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Abstract

In [Beckers et al., 2022al, we defined a qualitative
notion of harm: either harm is caused, or it is
not. For practical applications, we often need to
quantify harm; for example, we may want to choose
the least harmful of a set of possible interventions.
We first present a quantitative definition of harm
in a deterministic context involving a single
individual, then we consider the issues involved in
dealing with uncertainty regarding the context and
going from a notion of harm for a single individual
to a notion of ‘“societal harm”, which involves
aggregating the harm to individuals. We show that
the “obvious” way of doing this (just taking the
expected harm for an individual and then summing
the expected harm over all individuals) can lead
to counterintuitive or inappropriate answers, and
discuss alternatives, drawing on work from the
decision-theory literature.

1 Introduction

Al systems are playing an ever-expanding role in
making decisions, in applications ranging from hiring
and interviewing to healthcare to autonomous vehicles.
Perhaps not surprisingly, this is leading to increasing scrutiny
of the harm and benefit caused by (the decisions made by)
such systems. To take just one example, the new proposal for
Europe’s Al act [European Commission, 2021] contains over
29 references to “harm” or “harmful”, saying such things
as “...it is appropriate to classify [AI systems] as high-risk
if, in the light of their intended purpose, they pose a high
risk of harm to the health and safety or the fundamental
rights of persons, taking into account both the severity of
the possible harm and its probability of occurrence ...”
[European Commission, 2021, Proposal preamble, clause
(32)]. Moreover, the European Commission recognized that
if harm is to play such a crucial role, it must be defined
carefully, saying “Stakeholders also highlighted that ...it
is important to define ... ‘harm’ [European Commission,
2021, Part 2, Section 3.1]. Unfortunately, defining harm
appropriately has proved difficult. Indeed, Bradley [2012]
says:

Unfortunately, when we look at attempts to explain the
nature of harm, we find a mess. The most widely discussed
account, the comparative account, faces counterexamples
that seem fatal. ... My diagnosis is that the notion of harm
is a Frankensteinian jumble . .. It should be replaced by other
more well-behaved notions.

In [Beckers et al., 2022al, we defined a qualitative notion
of harm (was there harm or wasn’t there) in deterministic
settings with no uncertainty and only a single agent,
which dealt well with all the difficulties raised in the
philosophy literature (which also focused on qualitative harm
in deterministic settings; see [Carlson et al., 2021] for an
extensive overview). The key features of our definition are
that it is based on causal models and the definition of causality
given by Halpern [2015; 2016], assumes that there is a default
utility, and takes harm to be caused only if the outcome has
utility lower than the default.

While getting such a definition is an important first step,
it does not address the more quantitative aspects of harm,
which will clearly be critical in comparing, for example, the
harm caused by various options, and for taking into account
“both the severity of the possible harm and its probability of
occurrence”, as suggested in the European Al Act proposal.
In this paper, we extend our earlier definition so as to provide
a quantitative notion of harm.

The first step is relatively straightforward: we define
a quantitative notion of harm in a deterministic setting.
Roughly speaking, we take the amount of harm to be the
difference between the actual utility and the default utility.
Once we have this, we need to be able to aggregate harm
across different settings. There are two forms of aggregation
that we must consider. The first involves dealing with
uncertainty regarding the outcome. Here we confront issues
that are well known from the decision-theory literature.
There have been many rules proposed for making decisions
in the presence of uncertainty: maximizing expected
utility, if uncertainty is characterized probabilistically;
maximin (maximizing the worst-case utility) [Wald, 1950]
or minimax regret [Niehans, 1948; Savage, 1951] if there
is no quantitative characterization of uncertainty; maximin
expected utility if uncertainty is described using a set of
probability measures [Girdenfors and Sahlin, 1982; Gilboa
and Schmeidler, 1989]. We consider one other approach—
probability weighting—shortly. All of these approaches can



be applied to harm.

Another issue that has received extensive attention in the
decision-theory literature and applies equally well to harm
is that of combining utilities or harms of different people.
This issue arises when we must determine the harm caused to
society of, say, a vaccination treatment, where perhaps some
people will react badly to the vaccine. Even assuming that
we can compute the harm caused to each individual, we must
consider the total harm caused to all individuals. An obvious
approach would be to just sum up the harm caused to each
individual, but this assumes that individuals are somehow
commensurate, that is, that one person’s harm of 1 should
be treated identically to another person’s harm of 1. Even
if we are willing to accept this, there is another issue to
consider: fairness. Suppose that we have two policies, each
of which cause 1 unit of harm to 1,000 people in a population
of 100,000 (and cause no harm to anyone else). We would
feel quite differently about a policy if the 1,000 people to
whom harm was caused all came from a particular identifiable
population (say, poor African-Americans) than if the 1,000
people were effectively chosen at random.

