Sequential Language-based Decisions

Adam Bjorndahl

Department of Philosophy Carnegie Mellon University Pittsburgh, USA abjorn@cmu.edu Joseph Y. Halpern

Department of Computer Science Cornell University Ithaca, USA

halpern@cs.cornell.edu

In earlier work, we introduced the framework of *language-based decisions*, the core idea of which was to modify Savage's classical decision-theoretic framework [6] by taking actions to be descriptions in some language, rather than functions from states to outcomes, as they are defined classically. Actions had the form "if ψ then $do(\phi)$ ", where ψ and ϕ were formulas in some underlying language, specifying what effects would be brought about under what circumstances. The earlier work allowed only one-step actions. But, in practice, plans are typically composed of a sequence of steps. Here, we extend the earlier framework to *sequential* actions, making it much more broadly applicable. Our technical contribution is a representation theorem in the classical spirit: agents whose preferences over actions satisfy certain constraints can be modeled as if they are expected utility maximizers. As in the earlier work, due to the language-based specification of the actions, the representation theorem requires a construction not only of the probability and utility functions representing the agent's beliefs and preferences, but also the state and outcomes spaces over which these are defined, as well as a "selection function" which intuitively captures how agents disambiguate coarse descriptions. The (unbounded) depth of action sequencing adds substantial interest (and complexity!) to the proof.

1 Background and motivation

In earlier work, we introduced the framework of *language-based decisions* [2], the core idea of which was to modify Savage's classical decision-theoretic framework [6] by taking actions to be descriptions in some language, rather than functions from states to outcomes, as they are defined classically. Actions had the form "if φ then $do(\psi)$ ", where φ and ψ were formulas in some underlying language, specifying what effects would be brought about under what circumstances. For example, a statement like "If there is a budget surplus then do(MW = 15) else no-op" would be an action in this framework, where MW = 15 represents the minimum wage being \$15, and no-op is the action of doing nothing. The effect of the action do(MW = 15) is to bring about a state where the minimum wage is \$15. But this does not completely specify the state. (Do businesses close? Is there more automation so jobs are lost? Are no jobs lost and more people move into the state?)

In this context, we proved a representation theorem in the classical spirit: agents whose preferences over actions satisfy certain constraints can be modeled as if they are expected utility maximizers. This requires constructing not only probability and utility functions (as is done classically), but also the state and outcome spaces on which these functions are defined, and a *selection function* that describes which state will result from an underspecified action like do(MW = 15). In this construction the state and outcome spaces coincide; intuitively, this is because the tests that determine whether an action is performed ("If φ then...") and the actions themselves (" $do(\psi)$ ") are described using the same language.

¹This work in turn extended previous work by Blume, Easley, and Halpern [3] in which the tests in actions, but not the effects of actions, were specified in a formal language.

The earlier work allowed only one-step actions. But, in practice, plans are typically composed of a sequence of steps, and we must choose among such plans: Do I prefer to walk to the cafe and then call my friend if the cafe is open, or would it be better to call my friend first, then walk to the cafe and call them back if it's closed? Should I ring the doorbell once, or ring it once and then a second time if no one replies to the first? Here, we extend the earlier framework to *sequential* actions, making it much more broadly applicable.

At a technical level, a decision-theoretic framework in which the state and outcome spaces coincide is the perfect setting in which to implement sequential actions, since—given that the actions are understood as functions—we have an immediate and natural way to "put them in sequence", namely, by composing the corresponding functions.

Our contribution in this paper is, first, to lay the mathematical groundwork for reasoning about sequential, language-based actions (Section 2), and second, to prove a representation theorem analogous to earlier such results (Section 3): roughly speaking, agents whose preferences over sequential actions satisfy certain axioms can be understood as if their preferences are derived by maximizing the expected value of a suitable utility function. Proving this result is substantially harder in the present setting, owing to the more complex nature of sequential actions (including but not limited to the fact that we allow sequential nesting to be arbitrarily deep). The reader is thus forewarned that the main result depends on a fairly lengthy, multi-stage proof.

2 Sequential language-based actions

The framework presented in this section is an expansion of that developed in [2]. We begin with the same simple, formal language: let Φ denote a finite set of *primitive propositions*, and \mathcal{L} the propositional language consisting of all Boolean combinations of these primitives. A **basic model (over** \mathcal{L}) is a tuple $M = (\Omega, [\![\cdot]\!]_M)$ where Ω is a nonempty set of *states* and $[\![\cdot]\!]_M : \Phi \to 2^{\Omega}$ is a *valuation function*. This valuation is recursively extended to all formulas in \mathcal{L} in the usual way, so that intuitively, each formula φ is "interpreted" as the "event" $[\![\varphi]\!]_M \subseteq \Omega$. We sometimes drop the subscript when the model is clear from context, and write $\omega \models \varphi$ rather than $\omega \in [\![\varphi]\!]$. We say that φ is *satisfiable in* M if $[\![\varphi]\!]_M \neq \emptyset$ and that φ is *valid in* M if $[\![\varphi]\!]_M = \Omega$; we write $[\![\varphi]\!]$ to indicate that φ is valid in all basic models.

Given a finite set of formulas $F \subseteq \mathcal{L}$, the set of (**sequential**) actions (over F), denoted by \mathcal{A}_F , is defined recursively as follows:

- (1) for each $\varphi \in F$, $do(\varphi)$ is an action (called a *primitive action*);
- (2) no-op is an action (this is short for "no operation"; intuitively, it is a "do nothing" action);
- (3) for all $\psi \in \mathcal{L}$ and $\alpha, \beta \in \mathcal{A}_F$, not both *no-op*, **if** ψ **then** α **else** β is an action;
- (4) for all $\alpha, \beta \in A_F$, not both *no-op*, $\alpha; \beta$ is an action (intuitively, this is the action "do α and then do β ").

