
ing to pairs on the path ( 𝑗,𝑚′) →𝑟 (𝑖,𝑚), we have (𝑟,𝑚) ∼𝑖 (𝑟

′,𝑚). Moreover, the construction
changes only the failure behaviour of agents who exhibit faulty behavior in 𝑟 , so all agents that do
not exhibit faulty behavior in 𝑟 also do not exhibit faulty behavior in 𝑟 ′.

Note that because I, (𝑟,𝑚) |= 𝑖 ∈ N ∧¬𝐶N (t-faulty) and (𝑟,𝑚) ∼𝑖 (𝑟
′,𝑚), we have I, (𝑟 ′,𝑚) |=

¬𝐶N (t-faulty), so in 𝑟 ′, no agent decides using the common knowledge conditions before round
𝑚 + 2. In particular, any 0-decisions made before this round must be made using the fourth line of
the knowledge-based program.
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The construction guarantees that if 𝑖0, . . . , 𝑖ℓ is a 0-chain in 𝑟 ′, then (𝑖ℓ , ℓ) →𝑟 ′ (𝑖,𝑚). To see this,
first note that none of 𝑖0, . . . , 𝑖ℓ can be nonfaulty, otherwise 𝑖 would receive a 0-chain in 𝑟 and 𝑟 ′,
and decide 0 before time𝑚, contradicting the assumption that I, (𝑟,𝑚) |= deciding𝑖 = ⊥. If ℓ > 0,
then the fact that 𝑖ℓ received a message from 𝑖ℓ−1 in 𝑟

′ and 𝑖ℓ−1 is faulty means that (𝑖ℓ , ℓ) →𝑟 (𝑖,𝑚).
It easily follows that (𝑖ℓ , ℓ) →𝑟 ′ (𝑖,𝑚). Thus, 𝑖 knows about this 0-chain in 𝑟 ′. If ℓ = 0, then either
(𝑖0, 0) →𝑟 (𝑖,𝑚), hence (𝑖0, 0) →𝑟 ′ (𝑖,𝑚), or the initial value of 𝑖0 was changed to 1 in 𝑟 ′, so this is
not in fact a 0-chain.

It remains to show that 𝑟 ′ has no 0-chains of length greater than ℓ . Suppose to the contrary that
that 𝑖0, . . . , 𝑖ℓ+1 is a 0-chain in 𝑟 ′ of length ℓ + 1. If ℓ ≥ 0, then since latest0𝑖 (𝑟,𝑚) = ℓ , we must have
(𝑖ℓ+1, ℓ + 1) ̸→𝑟 ′ (𝑖,𝑚), for otherwise we would have (𝑖ℓ+1, ℓ + 1) →𝑟 (𝑖,𝑚) and 𝑖0, . . . , 𝑖ℓ+1 would
be a 0-chain in 𝑟 of length ℓ + 1 > latest0𝑖 (𝑟,𝑚), a contradiction. If ℓ = −1 (i.e., 𝑖 does not know
about any 0-chains in 𝑟 ), suppose there is 0-chain in 𝑟 ′. Then there must be some agent 𝑖0 with an
initial preference of 0 in 𝑟 ′. We cannot have (𝑖0, 0) →𝑟 (𝑖,𝑚), for otherwise 𝑖 would know about a
0-chain in 𝑟 . But then our construction guarantees that the initial preference of 𝑖0 in 𝑟

′ is 1, not 0.
We conclude that 𝑟 ′ contains no 0-chains of length at least ℓ + 1, as desired. □

Lemma A.12. If𝑚 ≥ 2, I, (𝑟,𝑚) |= inv1 (𝑖, 𝑗, 𝑘), and latest0 𝑗 (𝑟,𝑚) ≤ 𝑚 − 3, then there exists a run

𝑟 ∗ such that I, (𝑟 ∗,𝑚 − 1) |= inv1 (𝑖
′, 𝑗 ′, 𝑘 ′) for some 𝑖 ′, 𝑗 ′, 𝑘 ′ ∈ Agt, 𝐸 (𝑟 ∗,𝑚 − 2) ⊆ 𝐸 (𝑟,𝑚 − 2), and

N(𝑟 ) ∪ {𝑘} = N(𝑟 ∗) ∪ {𝑘 ′}.

Proof. By Lemma A.11, there exists a point (𝑟 †,𝑚) ∼𝑗 (𝑟,𝑚) such that N(𝑟 ) = N(𝑟 †), the

longest 0-chain in 𝑟 † has length at most𝑚−3, and 𝐸 (𝑟†,𝑚) ⊆ 𝐸 (𝑟,𝑚). Moreover, since 𝑘 exhibits no
faulty behavior in 𝑟 , the same holds in 𝑟 †. In addition, since I, (𝑟,𝑚) |= decided𝑖 = ⊥ ∧ decided 𝑗 =

⊥ ∧ decided𝑘 = ⊥, we also have that I, (𝑟†,𝑚) |= decided𝑖 = ⊥ ∧ decided 𝑗 = ⊥ ∧ decided𝑘 = ⊥.

We construct a run 𝑟 ′ by modifying 𝑟 † so that agent 𝑖 is faulty, 𝑘 is nonfaulty, and agent 𝑘 hears
from every other agent except agent 𝑖 in round𝑚. Since the only modifications are in round𝑚, we
have 𝐸 (𝑟 ′,𝑚 − 1) = 𝐸 (𝑟 †,𝑚 − 1) ⊆ 𝐸 (𝑟,𝑚 − 1). Agent 𝑗 is nonfaulty in both 𝑟 and 𝑟 ′ and has the
same local state in both (𝑟,𝑚) and (𝑟 ′,𝑚). Hence, 𝑗 ∈ (N ∧ O)(𝑟,𝑚) ∪ (N ∧ O)(𝑟 ′,𝑚); therefore,
(𝑟 ′,𝑚) is (N ∧ O)-⊡-reachable from (𝑟,𝑚) through agent 𝑗 . Moreover, the length of the longest
0-chain in 𝑟 ′ is𝑚 − 3, because we do not modify 𝑟† in round𝑚 − 2 or earlier in constructing 𝑟 ′.
Since𝑚 ≥ 2 and latest0𝑘 (𝑟

′,𝑚) ≤ 𝑚 − 3, in 𝑟 ′, agent 𝑘 decides 1 in round𝑚 + 1 by Corollary A.8.
Next consider the run 𝑟 ′′ that is identical to 𝑟 ′ except that agent 𝑖 hears from every agent in

round𝑚 − 1. Here we have 𝐸 (𝑟 ′′,𝑚 − 2) = 𝐸 (𝑟 ′,𝑚 − 2) ⊆ 𝐸 (𝑟,𝑚 − 2). Since the messages received
by agent 𝑘 are identical in round𝑚, we have 𝑘 ∈ (N ∧ O)(𝑟 ′,𝑚) ∪ (N ∧ O)(𝑟 ′′,𝑚). Thus, (𝑟 ′′,𝑚)

is (N ∧ O)-⊡-reachable from (𝑟 ′,𝑚) through agent 𝑘 . Because the longest 0-chain in 𝑟 ′ has length
𝑚− 3, and we make no change to 𝑟 ′ in round𝑚− 2 or earlier in constructing 𝑟 ′′, the longest 0-chain
in 𝑟 ′′ aiso has length𝑚 − 3. By Corollary A.8, agent 𝑖 decides 1 in round𝑚 of 𝑟 ′′ upon hearing from
every agent in round𝑚 − 1. Since agent 𝑗 heard from agent 𝑖 and 𝑗 did not decide earlier in run 𝑟 ′′,
agent 𝑗 decides 1 in round𝑚 + 1 in 𝑟 ′′.

Now consider the run 𝑟 ∗ that is identical to 𝑟 ′′ except that agent 𝑖 is inN (so that agent 𝑘 does get
a message from agent 𝑖 in round𝑚), and 𝑘 is faulty inN (but does not exhibit any faulty behavior.)
Clearly, 𝐸 (𝑟 ∗,𝑚 − 2) = 𝐸 (𝑟 ′′,𝑚 − 2) ⊆ 𝐸 (𝑟,𝑚 − 2). Since 𝑗 has the same local state in both (𝑟 ′′,𝑚)

and (𝑟 ∗,𝑚), and is nonfaulty in both 𝑟 ′′ and 𝑟 ∗, we have 𝑗 ∈ (N ∧ O)(𝑟 ′′,𝑚) ∪ (N ∧ O)(𝑟 ∗,𝑚).
Therefore, (𝑟 ∗,𝑚) is (N ∧ O)-⊡-reachable from (𝑟 ′′,𝑚) through agent 𝑗 .

Finally, observe that in run 𝑟 ∗, 𝑖 is nonfaulty and decides 1 in round 𝑚, 𝑘 is nonfaulty and
does not decide before round 𝑚, and 𝑗 is faulty but exhibits no faulty behavior and does not
decide before round𝑚. Hence, I, (𝑟 ∗,𝑚 − 1) |= inv1 (𝑘, 𝑖, 𝑗). By the transitivity of the (N ∧ O)-
⊡-reachability relation, (𝑟 ∗,𝑚 − 1) is (N ∧ O)-⊡-reachable from (𝑟,𝑚), and the claim holds with
(𝑖 ′, 𝑗 ′, 𝑘 ′) = (𝑘, 𝑖, 𝑗). Each step of the construction involved a swap of faultiness between a faulty
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and nonfaulty agent among 𝑖 , 𝑗 , and 𝑘 , leaving the faultiness of other agents invariant, so we have
N(𝑟 ∗) ∪ {𝑘 ′} = N(𝑟 ) ∪ {𝑘}. □

In the following, we write 𝑟 [0..𝑚] for the prefix of the run 𝑟 up to and including to time𝑚, but
removing the information about which agents are nonfaulty from the environment state, and write
Sends𝑖 (𝑟,𝑚) for the set of agents 𝑗 such that (𝑖,𝑚 − 1) →𝑟 ( 𝑗,𝑚).

Lemma A.13. If I, (𝑟,𝑚) |= inv𝑖 (𝑖, 𝑗, 𝑘) and the longest 0-chain in 𝑟 has length at most𝑚 − 2, then

for all 𝑝 ∉ N(𝑟 )∪{𝑘}, there exists a (N∧O)-⊡-reachable point (𝑟 ′,𝑚′) with𝑚′ ∈ {𝑚,𝑚+1} such that

𝑟 [0..𝑚 − 1] = 𝑟 ′[0..𝑚 − 1], I, (𝑟 ′,𝑚′) |= inv𝑖 (𝑖
′, 𝑗 ′, 𝑘 ′), 𝑝 ∉ {𝑖 ′, 𝑗 ′, 𝑘 ′}, and (𝑝,𝑚 − 1) ̸→𝑟 ′ ( 𝑗

′,𝑚′).