Finally, when different policies result in different
probabilities of people being harmed, additional subtleties
arise. Heidari et al. [2021] (HBKL from now on) consider
a number of examples of government policies that may cause
harm to each member of a population of n individuals. (For
simplicity, they assume that if harm is caused, there is 1
unit of harm.) Suppose that the harm caused by a policy
P is characterized by the tuple (p1, ..., pn), where p; is the
probability that individual ¢ suffers 1 unit of harm. Thus, the
total expected harm of policy P is p; + --- + p,. As HBKL
point out and is underscored by Example 1, we may feel very
differently about two policies, even if they cause the same
amount of expected harm. For example, we feel differently
about a policy that necessarily harms individual 1 and does
not harm anyone else compared to a policy that gives each
individual a probability 1/n of being harmed. Indeed, there
is a long line of work in psychology [Jenni and Loewenstein,
1997] that suggests that we find it particularly troubling to
single out one victim and concentrate all the risk of harm
on him. (This is clearly related to the issue of unfairness to
subpopulations.) HBKL suggest getting around these issues
by aggregating harm using an approach familiar from the
decision theory literature: probability weighting. The idea
is to apply a weight function w to the probability and to
compute the weighted expected harm. Under the simplifying
assumption used above that, if harm is caused, it is always 1
unit of harm, the weighted expected harm would be w(p;) +
-+ + w(pn) (so we get back the standard expression for
expected harm by taking the weighting function w to be the
identity (cf. [Prelec, 1998; Quiggin, 1993]).

As HBKL point out, the policies that are often adopted
in practice seem to be the ones that optimize weighted
expected harm if we use the probability weighting functions
that empirical work has shown that people use. HBKL take
the probability function to be one that overweights small
probabilities and underweights larger probabilities. While
this works well for their examples, the situation is actually
more nuanced. To quote [Kahneman and Tversky, 1979, p.

283] (who were the first to raise the issue):

Because people are limited in their ability to
comprehend and evaluate extreme probabilities,
highly unlikely events are either neglected or
overweighted, and the difference between high
probability and certainty is either neglected or
exaggerated. Thus, small probabilities generate
unpredictable behavior. Indeed, we observe two
opposite reactions to small probabilities.

Indeed, as we shall see, there are examples best explained
by assuming people essentially ignore small probabilities,
effectively treating them as O, and others that are best
explained by people overweighting small probabilities.
Richens, Beard, and Thompson [2022] (RBT from now on)
also proposed a quantitative and causality-based definition of
harm. We already discussed what we take to be problems
in their approach in our paper on qualitative harm; they
carry over to the quantitative setting as well. Consider the
following example that they use to motivate their approach:

Example 1. Consider two treatments for a disease which,
when left untreated, has a 50% mortality rate. Treatment 1
has a 60% chance of curing a patient, and a 40% chance of
having no effect, in which case the disease progresses as if
untreated (so that there is a 50% mortality rate). Treatment
2 has an 80% chance of curing a patient and a 20% chance
of killing them. Treatments 1 and 2 have identical recovery
rates, yet doctors systematically favor Treatment 1.

We agree with RBT that the explanation for this lies in
the fact that Treatment 1 causes less harm than Treatment
2. However, we offer a different analysis that results in
differences in the degree of harm. Specifically, for RBT,
Treatment 1 never causes harm whereas Treatment 2 harms
10% of all patients (namely those patients who would have
recovered had they not been given Treatment 2). On our
analysis, Treatment 1 harms 16% of all patients, compared
to 20% for Treatment 2. These quantitative differences arise
due to our different views on qualitative harm; we leave a
detailed discussion of this example to the full paper [Beckers
et al., 2022b], and return to a discussion of RBT in Section
7.

The rest of the paper is organized as follows. In Section 2
we briefly review causal models and the definition of actual
causality, since these form the basis of our definition. In
Section 3 we provide the definition of quantitative harm in
a single context for a single agent; in Sections 4 and 3,
we discuss how to extend this basic definition to situations
where there is uncertainty about the context and there are
many individuals, each of which may potentially suffer harm.
In Section 6, we briefly discuss analogous definitions for
benefits. In Section 7 and in the full paper [Beckers er al.,
2022b], we compare our work to that of RBT.

2 Causal models and actual causality

We start with a review of causal models and actual causation,
since they play a critical role in our definition of harm. The
material in this section is largely taken from [Halpern, 2016].

