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—— Abstract

Innovative side-channel attacks have repeatedly exposed the secrets of cryptosystems. Benhamouda,
Degwekar, Ishai, and Rabin (CRYPTO-2018) introduced local leakage resilience of secret-sharing
schemes to study some of these vulnerabilities. In this framework, the objective is to characterize
the unintended information revelation about the secret by obtaining independent leakage from each
secret share. This work accurately quantifies the vulnerability of the additive secret-sharing scheme
to local leakage attacks and its consequences for other secret-sharing schemes.

Consider the additive secret-sharing scheme over a prime field among k parties, where the secret
shares are stored in their natural binary representation, requiring A\ bits — the security parameter.
We prove that the reconstruction threshold k& = w(log\) is necessary to protect against local
physical-bit probing attacks, improving the previous w(log A\/loglog A) lower bound. This result
is a consequence of accurately determining the distinguishing advantage of the “parity-of-parity”
physical-bit local leakage attack proposed by Maji, Nguyen, Paskin-Cherniavsky, Suad, and Wang
(EUROCRYPT-2021). Our lower bound is optimal because the additive secret-sharing scheme is
perfectly secure against any (k — 1)-bit (global) leakage and (statistically) secure against (arbitrary)
one-bit local leakage attacks when k = w(log\).

Any physical-bit local leakage attack extends to (1) physical-bit local leakage attacks on the
Shamir secret-sharing scheme with adversarially-chosen evaluation places, and (2) local leakage
attacks on the Massey secret-sharing scheme corresponding to any linear code. In particular, for
Shamir’s secret-sharing scheme, the reconstruction threshold k = w(log ) is necessary when the
number of parties is n = O(Alog A). Our analysis of the “parity-of-parity” attack’s distinguishing
advantage establishes it as the best-known local leakage attack in these scenarios.

Our work employs Fourier-analytic techniques to analyze the “parity-of-parity” attack on the
additive secret-sharing scheme. We accurately estimate an exponential sum that captures the
vulnerability of this secret-sharing scheme to the parity-of-parity attack, a quantity that is also
closely related to the “discrepancy” of the Irwin-Hall probability distribution.
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1 Introduction

Innovative and sophisticated side-channel attacks, beginning with [13, 14], have repetitively
exposed the secrets of cryptosystems. Over the last few decades, there have been extensive
studies on the security and efficiency of cryptosystems against various models of potential
attacks (refer to the excellent survey [12]).

Benhamouda, Degwekar, Ishai, and Rabin [2] recently introduced local leakage resilience
of secret-sharing schemes to investigate some of these vulnerabilities (this primitive is also
implicitly studied by Goyal and Kumar [6]). Leakage-resilient cryptography aims to provide
provable security in the presence of known attacks and even unforeseen attacks. Secret-sharing
schemes are crucial building blocks for nearly all threshold cryptography. In leakage-resilient
secret-sharing, the objective is to characterize the unintended information revelation about
the secret by obtaining independent leakage from each secret share. The secret-sharing
scheme is locally leakage-resilient if the joint distribution of the leakage from every secret
share is (statistically) independent of the secret.

Interestingly, the local leakage resilience of Shamir’s secret-sharing scheme is closely
related to the problem of repairing Reed-Solomon codes [8, 9, 21, 7, 3, 17]. To break the
leakage-resilience of a secret-sharing scheme, the adversary does not need to reconstruct the
whole secret; obtaining partial information to distinguish any two secrets is sufficient. For
example, in a linear secret-sharing scheme over characteristic-two fields, a suitable one-bit
leakage from each share determines the “least significant bit” of the secret. The adversary’s
objective is to leak as small and simple a leakage as possible to achieve as significant a
distinguishing advantage as possible.

The physical-bit leakage model is a realistic (and analytically-tractable) leakage model
where an adversary probes physical bits in the memory hardware [11, 10, 4]. In the context
of local leakage resilience of secret-sharing schemes, parties store their secret shares in their
natural binary representation. The adversary chooses a bounded number of positions to
probe the memory hardware storing these secret shares. The adversary’s objective is to use
this leakage to obtain some partial information about the secret. If the adversary’s view is
statistically independent of the secret, the secret-sharing scheme is secure against the local
leakage; an indistinguishability-based definition captures this intuition [2].