Proof. We construct an (N ∧ O)-⊡-path that establishes the result. We remark that inv1 is
generally not maintained along this path: we falsify inv1, but re-establish it in the final step. The
construction has several branches, depicted in Figure 1, in which we show just the changes made
to obtain each successive run, and track failure edges in the causality graph. Agent timelines are
depicted horizontally. Failure edges are indicated by dashed lines, and nodes labelled 1 indicate
that the agent is deciding 1 at that node.
If (𝑝,𝑚 − 1) ̸→𝑟 ( 𝑗,𝑚), we can take (𝑟 ′,𝑚′) = (𝑟,𝑚) and (𝑖 ′, 𝑗 ′, 𝑘 ′) = (𝑖, 𝑗, 𝑘), and we are done.

Otherwise, consider the run 𝑟 1 obtained bymodifying 𝑟 so that in round𝑚, 𝑝’s messages to all agents
but 𝑗 and itself fail, that is, Sends𝑝 (𝑟

1,𝑚) = {𝑝, 𝑗}. We have N(𝑟 1) = N(𝑟 ). Since (𝑟,𝑚) ∼𝑗 (𝑟
1,𝑚)

and 𝑗 ∈ (N ∧ O)(𝑟,𝑚) ∩ (N ∧ O)(𝑟 1,𝑚), we have that (𝑟 1,𝑚) is (N ∧ O)-⊡ reachable from (𝑟,𝑚).
It remains the case that 𝑖, 𝑗 and 𝑘 exhibit no faulty behavior in 𝑟 1, and that they are undecided at

time𝑚. Since 𝑘 is faulty but exhibits no faulty behavior in 𝑟 1, by Lemma A.10, no agent decides using
the common knowledge conditions in 𝑟 1. It also remains the case that there is no 0-chain with length
greater than𝑚−2, so no agent decides 0 after round𝑚−1 in 𝑟 1. IfI, (𝑟 1,𝑚) |= deciding𝑖 = 1, then we
are done, taking (𝑟 ′,𝑚′) = (𝑟 1,𝑚) and (𝑖 ′, 𝑗 ′, 𝑘 ′) = ( 𝑗, 𝑖, 𝑘), since 𝑖 ∈ N (𝑟 1) but (𝑝,𝑚−1) ̸→𝑟 1 (𝑖,𝑚)

and 𝑟 [0..𝑚 − 1] = 𝑟 1 [0..𝑚 − 1] by construction. On the other hand, if I, (𝑟 1,𝑚) |= deciding𝑘 = 1,

then we would similarly be done, taking (𝑟 ′,𝑚′) = (𝑟 1
′
,𝑚) and (𝑖 ′, 𝑗 ′, 𝑘 ′) = ( 𝑗, 𝑘, 𝑖), where 𝑟 1

′
is the

run obtained from 𝑟 1 by setting N(𝑟 1
′
) = N(𝑟 ) ∪ {𝑘} \ {𝑖}.

If I, (𝑟 1,𝑚) |= deciding𝑖 = ⊥ ∧ deciding𝑘 = ⊥, we have I, (𝑟 1,𝑚 + 1) |= deciding𝑖 = 1, since
I, (𝑟 1,𝑚) |= deciding 𝑗 = 1 and 𝑗 ∈ N (𝑟 1). Let 𝑟 2 be the run obtained by modifying 𝑟 1 so that

in round𝑚 + 1, agent 𝑖 receives messages from all agents but 𝑝 . We have N(𝑟 2) = N(𝑟 ). Since
(𝑟,𝑚) ∼𝑗 (𝑟 2,𝑚) and 𝑗 ∈ (N ∧ O)(𝑟,𝑚) ∩ (N ∧ O)(𝑟 1,𝑚), we have that (𝑟 2,𝑚) is (N ∧ O)-⊡
reachable from (𝑟,𝑚).

It remains the case that 𝑘 is faulty but exhibits no faulty behavior in 𝑟 2, hence no agent decides
using the common knowledge conditions in 𝑟 2. Note that 𝑟 2 [0..𝑚 − 1] = 𝑟 1 [0..𝑚 − 1] = 𝑟 [0,𝑚 − 1]

and Sends𝑝 (𝑟
2,𝑚) = Sends𝑝 (𝑟

1,𝑚) = {𝑝, 𝑗}. We also have 𝑟 2𝑖 (𝑚) = 𝑟 1𝑖 (𝑚) and 𝑟 2
𝑘
(𝑚) = 𝑟 1

𝑘
(𝑚), so

I, (𝑟 1,𝑚) |= deciding𝑖 = ⊥∧deciding𝑘 = ⊥. Thus, using Corollary A.8, we have that I, (𝑟 2,𝑚+1) |=

deciding𝑖 = 1, because the longest 0-chain in 𝑟 2 has length at most𝑚 − 2.
Let 𝑟 3 be the run obtained by modifying 𝑟 2 so that N(𝑟 3) = N(𝑟 ) ∪ {𝑘} \ { 𝑗}, and agent 𝑘

receives a message from all agents but 𝑗 in round 𝑚 + 1. Since (𝑟 2,𝑚) + 1 ∼𝑖 (𝑟 3,𝑚 + 1) and
𝑖 ∈ (N ∧ O)(𝑟 2,𝑚 + 1) ∩ (N ∧ O)(𝑟 3,𝑚 + 1), we have that (𝑟 3,𝑚) is (N ∧ O)-⊡ reachable from
(𝑟,𝑚). We remark that inv1 does not hold in 𝑟 3 with a permutation of 𝑖, 𝑗, 𝑘 , since 𝑗 now exhibits
faulty behavior. However, we still have I, (𝑟 3,𝑚 + 1) |= ¬𝐶N (t-faulty), because 𝑖 ∈ N (𝑟 3) and
𝑖 does not observe 𝑗 ’s faulty behavior. It follows that no agent decides in 𝑟 3 using the common
knowledge conditions before round𝑚 + 3.
Note that Sends𝑝 (𝑟

3,𝑚) = Sends𝑝 (𝑟
2,𝑚) \ { 𝑗} = {𝑝, 𝑗} and Sends 𝑗 (𝑟

3,𝑚 + 1) = Agt \ {𝑘}. We

have 𝑟 3 [0..𝑚 − 1] = 𝑟 2 [0..𝑚 − 1] = 𝑟 [0,𝑚 − 1]. This implies that none of 𝑖, 𝑗, 𝑘 has decided at time
𝑚. In addition, 𝑟 3𝑖 (𝑚) = 𝑟 2𝑖 (𝑚) and 𝑟 3

𝑘
(𝑚) = 𝑟 2

𝑘
(𝑚), so neither 𝑖 nor 𝑘 decides in round𝑚 + 1. By
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Corollary A.8, we have that I, (𝑟 3,𝑚 + 1) |= deciding𝑘 = 1, because the longest 0-chain in 𝑟 3 has
length at most𝑚 − 2.
Let 𝑟 4 be the run obtained by modifying 𝑟 3 so that agent 𝑝 does not send any messages to

agent 𝑗 in round𝑚, and in round𝑚 + 1, all agents except 𝑝 send a message to agent 𝑖 . We have
N(𝑟 4) = N(𝑟 3) = N(𝑟 ) ∪ {𝑘} \ { 𝑗} and 𝑟 4 [0..𝑚 − 1] = 𝑟 3 [0..𝑚 − 1] = 𝑟 [0,𝑚 − 1]. In addition,
Sends𝑝 (𝑟

4,𝑚) = Sends𝑝 (𝑟
3,𝑚) \ { 𝑗} = {𝑝, 𝑗} \ { 𝑗} = {𝑝}, and Sends 𝑗 (𝑟

4,𝑚+1) = Sends 𝑗 (𝑟
3,𝑚+1) =

Agt \ {𝑘}. Since in 𝑟 3, agent 𝑗 does not send a message to agent 𝑘 in round𝑚 + 1, the change in
round𝑚 is not visible to agent 𝑘 at time𝑚+1, nor is the round𝑚+1 change visible to 𝑘 at time𝑚+1.
Thus, we have (𝑟 3,𝑚 + 1) ∼𝑘 (𝑟 4,𝑚 + 1). In addition, 𝑘 ∈ (N ∧ O)(𝑟 3,𝑚 + 1) ∩ (N ∧ O)(𝑟 4,𝑚 + 1),
so (𝑟 4,𝑚 + 1) is (N ∧ O)-⊡ reachable from (𝑟,𝑚). We have 𝑟 4𝑖 (𝑚) = 𝑟 3𝑖 (𝑚), so agent 𝑖 does not

decide in round𝑚 + 1 in 𝑟 4. By Corollary A.8, we get that I, (𝑟 4,𝑚 + 1) |= deciding𝑖 = 1.
It is still the case in 𝑟 4 that agent 𝑗 exhibits faulty behavior. To reinstate inv1, let 𝑟

5 be the run
obtained from 𝑟 4 by changing the failed message from 𝑗 to 𝑘 in round𝑚 + 1 to be successfully
transmitted. Since this was the only failure of 𝑗 introduced earlier, this ensures that 𝑗 does not
exhibit faulty behavior in 𝑟 5. We have N(𝑟 5) = N(𝑟 4) = N(𝑟 ) ∪ {𝑘} \ { 𝑗} and 𝑟 4 [0..𝑚 − 1] =

𝑟 3 [0..𝑚 − 1] = 𝑟 [0,𝑚 − 1]. The latter means that no agent decides 0 after round𝑚 − 1. The change
made in constructing 𝑟 5 is not visible to agent 𝑖 at time𝑚 + 1, so we have (𝑟 4,𝑚 + 1) ∼𝑖 (𝑟

5,𝑚 + 1).
We have 𝑖 ∈ (N ∧ O)(𝑟 4,𝑚) ∩ (N ∧ O)(𝑟 5,𝑚), so (𝑟 5,𝑚) is (N ∧ O)-⊡ reachable from (𝑟,𝑚).