In [2], actions were defined only by clauses (1) and (3). The idea of "sequencing" actions is of course not new; the semicolon notation is standard in programming languages.

It will also be useful for our main result to have a notion of the *depth* of an action, which intuitively should capture how deeply nested the sequencing is. We do so by induction. The only **depth-**0 action is *no-op*. A **depth-**1 **action** is either (1) *no-op*; (2) a primitive action $do(\varphi)$; or (3) an action of the form **if** ψ **then** α **else** β , where α and β are depth-1 actions. Now suppose that we have defined depth-k actions for $k \ge 1$; a **depth-**(k+1) action is either (1) a depth-k action; (2) an action of the form **if** ψ **then** α **else** β , where α and β are depth-(k+1) actions; or (3) an action of the form α ; β , where α is a depth- k_1

action, β is a depth- k_2 action, and $k_1 + k_2 \le k + 1$. Note that we have defined depth in such a way that the depth-k actions include all the depth-k' actions for k' < k, and so that **if...then** constructions do not increase depth—only sequencing does.

As in [2], given a basic model $M = (\Omega, [\![\cdot]\!]_M)$, we want $do(\varphi)$ to correspond to a function from Ω to Ω whose range is contained in $[\![\varphi]\!]_M$. For this reason we restrict our attention to basic models in which each $\varphi \in F$ is satisfiable, so that $[\![\varphi]\!]_M \neq \emptyset$; call such models F-rich. Moreover, in order for $do(\varphi)$ to pick out a *function*, we need some additional structure that determines, for each $\omega \in \Omega$, which state in $[\![\varphi]\!]_M$ the function corresponding to $do(\varphi)$ should actually map to. This is accomplished using a *selection function* $sel: \Omega \times F \to \Omega$ satisfying $sel(\omega, \varphi) \in [\![\varphi]\!]_M$.

The intuition for selection functions is discussed in greater detail in [2]. Briefly: $do(\varphi)$ says that φ should be made true, but there may be many ways of making φ true (i.e., many states one could transition to in which φ is true); sel picks out which of these φ -states to actually move to. In this way we can think of sel as serving to "disambiguate" the meaning of the primitive actions, which are inherently underspecified.

Note that selection functions are formally identical to the mechanism introduced by Stalnaker [9] to interpret counterfactual conditionals. In our context, we can think of a selection function as another component of an agent's model of the world, to be constructed in the representation theorem: in addition to a probability measure (to represent their beliefs) and a utility function (to capture their preferences), we will also need a selection function (to specify how they interpret actions).

A **selection model (over** F) is an F-rich basic model M together with a selection function sel: $\Omega \times F \to \Omega$ satisfying $sel(\omega, \varphi) \in [\![\varphi]\!]_M$. Given a selection model (M, sel) over F, we define the *interpretation* of $do(\varphi)$ to be the function $[\![do(\varphi)]\!]_{M,sel}: \Omega \to \Omega$ given by:

$$[do(\varphi)]_{M,sel}(\omega) = sel(\omega,\varphi).$$

This interpretation can then be extended to all sequential actions in A_F in the obvious way:

$$\llbracket \mathbf{if} \ \psi \ \mathbf{then} \ \alpha \ \mathbf{else} \ \beta \rrbracket_{M,sel}(\omega) = \begin{cases} \llbracket \alpha \rrbracket_{M,sel}(\omega) & \text{if } \omega \in \llbracket \psi \rrbracket \\ \llbracket \beta \rrbracket_{M,sel}(\omega) & \text{if } \omega \notin \llbracket \psi \rrbracket, \end{cases}$$

and

$$[\alpha;\beta]_{M.sel} = [\beta]_{M.sel} \circ [\alpha]_{M.sel}.$$

3 Representation

Let \succeq be a binary relation on \mathcal{A}_F , where we understand $\alpha \succeq \beta$ as saying that α is "at least as good as" β from the agent's subjective perspective. Intuitively, such a binary relation is meant to be reasonably "accessible" to observers, "revealed" by how an agent chooses between binary options. As usual, we define $\alpha \succeq \beta$ as an abbreviation of $\alpha \succeq \beta$ and $\beta \succeq \alpha$, and $\alpha \sim \beta$ as an abbreviation of $\alpha \succeq \beta$ and $\beta \succeq \alpha$; intuitively, these relations represent "strict preference" and "indifference", respectively.

We assume that \succeq is a *preference order*, so is *complete* (i.e., for all acts $\alpha, \beta \in A_F$, either $\alpha \succeq \beta$ or $\beta \succeq \alpha$) and transitive. Note that completeness immediately gives reflexivity as well. While there are good philosophical reasons to consider incomplete relations (see [4] and the references therein), for the purposes of this paper we adopt the assumption of completeness in order to simplify the (already quite involved) representation result.

A language-based SEU (Subjective Expected Utility) representation for a relation \succeq on \mathcal{A}_F is a selection model (M,sel) together with a probability measure Pr on Ω and a utility function $u:\Omega\to\mathbb{R}$ such that, for all $\alpha,\beta\in\mathcal{A}_F$,

$$\alpha \succeq \beta \Leftrightarrow \sum_{\omega \in \Omega} \Pr(\omega) \cdot u(\llbracket \alpha \rrbracket_{M,sel}(\omega)) \ge \sum_{\omega \in \Omega} \Pr(\omega) \cdot u(\llbracket \beta \rrbracket_{M,sel}(\omega)). \tag{1}$$

Our goal is to show that such a representation exists if the preference order satisfies one key axiom, discussed below.