We assume that the world is described in terms of variables
and their values. Some variables may have a causal influence



on others. This influence is modeled by a set of structural
equations. It is conceptually useful to split the variables
into two sets: the exogenous variables, whose values are
determined by factors outside the model, and the endogenous
variables, whose values are ultimately determined by the
exogenous variables. The structural equations describe how
these values are determined.

Formally, a causal model M is a pair (S, F), where S
is a signature, which explicitly lists the endogenous and
exogenous variables and characterizes their possible values,
and F defines a set of (modifiable) structural equations,
relating the values of the variables. A signature S is a tuple
(U,V,R), where U is a set of exogenous variables, V is a
set of endogenous variables, and R associates with every
variable Y € U UV a nonempty set R(Y") of possible
values for Y (i.e., the set of values over which Y ranges).
For simplicity, we assume here that V is finite, as is R(Y)
for every endogenous variable Y € V. F associates with
each endogenous variable X € V a function denoted F'x
(ie., Fx = JF(X)) such that Fx (XveuR(U)) x
(Xyey—ix3R(Y)) — R(X). This mathematical notation
just makes precise the fact that F'x determines the value of
X, given the values of all the other variables in /{/ U V.

The dependencies between variables in a causal model
M = (U,V,R),F) can be described using a causal
network (or causal graph), whose nodes are labeled by the
endogenous and exogenous variables in M, with one node
for each variable in &/ UV . The roots of the graph are (labeled
by) the exogenous variables. There is a directed edge from
variable X to Y if Y depends on X this is the case if there
is some setting of all the variables in &/ UV other than X and
Y such that varying the value of X in that setting results in a
variation in the value of Y'; that is, there is a setting 2" of the
variables other than X and Y and values x and 2’ of X such
that Fy (x,2) # Fy(a’,Z). A causal model M is recursive
(or acyclic) if its causal graph is acyclic. It should be clear
that if M is an acyclic causal model, then given a context, that
is, a setting « for the exogenous variables in I/, the values of
all the other variables are determined (i.e., there is a unique
solution to all the equations). In this paper, following the
literature, we restrict to recursive models. We call a pair
(M, 4) consisting of a causal model M and a context @ a
(causal) setting.

A causal formula (over S) is one of the form [V <«
Y1,.--, Yk < yg|¢, where ¢ is a Boolean combination of
primitive events, Y7, ..., Y} are distinct variables in V), and
y; € R(Y;). Such a formula is abbreviated as [Y < #]¢.
The special case where k£ = 0 is abbreviated as ¢. Intuitively,
[Y1 < y1,..., Y, < yr]o says that ¢ would hold if Y; were
setto y;, forte =1,... k.

A causal formula 1) is true or false in a setting. We write
(M, @) = 4 if the causal formula ¢ is true in the setting
(M, 4). The [ relation is defined inductively. (M,4) =
X = x if the variable X has value x in the unique (since
we are dealing with acyclic models) solution to the equations
in M in context ¥ (that is, the unique vector of values
for the exogenous variables that simultaneously satisfies all
equations in M with the variables in U set to @). Finally,

(M, @) = [V« §loif (My_, i) = o, where My, is the
causal model that is identical to M, except that the equations
for variables in Y in F are replacedby Y = yforeachY € Y
and its corresponding value y € .

A standard use of causal models is to define actual
causation: that is, what it means for some particular event
that occurred to cause another particular event. There
have been a number of definitions of actual causation given
for acyclic models (e.g., [Beckers, 2021; Glymour and
Wimberly, 2007; Hall, 2007; Halpern and Pearl, 2005;
Halpern, 2016; Hitchcock, 2001; Hitchcock, 2007; Weslake,
2015; Woodward, 2003]). Although most of what we say
in the remainder of the paper applies without change to
other definitions of actual causality in causal models, for
definiteness, we focus here on what [Halpern, 2016] calls the
modified Halpern-Pearl definition, which we briefly review.
(See [Halpern, 2016] for more intuition and motivation.)

The events that can be causes are arbitrary conjunctions of
primitive events (formulas of the form X = z); the events
that can be caused are arbitrary Boolean combinations of
primitive events. To relate the definition of causality to the
(contrastive) definition of harm, we find it useful to give
a contrastive variant of the definition of actual causality;

moreover, we are interested only in whether X = ¥ causes an
outcome O = o. Thus, rather than defining what it means for

X = Ztobe an (actual) cause of an arbitrary formula ¢, we
restrict ourselves to defining what it means for X = & rather
than X = 7' to be a cause of O = o rather than O = 0.

Definition 1. X = 7 rather than X = ¥ is an actual cause
of O = o rather than O = o' in (M, @) if the following three
conditions hold:

ACL. (M @)= (X =) A0 =o.