This work characterizes the vulnerability of the additive secret-sharing scheme to the
“parity-of-parity” physical-bit local leakage attack proposed by [15]. Next, we explore the
consequences of this result to the leakage resilience of other linear secret-sharing schemes (in
particular, Shamir’s secret-sharing scheme).
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Summary of known attacks

Consider the additive secret-sharing scheme among k parties over a prime field. Ben-
hamouda et al. [2] proposed a one-bit local leakage attack with a distinguishing advantage of
> 1/k*.1 Recently, Maji et al. [15] proposed the “parity-of-parity” attack, where the secret
shares are stored in their natural binary representation, and the attacker leaks the least
significant bit from every secret share. Adams et al. [1] proved that the “parity-of-parity”
attack has a distinguishing advantage > (1/2% - k!) ~ (e/2)¥/k*. Therefore, the threshold
k must be w(log A\/loglog\) for the additive secret-sharing scheme to be secure, where
A is the security parameter. Since the physical-bit probing attack is a significantly weak
leakage attack, their result poses a pressing threat to the secret-sharing scheme’s security.
Furthermore, a local leakage attack on the additive secret-sharing scheme extends to Shamir’s
secret-sharing schemes for adversarially-chosen evaluation places [15].

Using a probabilistic argument, Nielsen and Simkin [19] presented a leakage attack on
Shamir’s secret-sharing scheme. They showed the existence of a leakage function and a secret
such that the leakage is consistent with the secret with a probability of at least 1/2. Their
attack requires m > % bits of leakage from each secret share, where n is the number of
parties and k is the reconstruction threshold. This result is not applicable when, for example,
the number of parties n = k, the reconstruction threshold.

Summary of our results

This work presents a tight analysis of the parity-of-parity attack (Figure 1). We prove that
this attack has a distinguishing advantage of > % (2 /7T)k, which, in turn, implies that the
threshold k& must be w(log A) for the additive secret-sharing scheme to be secure. Observe
that our result qualitatively improves the lower bounds of [2] and [1] while relying only on
physical-bit local leakage.

Our result shows that the simplistic parity-of-parity physical-bit probing attack is asymp-
totically optimal. The distinguishing advantage of any local leakage attack (possibly perform-
ing more sophisticated leakages) cannot be significantly higher because Benhamouda et al. [2]
proved that the distinguishing advantage of any one-bit local leakage attack on the additive
secret-sharing scheme is < 2.47 - (2/7T)k. Furthermore, due to the (k — 1) independence of
the additive secret-sharing scheme, any (global) (k — 1) bits of leakage has no advantage in
distinguishing any two secrets.

Maji et al. [15] and Adams et al. [1] showed that any physical-bit local leakage attack
extends to a physical-bit leakage attack on Shamir’s secret-sharing scheme with adversarially-
chosen evaluation places. Previously, the best-known distinguishing advantage was >
1/(2% - k!) [1], where k is the reconstruction threshold of Shamir’s secret-sharing scheme. Our
work improves this lower bound to > 1 - (2/7)¥, which implies that k = w(log A) is necessary
for security against physical-bit local leakage attacks.

This attack also translates into a local leakage attack on the Massey secret-sharing scheme
corresponding to any linear code (refer to Appendix C for a definition); for example, Shamir’s
secret-sharing scheme with arbitrary evaluation places. Before our work, to ensure local
leakage-resilience, the lower bound on the reconstruction threshold of Shamir’s secret-sharing

L This attack performs a computation on the entire secret share and leaks one bit of information from it.
We emphasize that this attack is not a physical-bit attack.
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scheme was (1) k = w(log A/ loglog \), if n = O(Alog \/loglog A) [1], and (2) k > n/(A+ 1),
if n = w(AlogA/loglog\) [19]. Our results improve the lower bound to k = w(log A) when
the number of parties n = O(Alog A).

Technically, we obtain our lower bound through a Fourier-analytic approach and an
accurate estimation of an appropriate exponential sum. As a consequence of our result, we
also improve the bound on the “discrepancy” of the Irwin-Hall probability distribution, a
fundamental property of any real-valued probability distribution proposed in [15].

2  Our Contribution

We begin with some notation to facilitate an overview of our results.

Secret-sharing schemes and local leakage resilience

Fix a prime field F' of order p. The elements of F' are naturally represented as A-bit binary
strings corresponding to the elements {0,1,...,p — 1}, where 22~ < p < 2*. Fix a linear
secret-sharing scheme over F' among n parties with a reconstruction threshold k. Note
that the secret and the secret shares are all elements of F. The number of bits in the
representation of the secret and the secret shares is the security parameter A.

Our work considers a (static) adversary who obtains m = 1 physical-bit leakage from
each secret share. A one-bit physical-bit leakage function 7 = (71, 72, ..., 7,) is a collection of
functions 7;: ' — {0, 1} such that, on input « € F, function 7; outputs the £;-th physical-bit
of x for some 1 < £; < A, for all 1 <4 < n. For instance, ¢; = 1 refers to the least significant
bit and ¢; = A refers to the most significant bit. Let 7(s) be the joint distribution of the
leakage function 7 over the sample space {0,1}" defined by the experiment: (1) sample
random secret shares (s1, S2,...,S,) € F™ for the secret s € F' and (2) output the leakage
(’7’1(81),7’2(82), . ,Tn(sn)).