In addition, 𝑟 5𝑖 (𝑚) = 𝑟 4𝑖 (𝑚), so agent 𝑖 does not decide in round𝑚 + 1 of run 𝑟 5, since it did not

do so in round𝑚 + 1 of 𝑟 4. Similarly, 𝑟 5
𝑘
(𝑚) = 𝑟 4

𝑘
(𝑚), so agent 𝑘 does not decide in round𝑚 + 1 of

run 𝑟 5. With respect to agent 𝑗 , we have two possibilities.

• If I, (𝑟 5,𝑚) |= deciding 𝑗 = 1, then let 𝑟 6 be the run identical to 𝑟 5 except that N(𝑟 6) =

N(𝑟 ). (That is, we switch 𝑘 from being nonfaulty in 𝑟 5 to faulty in 𝑟 6, and 𝑗 from being
faulty to being nonfaulty.) We still have that (𝑟 4,𝑚 + 1) ∼𝑖 (𝑟 6,𝑚 + 1) and 𝑖 ∈ (N ∧

O)(𝑟 4,𝑚 + 1) ∩ (N ∧ O)(𝑟 6,𝑚 + 1), so (𝑟 6,𝑚 + 1) is (N ∧ O)-⊡ reachable from (𝑟,𝑚). We
also have that I, (𝑟 6,𝑚) |= deciding 𝑗 = 1, because 𝑟 6𝑗 (𝑚) = 𝑟 5𝑗 (𝑚). Since (𝑟 6,𝑚) ∼𝑗 (𝑟 6,𝑚)

and 𝑖 ∈ (N ∧ O)(𝑟 6,𝑚) ∩ (N ∧ O)(𝑟 6,𝑚), we have that (𝑟 6,𝑚) is (N ∧ O)-⊡ reachable from
(𝑟,𝑚). Note that (𝑝,𝑚 − 1) ̸→𝑟 6 ( 𝑗,𝑚). Hence we are done, taking (𝑟 ′,𝑚′) = (𝑟 6,𝑚) and
(𝑖 ′, 𝑗 ′, 𝑘 ′) = (𝑖, 𝑗, 𝑘).

• IfI, (𝑟 5,𝑚) |= ¬deciding 𝑗 = 1, thenwe haveI, (𝑟 5,𝑚+1) |= decided𝑖 = decided 𝑗 = decided𝑘 =

⊥, and I, (𝑟 5,𝑚+1) |= deciding𝑖 = 1. Moreover, Sends𝑝 (𝑟
5,𝑚) = {𝑝} and 𝑖 ∉ Sends𝑝 (𝑟

5,𝑚+1).

Thus (𝑝,𝑚−1) ̸→𝑟 5 (𝑖,𝑚+1). Hence we are done, taking (𝑟 ′,𝑚′) = (𝑟 5,𝑚+1) and (𝑖 ′, 𝑗 ′, 𝑘 ′) =
(𝑘, 𝑖, 𝑗).

□

The following lemma allows us to reduce the size of the set 𝑆𝑚−1 (𝑟 ), so that there are fewer paths
by which a 0-chain reaching time𝑚 − 2 is visible at time𝑚.

Lemma A.14. If I, (𝑟,𝑚) |= inv1 (𝑖, 𝑗, 𝑘) and the longest 0-chain in 𝑟 has length at least 𝑚 − 2,

then there exists a run 𝑟 ′ and a permutation 𝑖 ′, 𝑗 ′, 𝑘 ′ of 𝑖, 𝑗, 𝑘 such that I, (𝑟 ′,𝑚) |= inv1 (𝑖
′, 𝑗 ′, 𝑘 ′),

N(𝑟 ) ∪ {𝑘} = N(𝑟 ′) ∪ {𝑘 ′}, the point (𝑟 ′,𝑚) is (N ∧ O)-⊡-reachable from (𝑟,𝑚), and there are no

0-chains in 𝑟 ′ of length𝑚 − 2.

Proof. Consider an agent 𝑞 ∈ Agt (N (𝑟 ) ∪ {𝑘}). We write 𝐹𝑞 (𝑟,𝑚 − 1) for the set of edges of
the form (𝑝,𝑚 − 2) → (𝑞,𝑚 − 1) in 𝐸 (𝑟,𝑚 − 1), where 𝑝 ∈ Agt \ N (𝑟 ) ∪ {𝑘, 𝑞}.
We first show that there exists a point (𝑟𝑞,𝑚) that is (N ∧ O)-⊡-reachable from (𝑟,𝑚) such

that I, (𝑟𝑞,𝑚) |= inv1 (𝑖
𝑞, 𝑗𝑞, 𝑘𝑞), where {𝑖, 𝑗, 𝑘} = {𝑖𝑞, 𝑗𝑞, 𝑘𝑞}, N(𝑟 ) ∪ {𝑘} = N(𝑟𝑞) ∪ {𝑘𝑞}, and

𝐸 (𝑟𝑞,𝑚 − 1) ⊆ 𝐸 (𝑟,𝑚 − 1) \ 𝐹𝑞 (𝑟,𝑚 − 1). To do this, we first apply Lemma A.13 to (𝑟,𝑚) and



32 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden

(𝑁 ∧O)-⊡-reach a point (𝑟 1,𝑚1) such that I, (𝑟 1,𝑚1) |= inv1 (𝑖1, 𝑗1, 𝑘1), 𝑁 (𝑟 ) ∪ {𝑘} = N(𝑟 1) ∪ {𝑘1},
𝐸 (𝑟 1,𝑚 − 1) = 𝐸 (𝑟,𝑚 − 1), (𝑞,𝑚 − 1) ̸→𝑟 1 ( 𝑗1,𝑚1), and𝑚1 is either𝑚 or𝑚 + 1.

Let 𝑟 2 be the run obtained from 𝑟 1 by converting all edges (𝑝,𝑚−2) →𝑟 1 (𝑞,𝑚−1) in 𝐹𝑞 (𝑟,𝑚−1)

to failures, so that 𝐸 (𝑟 2,𝑚 − 1) = 𝐸 (𝑟 1,𝑚 − 1) \ 𝐹𝑞 (𝑟,𝑚 − 1) = 𝐸 (𝑟,𝑚 − 1) \ 𝐹𝑞 (𝑟,𝑚 − 1). We

have (𝑟 2,𝑚1) ∼𝑗1 (𝑟
1,𝑚1), andN(𝑟 1) = N(𝑟 2), so (𝑟 2,𝑚1) is (𝑁 ∧ O)-⊡-reachable from (𝑟 1,𝑚1). It

remains the case that none of 𝑖1, 𝑗1, 𝑘1 have decided at (𝑟
2,𝑚1), since the state of these agents at time

𝑚1 − 1 is visible to 𝑗1 at time𝑚1 in 𝑟
1 and (𝑟 2,𝑚1) ∼𝑗1 (𝑟

1,𝑚1). Hence I, (𝑟
2,𝑚1) |= inv1 (𝑖1, 𝑗1, 𝑘1)

and N(𝑟 ) ∪ {𝑘} = N(𝑟 2 ∪ {𝑘1}.
If 𝑚1 = 𝑚 we are done, taking 𝑟𝑞 = 𝑟 2; otherwise, 𝑚1 = 𝑚 + 1 and we apply Lemma A.12

to obtain a point (𝑟𝑞,𝑚) (N ∧ O)-⊡ reachable from (𝑟,𝑚) with I, (𝑟𝑞,𝑚1) |= inv1 (𝑖𝑞, 𝑗𝑞, 𝑘𝑞) and

N(𝑟𝑞) ∪ {𝑘𝑞} = N(𝑟 2) ∪ {𝑘1} = N(𝑟 ) ∪ {𝑘}. We have 𝐸 (𝑟𝑞,𝑚−1) = 𝐸 (𝑟𝑞,𝑚1−2) ⊆ 𝐸 (𝑟 2,𝑚1−2) =

𝐸 (𝑟 2,𝑚 − 1) = 𝐸 (𝑟,𝑚 − 1) \ 𝐹𝑞 (𝑟,𝑚 − 1).
We successively repeat the steps above for all agents in Agt \ (N (𝑟 ) ∪ {𝑘}), thereby (𝑁 ∧ O)-

⊡-reaching a point (𝑟 3,𝑚) with I, (𝑟 3,𝑚) |= inv1 (𝑖3, 𝑗3, 𝑘3), N(𝑟 3) ∪ {𝑘3} = N(𝑟 ) ∪ {𝑘}, and
𝐸 (𝑟 3,𝑚 − 1) ⊆ 𝐸 (𝑟,𝑚 − 1) \ (

⋃
𝑞∈Agt\(N(𝑟 )∪{𝑘 }) 𝐹𝑞 (𝑟,𝑚 − 1)). That is, in round 𝑚 − 1 of 𝑟 3, no

messages are transmitted between distinct (faulty) agents in Agt \ (N (𝑟 ) ∪ {𝑘}).
It may still be the case that we have faulty agents 𝑞 that decide in round𝑚 − 1 of 𝑟 3, for which

(𝑞,𝑚 − 1) →𝑟 3 ( 𝑗
′,𝑚). In this case, we again apply Lemma A.13 to (𝑟 3,𝑚) and (N ∧ O)-⊡-reach

a point (𝑟 4,𝑚4) where I, (𝑟 4,𝑚4) |= inv1 (𝑖4, 𝑗4, 𝑘4), {𝑖4, 𝑗4, 𝑘4} = {𝑖, 𝑗, 𝑘}, and N(𝑟 4) ∪ {𝑘4} =

N(𝑟 3) ∪ {𝑘3} = N(𝑟 ) ∪ {𝑘}, 𝑟 4 [0 . . .𝑚 − 1] = 𝑟 3 [0 . . .𝑚 − 1], (𝑞,𝑚 − 1) ̸→𝑟 4 ( 𝑗1,𝑚4), and𝑚4 is
either𝑚 or𝑚 + 1. At this point we apply the construction of Lemma A.11 to produce from 𝑟 4 a run
𝑟 5 such that (𝑟 5,𝑚4) is (N ∧O)-⊡-reachable from (𝑟 4,𝑚4) via agent 𝑗4, I, (𝑟

5,𝑚4) |= inv1 (𝑖4, 𝑗4, 𝑘4),
N(𝑟 5 ∪ {𝑘4} = N(𝑟 4) ∪ {𝑘4} = N(𝑟 ) ∪ {𝑘}, all 0-chains are visible to ( 𝑗4,𝑚4), and 𝐸 (𝑟

5,𝑚 − 1) ⊆

𝐸 (𝑟 4,𝑚 − 1) ⊆ 𝐸 (𝑟,𝑚 − 1) \ (
⋃

𝑞∈Agt\(N(𝑟 )∪{𝑘 }) 𝐹𝑞 (𝑟,𝑚 − 1)).