AC2. There is a set W of variables in V and a setting W of
the variables in W such that (M, ) = W = & and
(M, @) = [X < &, W « @]O = o, where 0 # 0.

AC3. X is minimal; there is no strict subset X" of)_(' such
that X" = T can replace X = &' in AC2, where T is
the restriction of T to the variables in X"

AC1 just says that X = 7 cannot be considered a cause of
O = o unless both X = Zand O = o actually happen.
AC3 is a minimality condition, which says that a cause has
no irrelevant conjuncts. AC2 captures the standard but-for
condition (X = 7 rather than X = 7’ is a cause of O = o
if, had X been 7 rather than Z, O = o would not have
happened) but allows us to apply it while keeping fixed some
variables to the value that they had in the actual setting
(M, @). In the special case that W = {), we get the standard
but-for definition of causality: if X = 7 had not occurred
(because X was 7 instead) O = o would not have occurred
(because it would have been O = 0').



3 Quantitative harm in a single context for a
single agent

In this section, we extend the qualitative notion of harm in a
given context introduced in our previous work [Beckers et al.,
2022a] to a quantitative notion. Both the qualitative and the
quantitative notions are defined relative to a particular context
in a causal utility model, which is just like a causal model,
except that there is a default utility d, and it is assumed that
there is a a special endogenous variable O (for outcome),
whose value determines the utility. The fact that harm is
defined relative to a given context (just like causality) means
that, implicitly, there is no uncertainty about the context.
Formally, a causal utility model is a tuple M =
(U, V,R),F,u,d), where (U, V,R),F) is a causal model
one of whose endogenous variables is O, u : R(0O) — R is
a utility function on outcomes, and d € IR is a default utility.
Like causation, harm is assessed relative to a setting (M, @).

Definition 2. If X = & rather than X = T causes
O = o rather than O = 0o in (M,d), where M =
(U, V,R),F,u,d), then the (quantitative) harm ro agent ag
relative to (X = &,0 = 0), denoted QH(M,u, X =
Z,0 = o), is max(0,min(dp,u(0’)) — u(0))). The
quantitative harm to agent ag caused by X in (M, @), denoted
QH(M,u,X), is maxg o QH(M, 4, X = 2,0 = o) if
there is some & and o such that X = Z rather than X = 7’
causes O = o rather than O = 0'; if there is no such T’ and
0/, then the quantitative harm is taken to be 0. (Note that the
values & and o are uniquely determined by (M, @), which is
why they do not need to appear in the parametrization.)

In other words, the quantitative harm caused by X =2z
is the maximum difference between the default utility or the
utility of the contrastive outcome, whichever is lower, and the
utility of the actual outcome (except that we take the harm to

be 0 if this difference is negative or if X = # did not cause
the actual outcome). Definition 2 is a generalization of our
definition of qualitative harm. Quantitative harm as we have
defined it here is positive iff there is qualitative harm.'

As mentioned in the introduction, decision theory often
focuses on maximizing (expected) utility. In many cases this
corresponds to minimizing the quantitative harm, but as the
following example illustrates, the two approaches can come
apart even if we restrict to a single context and a single agent.

Example 2. Alice has a meal in a restaurant. The bill
comes to $100. Let O = o be the variable representing
the tip, and let the utility be 0/100. That is, u($100) = 1,
and u($20) = 0.2. Ir is customary to give a 20% tip,
hence it seems reasonable to take the default utility to be

"In [Beckers et al., 2022a] we make a distinction between harm
and strict harm: strict harm adds a further requirement, denoted
H3, to the definition of harm. We argued in our companion paper
that H3 rarely plays a role, so we have chosen to ignore it here
for ease of exposition. However, we could define quantitative strict
harm as being identical to quantitative harm, except that we take the
quantitative strict harm to be 0 whenever H3 is not satisfied. (See
the full paper for the formal definition of both qualitative harm and
strict harm, as well as results on the complexity of computing harm.)

0.2. However, Alice only has $5 in her wallet, the restaurant
accepts only cash tips, and there is no ATM nearby. The
outcome that maximizes the waiter’s utility is thus for Alice to
tip $5, corresponding to Alice giving the waiter all the cash
she has. By Definition 2, if Alice gives $5, the waiter is not
harmed. If, on the other hand, Alice gives only $1, the waiter
is harmed, and the harm is 0.05 — 0.01 = 0.04, which is the
difference between the maximum utility and the actual utility.

Now suppose that Alice in fact has $30 in her wallet. Then
Alice would maximize the waiter’s utility with a tip of $30. Yet
if our goal is to minimize harm, then any tip of $20 or more
results in a harm of 0.