A secret-sharing scheme is e-locally leakage-resilient against one physical-bit probing
attacks, if, for any pair of secrets 5%, s(1) € F, the leakage distributions 7(s(?)) and 7(s())
have statistical distance < e. As per convention, we want to ensure that the parameter
€ decays faster than any inverse-polynomial in the security parameter A, represented as
e = negl(A).

Additive secret-sharing scheme

Consider the additive secret-sharing scheme with k parties over a finite field F (possibly
of composite order). For a secret s € F, this secret-sharing scheme chooses random secret
shares s1,...,s; € F such that s; +-- -+ s, = s. We assume that if F' is a prime field, parties
store the secret shares si, ..., s, in their natural binary representation. However, if F' is a
composite order field of characteristic p, then the secret shares are stored as a vector of F,
elements, where every F), element is represented in its natural binary representation.?

Parity-of-parity attack

Maji et al. [15] introduced the parity-of-parity local physical-bit leakage attack on the additive
secret sharing scheme over fields of arbitrary characteristic. If F' is a prime field (of an odd
order), then the attacker leaks the least significant bit of each secret share, i.e., the leaked bit

2 The degree-a extension of the field Fj, i.e. the finite field Fye, is isomorphic to F,[X]/7(X), where 7(X)
is a degree-a irreducible polynomial. Therefore, every element s € Fy,« has a natural (s1,...,sq) € Fy
representation, each element in turn has a A-bit binary representation.
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indicates whether the secret share s; € {0,2,...,|F| —1} or s; € {1,3,...,|F| — 2}. Finally,
the attack predicts the parity of the secret using the parity of these leaked parities. If F’
is a degree-a extension of the prime field F},, then every secret share s; € F' has equivalent
representation (s;1,...,8.4) € F3. For some fixed index j € {1,2,...,a}, the attacker leaks
the parity of the element s; ; from the i-th secret share. Over extension fields, this attack
predicts the parity of s;, where the secret s = (s1,...,5,) € F*.

For example, if F' has characteristic 2, observe that the parity of the j-th coordinate of all
the secret shares (as vectors in Fy) yields the j-th coordinate of the secret, which completely
breaks the leakage-resilience of the additive secret-sharing scheme.

Adams et al. [1] proved that the advantage of this attacker is maximized when the secrets
are (0 = 0 and s() = (p—1)/2. Furthermore, they proved that the advantage of this attack
is > 1/(2% - k!).

Our results

Given € and k, our objective is to identify whether there are two distinct secrets s, s() ¢ F
such that the parity-of-parity attack has (at least) e-advantage in distinguishing the secret
shares that these secrets generate. Without loss of generality, assume that F' is a prime
field of order > 2, because the characteristic of the field determines the vulnerability of the
additive secret-sharing scheme. We prove the following result.

» Theorem 1. Consider the additive secret sharing scheme with k parties over the prime field
F. There exist two secrets 59, sV € F such that the parity-of-parity attack has e-advantage
in distinguishing the secret shares of s from the secret shares of sV, where

es L. (2)
“2 \n)

» Remark 2. Our bound captures the intuition that, for a fixed k, with increasing p, the
insecurity of the additive secret-sharing scheme reduces. As p — oo, the insecurity tends
(from above) to the limit % (%)k, a constant. Intuitively, the “most-secure additive secret-
sharing scheme” corresponds to the case when the order of the finite field is an “infinitely
large prime p.” This phenomenon and an exponential lower bound in k were originally
conjectured in [15] based on empirical evidence (refer to Figure 1). Recently, [1] made partial
progress towards non-trivially lower-bounding the advantage of the parity-of-parity attack by
proving e > 1/(2% - (k—1)!) — (3(k — 1)2+1)/p.® However, this insecurity bound is increasing
in p; thus, their work could not substantiate this conjecture. Our result substantiates the
empirical evidence of [15] and positively resolves their conjecture.

Our lower bound is (asymptotically) optimal and also proves the optimality of the parity-
of-parity attack in the following sense. Over prime fields, [2] proved that the additive
secret-sharing scheme is 2.47 - (2/7)-secure against any local one-bit leakage attack (i.e., the
leakage function 7; : F — {0, 1} is arbitrary and need not be a physical-bit probing leakage).
Consequently, the reconstruction threshold of the additive secret-sharing scheme must satisfy
k =w(log ) to be leakage-resilient to one physical-bit leakage from every secret share. Our
result improves the previous best-known lower bound of k¥ = w(log A/ loglog A\) for additive
secret-sharing schemes using the leakage attack presented in [2, 1].

3 This bound proves that the discrepancy of the Irwin-Hall distribution is non-zero and is an integer
multiple of 1/2’“(1@ — 1), Next, it transfers this lower bound to the distinguishing advantage of the
parity-of-parity attacker against the additive secret-sharing scheme over finite prime fields.
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Figure 1 The horizontal axis represents the number of shares k in the additive secret-sharing
scheme. The vertical axis represents the — In(+) of the distinguishing advantage of the parity-of-parity
attack introduced by Maji et al. [15]. The squared points represent the empirically computed value
for small k over a large enough field F' as presented in [15] . The circled points represents the lower
bound we prove in this work.