We claim that 𝑞 does not decide in round𝑚 − 1 of 𝑟 5. Obviously, we do not have an edge from
(𝑞,𝑚 − 2) into (N (𝑟 ) ∪ {𝑘}) × {𝑚 − 1} in 𝑟 4, otherwise 𝑟 would have a 0-chain of length at least
𝑚 − 1. We also do not have an edge in 𝑟 4 from (𝑞,𝑚 − 2) into (N (𝑟 ) ∪ {𝑘}) × {𝑚 − 1}, since
all such edges have been eliminated. Thus, the only edge from (𝑞,𝑚 − 2) is to (𝑞,𝑚 − 1). Since
(𝑞,𝑚 − 1) ̸→𝑟 4 ( 𝑗4,𝑚4), it follows that (𝑞,𝑚 − 2) ̸→𝑟 4 ( 𝑗4,𝑚4), and the construction of 𝑟 5 ensures
that I, (𝑟 5,𝑚 − 2) |= ¬deciding𝑞 = 0.

If 𝑚4 = 𝑚 + 1, we apply Lemma A.12 to obtain a point (𝑟 6,𝑚) that is (N ∧ O)-⊡ reachable
from (𝑟,𝑚) such that 𝐸 (𝑟 6,𝑚 − 1) ⊆ 𝐸 (𝑟 5,𝑚 − 1), I, (𝑟 6,𝑚) |= inv1 (𝑖6, 𝑗6, 𝑘6), {𝑖6, 𝑗6, 𝑘6} = {𝑖, 𝑗, 𝑘},
N(𝑟 6) ∪ {𝑘6} = N(𝑟 ) ∪ {𝑘}, and 𝑞 does not decide in round𝑚 − 1. And if𝑚4 =𝑚, we already have
this conclusion with 𝑟 6 = 𝑟 5.

We successively apply this construction for all 𝑞 ∈ Agt \ (N (𝑟 ) ∪ {𝑘}) until we have an (N ∧O)-
⊡-reachable point (𝑟 7,𝑚) such that I, (𝑟 7,𝑚) |= inv1 (𝑖7, 𝑗7, 𝑘7), {𝑖7, 𝑗7, 𝑘7} = {𝑖, 𝑗, 𝑘},N(𝑟 7)∪{𝑘7} =

N(𝑟 6) ∪ {𝑘6} = N(𝑟 ) ∪ {𝑘}, 𝐸 (𝑟 7,𝑚 − 1) ⊆ 𝐸 (𝑟 4,𝑚 − 1), and I, (𝑟 7,𝑚 − 2) |= ¬deciding𝑞 = 0 for all

𝑞 ∈ Agt \ (N (𝑟 ) ∪ {𝑘}). Since I, (𝑟 7,𝑚) |= inv1 (𝑖7, 𝑗7, 𝑘7) implies that no agent in N(𝑟 7) ∪ {𝑘7} =

N(𝑟 ) ∪{𝑘} decides in round𝑚−1, we conclude that 𝑟 7 has no 0-chains of length𝑚−2. We therefore
have the result with 𝑟 ′ = 𝑟 7. □

Lemma A.15. If I, (𝑟,𝑚) |= inv1 (𝑖, 𝑗, 𝑘), then there exists a run 𝑟 such that (𝑟, 0) is (N ∧ O)-⊡-

reachable from (𝑟,𝑚) and I, (𝑟, 0) |= ¬∃0.

Proof. We proceed by induction on𝑚. Suppose that I, (𝑟,𝑚) |= inv1 (𝑖, 𝑗, 𝑘), so that 𝑗 decides 1
in round𝑚 + 1 of 𝑟 . No agent can decide 1 in round 1, so we have𝑚 ≥ 1.
If𝑚 = 1, agent 𝑗 can’t know ∃0 at time 1 right before 𝑗 decides 1 in round 2, as otherwise 𝑗

would have gotten a 0-chain and, by Lemma A.5, would decide 0. Hence, 𝑗 considers possible the
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run 𝑟 where no agent has an initial preference of 0 and the message pattern is identical to 𝑟 . Clearly,
(𝑟, 1) is (N ∧ O)-⊡-reachable from (𝑟, 1) through agent 𝑗 .
If𝑚 > 0, suppose that len) 𝑗 (𝑟,𝑚) =𝑚′. Note that 𝑗 can’t know about a 0-chain of length𝑚 − 1

or greater, as in that case 𝑗 would decide 0 in round𝑚 + 1. If𝑚′
< 𝑚 − 2, then we can immediately

apply Lemma A.12 to (N ∧ O)-⊡-reach a point (𝑟 ∗,𝑚 − 1) where the invariant condition for 1
holds. We can then apply the inductive hypothesis to conclude that there exists a run 𝑟 such
that I, (𝑟, 0) |= ¬∃0 and (𝑟, 0) is (N ∧ O)-⊡-reachable from (𝑟 ∗,𝑚 − 1). By the transitivity of the
(N ∧O)-⊡-reachability relation, (𝑟, 0) is also (N ∧O)-⊡-reachable from (𝑟,𝑚) and the claim holds.
And if𝑚′

=𝑚 − 2, then by Lemma A.14, there exists a point (𝑟 ′,𝑚) that is (N ∧ O)-⊡ reachable
from (𝑟,𝑚) such that I, (𝑟 ′,𝑚) |= inv1 (𝑖1, 𝑗1, 𝑘1) and all 0-chains in 𝑟 ′ have length less than𝑚 − 2.
The previous case applied to (𝑟 ′,𝑚) then yields the result. □

Lemma A.16. If I, (𝑟,𝑚) |= (𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥)), then 𝑖 considers a point (𝑟 ′,𝑚) possible

at (𝑟,𝑚) where I, (𝑟 ′,𝑚) |= inv1 (𝑖, 𝑗, 𝑘).

Proof. Suppose that at some point (𝑟,𝑚), I, (𝑟,𝑚) |= 𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥). We first
observe that we must have I, (𝑟,𝑚) |= ¬𝐶N (t-faulty), since otherwise, by Lemma A.4, we get
a contradiction. To show that 𝑖 considers a point (𝑟 ′,𝑚) possible at (𝑟,𝑚) where I, (𝑟 ′,𝑚) |=

inv1 (𝑖, 𝑗, 𝑘), we consider two cases:

• Suppose that I, (𝑟,𝑚) |= ¬𝐾𝑖 (t-faulty). By definition, there exists an agent 𝑘 such that
I, (𝑟,𝑚) |= ¬𝐾𝑖¬(𝑘 ∈ N) ∧ ¬𝐾𝑖¬(𝑘 ∉ N). Let 𝑟 ′ be a run identical to 𝑟 except 𝑘 ∉ N , 𝑘 does
not exhibit any nonfaulty behavior in 𝑟 ′, some agent 𝑗 ∈ N hears from all other agents in
round𝑚, and the only 0-chains in run 𝑟 ′ are the ones that 𝑖 knows about. This means that
the 0-chains in 𝑟 ′ have length at most𝑚 − 2, so eventually all agents should decide 1. We
claim that (𝑟,𝑚) ∼𝑖 (𝑟

′,𝑚). Suppose by way of contradiction that 𝑖 has different local states
in (𝑟,𝑚) and (𝑟 ′,𝑚). Then either 𝑖 hears in 𝑟 ′ from an agent that didn’t receive a message
from 𝑘 in round𝑚 of 𝑟 that heard from 𝑘 in round𝑚 of 𝑟 ′ or 𝑖 hears about a 0-chain in round
𝑚 of 𝑟 ′ that it did not know about at time𝑚 in 𝑟 . In the first case, 𝑖 would have known that 𝑘
is faulty in (𝑟,𝑚), which is a contradiction; the second case contradicts the assumption that 𝑖
doesn’t know about such 0-chains in 𝑟 ′.
By Corollary A.8, agent 𝑗 decides 1 in round𝑚 + 1 upon hearing from all other agents in
round𝑚. Thus, I, (𝑟 ′,𝑚) |= inv1 (𝑖, 𝑗, 𝑘) and (𝑟,𝑚) ∼𝑖 (𝑟

′,𝑚).
• If I, (𝑟,𝑚) |= 𝐾𝑖 (t-faulty), we make use of the observation that I, (𝑟,𝑚) |= ¬𝐶N (t-faulty).
By Proposition A.2, it must be the case that I, (𝑟,𝑚 − 1) |= ¬distN (t-faulty); equivalently,
I, (𝑟,𝑚) |= ∀𝑗 ∈ N (¬𝐾 𝑗¬(𝑘 ∈ N)) for some faulty agent 𝑘 . Since 𝑖 ∈ N , we must have
I, (𝑟,𝑚 − 1) |= ¬𝐾𝑖¬(𝑘 ∈ N). Since I, (𝑟,𝑚) |= 𝐾𝑖 (t-faulty), it must be the case that agent 𝑖
learned that 𝑘 is faulty in round𝑚, either by not getting a message from 𝑘 for the first time or
by getting a message from some faulty agent 𝑘 ′ that knew about agent 𝑘 being faulty. Agent
𝑘 ′ can’t be a nonfaulty agent, since no nonfaulty agent knows that 𝑘 is faulty at time𝑚 − 1.
If 𝑖 learned that 𝑘 is faulty by not hearing from 𝑘 in round𝑚, then at (𝑟,𝑚), agent 𝑖 considers
possible the point (𝑟 ′,𝑚), where in round𝑚 of 𝑟 ′, some nonfaulty agent 𝑗 received a message
from all other agents. By Corollary A.8, in 𝑟 ′, 𝑗 decides 1 in round 𝑚. Thus, I, (𝑟 ′,𝑚) |=

inv1 (𝑖, 𝑗, 𝑘), as desired.
If 𝑖 learned that 𝑘 is faulty by hearing from some faulty agent 𝑘 ′ that 𝑘 is faulty, then 𝑖
considers possible the run 𝑟 ′ which is identical to 𝑟 except that 𝑗 and 𝑘 receive a message
from all other agents except 𝑘 ′ in round𝑚. By Corollary A.8, both agents 𝑗 and 𝑘 are about
to decide 1 at (𝑟 ′,𝑚), since all 0-chains in 𝑟 ′ have length at most𝑚 − 2 and they both receive
a message from all agents but 𝑘 ′. We must have (𝑟,𝑚) ∼𝑖 (𝑟

′,𝑚), as the only change between
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the runs is in round𝑚, and 𝑖 receives the same messages in both runs. Moreover, 𝑖 is nonfaulty
in both runs.
Now consider a run 𝑟 ′′ where 𝑖 does not hear from 𝑘 ′ in round𝑚 or later, and otherwise
receives all messages from the other agents. Thus, 𝑖 , 𝑗 , and 𝑘 hear from all agents but 𝑘 ′ in
rounds𝑚 and𝑚 + 1 in 𝑟 ′′. As 𝑗 ∈ (N ∧ O)(𝑟 ′′,𝑚′) ∪ (N ∧ O)(𝑟 ′,𝑚′), (𝑟 ′′,𝑚′) is (N ∧ O)-
⊡-reachable from (𝑟 ′,𝑚).
Since 𝑗 does not hear from𝑘 ′ after round𝑚 in 𝑟 ′′, it does not discover that𝑘 is faulty. Therefore,
there exists a run 𝑟 ′′′ that is identical to 𝑟 ′ except that agent 𝑘 does not exhibit nonfaulty
behavior. Thus,I, (𝑟 ′′′,𝑚′) |= inv1 (𝑖, 𝑗, 𝑘). Moreover, 𝑗 ∈ (N∧O)(𝑟 ′′′,𝑚′)∪ (N∧O)(𝑟 ′′,𝑚′),
so (𝑟 ′′′,𝑚′) is (N ∧ O)-⊡-reachable from (𝑟 ′′,𝑚′).