4 Quantitative harm when there is
uncertainty about contexts

In general, there may be uncertainty both about the causal
model (i.e., how the world works, as described by the
equations) and the context (what is true in the world). In
decision theory, this uncertainty is usually taken into account
by computing the expected utility, where the expectation
is taken with respect to a known probability distribution.
Analogously, we could define the notion of expected
quantitative harm by simply computing the product of the
quantitative harm in each causal setting and the probability
of that setting. The next example illustrates that even using
this straightforward generalization of harm already results in
some interesting differences with expected utility.

Example 3. Suppose that a doctor has a choice of either
prescribing medication (X = 1) or performing surgery (X =
0) on a patient. The medication keeps the patient stable,
but does not completely cure the patient. Call this outcome
O =1, and assume that it has utility .5. On the other hand,
the surgery cures the patient completely with probability 1 —p
(O = 0, with utility 1), but has a small probability p of the
patient dying (O = 2, with utility 0), due to factors such as
the patient’s tolerance of anesthesia and the surgeon’s skill.

The expected utility of X = 1 is 0.5, while the expected
utility of X = 0is 1 — p. Assuming that p < 0.5, X =0
is the choice that maximizes expected utility. If we take the
default utility to be 1, which is reasonable if the patient views
any deviation from their normal health as unacceptable, then
the harm caused by X = 1 is 0.5, while the expected harm
caused by X = 0 is p, so minimizing expected harm would
again lead to choosing X = 0. However, suppose that the
patient has been taking the medication for some time, and
has gotten used to the treatment. In this case, 0.5 seems
like a reasonable choice for the default. With this choice,
X =1 has expected harm 0, while X = 1 has expected harm
0.5p, so the choice that minimizes expected harm is X = 1.
Intuitively, by taking an appropriate choice of default utility,
a harm-based approach allows us to capture the idea that one
should not risk obtaining a bad outcome when there exists an
alternative that is guaranteed to result in an outcome that is
good enough.

While taking expectation is very natural, it sometimes
leads to unreasonable conclusions.
Example 4. Research has shown that the probability of a
fatal accident when driving at the speed limit is 1 in a million,



and that driving at 80% of the speed limit results in 50%
fewer fatal accidents than driving at the speed limit, so the
probability of a fatal accident when driving at 80% of the
speed limit is 1 in 2,000,000. However, research has also
shown that the majority of people do drive at the speed limit,
and would prefer buying a driverless car that does so as well.
Furthermore, this preference remains even after people have
been informed of these numbers. Based on this research, the
manufacturer of a driverless car company needs to implement
a policy regarding the typical driving speed of their cars.
Either cars drive at the maximum speed allowed by the speed
limit, X = 1, or cars drive at 80% of the speed limit,
X = 0. (Obviously a more realistic model would here use
a continuous variable X.)

For any given trip, there are three outcomes: O = 2 if
the driver arrives safely at its destination in the quickest way
(legally) possible, O = 1 if the driver arrives safely at its
destination but takes a bit more time, or O = 0 if the car
crashes and the driver dies. For each driver, the utilities are
u(O=2)=1,u(0O=1)=0.9 u(O =0)=-1,000,000.

Maximizing expected utility results in a preference for
X = 0, but this does not match how people react. Taking
the default utility to be 1, which seems reasonable, and
minimizing expected harm leads to the same preference. Nor
does it help to take the default to be 0.9.

We can deal with this problem by using the idea of
probability weighting from the decision-theory literature. We
assume that agents use a probability weighting function w,
where w : [0,1] — [0,1]. In order to make use of this
function, from now on we take a causal utility model to
also include a probability Pr over the exogenous settings
@ € R(U). (Note that, in general, there might also be
uncertainty regarding the causal equations, but for ease of
exposition, we ignore this complication here.)

Definition 3. The weighted quantitative harm (WQH) fo

agent ag caused by X relative to model M and weighting
Sfunction w is

WQH(M, X, w) =Y zepqp w(Pr(i) QH (M, ii, X).

Applying Definition 3 to our example, taking M to be
a causal model of the driving situation, we can assume for
simplicity that there are three contexts of interest: in wug, the
agent does not have a fatal accident if either X = 0or X =1,
in u; he has a fatal accident if X = 1 but notif X = 0, and in
uso he has a fatal accident if either X = 0 or X = 1. We can
then take the probabilities to be 999,999/1, 000, 000 for ug
and 1/2,000, 000 for both u; and us. Deciding on a policy
then amounts to determining the equation for X: either we
choose X = 1, or we choose X = 0. (Of course, in general,
more complicated policies can be considered.)