To better bound the effectiveness of the parity-of-parity attack, Maji et al. [15] proposed
the notion: discrepancy of the Irwin-Hall distribution. The first Irwin-Hall distribution IH;
is the uniform distribution over [0,1). The é-th Irwin-Hall distribution IH; is the convolution
of the (¢ — 1)-th Irwin-Hall distribution IH;_; with the uniform distribution over [0,1). The
discrepancy of the k-th Irwin-Hall distribution disc(k) is defined as

disc(k) := up ‘ /fo (=D)[==Y1 IH () da |. (1)

Appendix A provides a pictorial illustration of this notion. We refer the readers to [1] for
more discussion on why this measure represents the effectiveness of the parity-of-parity
attack. In particular, they proved that disc(k — 1) is @(kQ/p)—close to the effectiveness of
the parity-of-parity attack on additive secret-sharing among k parties over prime field F' of
order p. Consequently, our result implies that the discrepancy of the Irwin-Hall distribution
is also exponential in k, improving upon the previous best lower bound 1/(2% - k!) [1].

» Corollary 3. Fork € {1,2,...}, let disc(k) represents the discrepancy of the k-th Irwin-Hall
distribution. Then, it holds that disc(k) = © ((g)k) .

T

Finally, motivated by applications in leakage-resilient secure computation, observe that
our result extends to a stronger adversary who obtains some secret shares in the clear and
performs local leakage attacks on the remaining secret shares.* We have the following

theorem for such insider attackers.

4 For example, in secret-sharing based multi-party computation protocols [5], an adversary can corrupt
some parties and get their entire secret shares in the clear. Additionally, the adversary may perform
leakage attacks on the secret shares of the remaining honest parties.
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» Corollary 4. Consider the additive secret sharing scheme with k parties over the prime field

F. Suppose a more general adversary obtains 0 secret shares and gets the least significant

bit from other shares. Then, there exist two seireets such that the adversary’s advantage of
2

distinguishing the two secrets is at least % . (;) e

Shamir’s secret-sharing scheme. Let ShamirSS(n, k, X) represent Shamir’s secret-sharing
scheme among n parties, reconstruction threshold &, and evaluation places X = (X1,...,Xn).
The evaluation places X1, ..., X, are distinct elements of F’*. Let s € F' be the secret. The
secret-sharing scheme picks a random polynomial f(Z) € F[Z]/Z* conditioned on the fact
that f(0) =s. For i € {1,...,n}, the i-th secret share is f(X;).

Maji et al. [15] show a set of evaluation places such that one could perform the parity-
of-parity attack on the first k secret shares to get the same advantage as the attack on the
additive secret-sharing scheme. Hence, our result implies the following theorem.

» Theorem 5. Let F be a prime field of order p such that p =1 mod k. Let o € F* be
such that {a,a?,...,a" =1} C F* is the set of k roots of the equation ZF —1 = 0. Suppose
there exists B € F* such that {Ba, Ba?, ..., Ba* = B} is a subset of the evaluation places X.
One can perform the parity-of-parity attack on the secret shares corresponding to evaluation
places {Ba, a?, ..., Bak = B} to get a distinguishing advantage of > % - (2/7)k. Therefore,
if ShamirSS(n, k, X) is negl(\)-locally leakage-resilient secret-sharing scheme against one
physical-bit leakage from each secret share, then it must be the case that k = w(log \).

Extension to arbitrary local leakage attacks. The following result extends the parity-
of-parity attack to a local leakage attack to Massey secret-sharing scheme and Shamir’s
secret-sharing scheme. Given a linear code C' C F(™*+1) | the Massey secret-sharing scheme [18]
corresponding to a code C, is defined as follows. For a secret s € F', one samples a random
codeword (sg, 51, ...,5,) € C such that so = s. For i € {1,2,...,n}, the i*" secret share is
s; € F.

» Theorem 6. Let F' be a prime order field. For any Massey secret-sharing scheme corres-
ponding to an [n+ 1, k|p-linear code C' or any ShamirSS(n, k, )Z) with arbitrary evaluation
places X over F, there is a one-bit local leakage attack such that the distinguishing advantage
is at least % . (%)k

To see why our results imply this theorem, assume the secret could be reconstructed
from the first k shares as s = Zle «; - 8;, where ayq,...,ay are some fixed field elements
(determined by the [n + 1, k] linear code). One can leak the least significant bit of «; - s;
from the i-th secret share s;. It is easy to see that the advantage of this adversary is identical
to the advantage of the parity-of-parity attack on the additive secret-sharing scheme.

However, we clarify that this leakage is not the physical-bit leakage because the local
leakage involves field multiplication. As a consequence of Theorem 6, we obtain a similar
lower bound for the reconstruction threshold against arbitrary local leakage.