□

Finally, we construct the points (𝑟 0
′

𝑖 ,𝑚) and (𝑟 1
′
,𝑚) required for weak safety. The argument

for this case is simpler than that of the previous case. Most of the work for this case is done by
Lemmas A.17 and A.18, which are analogues of Lemmas A.15 and A.16.

Lemma A.17. If I, (𝑟,𝑚) |= inv0 (𝑖, 𝑗, 𝑘), then there exists a run 𝑟 such that (𝑟, 0) is (N ∧ Z)-⊡-

reachable from (𝑟,𝑚) and I, (𝑟, 0) |= ¬∃1.

Proof. We proceed by induction on𝑚.
If𝑚 = 0, then since agent 𝑗 decides 0 in round 1, it must be the case that I, (𝑟, 0) |= init 𝑗 = 0.

Hence, agent 𝑗 considers a run 𝑟 where every agent has initial preference 0 possible. Clearly, (𝑟, 0)
is (N ∧ Z)-⊡-reachable from (𝑟, 0). If𝑚 > 1, since agent 𝑘 is faulty but does not exhibit faulty
behavior in 𝑟 , I, (𝑟,𝑚) |= ¬𝐶N (t-faulty). By Lemma A.5, agent 𝑗 must have received at least one
0-chain of length𝑚 in order to decide 0. Let 𝑘 ′ be an agent from whom 𝑗 received a 0-chain. Note
that 𝑘 ′ can’t be 𝑖 or 𝑗 , since 𝑖 and 𝑗 do not decide before round𝑚 + 1. Let 𝑟 ′ be a run identical to 𝑟 ,
except that 𝑖 is faulty instead of 𝑘 , 𝑘 hears from 𝑘 ′, and 𝑘 does not hear from 𝑖 in round𝑚 of 𝑟 ′.
Since 𝑗 ∈ (N ∧Z)(𝑟,𝑚) ∩ (N ∧Z)(𝑟 ′,𝑚) and 𝑗 has the same local state at both points, (𝑟 ′,𝑚) is
(N ∧Z)-⊡-reachable from (𝑟,𝑚).
In 𝑟 ′, agent 𝑘 is nonfaulty and receives a 0-chain from 𝑘 ′ in round𝑚. Let 𝑘∗ be an agent that

sent a 0-chain to 𝑘 ′ in round𝑚 − 1. Consider a run 𝑟 ′′ that is identical to 𝑟 ′ except that agent 𝑖
receives a 0-chain in round𝑚 − 1 from 𝑘∗ and agent 𝑗 receives a message from agent 𝑖 in round
𝑚. (If𝑚 = 1, then we take 𝑟 ′′ to be a run where 𝑖 has initial preference 0 and 𝑗 receives a message
from 𝑖 in round 1.) Agent 𝑖 decides 0 in round𝑚 of 𝑟 ′′. Since 𝑘 has the same local state in both
(𝑟 ′,𝑚) and (𝑟 ′′,𝑚), and 𝑘 ∈ (N ∧ Z)(𝑟 ′,𝑚) ∩ (N ∧ Z)(𝑟 ′′,𝑚), (𝑟 ′′,𝑚) is (N ∧ Z)-⊡-reachable
from (𝑟 ′,𝑚). Because 𝑗 received a message from 𝑖 in round𝑚 of 𝑟 ′′ and 𝑗 is nonfaulty, 𝑗 decides 0
in round𝑚 + 1 of 𝑟 ′′.
Let 𝑟 ′′′ be a run that is identical to 𝑟 ′′ except that agent 𝑖 is nonfaulty. Then 𝑗 has the same

local state in both (𝑟 ′′,𝑚) and (𝑟 ′′′,𝑚), and 𝑗 ∈ (N ∧Z)(𝑟 ′′,𝑚) ∩ (N ∧Z)(𝑟 ′′′,𝑚). Thus, (𝑟 ′′′,𝑚)

is (N ∧ Z)-⊡-reachable from (𝑟,𝑚) and in 𝑟 ′′′, agent 𝑖 decides 0 in round 𝑚, 𝑖 ∈ N , 𝑗 ∈ N ,
𝑘 ∉ N , and 𝑘 acts nonfaulty throughout run 𝑟 ′′′. Moreover, I, (𝑟 ′′′,𝑚 − 1) |= inv0 ( 𝑗, 𝑖, 𝑘). By the
inductive hypothesis, it follows that there exists a run 𝑟 such that (𝑟, 0) is (N ∧Z)-⊡-reachable
from (𝑟 ′′′,𝑚 − 1) and I, (𝑟, 0) |= ¬∃1. By the transitivity of the (N ∧Z)-⊡-reachability relation,
(𝑟, 0) is also (N ∧Z)-⊡-reachable from (𝑟,𝑚) and the claim holds. □

Lemma A.18. If I, (𝑟,𝑚) |= (𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥)), then 𝑖 considers a point (𝑟 ′,𝑚) possible

at (𝑟,𝑚) where I, (𝑟 ′,𝑚) |= inv0 (𝑖, 𝑗, 𝑘).

Proof. Suppose that I, (𝑟,𝑚) |= 𝑖 ∈ N ∧ ⃝(decided𝑖 = ⊥). We must have I, (𝑟,𝑚) |=

¬𝐶N (t-faulty)), since otherwise, by Lemma A.4, we get a contradiction.We next show that, whether
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or not 𝑖 knows which agents are faulty, 𝑖 considers a point (𝑟 ′,𝑚) possible at (𝑟,𝑚) from which a
point (𝑟 ′′′,𝑚) is (N ∧ O)-⊡-reachable from (𝑟,𝑚) such that I, (𝑟 ′′′,𝑚) |= inv0 (𝑖, 𝑗, 𝑘).

• If I, (𝑟,𝑚) |= ¬𝐾𝑖 (t-faulty) then, by definition, there exists a 𝑘 ∈ Agt such that I, (𝑟,𝑚) |=

¬𝐾𝑖¬(𝑘 ∈ N) ∧¬𝐾𝑖¬(𝑘 ∉ N). Let 𝑟 ′ be a run identical to 𝑟 except that 𝑘 ∉ N and 𝑘 does not
exhibit faulty behavior in 𝑟 ′. We claim that (𝑟,𝑚) ∼𝑖 (𝑟

′,𝑚). Suppose by way of contradiction
that 𝑖 has different local states in (𝑟,𝑚) and (𝑟 ′,𝑚). Since the only difference between these
runs are the blocked messages sent by 𝑘 that are no longer blocked, 𝑖 must have heard from
an agent (either directly or indirectly) that did not receive a message from 𝑘 in 𝑟 but did in 𝑟 ′.
But in that case, 𝑖 would have known that 𝑘 is faulty in 𝑟 , which is a contradiction.
Since 𝑖 has not yet decided by (𝑟 ′,𝑚) and does not decide in round𝑚 (as 𝑖 has the same local
state at (𝑟,𝑚) and (𝑟 ′,𝑚)), we have that I, (𝑟 ′,𝑚) |= ¬𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 = 0)). That is,

𝑖 considers it possible that there exists an agent 𝑗 ′ that decides 0 in round𝑚 + 1. Let 𝑟 ′′ be
the run that is identical to 𝑟 ′ except that 𝑗 ′ decides 0 in round𝑚 + 1 of 𝑟 ′′. By Lemma A.5, if
𝑚 ≥ 1, 𝑗 ′ receives a 0-chain in 𝑟 ′′ from some agent 𝑘 ′ in round𝑚, and if𝑚 = 0, init 𝑗 ′ = 0.
Let 𝑟 ′′′ be a run that is identical to 𝑟 ′′ except that agent 𝑗 (who is also nonfaulty) receives a
message from 𝑘 ′ in round𝑚 if𝑚 ≥ 1 and has initial preference 0 if𝑚 = 0. Hence, agent 𝑗
decides 0 in round𝑚 + 1 of 𝑟 ′′′. By the transitivity of the knowledge relation, we then have
(𝑟,𝑚) ∼𝑖 (𝑟