3.1 Canonical maps and canonical actions

For each $a \subseteq \Phi$, let

$$\varphi_a = \bigwedge_{p \in a} p \wedge \bigwedge_{q \notin a} \neg q,$$

so φ_a settles the truth values of each primitive propositions in the language \mathcal{L} : it says that p is true iff it belongs to a. An **atom** is a formula of the form φ_a .² Since we are working with a classical propositional logic, it follows that for all formulas $\varphi \in \mathcal{L}$ and atoms φ_a , the truth of φ is determined by φ_a : either $\models \varphi_a \to \varphi$, or $\models \varphi_a \to \neg \varphi$. In the framework of [2], it followed that every action could be identified with a function from atoms to elements of F, since atoms determine whether the tests in an action hold. In our context, however, things are not so simple: actions can be put in sequence, so even though an atom may tell us which tests at the "first layer" hold, so to speak, it may not be enough to tell us which later tests hold. For example, in an action like "if p then do(r) else do(r'); if q then $do(\neg r)$ ", the atom that currently holds determines whether p holds, but tells us nothing about whether q will hold when we get around to doing the second action in the sequence.

To deal with this, we need an outcome space that is richer than just F (i.e., richer than the set of all primitive actions); roughly speaking, we will instead identify actions with functions from atoms to "canonical" ways of describing the sequential structure of actions. We now make this precise.

Suppose that $|2^{\Phi}| = N$, so there are N atoms; call them a_1, \ldots, a_N . For each subset A of atoms, let $\varphi_A = \bigvee_{a \in A} \varphi_a$. A basic fact of propositional logic is that for every formula φ , there is a unique set A of atoms such that φ is logically equivalent to φ_A . Let $\tilde{F} = \{\varphi_A : (\exists \varphi \in F)(\models \varphi_A \leftrightarrow \varphi)\}$.

We want to associate with each action α of depth k a **canonical action** γ_{α} of depth k that is, intuitively, equivalent to α . The canonical action γ_{α} makes explicit how α acts in a state characterized by an atom a. We define γ_{α} by induction on the structure of α . It is useful in the construction to simultaneously define the **canonical map** c_{α} associated with α , a function from atoms to actions such that, for all atoms a, $c_{\alpha}(a)$ has the form no-op, $do(\varphi_{A})$, or $do(\varphi_{A})$; γ_{β} for some set A of atoms and action β . Intuitively, c_{α} defines how α acts in a state characterized by an atom a. For example, if α is **if** a **then** $do(\varphi_{A})$ **else** β , then $c_{\alpha}(a) = do(\varphi_{A})$.

If $\alpha = no\text{-}op$, then $\gamma_{no\text{-}op} = no\text{-}op$ and $c_{no\text{-}op}$ is the constant function such that $c_{no\text{-}op}(a) = no\text{-}op$ for all atoms a. If α is a depth-1 action other than no-op, then we define c_{α} by induction on structure:

$$c_{do(\varphi)}(a) = do(\varphi_A)$$
, where A is the unique subset of atoms such that $\models \varphi_A \leftrightarrow \varphi$
 $c_{\mathbf{if} \ \psi \ \mathbf{then} \ \alpha \ \mathbf{else} \ \beta}(a) = \begin{cases} c_{\alpha}(a) & \text{if } \models \varphi_a \rightarrow \psi \\ c_{\beta}(a) & \text{if } \models \varphi_a \rightarrow \neg \psi. \end{cases}$

²Not to be confused with *atomic propositions*, which is another common name for primitive propositions.

The action γ_{α} is the depth-1 action defined as follows:

$$\gamma_{\alpha} = \text{if } \varphi_{a_1} \text{ then } c_{\alpha}(a_1) \text{ else (if } \varphi_{a_2} \text{ then } c_{\alpha}(a_2) \text{ else } (\cdots (\text{if } \varphi_{a_{N-1}} \text{ then } c_{\alpha}(a_{N-1}) \text{ else } c_{\alpha}(a_N))\cdots))$$

if at least one of $c_{\alpha}(a_{N-1})$ or $c_{\alpha}(a_N)$ is not *no-op*. If both are *no-op*, then **if** $\varphi_{a_{N-1}}$ **then** $c_{\alpha}(a_{N-1})$ **else** $c_{\alpha}(a_N)$ is not an action according to our definitions; in this case, we take

$$\gamma_{\alpha} = \text{if } \varphi_{a_1} \text{ then } c_{\alpha}(a_1) \text{ else (if } \varphi_{a_2} \text{ then } c_{\alpha}(a_2) \text{ else } (\cdots (\text{if } \varphi_{a_m} \text{ then } c_{\alpha}(a_m) \text{ else } no\text{-}op)),$$

where m is the least index such that $c_{\alpha}(a_m) \neq no\text{-}op$. (If $c_{\alpha}(a_m) = no\text{-}op$ for all m, then $\gamma_{\alpha} = no\text{-}op$.) If α is a depth-(k+1) action other than no-op, then we again define c_{α} by induction on structure:

$$\begin{array}{lcl} c_{\mathbf{if}\;\psi\;\mathbf{then}\;\alpha\;\mathbf{else}\;\beta}(a) & = & \begin{cases} c_{\alpha}(a) & \mathrm{if} \models \varphi_{a} \rightarrow \psi \\ c_{\beta}(a) & \mathrm{if} \models \varphi_{a} \rightarrow \neg \psi \end{cases} \\ \\ c_{\alpha;\beta}(a) & = & \begin{cases} c_{\beta}(a) & \mathrm{if}\;c_{\alpha}(a) = \mathit{no-op} \\ \mathit{do}(\varphi_{A}); \gamma_{\beta} & \mathrm{if}\;c_{\alpha}(a) = \mathit{do}(\varphi_{A}) \\ \mathit{do}(\varphi_{A}); \gamma_{\beta';\beta} & \mathrm{if}\;c_{\alpha}(a) = \mathit{do}(\varphi_{A}); \gamma_{\beta'}. \end{cases} \end{array}$$

The canonical action γ_{α} is defined as above for the depth-1 case.