» Corollary 7. Fiz n,k € N and a prime order field F. If the Massey secret-sharing
scheme corresponding to an [n+ 1, k| p-linear code or ShamirSS(n, k, X) over F' with arbitrary
evaluation places X is negl(A)-locally leakage-resilient against one-bit local leakage, then it
must hold that k = w(log(A)).

We clarify that a physical-bit leakage analog for this result does not hold. [15] proved
that with close-to-one-probability the ShamirSS(n, k, X) with random evaluation places X is
negl(A)-locally leakage-resilient even for & = 2. Our result shows that the lower bound on the
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reconstruction threshold of Shamir’s secret-sharing scheme is k£ = w(log A\) when the number
of parties is n = O(Alog \). Before our work, the lower bound was (1) k = w(log A/ loglog \),
if n = O(AlogA/loglogA) [1], and (2) k = n/(A+ 1), if n = w(AlogA/loglog A) [19].

» Remark 8. Our analysis also extends to the thermal noise leakage model in which the
adversary obtains a noisy version of the leakage bits as considered in [1]. In this model, instead
of obtaining the leakage 7(s) = (71(s1),72(82), .., Tn(sn)), the adversary receives a noisy
leakage 7/(s) = (71(s1),73(82), - - ., Th(5,)), where every 7/(s;) is p;-correlated with 7;(s;).?
The distinguishing advantage is reduced by a (multiplicative) factor of p = p1pa- - pp < 1.
For instance, the distinguishing advantage of the parity-of-parity attack in the presence of
(p1,- .., pn) noise would be

1 2\"
pl.p2...pn.§. — .
Qo

This observation follows from facts of convolution.

3 Technical Overview

This section presents an overview of our technical approach. Let F' be a prime field of order
p. Consider the additive secret-sharing scheme over F'. Let 7 be the leakage attack that
leaks the least significant bit from every share.

We refer the readers to Section 4.1 for an introduction to Fourier analysis. By the
Fourier-analytic approach from prior works [2, 15, 16], for any two secrets 59 and s we
have

sofr () () -4 ¥

£e{0,1}n

)

Z (ﬁ ]]/';i(a)> (wa'sm’ 7wa.5<1>)

acF* \i=1

where w = exp(2m1/p) is the pt* root of unity. Furthermore, 1y is the indicator function
for the set Sy :={0,2,...,p — 1} and, similarly, 1; is the indicator function for the set
Sy :={1,3,...,p— 2}. That is, S is the set of field elements whose least significant bit is b.

Note that the above expression is an identity. Our first observation is that, for any
£ €{0,1}", the magnitude of the expression

Ul = [[ Ta()

. . . . p—1 p+1
is exponentially decaying as o goes from the central points 5= and 5~

and p — 1 (refer to Figure 2). Informally, it holds that

vor=(2) ()

For the magnitude of the other term

to the end points 1

V(a) = (wa.s(o) _ wa,s(1)> ’

5 For any p € [0,1], a bit b is p-correlated with another bit b’ if b = b’ with probability p, and b is an
independent and uniformly random bit with probability 1 — p.
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Figure 2 For the representative case of p = 41, the Fourier spectrum of the indicator function
1g, where S = {0,2,...,40} C F, is the subset of all “even elements”.

we use the naive triangle inequality to upper bound it by 2 for the non-central terms (i.e.,
o # p—;l, p—;l) And we argue that there exists two secrets s(©) and s(!) such that V (%)
and V (%) are large (e.g., > 3/2).

Together, these observations enable us to lower bound the statistical distance by (approx-
imately) the magnitude of the dominant term U (pz;l) and U (%), which are @((%)n)

Finally, observe that the two distributions 7 (s()) and  (s()) are (n—1)-indistinguishable.
That is, these two distributions restricted to any proper subset of their coordinates are
identical. Therefore, by standard techniques, parity is the optimal distinguisher for these
two distributions (we provide a formal discussion on this in Appendix B). Consequently, the
parity-of-parity attack [15] has an distinguishing advantage of @((%)n)

» Remark 9. Due to the form of our lower bound expression, it is tempting to naively argue
that the advantage of the parity-of-parity attack correctly predicting the secret’s parity is
(some form of a) “k-fold convolution of a (2/7)-biased predictor.” This intuition is (seriously)
technically flawed. The least significant bit of the first (k—1) secret shares are each 1/p-biased
and independent of the secret.

4  Analysis of the Parity-of-parity Attack on Additive Secret-sharing
Schemes

Maji et al. [15] proposed the following parity-of-parity attack. Suppose the field elements are
stored in their natural binary representation. The adversary leaks the least significant bit
(LSB) as the local leakage of every secret share. Finally, the adversary outputs the parity of
the LSB from every secret share as the prediction of the secret. Adams et al. [1] proved that
the distinguishing advantage of this adversary is at least ©(1/n!). In this section, we shall
present a tight analysis of this attack. In particular, we shall show that the distinguishing
advantage is exp(—0O(n)).