In practice, people tend to discount the probability of fatal
accidents; they treat it as being essentially 0. We can capture
this by taking, for example, w(1/2,000,000) = 0 and
w(999,999/1, 000, 000) = 1. Sure enough, for this choice of
w, the weighted harm of X = 1 is lower than that of X = 0.

In this case, w underweights the low probabilities. But in
other cases, people overweight probabilities. As Gigerenzer
[2006] observed, after the terrorist attack on September 11,

2001, a lot of Americans decided to reduce their air travel and
drive more, presumably because they were overweighting the
likelihood of another terrorist attack. (As Gigerenzer points
out, the net effect was a significant increase in the number
of deaths.) As mentioned in the introduction, HBKL give
other examples where overweighting gives answers that seem
to match how people feel about issues.

Perhaps the most common explanation for this effect is that
people underweight probabilities when they make “decisions
from experience” (i.e., based on their past experience with
the events of interest), although this can flip due to recent
bad experiences (as in the case of a terrorist attack) and
overweight probabilities when they make “decisions from
description” (i.e., the type of situation studied in a lab, where
a situation is described in words) [Hertwig et al., 2004]. In
our example, agents’ experience is that people never have
fatal accidents, so they underweight the probability. On the
other hand, if the agent recently had a death in the family
due to a fatal accident, it is likely that he would use a w that
overweights these probabilities.

As we shall see in the next section, combining probability
weighting with harm also lets us deal with other apparently
paradoxical observations due to Norcross [1998].

5 Aggregating harm for different individuals

Up to now we have considered harm for a single individual.
Further issues arise when we try to aggregate harm across
many individuals, as we will certainly need to do when
we consider societal policies. The most straightforward
approach to determining “societal harm” when there are a
number of individuals involved is to sum the harm done
to each individual. By using defaults appropriately, this
straightforward approach already lets us avoid some obvious
problems with maximizing expected utility.

Example 5 (Forced organ donation). Suppose that Billy is
a healthy person, strolling by a hospital. In the hospital,
there are 5 patients in need of a heart, liver, kidney, lung,
and pancreas transplant, respectively. Suppose for simplicity
that these patients will die without the transplant, and it is
not available elsewhere, while Billy will die if these organs
are harvested from him. Expected utility maximization would
suggest that saving five lives is better than saving one, so
the hospital should kidnap Billy. On the other hand, if we
take the default that Billy and each of the patients continue
in their current state of health, then harvesting Billy’s organs
clearly harms Billy, while not harvesting Billy’s organs harms
no one, and is thus the action that minimizes harm.

Combining probability weighting with harm also lets us
deal with other apparently paradoxical observations due to
Norcross [1998] that we mentioned in the previous section.
Norcross considers three events, where it seems that A results
in more harm than B which results in more harm than C
which results in more harm than A, leading to an inconsistent
cycle. A is the event that one person dies a premature
death; B is the event of 5,000,000 people suffering moderate
headaches, and C is the event that 5,000,000 people each
incur a one in a million risk of dying. Norcross claims that
most people would take A to involve greater harm than B and



would continue to do so if we replaced the ““5,000,000” in B
by any other number. Yet clearly, if we just add up harms,
then as long as the harm of a moderate headache is positive,
there must be some number N of people such that N people
suffering moderate headaches results in greater harm than a
single premature death. Norcross further offers a scenario to
argue that most people view C' as involving greater harm than
A. Finally, Norcross provides a scenario where B seems to
involve greater harm than C.

It is instructive to look more carefully at the precise
scenarios that Norcross considers. To argue that B involves
greater harm than C, Norcross considers a scenario where
5,000,000 people each drive out to get headache medication
(under the assumption that driving results in a one in a million
risk of dying). On the other hand, to argue that C' involves
greater harm than A, Norcross considers a scenario where
5,000,000 people in a city running some small risk of dying
from some poisonous gas. While both scenarios involve
5,000,000 people incurring a small risk of dying, the nature
of the stories is quite different. In one case, the risk involves
something that people do every day—driving—which their
personal experience tells them involves a negligible risk of
death. On the other hand, the second scenario involves a
scary new risk (which presumably people read about, rather
than having personal experience with). The former scenario is
one where people are likely to underweight the probability of
death (essentially treating it as 0), while the second scenario
is one where people overweight the small probability. Thus,
although the actual probabilities are the same, the weighted
probabilities are quite different, and hence the weighted
expected harm is quite different. There is actually no cycle
here. Rather, there are two quite different instances of C, for
which people compute the harm very differently.