We take CA^k to be the set of canonical actions of depth k, and CM^k to be the set of canonical maps that correspond to some depth-k action. Finally, let $CA^{k,-}$ consist of all depth k-actions of the form no-op, $do(\varphi_A)$, or $do(\varphi_A)$; γ_β , where β is a depth (k-1)-action. Note that if α is a depth-k action and a is an atom, then $c_\alpha(a) \in CA^{k,-}$. Observe that since the set of atoms is finite, as is \tilde{F} , it follows that for all k, CM^k , CA^k , and $CA^{k,-}$ are also finite. This will be crucial in our representation proof.

3.2 Cancellation

As in [2, 3], the key axiom in our representation theorem is what is known as a *cancellation axiom*, although the details differ due to the nature of our actions. Simple versions of the cancellation axiom go back to [5, 7]; our version, like those used in [2, 3], has more structure. See [3] for further discussion of the axiom.

The axiom uses multisets. Recall that a *multiset*, intuitively, is a set that allows for multiple instances of each of its elements. Thus two multisets are equal just in case they contain the same elements *with* the same multiplicities. We use "double curly brackets" to denote multisets, so for instance $\{\{a,b,b\}\}$ is a multiset, and it is distinct from $\{\{a,a,b\}\}$: both have three elements, but the multiplicity of a and b differ. With that background, we can state the axiom:

(**Canc**) Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathcal{A}_F$, and suppose that for each $a \subseteq \Phi$ we have

$$\{\{c_{\alpha_1}(a),\ldots,c_{\alpha_n}(a)\}\}=\{\{c_{\beta_1}(a),\ldots,c_{\beta_n}(a)\}\}.$$

Then, if for all i < n we have $\alpha_i \succeq \beta_i$, it follows that $\beta_n \succeq \alpha_n$.

Intuitively, this says that if we get the same outcomes (counting multiplicity) using the canonical maps for $\alpha_1, \ldots, \alpha_n$ as for β_1, \ldots, β_n in each state, then we should view the collections $\{\{\alpha_1, \ldots, \alpha_n\}\}$ and $\{\{\beta_1, \ldots, \beta_n\}\}$ as being "equally good", so if α_i is at least as good as β_i for $i = 1, \ldots, n-1$, then, to balance things out, β_n should be at least as good as α_n . How intuitive this is depends on how intuitive one finds the association $\alpha \mapsto c_{\alpha}$ defined above; if the map c_{α} really does capture "everything decision-theoretically relevant" about the action α , then cancellation does seem reasonable.

In particular, it is not hard to show that whenever α and β are such that $\gamma_{\alpha} = \gamma_{\beta}$ (which of course is equivalent to $c_{\alpha} = c_{\beta}$), cancellation implies that $\alpha \sim \beta$. In other words, any information about α and β that is lost in the transformation to canonical actions is also forced to be irrelevant to decisionmaking. This means that (Canc) entails, among other things, that agents do not distinguish between logically equivalent formulas (since, e.g., when $\models \varphi \leftrightarrow \varphi'$, it's easy to see that $\gamma_{do(\varphi)} = \gamma_{do(\varphi')}$).

3.3 Construction

Theorem 1. *If* \succeq *is a preference order on* A_F *satisfying* (Canc), *then there is a language-based subjective expected utility representation of* \succeq .

Proof. As in [2], we begin by following the proof in [3, Theorem 2], which says that if a preference order on a set of acts mapping a finite state space to a finite outcome space satsifies the cancellation axiom, then it has a state-dependent representation. "State-dependent" here means that the utility function constructed depends jointly on both states and outcomes, in a sense made precise below. To apply this theorem in our setting, we first fix k and take CM^k to be the set of acts. With this viewpoint, the state space is the set of atoms and the outcome space is $CA^{k,-}$; as we observed, both are finite.

The relation \succeq on \mathcal{A}_F induces a relation \succeq^k on CM^k defined in the natural way:

$$c_{\alpha} \succeq^k c_{\beta} \Leftrightarrow \alpha \succeq \beta$$
.

As noted, (Canc) implies that $\alpha \sim \alpha'$ whenever $c_{\alpha} = c_{\alpha'}$, from which it follows that \succeq^k is well-defined. To apply Theorem 2 in [3], it must also be the case that \succeq^k is a preference order and satisfies cancellation, which is immediate from the definition of \succeq^k and the fact that \succeq is a preference order and satisfies cancellation. It therefore follows that \succeq^k has a state-dependent representation; that is, there exists a real-valued utility function v^k defined on state-outcome pairs such that, for all depth-k actions α and β ,

$$c_{\alpha} \succeq^{k} c_{\beta} \text{ iff } \sum_{i=1}^{N} v^{k}(a_{i}, c_{\alpha}(a_{i})) \ge \sum_{i=1}^{N} v^{k}(a_{i}, c_{\beta}(a_{i})).a$$
 (2)

It follows from our definitions that for all depth-k actions α and β ,

$$\alpha \succeq \beta \text{ iff } \sum_{i=1}^N v^k(a_i, c_{\alpha}(a_i)) \geq \sum_{i=1}^N v^k(a_i, c_{\beta}(a_i)).$$

As we observed, we needed to restrict to depth-k actions here in order to ensure that the outcome space is finite, which is necessary to apply Theorem 2 in [3].