16:9
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This lower bound we prove is tight up to a small constant, as Benhamouda et al. [2]
prove that the distinguishing advantage of the adversary is upper-bounded by (%)7%2. Note
that the upper bound of [2] holds for any local leakage attack on the additive secret-sharing
scheme. Therefore, our result also demonstrates that the “parity-of-parity” attack is the
optimal attack.

Formally, let AddSS(s) represent the distribution of the additive secret shares of the
secret s. That is, AddSS(s) = (s1,...,8,) is sampled uniformly at random conditioned on
that s; + 8o + -+ 8, = 5. For any z € F, let Isb(x) represent the least significant bit of z.°

Let 7 represent the local leakage function that leaks the LSB of every secret share. That
is, 7(AddSS(s)) := (Isb(sl)7 Isb(sz), ..., Isb(sn)). We prove the following theorem.

» Theorem 10. There exists two secrets s and sV such that

SD (r(AddsS(s"))) . T(AddSS(s))) > % - (i)

In particular, to ensure that the adversary has a negligible distinguishing advantage negl(X),
it must hold that n = w(log \).

» Remark 11 (On the characteristics of the field). We emphasize that our lower bound holds
for arbitrarily large characteristics. Intuitively, as the characteristic of the field increases,
one expects the advantage of the adversary to decrease. However, our result shows that
the advantage of the adversary is guaranteed to be higher than % . (%)neven when the
characteristic of the field tends to infinity.

Finally, observe that 7(AddSS(s(®)) and 7(AddSS(s("))) are (n — 1)-indistinguishable
distributions since the additive secret sharing is (n — 1)-private. By standard techniques in
Fourier analysis, the parity of all the bits is the best distinguisher (up to a small constant) for
any two (n — 1)-indistinguishable distributions. For completeness, we provide formal proof
of this in Appendix B. This observation, together with the theorem, implies the optimality
of the parity-of-parity attack.

Surprisingly, our proof of Theorem 10 is based on Fourier analysis. Typically, Fourier
analytic approach is employed to upper bound the distinguishing advantage of the adversary.
However, we shall use it to prove a lower bound result.

We start by introducing some notations and basics of Fourier analysis that suffice for our
purposes. Next, we present the proof of Theorem 10.

4.1 Preliminaries on Fourier Analysis

Let F be a prime field of order p. For any complex number z € C, let T represent its
conjugate. For any two functions f,g: F — C, their inner product is

(f.0) = }) 3 f@) - 9o,

zeF

6 This section restricts our discussion to a field F' of prime order. If E is an degree ¢ extension field of the
field F, then every element a of E can be seen as a polynomial a;—1 X" ™' +--- 4+ a1X + ao in F[X].
We shall call ag the least significant symbol of a. Observe that, for an additive secret sharing of the
secret s over E, the least significant symbol of every secret share forms an additive secret sharing of the
least significant symbol of s over F'. Therefore, the result for prime order fields naturally extends to
composite order fields when the attacker leaks the LSB of the least significant symbol of every share.
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Let w = exp(2m1/p) be the p* root of unity. For all o € F, the function Y, is defined to be
Xol(T) = w™®,

~

and the respective Fourier coefficient f(«) is defined as

fla) = (f,xa) -

Our proof relies on the following lemma. We refer the readers to [2] for a proof.

» Lemma 12 (Poisson Summation Formula). Let C C F™ be a linear code with dual code C+.

For allie€{1,2,...,n}, let fi: F — C be an arbitrary function. It holds that
E [Hfi($i)] = (Hfz‘(%‘))-
O D gect \i=1
The following claims will also be useful, which follows directly from the definition.

» Claim 13. Let S,T C F be a partition of F. For all a € F,
Is(a) = ~1r(a).

» Claim 14. For all S C F and x € F, it holds that

—

L. rs(a) = Is(a) -w

-

The statistical distance (a.k.a, total variation distance) between two distributions P and @
over a finite sample space €2 is defined as SD (P, Q) =  >°__o|P(z) — Q(z)|. For any code
C C F™ and any vector z € F™, we define © + C := {x + ¢: c € C}.

4.2 Proof of Theorem 10

We start by introducing some notations and facts. Define a bipartition of F' as
So:={0,2,...,p—1} and Sy :={1,3,...,p—2}.
That is, Sp is the set of field elements on which the LSB function will output b.