′′′,𝑚).
• If I, (𝑟,𝑚) |= 𝐾𝑖 (t-faulty), we use the observation that I, (𝑟,𝑚) |= ¬𝐶N (t-faulty). As in the
proof of Lemma A.16, we must have that I, (𝑟,𝑚 − 1) |= ¬𝐾𝑖¬(𝑘 ∈ N)) for some nonfaulty
agent 𝑘 .
It must be the case that agent 𝑖 learned that 𝑘 is faulty in round𝑚, due to either not getting a
message from 𝑘 for the first time or getting a message from some faulty agent 𝑘 ′ that knew
that 𝑘 was faulty. (Agent 𝑘 ′ can’t be nonfaulty, since no nonfaulty agent knows that 𝑘 is
faulty at time𝑚 − 1.) Since agent 𝑖 has not decided yet and does not decide in round𝑚 + 1 of
𝑟 , agent 𝑖 knows that the other nonfaulty agents did not decide in an earlier round. Moreover,
in (𝑟,𝑚), 𝑖 considers a point (𝑟 ′,𝑚) possible where I, (𝑟 ′,𝑚) |= (deciding 𝑗 ′ = 0) for some
agent 𝑗 ′, since 𝑖 does not decide 1 in round𝑚 + 1 of 𝑟 ′.
If agent 𝑖 learned that 𝑘 is faulty due to not hearing from 𝑘 in round𝑚 of 𝑟 ′, then at the
point (𝑟 ′,𝑚), agent 𝑖 considers (𝑟 ′′,𝑚) possible, where 𝑟 ′′ is such that some nonfaulty agent
𝑗 received a message from 𝑘 in round 𝑚 and 𝑘 decides 0 in round 𝑚 − 1 (due to hearing
from the agent that sent a message to the agent that sent a message to 𝑗 ′ in the 0-chain).
In 𝑟 ′′, 𝑗 receives a 0-chain in round 𝑚 and thus decides 0 in round 𝑚 + 1. It follows that
I, (𝑟 ′′,𝑚) |= inv0 (𝑖, 𝑗, 𝑘).
If agent 𝑖 learned that 𝑘 is faulty due to hearing it from some faulty agent 𝑘 ′, then agent
𝑖 considers a point (𝑟 ′′,𝑚) possible at (𝑟 ′,𝑚), where 𝑟 ′′ is identical to 𝑟 ′ except that in 𝑟 ′′,
agent 𝑗 does not hear from agent 𝑘 ′ at or after round𝑚 and receives a 0-chain from agent 𝑗 ′

in round𝑚. If 𝑘 ≠ 𝑘 ′, then again we have 𝐼 , (𝑟 ′′,𝑚) |= inv0 (𝑖, 𝑗, 𝑘).
If 𝑘 = 𝑘 ′, then 𝐼 , (𝑟 ′′,𝑚) ̸|= inv0 (𝑖, 𝑗, 𝑘), because 𝑘 does not act nonfaulty throughout run 𝑟 ′′.
In that case, consider a run 𝑟 ∗ that is identical to 𝑟 ′′ except that agent 𝑘 sends a message to all
agents but 𝑗 in round𝑚 of 𝑟 ∗. Since 𝑗 ∈ (N ∧Z)(𝑟 ′′,𝑚) ∩ (N ∧Z)(𝑟 ∗,𝑚) and 𝑗 has the same
local state at both points, (𝑟 ∗,𝑚) is (N ∧ Z)-⊡-reachable from (𝑟 ′′,𝑚). Let 𝑟 ′′′ be the run
that is identical to 𝑟 ∗ except that agent 𝑘 does not exhibit faulty behavior in 𝑟 ′′′ and 𝑖 receives
a 0-chain from 𝑗 ′. By construction, I, (𝑟 ′′′,𝑚) |= inv0 (𝑖, 𝑗, 𝑘) Since agent 𝑖 did not know 𝑘

was faulty in 𝑟 ∗, 𝑖 ∈ (N ∧Z)(𝑟 ∗,𝑚) ∩ (N ∧Z)(𝑟 ′′′,𝑚) and (𝑟 ′′′,𝑚) is (N ∧Z)-⊡-reachable
from (𝑟 ∗,𝑚). Again, this suffices for the desired result.

□
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This completes the proof that P1 is weakly safe and we get the following result:

Theorem 7.7. P1 is weakly safe with respect to 𝛾fip,𝑛,𝑡 .

A.2.7 Implementation. We now explicitly define the full-information context using communication
graphs similar to those used by Moses and Tuttle [12]. Intuitively, a communication graph for agent
𝑖 is a labeled graph that provides a compact description of all messages sent and received by agent 𝑖 .
Formally, the communication graph 𝐺𝑖,𝑚 is defined as follows. The set 𝑉 (𝐺𝑖,𝑚) of vertices consists
of all pairs of the form ( 𝑗,𝑚′) for all𝑚′ ≤ 𝑚 and agents 𝑗 ; the set 𝐸 (𝐺𝑖,𝑚) of edges consists of all
edges from ( 𝑗,𝑚′− 1) to ( 𝑗 ′,𝑚′) for 𝑗, 𝑗 ′ ∈ Agt and𝑚′ ≤ 𝑚; there is a message label 𝑙𝐺𝑖,𝑚

∈ {0, 1, ?}

for each edge (see below), and an initial preference label 𝑝𝐺𝑖,𝑚
∈ {0, 1, ?} for each 𝑗 ∈ Agt (which

can be viewed as a label on vertices of the form ( 𝑗, 0)). An edge from ( 𝑗,𝑚′− 1) to ( 𝑗 ′,𝑚′) is labeled
with a 1 if 𝑖 knows that 𝑗 sent a message to 𝑗 ′ in round𝑚′; it is labeled with a 0 if 𝑖 knows that 𝑗
did not send a message to 𝑗 ′ in round𝑚′; and it is labeled with a ? if 𝑖 does not know whether 𝑗
sent a message to 𝑗 ′ in round𝑚′. Note that with a full-information protocol, if 𝑖 knows the initial
preferences of agents, and which agents sent round𝑚′′ messages for𝑚′′

< 𝑚′, then it is easy for 𝑖
to figure out what the content of a message that was sent would be. A preference label of 𝑣 ∈ {0, 1}

on ( 𝑗, 0) indicates that 𝑖 knows that 𝑗 ’s initial preference was 𝑣 , while a label of ? indicates that 𝑖
does not know 𝑗 ’s initial preference. We write 𝐺𝑖,𝑚 (𝑟 ) for the communication graph of agent 𝑖 at
time𝑚 in a run 𝑟 in a full-information exchange and G𝑖,𝑚 for the set of all time-𝑚 communication
graphs for agent 𝑖 .
Let Efip (𝑛) be the full information-exchange protocol for 𝑛 agents, where for each agent 𝑖 , the

following hold:

• The local states have the form ⟨time𝑖 , decided𝑖 , init𝑖 ,𝐺𝑖,time𝑖 ⟩, where𝐺𝑖,time𝑖 is a communication
graph.

• The initial local states of each agent 𝑖 have the form ⟨0,⊥, init𝑖 ,𝐺𝑖,0⟩, where𝐺𝑖,0 ∈ G𝑖,0. (Note
that that in 𝐺𝑖,0, we must have 𝑝𝐺𝑖,0

( 𝑗) = ? for all agents 𝑗 ≠ 𝑖 and 𝑝𝐺𝑖,0
(𝑖) = init𝑖 .)

• 𝑀𝑖 = G𝑖,time𝑖 .
• For all agents 𝑗 and actions 𝑎, 𝜇𝑖 𝑗 (⟨time𝑖 , decided𝑖 , init𝑖 ,𝐺𝑖,time𝑖 ⟩, 𝑎) = 𝐺𝑖,time𝑖 .
• 𝛿𝑖 (⟨time𝑖 , decided𝑖 , init𝑖 ,𝐺𝑖,𝑚⟩, 𝑎, (𝑚1, . . . ,𝑚𝑛)) = ⟨time𝑖 + 1, decided ′𝑖 , init𝑖 ,𝐺𝑖,time𝑖+1⟩, where
𝐺𝑖,time𝑖+1 ∈ G𝑖,time𝑖+1 is obtained by adding vertices and edges for round time𝑖+1 and combining
the labels from all graphs that were received by 𝑖 and 𝐺𝑖,time𝑖 . More precisely, if 𝑅𝐺𝑖 consists
of all the graphs that 𝑖 received up to and including round time𝑖 + 1, then

𝑙𝐺𝑖,time𝑖+1
(( 𝑗,𝑚), ( 𝑗 ′,𝑚 + 1)) =





𝑣 if ∃𝐺 ∈ 𝑅𝐺𝑖 (𝑙𝐺 (( 𝑗,𝑚), ( 𝑗 ′,𝑚 + 1)) = 𝑣) ∧ 𝑣 ∈ {0, 1},

1 if𝑚 = time𝑖 ∧ 𝑗 ′ = 𝑖 ∧𝑚 𝑗 ≠ ⊥,

0 if𝑚 = time𝑖 ∧ 𝑗 ′ = 𝑖 ∧𝑚 𝑗 = ⊥,

? otherwise.

𝑝𝐺𝑖,time𝑖+1
( 𝑗) =

{
𝑣 if ∃𝐺 ∈ 𝑆, 𝑣 ∈ {0, 1}((𝑝𝐺 ( 𝑗) = 𝑣)),

? otherwise.

Finally, decided ′𝑖 is determined by the action 𝑎, just as in the standard EBA context.

Let 𝛾fip,𝑛,𝑡 = (Efip (𝑛), 𝑆𝑂 (𝑡), 𝜋fip,𝑛), where 𝜋fip,𝑛 interprets the standard propositions in the stan-

dard way. To check the knowledge conditions in P1, it is useful to define the following sets, which
can be computed in polynomial time from the communication graph:

• For 𝑚′
< 𝑚, 𝑓 ( 𝑗,𝑚′,𝐺𝑖,𝑚) is the set of faulty agents that 𝑖 knows that 𝑗 knows about at

time 𝑚′, given 𝐺𝑖,𝑚 . The set 𝑓 ( 𝑗,𝑚′,𝐺𝑖,𝑚) is the union of (a) 𝑓 ( 𝑗 ′,𝑚′ − 1,𝐺𝑖,𝑚) for all 𝑗
′

that sent a message to 𝑗 in round𝑚′ in 𝐺𝑖,𝑚 if𝑚′
> 0, (b) { 𝑗 ′} for each agent 𝑗 ′ that did
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not send a message to 𝑗 in round𝑚′ in 𝐺𝑖,𝑚 , and (c) 𝑓 ( 𝑗,𝑚′ − 1,𝐺𝑖,𝑚) if𝑚
′
> 0. (Note that

𝑓 ( 𝑗, 0,𝐺𝑖,𝑚) = ∅.)
• For𝑚′

< 𝑚, 𝐷 (𝑆,𝑚′,𝐺𝑖,𝑚) is the set of faulty agents that 𝑖 knows that the agents in 𝑆 know
about at time𝑚′, given 𝐺𝑖,𝑚 . 𝐷 (𝑆,𝑚′,𝐺𝑖,𝑚) = ∪𝑘∈𝑆 𝑓 (𝑘,𝑚

′,𝐺𝑖,𝑚).