Our next goal is to define a selection model $M = (\Omega^k, [\cdot]_M, sel)$, a probability \Pr^k on Ω^k , and a utility function u^k on Ω^k such that, for all actions α and β of depth k,

$$\alpha \succeq \beta \text{ iff } \sum_{\omega \in \Omega^k} \Pr^k(\omega) u^k(\llbracket \alpha \rrbracket_{M,sel}(\omega)) \ge \sum_{\omega \in \Omega^k} \Pr^k(\omega) u^k(\llbracket \beta \rrbracket_{M,sec}(\omega)). \tag{3}$$

Eventually, we will construct a single (state and outcome) space Ω^* , a probability \Pr on Ω^* , and a utility u^* on Ω^* that we will use to provide a single representation theorem for all actions, without the restriction to depth k, but we seem to need to construct the separate spaces first.

As a first step to defining Ω^k , define a *labeled k-tree* to be a balanced tree of depth k whose root is labeled by an atom such that each non-leaf node has exactly N children, labeled a_1, \ldots, a_N , respectively. An *ordered labeled k-tree* (k-olt) is a labeled k-tree where, associated with each non-leaf node, there is a total order on its children. We assume that in different labeled k-trees, the nodes come from the same set, and corresponding nodes have the same label, so there is a unique labeled k-tree and k-olts differ only in

the total order associated with each non-leaf node and the label of the root. Let T^k consist of all k-olts. For $k' \ge k$, a (k')-olt $s^{k'}$ extends (or is an extension of) a k-olt s^k if s^k is the prefix of $s^{k'}$ of depth k; we call s^k the projection of $s^{k'}$ onto depth k.

The intuition behind a k-olt is the following: the atom associated with the root r describes what is true before an action is taken. For each non-leaf node t, the total order associated with t on the children of t describes the selection function at t (with children lower in the order considered "closer"). For example, suppose that there are two primitive propositions, p and q. Then there are four atoms. If we take the action $do(\varphi)$ starting at r, we want to "move" to the "closest" child of r satisfying φ , which is the child lowest in the ordering associated with r. For example, suppose that the total order on the atoms associated with r is $\neg p \land q < \neg p \land \neg q < p \land \neg q < p \land q$. Then if we take the action $do(p \lor q)$ starting at r, we move to the child labeled with the atom $\neg p \land q$; if we instead do $do(p \lor \neg q)$, we move to the child labeled $\neg p \land \neg q$; and if instead we do **if** q **then** $do(p \lor q)$ **else** $do(p \lor \neg q)$, which of these two children we move to depends on whether q is true at the atom labeling r. For an action $do(p \lor q)$; $do(p \lor \neg q)$, we move further down the tree. The first action, $do(p \lor q)$, takes us to the child t of t labeled t t t t which one we get to depends on the ordering of the children of t associated with t.

It turns out that our states must be even richer than this; they must in addition include a *k*-progress function g that maps each node t in a k-olt s^k to a descendant of t in s^k . We give the intuition behind progress functions shortly. We take Ω^k to consist of all pairs (s^k, g) , where $s^k \in T^k$ and g is a k-progress function and for each primitive proposition $p \in \Phi$, we define

$$[\![p]\!] = \{(s^k, g) : p \in a, \text{ where } a \text{ labels } g(r) \text{ and } r \text{ is the root of } s^k\}.$$

We now want to associate with each depth-k action α a function $f_{\alpha}: \Omega^k \to \Omega^k$; intuitively, this is the transition on states that we want to be induced by the selection function. To begin, we define f_{α} only on states of the form (s^k,id) , where id is the identity function. We take $f_{\alpha}(s^k,id)=(s^k,g_{\alpha,s^k})$, where g_{α,s^k} is defined formally below. Intuitively, if t is a node at depth k' of s^k , then $g_{\alpha,s^k}(t)$ describes the final state if the action α were to (possibly counterfactually) end up at the node t after running for k' steps, and then continued running.

Given a k-olt s^k whose root r is labeled a and an action α of depth at most k, we define $g_{\alpha,s^k}(t)$ by induction on the depth of α . For the base case, we take $g_{no-op,s^k}=id$. Now suppose inductively that α has depth m and we have defined g_{α',s^k} for all actions α' of depth m-1. There are three cases to consider. (1) If $c_{\alpha}(a) = no$ -op, then $g_{\alpha,s^k} = id$. (2) If $c_{\alpha}(a) = do(\varphi_A)$, then $g_{\alpha,s^k}(r)$ is the "closest" (i.e., minimal) child t' of r among those labelled by an atom in A, according to the total order labeling r; $g_{\alpha,s^k}(t) = t$ for all nodes $t \neq r$. (3) If $c_{\alpha}(a) = do(\varphi_A)$; γ_{β} (which means β is an action of depth at most m-1), then $g_{\alpha,s^k}(r) = g_{\beta,s^{k,t'}}(t')$, where $t' = g_{do(\varphi_A),s^k}(r)$ and $s^{k,t'}$ is the (k-1)-subolt of s^k rooted at t'. The intuition here is that $g_{\alpha,s^k}(r)$ is supposed to output the descendent of r that is reached by doing α ; the fact that $c_{\alpha}(a) = do(\varphi_A); \gamma_{\beta}$ tells us that the way α works (in a state where a holds) is by first making φ_A true, and then following up with β . This means we must first move to the "closest" child of r where φ_A holds, which is t', and subsequently moving to whichever descendant of t' that β directs us to (which is defined, by the inductive hypothesis). Finally, if $t \neq r$, let t'' be the first step on the (unique) path from r to t and let $s^{k,t''}$ be the (k-1)-subolt of s^k rooted at t''. Then $g_{\alpha,s^k}(t) = g_{\beta,s^{k,t''}}(t)$ (where, once again, this is defined by the inductive hypothesis). This essentially forces us to "follow" the unique path from r to t, and then continue from that point by doing whatever the remaining part of the action α demands. It is clear from this definition that if the root of s^k is labeled by a, then $g_{\alpha,s^k} = g_{c_{\alpha}(a),s^k}$.