» Claim 15. For a € F*, it holds that

— 1 1 — 1 1
1 == — . w? and 1 e R T2
50(e) 2p cos(ma/p) “ and 1s, (@) 2p cos(ma/p) v
Furthermore,
|5, ()] = | L5 (@)

~ 2 eos(ra/p)|’
Proof of Claim 15. By definition, we have

— 1 1 (p—1)/2 ,
150(04) = <]1507Xa> — ]; Z wT 5 . Z w—a<(2])
z€So =0
1 1 —w (a)+)/2 1 1—w @
p 1—w 2 T 1w
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One could verify that 1 — w™® = 2sin(ra/p) - wi~%. Hence,

fs\o(a) _ 1 2sin(mwa/p) .wzp—fh I R )
p 2sin(r(2a)/p) - wi=%  2p cos(ma/p)

By Claim 13, we have

— 1 1

1 L

51 (@) 2p  cos(ma/p) “
Finally, since ’wo‘/2’ =1, it is easy to see that

C I pp——

[T = [T = 35 festear
which completes the proof. <

Let C be the parity code. That is, (¢1,...,¢,) € C if ¢; + -+ ¢, = 0. The secret
shares of a secret s is uniformly distributed over the set (s,0,...,0) + C; or equivalently, it
is uniformly distributed over (n=!-s,...,n=!-s) + C. For ease of presentation, we use the
latter form. Additionally, the dual code of C, denoted by C*, is simply the repetition code,
ie, Ct={(a,...,a): a € F}.

We are ready to prove Theorem 10 as follows. We shall abuse notation and write 1, for
1s,. Observe that

SD (T (AddSS(s(O))>,T (Add55(5<1>)))

1
- Y |E

£e{0,1}n

- E lﬁ]lgi(xi—l—n_l-s(l))}

i=1

(By definition of SD)

1 n . n /\
=3 Z Z < Lo (yi +n" " 8(0))> - (H Lo (yi +n" - 5(1))>
i gect \i=1

ee{0,1}" |geC+
(Lemma 12)

5 > 2

£e{0,1}"la€F

Hﬂ(aJrnl.S(o))) - (Hﬁ(a+n1.s(1))>
= a€eF \i=1

(By the definition of Ct)

1 o~ a-s® s .

5 3|5 (M) (o o) (i 1
Le{0,1}" la€F \i=1

_1 & 1 £ 1 1 /2 a-s(© a-s( Claim 15

=5 Z Z H (—)%~m-w (w —w ) (Claim 15)
¢e{0,1}nlacF* \i=1

—on—1 Z o cw®/? ' (w“'s(o) - wa's(l)) (Identity transformation)

o \2p cos(ma/p)

Note that the proof so far has not used any inequalities. The expression above is identical
to the statistical distance. For brevity, let us define

1 1 " (0 (€5
U == .= a2 d Vv N T
(@) (2p cos(ma/p) . ) > (a) =w v
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Additionally, let W(a) := U(a) - V(«). Intuitively, we shall prove that the magnitude
of > cr- W(a) is approximately the magnitude of its leading term W ((p — 1)/2) and
W((p+ 1)/2). In particular, we prove the following claims.

» Claim 16. There exists a universal constant pn > 3/2 and two secrets s(o), sW e F such

that
p—1 p+1
w () v (5)

» Claim 17. For all secrets s, s we have

>

Z W(a)| < exp(—=O(n)) -7~ ".

« —1 1
a€F*\{f3%, Bt}

Using Claim 16 and Claim 17, the proof of the Theorem 10 follows from the fact that

SD (7’ (AddSS(S(O))),T (AddSS(s(l)))> > 2" (u—exp(—O(n))) - 7",

>--1- () (for large enough n.)

Consequently, it suffices to prove Claim 16 and Claim 17 to complete the proof of
Theorem 10.

Proof of Claim 16. Observe that

n
wi(P=ty_ (L. 1 =) (2t
2 2p COS@.E) 2
2p
_fr 1 .wml.v(p—l)
2p sin(ﬂ-i) 2
and
ey (v e} (et
2 2p COS@.&) 2
2p
(L 1 (—1)™ W V(p+1>
2p sin(w-ﬁ) 2

Therefore,
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Note that x-sin(1/x) is strictly increasing as x increases and tends to 1 as 2 — co0.” Therefore,

p—1 p+1 _ p—1 n p+1
I > n, - " .w2 - pn—— )
(i) e () [ () et (7))

It remains to prove that there exist secrets s(®) and s(*) such that V (%) and (—1)" - w% -
1% (%) does not cancel each other to be too small. More formally, for any p and n, we shall
show that there exist a universal constant p and secrets s(9 and s(*) such that

p—1 .(0) p—1 (1) n pt1 ,(0) pt1 (1)
‘(w? s —w 2z s )+(—1)nw2(w2s —w 2z s )’2#

Let £(5() (resp., g(s™")) denote the terms involving s(*) (resp., s") in the above expression.
And we are interested in ’f (5(9) + g(s¢ )| Observe that

Z g(s(l)) =0.