But there is a whole set of other issues that arise when
dealing with societal harms: there is a concern that we
may disproportionately affect certain identifiable groups.
For example, a policy requiring certain people to work
during a pandemic may have a disproportionate impact on
certain groups. These groups may be the gender-based or
ethnicity-based groups traditionally considered in the fairness
literature, but in general, they need not be. For example,
a new freeway may lead to a disproportionate harm to
people living in a certain completely integrated middle-class
neighborhood. The “group” might be just an individual.
Indeed, we can see Norcross’s scenario A as an instance
of this phenomenon, where the group is the individual that
suffers the premature death, which is intuitively more harmful
than any number of people suffering a moderate headache.

We now briefly sketch a more formal approach to
computing harm that takes this type of fairness into account.
We assume that the groups that cannot be disproportionately
harmed by a policy must be identified in advance. A model
would include a list of all such groups.

Definition 4. A collective utility model is a rtuple
(U, V,R),F,Pr,A,ua,da,G,a, ), where (U, V,R), F)
is a causal model, Pr is a probability on contexts, uy and
da consist of the utility functions and default utilities for
each agent in A, G is a set of identifiable subsets of A, and
« and B are two additional real-valued parameters, to be

explained shortly. Given X, we can compute the (weighted)

harm caused by X to each agent a € A, according to
Definition 3. We then sum the harms caused to each agent, but
add a penalty « if some group in G € G is disproportionately
harmed, where G is disproportionately harmed if the average
harm caused to the agents in G is 3 greater than the average
harm caused to the agents in A.

Intuitively, G consists of sets of agents that should not be
disproportionately harmed. G could include, for example,
all “small” sets of agents (say, all sets of size at most 5),
since people may consider it unfair that a small group of
agents should suffer disproportionately. Note that we can
take « large so that if there is a policy that does not harm
any identifiable group, it is guaranteed to be preferred to one
that does harm an identifiable group. On the other hand, if
every policy harms some identifiable group, then we are back
to comparing policies by just summing the harm caused to
individuals.

6 Harm vs. benefit

In many situations, we need to trade off benefits and harms.
Although many authors view benefit as the opposite of
harm [Carlson et al., 2021; Richens et al., 2022], we here
suggest a definition for which this is not necessarily the case,
while still allowing for the aggregation of benefits and harms.
We replace the default value d by an interval D = [d},, dp),
where utility lower than dj, is a harm, utility higher than dy, is
a benefit, and all values within D are neither harm nor benefit.
To motivate choosing an interval rather than a single value,
we can go back to the tipping example. We can imagine
that there is an acceptable range [dj,, dp] of tips. Tips below
dy, are unacceptable, and viewed as harms; tips above dj, are
particularly generous, and viewed as benefits. We would not
expect dj, = dp, in general. That said, when doing a cost-
benefit analysis, we quite often do take there to be a baseline,
where anything below the baseline is a cost, and anything
above it is a benefit (which amounts to taking d;, = dp).

7 Comparison to RBT

As mentioned earlier, RBT also proposed a quantitative
and causality-based definition of harm. Our previous paper
outlined several objections to their qualitative definition;
here we focus instead on the differences in the quantitative
definition.

While both we and RBT distinguish causing harm from
causing a decrease in utility, and we both have a notion of
default, there are several significant differences between our
approach and theirs. Rather than having a default utility, RBT
assume a default action; in a fixed context (i.e., what we
consider in Section 3), we could choose to take the default
utility to be the utility of the default action. However, when
computing harm, RBT only do a pairwise comparison of the
harm of a given action to the harm of the default action,
and use only but-for causation rather than the more general
definition of causation given by, say, [Halpern, 2016]. As the
analysis of Example 1 in the supplementary material shows,
this can lead to a significant difference in the calculation of



harm. Moreover, assuming a default action (in this case, that
of providing no treatment) seems to lead to an inappropriate
conclusion that is avoided by using a default utility instead.

Going on, rather than minimizing expected harm (and
possibly applying a weighting function to the probability,
as we do), when deciding which action a to perform, RBT
maximize a different utility function, namely Ula] — Ah[a],
where U is the expected utility of a, A is a user-dependent
harm aversion coefficient, and h[a] is the harm as calculated
above, that is, the decrease in utility caused (in the “but-
for” sense) by doing a rather than the default action. Not
surprisingly, this leads to quite different harms than we would
calculate.

Furthermore, RBT do not pay special attention to the issues
that arise when aggregating harm, but instead simply compute
societal harm by summing individual harms. As discussed in
Section 35, this approach can lead to preferences that do not
match those of most people.

Finally, RBT view benefit as the opposite of harm (i.e., in
the notation of Section 6, they take d;, = d). As we pointed
out, in general it seems more appropriate not to treat benefit
and harm symmetrically, and allow for a default interval.