We now extend f_{α} to states of the form (s^k, g_{β,s^k}) by setting $f_{\alpha}(s^k, g_{\beta,s^k}) = f_{\beta;\alpha}(s^k, id)$. Intuitively,

the state (s^k, g_{β,s^k}) is a state where β has "already happened" (i.e., it's the state we would arrive at by doing β in (s^k, id)) so doing α in this state should be the same as doing first β then α in (s^k, id) .

Observe that a k-progress function g_{α,s^k} not only tells us the node that α would reach if it started at the root of s^k , but also gives a great deal of counterfactual information about which nodes would be reached starting from anywhere in s^k . This is in the same spirit as *subgame-perfect equilibrium* [8], which can depend on what happens at states that are never actually reached in the course of play, but could have been reached if play had gone differently. Like this game-theoretic notion, our representation theorem requires a kind of counterfactual information.

In light of (2), to prove (3), it suffices to define our selection function *sel* so that $[\alpha]_{M,sel} = f_{\alpha}$, and find Pr^k and u^k such that for all actions α of depth k,

$$\sum_{i=1}^{N} v^k(a_i, c_{\alpha}(a_i)) = \sum_{(s^k, g) \in \Omega^k} \Pr^k(s^k, g) u^k(f_{\alpha}(s^k, g)). \tag{4}$$

Our definition of f_{α} is set up to make defining the right selection function straightforward: we simply set $sel((s^k,g),\varphi) = f_{do(\varphi_A)}(s^k,g)$, where A is the unique set of atoms such that $\models \varphi_A \leftrightarrow \varphi$. It is then easy to check that $[\![\alpha]\!]_{M,sel} = f_{\alpha}$.

Define $\Pr^k(s^k, g) = 0$ if $g \neq id$, and $\Pr^k(s^k, id) = 1/|T^k|$ for all $s^k \in T^k$. Given this, to establish (4), it suffices to define u^k such that for all actions α of depth k,

$$|T^k| \sum_{i=1}^N v^k(a_i, c_\alpha(a_i)) = \sum_{s^k \in T^k} u^k(f_\alpha(s^k, id)).$$
 (5)

Given an atom a, let T_a^k consist of all k-olts whose root is labeled by a. By definition of f_α , to prove (5), it suffices to prove, for each atom $a \in \{a_1, \dots, a_N\}$ and all actions α of depth k, that

$$|T^{k}|v^{k}(a,c_{\alpha}(a)) = \sum_{s^{k} \in T_{a}^{k}} u^{k}(s^{k},g_{\alpha,s^{k}}) = \sum_{s^{k} \in T_{a}^{k}} u^{k}(s^{k},g_{c_{\alpha}(a),s^{k}}), \tag{6}$$

where the second equality follows from the fact, observed above, that $g_{\alpha,s^k} = g_{c_{\alpha}(a),s^k}$ whenever $s^k \in T_a^k$.

Since v^k is given, for each depth-k action $c_{\alpha}(a)$, the left-hand side of (6) is just a number. Replace each term $u^k(s^k, g_{c_{\alpha}(a), s^k})$ for $s^k \in T_a^k$ by the variable $x_{s^k, g_{c_{\alpha}(a), s^k}}$. This gives us a system of linear equations, one for each action $c_{\alpha}(a)$, with variables $x_{s^k, g}$, where the coefficient of $x_{s^k, g}$ in the equation corresponding to action α is either 1 or 0, depending on whether $g_{\alpha, s^k} = g$. We want to show that this system has a solution.

We can describe the relevant equations as the product MX = U of matrices, where M is a matrix whose entries are either 0 or 1, and X is a vector of variables (namely, the variables $x_{s^k,g}$). The matrix M has one row corresponding to each action in $CA^{k,-}$ (since, for all actions α of depth k, $c_{\alpha}(a) \in CA^{k,-}$), and one column corresponding to each state (s^k,g) with $s^k \in T_a^k$. The entry in M in the row corresponding to the action γ_{α} and the column corresponding to (s^k,g) is 1 if $g_{\gamma_a,s^k}=g$ (i.e., if $f_{\alpha}(s^k,id)=(s^k,g_{\alpha,s^k})=(s^k,g)$) and 0 otherwise. A basic result of linear algebra tells us that this system has a solution if the rows of the matrix M (viewed as vectors) are independent. We now show that this is the case.

Let r_{α} be the row of M indexed by action $\alpha \in CA^{k,-}$. Suppose that a linear combination of rows is 0; that is, $\sum_{\alpha} d_{\alpha} r_{\alpha} = 0$, for some scalars d_{α} . The idea is to put a partial order \square on $CA^{k,-}$ and show by induction on \square that for all $\alpha \in CA^k$, the coefficient $d_{\alpha} = 0$.

We define \square as follows. We take *no-op* to be the minimal element of \square . For actions $\alpha = do\varphi_A$; γ_β and $\alpha' = do(\varphi_{A'})$; $\gamma_{\beta'}$ (where we take γ_β to be *no-op* if $\alpha = do(\varphi_A)$ and similarly for $\gamma_{\beta'}$), $\alpha \square \alpha'$ iff either (1) $A \supseteq A'$, (2) A = A', $\beta \neq no-op$, and $\beta' = no-op$, or (3) A = A', $c_\beta(a) \square c_{\beta'}(a)$ for all atoms a.