In addition to 𝑓 and 𝐷 , agent 𝑖 can compute the actions of each agent 𝑗 at time 𝑚′
< 𝑚 if

( 𝑗,𝑚′) →𝑟 (𝑖,𝑚) where 𝑟 is the current run, since we are using a full-information protocol. Let
𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) ∈ {0, 1,⊥, ?} represent what 𝑖 knows about the action of agent 𝑗 in round𝑚′ + 1. If
𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) = 𝑣 ∈ {0, 1}, then 𝑖 knows that that 𝑗 decides 𝑣 in round𝑚′ + 1; if 𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) = ⊥,
then 𝑖 knows that 𝑗 does not decide in round𝑚′ + 1; finally, if 𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) = ?, then ( 𝑗,𝑚′) ̸→𝑟

(𝑖,𝑚).
The set of values known by each agent that sent a message either directly or indirectly to 𝑖 can

be also computed from the communication graph in polynomial time. Let 𝑉 ( 𝑗,𝑚′,𝐺𝑖,𝑚) be the set
of values that 𝑖 knows that 𝑗 knows about at time𝑚′ if ( 𝑗,𝑚′) →𝑟 (𝑖,𝑚) according to 𝐺𝑖,𝑚 and ∅

otherwise.
We next define families common𝑣 (𝑖,𝑚,𝐺𝑖,𝑚) and cond1 (𝑖,𝑚,𝐺𝑖,𝑚) of Booleans that can also be

computed in polynomial time.

Definition A.19 (common𝑣 and cond𝑣). Intuitively, common𝑣 holds if 𝐾𝑖 (dist𝑁 (t-faulty) ∧
(
∧

𝑗 ∈N (𝐾 𝑗⃝no-decided 𝑗 (𝑣))) ∧ (
∨

𝑗 ∈N 𝐾 𝑗 (∃𝑣))) holds at time𝑚 (which means that𝐶N (t-faulty ∧
no-decidedN (1) ∧ ∃𝑣) holds at time𝑚 + 1), given 𝐺𝑖,𝑚 . We compute common𝑣 as follows. If either
of the following three conditions hold, then common0 (𝑖,𝑚,𝐺𝑖,𝑚) = false:

• |𝐷 (𝑓 (𝑖,𝑚,𝐺𝑖,𝑚),𝑚 − 1,𝐺𝑖,𝑚) | ≠ 𝑡 , where 𝑓 ( 𝑗,𝑚
′,𝐺𝑖,𝑚) = Agt − 𝑓 ( 𝑗,𝑚′,𝐺𝑖,𝑚) (these are the

agents that 𝑖 thinks might be nonfaulty at time𝑚′, given 𝐺𝑖,𝑚);
• there exists an agent 𝑗 ∉ 𝑓 (𝑖,𝑚,𝐺𝑖,𝑚) such that 𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) = 1 − 𝑣 for some𝑚′

< 𝑚.
• for all agents 𝑗 ∉ 𝐷 (𝑓 (𝑖,𝑚,𝐺𝑖,𝑚),𝑚 − 1,𝐺𝑖,𝑚), 𝑣 ∉ 𝑉 ( 𝑗,𝑚 − 1,𝐺𝑖,𝑚)

Otherwise, common𝑣 (𝑖,𝑚,𝐺𝑖,𝑚) = true.
The first condition for taking common𝑣 (𝑖,𝑚,𝐺) = false corresponds to agent 𝑖 thinking that the

agents who might be nonfaulty at time𝑚 do not have distributed knowledge of 𝑡 faulty agents
at time 𝑚 − 1. If so, certainly the agents who are actually nonfaulty will not have distributed
knowledge of who the faulty agents are at time𝑚 − 1, so there will not be common knowledge
among the nonfaulty agents of who the faulty agents are at time𝑚Ðsee Lemma 5. The second
condition holds if some agent 𝑗 that that 𝑖 considers possibly nonfaulty at time𝑚 has decided 1 − 𝑣 .
We can assume that |𝐷 (𝑓 (𝑖,𝑚,𝐺𝑖,𝑚),𝑚 − 1,𝐺𝑖,𝑚) | = 𝑡 (otherwise common𝑣 (𝑖,𝑚,𝐺) = false by the
first condition). Thus, 𝑖 knows who the nonfaulty agents are at time𝑚, so 𝑖 knows that a nonfaulty
agent has decided 1 − 𝑣 , so it cannot be common knowledge among the nonfaulty agents that no
nonfaulty agent decided 1 − 𝑣 .

The Boolean cond0 = true holds if the formula init𝑖 = 0 ∨
∨

𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0) holds at time
𝑚, given 𝐺𝑖,𝑚 . Formally,

• cond0 (𝑖, 0,𝐺𝑖,0) = (init𝑖 = 0).
• For𝑚 > 0, cond0 (𝑖,𝑚,𝐺𝑖,𝑚) = true if there exists an agent 𝑗 such that 𝑑 ( 𝑗,𝑚 − 1,𝐺𝑖,𝑚) = 0

and 𝑙𝐺𝑖,𝑚
(( 𝑗,𝑚 − 1), (𝑖,𝑚)) = 1; otherwise, cond0 (𝑖,𝑚,𝐺𝑖,𝑚) = false.

The Boolean cond1 (𝑖,𝑚,𝐺𝑖,𝑚) = true holds if 𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)) holds at time𝑚, given
𝐺𝑖,𝑚 . Formally,

• cond1 (𝑖, 0,𝐺𝑖,0) = false.
• For𝑚 > 0, let𝑚′ be the latest time such that 𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) = 0 for some agent 𝑗 (as usual,
𝑚′

= −1 if 𝑑 ( 𝑗,𝑚′,𝐺𝑖,𝑚) ≠ 0 for all agents 𝑗 ), and let𝑚 𝑗 be the latest time that ( 𝑗,𝑚 𝑗 ) →𝑟

(𝑖,𝑚), where 𝑟 is a run for which 𝐺𝑖,𝑚 describes 𝑖’s view at time𝑚 in 𝑟 . (There are many
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such runs; it does not matter which one we choose, since they all agree on the whether
( 𝑗,𝑚 𝑗 ) →𝑟 (𝑖,𝑚).) Intuitively,𝑚′

= len𝑗 (𝑟,𝑚). If, for all𝑚′′ with𝑚′
< 𝑚′′ ≤ 𝑚, there exist

at least𝑚′′ −𝑚′ agents 𝑗 such that 𝑑 ( 𝑗,𝑚′′,𝐺𝑖,𝑚) = ?, then cond1 (𝑖,𝑚,𝐺𝑖,0) = true; otherwise
cond1 (𝑖,𝑚,𝐺𝑖,0) = false.

Using these definitions, we can define an implementation of P1 in the full-information context.
Let 𝑃opt be the EBA decision protocol implemented by the following program:

Program: 𝑃
opt
𝑖

if decided𝑖 ≠ ⊥ then noop

else if common0 (𝑖, time𝑖 − 1,𝐺𝑖,time𝑖 ) then decide𝑖 (0)

else if common1 (𝑖, time𝑖 − 1,𝐺𝑖,time𝑖 ) then decide𝑖 (1)

else if cond0 (𝑖, time𝑖 ,𝐺𝑖,time𝑖 ) then decide𝑖 (0)

else if cond1 (𝑖, time𝑖 ,𝐺𝑖,time𝑖 ) then decide𝑖 (1)

else noop

The following lemma shows that the initial conditions that are checked in the definition of
common𝑣 correspond to checking for 𝐶N (t-faulty).

Lemma A.20. |𝑓 (𝑖,𝑚,𝐺𝑖,𝑚 (𝑟 )) | = |𝐷 (𝑓 (𝑖,𝑚,𝐺𝑖,𝑚 (𝑟 )),𝑚 − 1,𝐺𝑖,𝑚 (𝑟 )) | = 𝑡 for some agent 𝑖 if and

only if I𝛾fip,𝑛,𝑡 ,P1 , (𝑟,𝑚) |= 𝐶N (t-faulty).

Proof. LetI = I𝛾fip,𝑛,𝑡 ,P1 and𝐺 = 𝐺𝑖,𝑚 (𝑟 ). Suppose that |𝑓 (𝑖,𝑚,𝐺) | = |𝐷 (𝑓 (𝑖,𝑚,𝐺),𝑚−1,𝐺) | = 𝑡

for some agent 𝑖 . We first observe that Agt− 𝑓 (𝑖,𝑚,𝐺) = N , as there are 𝑡 faulty agents. This implies
that the set 𝐷 (𝑓 (𝑖,𝑚,𝐺),𝑚 − 1,𝐺) is the set of all faulty agents that are known by the nonfaulty
agents at time𝑚−1. Since |𝐷 (𝑓 (𝑖,𝑚,𝐺),𝑚−1,𝐺) | = 𝑡 , it must be the case that for all faulty agents 𝑗 ,
there exists a nonfaulty agent that knows that agent 𝑗 is faulty. Hence, I, (𝑟,𝑚) |= ⊖distN (t-faulty).
By Proposition A.2, we have I, (𝑟,𝑚) |= 𝐶N (t-faulty).
Conversely, suppose that I, (𝑟,𝑚) |= 𝐶N (t-faulty). Again, by Proposition A.2, we get that

I, (𝑟,𝑚) |= ⊖distN (t-faulty). By definition, the union of all faulty agents known by nonfaulty agents
at time𝑚−1 is the set of all faulty agents. Hence, |𝐷 (N ,𝑚−1,𝐺) | = 𝑡 . Therefore,N = 𝑓 (𝑖,𝑚,𝐺). □

Theorem A.21. If 𝑛 − 𝑡 ≥ 2, then 𝑃opt implements P1 in the full-information EBA context 𝛾fip,𝑛,𝑡 .

Proof. Let I = I𝛾fip,𝑛,𝑡 ,P1 and 𝐺 = 𝐺𝑖,𝑚 (𝑟 ). We show that for all points (𝑟,𝑚), 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) =

(P1𝑖 )
I (𝑟𝑖 (𝑚)).

• If 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) = noop because decided𝑖 ≠ ⊥ in 𝑟𝑖 (𝑚), we clearly also have (P1𝑖 )

I (𝑟𝑖 (𝑚)) =

noop, because I, (𝑟,𝑚) |= 𝐾𝑖 (decided𝑖 ≠ ⊥).