8 Discussion and conclusion

We have given a formal definition of quantitative harm,
based on our earlier definition of qualitative harm. While
the definition of quantitative harm for a single individual
in a fixed context, where there is no uncertainty, is fairly
straightforward given our definition of qualitative harm, as
we have pointed out, there are subtleties that arise when
we add probability and when we need to take into account
fairness issues. We have suggested an approach for dealing
with fairness issues, but clearly work needs to be done to
understand the extent to which it captures how people actually
deal with these issues. For people to be comfortable with
policies enacted by, for example, government agencies (such
as the European Al Act), the formal approach will have to
be reasonably close to their heuristics. The situation with
probability overweighting and underweighting is even more
subtle. Research has shown that people do both overweight
and underweight low-probability events (see, e.g., [Hertwig
et al., 2004; Zielonka and Tyszka, 2017]). We suspect that
the underweighting that occurs when people make decisions
from experience could itself reflect a normative preference.
Perhaps there are actions (and their consequences) with
which we have experience precisely because we consider
them to be part of our normal lives. As a result, we are
prepared to accept higher risks resulting from such actions
than from actions (or events) which are considered abnormal
or neutral. This seems to fit well with the distinction
between scenarios B and C from the Norcross example:
people consider the flexibility of being able to drive to the
pharmacy whenever they so choose to be part of a normal
life, whereas presumably they do not particularly value the
ability to live near a factory that produces poisonous gas. In
any case, while we do have some understanding of when
overweighting and underweighting occurs, a policy-maker
will have to weigh normative and descriptive considerations

in deciding how to compute societal harm; assuming that
people always overweight low-probability events, as HKBL
do, is clearly not appropriate (although it may well be
appropriate for the applications considered by HKBL).
Although we have focused on probabilistic representations
of uncertainty, another direction worth exploring is non-
probabilistic representations of uncertainty.

In addition to the weighting of probabilities, quantitative
harm is influenced by the default utility: what matters is
the difference between the default utility and the utility of
the outcome (rather than just the utility of the outcome).
Although we have here argued for this view simply by
showing that it accords well with intuition for the examples
discussed, recent empirical research shows that people do
seem to take into account a context-dependent default in
precisely this manner. Indeed, Rigoli et al. [2016] have
shown that people make different choices when confronted
with two cases that have identical causal structure and
identical probability distributions over the possible monetary
outcomes, but where the first (second) case is stipulated to
be a low-value (resp., high-value) context. Crucially, this
behaviour is observed despite the fact that the subjects are
informed that the context does not influence the probabilities
of the outcomes. Rigoli et al. explain their results by
assuming that the context changes the utility function itself,
but their experiments can just as easily be explained by
assuming that the context changes the default utility instead:
in a low-value context, people take the default utility to be
lower than in a high-value context, and therefore the same
utility results in different amounts of quantitative harm for
each context. It would be interesting to construct experiments
that can distinguish between the two proposals.

Finally, it is worth mentioning complexity considerations.
As with most concepts involving actual causality, deciding
whether harm occurred is intractable even in the single-agent
qualitative case where there is no uncertainty. Indeed, it
is easy to see that it is at least as hard as causality, which
is proved in [Halpern, 2015] to be DP-complete. Adding
quantitative considerations does not make it any easier,
although we suspect it will not be any harder either. That said,
we do not believe that in practice, complexity considerations
will be a major impediment to applying these definitions. In
many cases of interest, the set of variables and their possible
values is small. Exhaustive search is polynomial in the set
of combinations of possible values of the variables, so the
problem will be polynomial time in this case. Furthermore,

if we consider but-for causality (i.e., take W = ? in AC2),
which often suffices, then the problem becomes polynomial

time in the number of combinations of possible values of X.

This paper (and our previous one) constitute only a first
step towards providing a formal approach for determining
harm in practice. Clearly more work needs to be done,
ranging from investigating whether other elements need
to be added to our framework; doing both empirical
and philosophical studies on the concrete factors that
determine the default utility, the weighting function, and
the fairness parameters; and investigating complexity issues
more carefully.



Moreover, there is obviously a close connection between
harm and blame, in that one is usually blameworthy for an
outcome only if that outcome constitutes a harm. Yet, unlike
blame, harm does not always contain a moral dimension,
since also natural events can cause harm. Therefore it is
worthwhile to develop an account that integrates both harm
and blame into a full theory of moral responsibility. We
believe that this paper already provides a rich and useful
framework, one that will be critical for dealing with the
ethical and regulatory issues of deploying Al systems.
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