We show that $d_{\alpha}=0$ by induction assuming that $d_{\alpha'}=0$ for all actions $\alpha'\in CA^{k,-}$ such that $\alpha \sqsupset \alpha'$. For the base case, $\alpha=no\text{-}op$. Consider the k-progress function $g^k_{no\text{-}op}$ such that $g^k_{no\text{-}op}(t)=t$ for all nodes t in a k-olt. Note that $g_{no\text{-}op}(s^k,id)=g^k_{no\text{-}op}$ for all k-olts s^k . It is easy to see that if β has the form $do(\varphi_A)$ or $do(\varphi_A)$; $\gamma_{\beta'}$, then for all k-olts s^k , $g_{\beta,s^k}\neq g^k_{no\text{-}op}$ (since for the root r of s^k , $g_{\beta,s^k}(r)\neq r$). Thus, the entry of $r_{no\text{-}op}$ corresponding to the column $(s^k,g^k_{no\text{-}op})$ is 1, while the entry of d_β for $\beta\neq no\text{-}op$ corresponding to this column is 0. It follows that $d_{no\text{-}op}=0$.

For the general case, suppose that we have an arbitrary action $\alpha \neq no\text{-}op$ in $CA^{k,-}$ and $d_{\alpha'} = 0$ for all $\alpha' \in CA^k$ such that $\alpha \sqsupset \alpha'$. We now define a k-olt $s^{k,\alpha} \in T_a^k$ such that if $g_{\alpha',s^{k,\alpha}} = g_{\alpha,s^{k,\alpha}}$ and $\alpha \neq \alpha'$, then $\alpha \sqsupset \alpha'$, so $d_{\alpha'} = 0$ by the induction hypothesis. Once we show this, it follows that $d_{\alpha} = 0$ (since otherwise the entry in $\sum_{\alpha'} d_{\alpha'} r_{\alpha'}$ corresponding to $g_{\alpha,s^{k,\alpha}}$ would be nonzero). We construct $s^{k,\alpha}$ by induction on the depth of α . If α has depth 1 and is not no-op, it must be of the form $do(\varphi_A)$ for some set A of atoms. Suppose that $b \in A$. Let the total order at the root of $s^{k,\alpha}$ be such that the final elements in the order are the elements in A, and b is the first of these. For example, if $A = \{b, c, d\}$, we could consider an order where the final three elements are b, c, and d (or b, d, and c). Note that if r is the root of $s^{k,\alpha}$, then $g_{\alpha,s^{k,\alpha}}(r)$ is the child t_b of r labeled b. Now consider an action α' of the form $do(\varphi_{A'})$; β (β may be no-op). If A' contains an element not in A, then $g_{\alpha,s^{k,\alpha}}(r) \neq t_b$ (because there will be an atom in A' that is greater than b in the total order at r). If $A' \subset A$, then $\alpha \succ \alpha'$, as desired. And if A = A' and $\alpha \neq \alpha'$, then $\alpha' = \varphi_A$; γ_B and $\beta \neq no\text{-}op$, so it is easy to see that $g_{\alpha',s^{k,\alpha}}(r) \neq t_b = g_{\alpha,s^{k,\alpha}}(r)$.

Suppose that m>1 and we have constructed $s^{k,\beta}$ for all actions $\beta\in CA^{k,-}$ of depth less than m. We now show how to construct $s^{k,\alpha}$ for actions $\alpha\in CA^{k,-}$ of depth m that are not of depth m-1. This means that α must have the form $do(\varphi_A)$; β . We construct the total order at r as above, and at the subtree of $s^{k,\alpha}$ whose root is the child of r labeled a, we use the same orderings as in $s^{k-1,c_{\beta}(a)}$, which by the induction hypothesis we have already determined. It now follows easily from the induction hypothesis that if $g_{\alpha',s^{k,\alpha}}=g_{\alpha,s^{k,\alpha'}}$ and $\alpha\neq\alpha'$, then $\alpha =\alpha'$. This completes the argument for (6).

The argument above gives us a representation theorem for each k that works for actions of depth k. However, we are interested in a single representation theorem that works for all actions of all depths simultaneously. The first step is to make the state-dependent utility functions v^1, v^2, \ldots that we began with (one utility function for each k in the argument above) v-compatible, in the sense that if α is a depth-k action and k' > k, then $v^k(a, c_\alpha(a)) = v^{k'}(a, c_\alpha(a))$. That is, we want to construct a sequence (v^1, v^2, v^3, \ldots) of v-compatible utility functions, each of which satisfies (2). We proceed as follows.

We can assume without loss of generality that each utility function has range in [0,1], by applying an affine transformation. (Doing this would not affect (2).) For each utility function v^k let v^{ki} , for $i \le k$, be the restriction of v^k to actions of depth i. Thus, $v^{kk} = v^k$. Now consider the sequence $v^{11}, v^{21}, v^{31}, \ldots$. It must have a convergent subsequence, say $v^{m_1,1}, v^{m_2,1}, v^{m_3,1}, \ldots$. Say it converges to w^1 . Now consider the subsequence $v^{m_2,2}, v^{m_3,2}, \ldots$ (We omit $v^{m_1,2}$, since we may have $m_2 = 1$, in which case $v^{m_1,2}$ is not defined.) It too has a convergent subsequence. Say it converges to w^2 . Continuing this process, for each k, we can find a convergent subsequence, which is a subsequence of the sequence we found for k-1. It is easy to check that the limits w^1, w^2, w^3, \ldots of these convergent subsequences satisfy (2) and are v-compatible (since, in general, v^{ki} is v-compatible with v^{kj} for $i, j \le k$). For the remainder of this discussion, we assume without loss of generality that the utility functions in the sequence v^1, v^2, \ldots are v-compatible.