• If 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (0) by the second line, we must have decided𝑖 = ⊥ in 𝑟𝑖 (𝑚) and

𝑚 > 0. By the definition of common0, we must also have (a) |𝐷 (𝑓 (𝑖,𝑚 − 1,𝐺),𝑚,𝐺) | = 𝑡 ,
(b) 𝑑 ( 𝑗,𝑚′,𝐺) ≠ 1 for all 𝑗 ∉ 𝑓 (𝑖,𝑚,𝐺) and 𝑚′

< 𝑚, and (c) 0 ∈ 𝑉 ( 𝑗,𝑚 − 1,𝐺) for some
𝑗 ∉ 𝑓 (𝑖,𝑚,𝐺). From (a), it follows that I, (𝑟,𝑚) |= 𝐶N (t-faulty) using Lemma A.20. From (b),
it follows that no nonfaulty agent decides 1 at any round𝑚′

< 𝑚 + 1. Hence, I, (𝑟,𝑚) |=

no-decidedN (1). Finally, (c) implies that 𝑖 knows that a nonfaulty agent 𝑗 had an initial
preference 0 at time 𝑚 − 1; that is, I, (𝑟,𝑚) |= ⊖𝐾 𝑗 (∃0). Combining these observations,
using Proposition A.2, we can conclude that I, (𝑟,𝑚) |= 𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0).
By Lemma A.3, I, (𝑟,𝑚) |= 𝐾𝑖 (𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0)), so (P1𝑖 )

I (𝑟𝑖 (𝑚)) =

decide𝑖 (0).
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• If 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (1) by the third line, wemust have decided𝑖 = ⊥ in 𝑟𝑖 (𝑚), common0 (𝑖,𝑚,𝐺) =

false, common1 (𝑖,𝑚,𝐺) = true, and𝑚 > 0. As before, common1 (𝑖,𝑚,𝐺) = true implies that
I, (𝑟,𝑚) |= 𝐶N (t-faulty) ∧ no-decidedN (0) ∧ ⊖𝐾 𝑗 (∃1), so I, (𝑟,𝑚) |= 𝐾𝑖 (𝐶N (t-faulty ∧

no-decidedN (0) ∧ ∃1)).
It thus suffices to show thatI, (𝑟,𝑚) |= ¬𝐶N (t-faulty∧no-decidedN (1)∧∃0). Since common0 (𝑖,𝑚,𝐺) =

false, we must either have (a) |𝐷 (𝑓 (𝑖,𝑚− 1,𝐺),𝑚− 1,𝐺) | ≠ 𝑡 , (b) |𝐷 (𝑓 (𝑖,𝑚,𝐺),𝑚− 1,𝐺) | = 𝑡

and for some 𝑗 ∉ 𝑓 (𝑖,𝑚,𝐺) and𝑚′
< 𝑚, 𝑑 ( 𝑗,𝑚′,𝐺) = 1, or (c) |𝐷 (𝑓 (𝑖,𝑚−1,𝐺),𝑚−1,𝐺) | = 𝑡

and for all 𝑗 ∉ 𝑓 (𝑖,𝑚,𝐺), 0 ∉ 𝑉 ( 𝑗,𝑚 − 1,𝐺). If (a) holds, then Lemma A.20 implies that
I, (𝑟,𝑚) |= ¬𝐶N (t-faulty). If (b) holds, then, as we have observed, I, (𝑟,𝑚) |= ¬𝐶N (t-faulty)
and, in addition, 𝑑 ( 𝑗,𝑚′,𝐺) = 1 for some nonfaulty 𝑗 and 𝑚′

< 𝑚. Hence, I, (𝑟,𝑚) |=

¬no-decidedN (1). If (c) holds, then we again have I, (𝑟,𝑚) |= ¬no-decidedN (1); more-
over, 0 ∉ 𝑉 ( 𝑗,𝑚 − 1,𝐺) for all nonfaulty 𝑗 . Hence, 𝑖 considers it possible that none of
the nonfaulty agents knows about a 0 at time 𝑚 − 01 given 𝐺 , so by Proposition A.2,
I, (𝑟,𝑚) |= ¬𝐶𝑁 (∃0). Thus, in all cases I, (𝑟,𝑚) |= ¬𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0),
so (P1𝑖 )

I (𝑟𝑖 (𝑚)) = decide𝑖 (1).

• If 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (0) by the fourth line, we must have decided𝑖 = ⊥ in 𝑟𝑖 (𝑚),

common0 (𝑖,𝑚,𝐺) = common1 (𝑖,𝑚,𝐺) = false, and cond0 (𝑖,𝑚,𝐺) = true. Again, common0 (𝑖,

𝑚,𝐺) = false implies that I, (𝑟,𝑚) |= ¬𝐶N (t-faulty ∧ no-decidedN (1) ∧ ∃0). Similarly,
common1 (𝑖,𝑚,𝐺) = false implies that I, (𝑟,𝑚) |= ¬𝐶N (t-faulty ∧ no-decidedN (0) ∧ ∃1). We
thus need to show only that I, (𝑟,𝑚) |= init𝑖 = 0 ∨

∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0). We proceed by

induction on𝑚. For the base case, if cond0 (𝑖, 0,𝐺) = true, by definition, it must be the case
that init𝑖 = 0. For the inductive step, suppose that cond0 (𝑖,𝑚,𝐺) = true for some𝑚 > 0. By
definition, this implies that 𝑑 ( 𝑗,𝑚 − 1,𝐺) = 0 and 𝑙𝐺 (( 𝑗,𝑚 − 1), (𝑖,𝑚)) = 1 for some agent 𝑗 .
Thus, (P1𝑖 )

I (𝑟𝑖 (𝑚)) = decide𝑖 (0). Then agent 𝑗 decides 0 and agent 𝑖 hears from agent 𝑗 in

round𝑚. It follows that I, (𝑟,𝑚) |= 𝐾𝑖 (jdecided 𝑗 = 0), so (P1𝑖 )
I (𝑟𝑖 (𝑚)) = decide𝑖 (0).

• If 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) = decide𝑖 (1) by the fifth line, we must have decided𝑖 = ⊥ in 𝑟𝑖 (𝑚), common0 (𝑖,

𝑚,𝐺) = common1 (𝑖,𝑚,𝐺) = cond0 (𝑖,𝑚,𝐺) = false, and cond1 (𝑖,𝑚,𝐺) = true. We also have
𝑚 > 0 since cond1 (𝑖,𝑚,𝐺) = true. As before, common0 (𝑖,𝑚,𝐺) = common1 (𝑖,𝑚,𝐺) = false

implies that the common knowledge conditions don’t hold. We thus need to show that
I, (𝑟,𝑚) |= ¬(init𝑖 = 0∨

∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0)) and I, (𝑟,𝑚) |= 𝐾𝑖 (

∧
𝑗 ∈Agt ¬(deciding 𝑗 =

0)).
By definition, cond0 (𝑖,𝑚,𝐺) = false implies that for all 𝑗 ∈ Agt,𝑑 ( 𝑗,𝑚−1,𝐺) ≠ 0 or 𝑙𝐺 (( 𝑗,𝑚−

1), (𝑖,𝑚)) ≠ 1, so either 𝑗 did not decide 0 in round𝑚 or 𝑖 did not receive a message from
agent 𝑗 in round𝑚. In either case, I, (𝑟,𝑚) |= ¬𝐾𝑖 (jdecided 𝑗 = 0), so I, (𝑟,𝑚) |= ¬(init𝑖 =

0 ∨
∨

𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0)). Finally, if cond1 (𝑖,𝑚,𝐺) = true, by Proposition A.7. we can

conclude that I, (𝑟,𝑚) |= 𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)), so (P1𝑖 )
I (𝑟𝑖 (𝑚)) = decide𝑖 (1).

• If 𝑃
opt
𝑖 (𝑟𝑖 (𝑚)) = noop by the last line, we must have decided𝑖 = ⊥ in 𝑟𝑖 (𝑚), and common0 (𝑖,

𝑚,𝐺) = common1 (𝑖,𝑚,𝐺) = cond0 (𝑖,𝑚,𝐺) = cond1 (𝑖,𝑚,𝐺) = false. If 𝑚 = 0, none of
the conditions in P1 can hold except I, (𝑟,𝑚) |= init𝑖 = 0 ∨

∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0).

However, since cond0 (𝑖, 0,𝐺) = false, we must have init𝑖 ≠ 0 and (P1𝑖 )
I (𝑟𝑖 (0)) = noop. If

𝑚 > 0, then arguments above show that the common knowledge conditions don’t hold
and I, (𝑟,𝑚) |= ¬(init𝑖 = 0 ∨

∨
𝑗 ∈Agt 𝐾𝑖 (jdecided 𝑗 = 0)). We thus need to show only that

I, (𝑟,𝑚) |= ¬𝐾𝑖 (
∧

𝑗 ∈Agt ¬(deciding 𝑗 = 0)). Since the common knowledge conditions don’t
hold, we can apply Proposition A.7 to conclude that this is the case. Thus, none of the
conditions in P1 hold and we have (P1𝑖 )

I (𝑟𝑖 (𝑚)) = noop.

□
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We can then conclude that 𝑃opt is also optimal with respect to full-information exchange. Since
each condition in 𝑃opt can be checked in polynomial time in the size of the communication graph,
and the communication graph itself uses 𝑂 (𝑛2𝑡) bits, we then get the following result:

Proposition 7.9. There exists a polynomial-time implementation 𝑃opt of P1 with respect to a

full-information exchange.

A.3 Proof for Section 8

Proposition 8.2. If 𝑟 is a failure-free run, then

(a) If there is at least one agent with an initial preference of 0 in 𝑟 , then all agents decide by round 2.

(b) If all agents have an initial preference of 1, then all agents decide by round 𝑡 + 2 with 𝑃𝑚𝑖𝑛 and by

round 2 with 𝑃basic and 𝑃fip.

Proof. For the first part, suppose that some nonfaulty agent has an initial preference of 0. Clearly
that agent decides 0 in the first round and tells all the other agents, who decide in the second round
(for all three protocols).

For the second part, suppose that all the agents are nonfaulty and have an initial preference of 1.
Then with 𝑃𝑚𝑖𝑛 , since no agent will decide 0 or hear about a decision of 0, the agents will wait for
𝑡 + 1 rounds of information exchange decide 1 in round 𝑡 + 2. With 𝑃basic and 𝑃fip, no agent will
decide right away and since all agents 𝑖 will get a message from every other agent 𝑗 in the first
round from which they can conclude that 𝑗 ’s initial preference was 1 ((init, 1) in the case of 𝑃basic

and an explicit message saying that 𝑗 ’s initial preference was 1 in the case of 𝑃fip), agents can all
decide on 1 in round 2. □
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