Note that it follows easily from our definition that probability measures in the sequence Pr¹, Pr²,...

are Pr-compatible in the following sense: If k' > k, $(s^k, id) \in \Omega^k$, and $E^{k'}(s^k, id)$ consists of all the pairs (t^k', id) such that s^k is the projection of $t^{k'}$ onto depth k, then $\Pr^k(s^k, id) = \Pr^{k'}(E^{k'}(s^k, id))$. We will also want a third type of compatibility among the utility functions. To make this precise, define a k'-progress function g to be k-bounded for k < k' if for all nodes t of depth $\leq k$, we have that g(t) has depth $\leq k$, and if the depth of t is greater than k, then (t) = t. Note that if α is a depth-k action, then $g_{\alpha,s^{k'}}$ is k-bounded. If k' > k and g is a k-bounded k'-progress function, then k has an obvious projection to a k-progress function. We want the utility functions in the sequence k', k', k', that satisfies (4) to be k'-compatible in the following sense: if k' is a k'-progress function that is k-bounded, k' is the projection of k' onto depth k', then k' is the projection of k' onto depth k', then k' is k' is the projection of k' onto depth k', then k' is k' suppose that we have defined k', k', k', and k' is the projection of k' is k'-bounded, define k' is the projection of k' onto depth k' and k' is the projection of k' in the k' is the projection of k' in the

We are now ready to define a single state space. Define an ∞ -olt just like a k-olt, except that now the tree is unbounded, rather than having depth k. Let Ω^{∞} consist of all pairs (s^{∞}, g) , where s^{∞} is an ∞ -olt and g is a k-bounded progress function for some k. This will be our state space. Define $E^{\infty}(s^k, id)$ by obvious analogy to $E^{k'}(s^k, id)$: it consists of all the pairs (t^{∞}, id) such that t^{∞} extends s^k . Then, by Carathéodory's extension theorem [1] there is a measure \Pr^{∞} on the smallest σ -algebra extending the algebra generated by the sets $E^{\infty}(s^k, id)$ which agrees with \Pr^k for all k (i.e., $\Pr^k(s^k, id) = 1/|T^k| = \Pr^{\infty}(E^{\infty}(s^k, id))$). Let u^{∞} be defined by taking $u^{\infty}(s^{\infty}, g) = u^k(s^k, g^k)$ if g is k-bounded and s^k is the unique k-olt that s^{∞} extends. It is easy to check that this is well-defined (note that if g is k-bounded then g is k'-bounded for k' > k, so there is something to check here). Finally, it is easy to check that for a depth-k action α , we have that the expected utility of α is

$$\sum_{(s^k,g)\in\Omega^k} \Pr^{\infty}(E^{\infty}(s^k,id)) u^{\infty}(s^k,g_{\alpha,s^k}) = \sum_a v^k(a,c_{\alpha}(a)),$$

giving us the desired result.

4 Conclusion and Future Work

We have extended the results of [2] to allow for actions that are composed of sequences of steps, and proved a representation theorem in this setting. More precisely, we have shown that when an agent's language-based preferences satisfy a suitably formulated cancellation axiom, they are acting as if they are an expected utility maximizer with respect to some background state space Ω , a probability and utility over Ω , and a selection function on Ω that serves to "disambiguate" the results of actions described in the language. Allowing for (possibly unbounded) sequences of steps made the proof significantly more complicated.

In [2], we also considered axioms regarding the preference order \succeq that restricted properties of the selection function in ways that are standard in the literature on counterfactual conditions (e.g., being *centered*, so that $sel(\omega, \varphi) = \omega$ whenever $\omega \models \varphi$). Although we have not checked details yet, we believe it will be straightforward to provide axioms that similarly restrict the selection function in our setting, and to extend the representation theorem appropriately.

We also believe it is of interest in some contexts to consider more complex sequential actions, such as "do φ until ψ ". This opens the door for potentially *non-terminating* actions, which of course will add further complexity to the analysis.

Finally, and perhaps most urgently, while the cancellation axiom is quite amazing in the power it has, it is not particularly intuitive. As shown in [3], more intuitive axioms can be derived from cancellation, such as transitivity of the relation \succeq or the classic principle of *independence of irrelevant alternatives* (see [6]). In order to bring the technical results of this project more in line with everyday intuitions about preference, it would be very beneficial to "factor" the cancellation axiom into weaker, but easier to intuit, components. This is the subject of ongoing research.

References

- [1] R. B. Ash (1970): Basic Probability Theory. Wiley, New York.
- [2] A. Bjorndahl & J. Y. Halpern (2021): Language-based decisions. In: Theoretical Aspects of Rationality and Knowledge: Proc. Eighteenth Conference (TARK 2021). The proceedings are published as Electronic Proceedings in Theoretical Computer Science.
- [3] L. E. Blume, D. Easley & J. Y. Halpern (2021): Connstructive decision theory. Journal of Economic Theory 196. An earlier version, entitled "Redoing the Foundations of Decision Theory", appears in Principles of Knowledge Representation and Reasoning: Proc. Tenth International Conference (KR '06).
- [4] J. Dubra, F. Maccheroni & E.A. Ok (2004): *Expected utility theory without the completeness axiom*. Journal of Economic Theory 115, pp. 118–133.
- [5] D. H. Krantz, R. D. Luce, P. Suppes & A. Tversky (1971): Foundations of Measurement, Vol 1: Additive and Polynomial Representations. Academic Press, New York.
- [6] L. J. Savage (1954): Foundations of Statistics. Wiley, New York.
- [7] D. Scott (1964): Measurement structures and linear inequalities. Journal of Mathematical Psychology 1, pp. 233–247.
- [8] R. Selten (1975): Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory 4, pp. 25–55.
- [9] R. C. Stalnaker (1968): *A theory of conditionals*. In N. Rescher, editor: *Studies in Logical Theory*, Blackwell, Oxford, U.K., pp. 98–112.