s(l) cF

Therefore, we have

(0) (1) (1)
max | £(s”) + g(s ] > [ )|
S<1)EF
S (7060 4560 = 100
ps(l)GF

Hence, it suffices to show that there exists an s(°) such that !f(s(o))‘ is sufficiently large.
That is,

p=1 ,(0)
max (w 2
s(o)

which is equivalent to

(0)
W

n
2

max ‘1 +(-D)"w

s(0)

It is easy to see that the phase of w*"” could be an arbitrary multiple of 27 /p. Hence, there
must exist an s(°) such that the above expression has magnitude > 3 /2.8 This completes the
proof. |

7 Intuitively, the advantage of the adversary decreases as the characteristic of the field increases.
8 1In fact, as p tends to infinity, the maximum gets arbitrarily close to 2.
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Proof of Claim 17. By a simple triangle inequality, we have |V («)| < 2. Hence,

Y. W

. —1 1
aeF*\{23* Bt}

< Z |[W ()| (Triangle inequality)
N
<2 Z |U ()] (Triangle inequality)

acF-\{252, 241}

=9. Z

. -1 1
a€F*\{P3+ B5t}

n

1 1

% womalp) (Identity transformation)

(p—3)/2 1 1 n
=4 ( . > (Identity transformation)
= 2p  cos(mj/p)
(p—3)/2 1 1 n
=4- — = . Identity transformation
2 (2p Sn(r(p = 2])/(229))) ( )

Observe that sin(z) > x/2 for every z € (0,7/2). Hence,

> W(a)

a€ P\ {25, B4t}
(p—3)/2 n
1 2
<4- e B—
2 (2p m(p — 23)/(229))

j=1

(p—3)/2 9 n
:7'(7“ .4. -
Z <p - 23)

j=1

o ()40
(e )

=7 " exp(—0O(n)).

This completes the proof. |
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A  The Discrepancy of the Irwin-Hall Distribution

disc(4) disc(5)
0.6 | 0.6 |
0.4 | 0.4 |
0.2 | 0.2 |
%1 2 3 a1 Y01 2 3 1 3

Figure 3 The plot of the fourth (left) and fifth (right) Irwin-Hall distribution. Intuitively, the
discrepancy of the Irwin-Hall distribution is the difference between the total probability mass inside
the black bands and the total probability mass outside the black bands. In particular, we are
interested in the maximum difference as the black bands shift along the z-axis. Equation 1 provides
a precise definition. This maximum difference is defined as the discrepancy of the k-th Irwin-Hall
distribution, denoted by disc(k).

B  On the Optimality of the Parity Distinguisher

Let D and DM be two distributions over the universe {0,1}™. Suppose DO and DD are
(n — 1)-indistinguishable.” That is, for any proper subset S C {1,2,...,n}, we have

Z+« DO <« pW
SD , =0.
Output Zg Output Tg

9 We do not use the term (n — 1)-independent since the LSB of a uniformly random field element is not
exactly uniform over {0, 1}.
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For a distribution D and any set S C 1,2,...,n, define the bias of D over S as

bias(D, S) := 515 {(fl)zieszl} .

D

The following fact about the bias shall be useful. We refer the readers to [20] for a proof.

» Lemma 18.

SD (D<0>,D<1>) < % 3" (bias(D(©), 5) - bias(D1), 5))?,

SeN
where ) is the power set of {1,2,...,n}.

Observe that D) and DM are (n — 1)-indistinguishable implies that
bias(D®, S) = bias(DY), S)

for all proper subsets S C {1,2,...,n}.
Therefore, this lemma implies that

SD (D<0>,D(1>) < % : ’bias (D<0>,{1,2, - ,n}) ~ bias (D(l), 1,2,... n})(

This shows that the parity is the optimal distinguisher up to a constant as the right hand
side is exactly the advantage of the parity distinguisher.

C Massey’s Secret-sharing Schemes

For completeness, we recall Massey’s Secret-sharing scheme. The following is taken verbatim
from [16].

N

Iy, R

AN

Figure 4 A pictorial summary of the generator matrix G* = [Iy11 | P], where P is the shaded
matrix. The indices of rows and columns of G* are {0,1,...,k} and {0,1,...,n}, respectively. The
(blue) matrix G = [Iy | R] is a submatrix of G*. In particular, the secret shares of secret s = 0 form
the code (G). The (red) vector is ¥. In particular, for any secret s, the secret shares of s form the
affine subspace s - 7+ (G).

A linear code C (over the finite field F)) of length (n + 1) and rank (k+1) is a (k+ 1)-
dimension vector subspace of F"*1, referred to as an [n + 1,k + 1]p-code. The generator
matriz G € FE+HDX4D of an [n + 1,k + 1] linear code C' ensures that every element in C
can be expressed as 7 - G, for an appropriate Z € F¥*!. Given a generator matrix G, the
row-span of G, i.e., the code generated by G, is represented by (G). A generator matrix G
is in the standard form if G = [I;41|P], where I € FF+HDX(+1) s the identity matrix
and P € F:+Dx(n=k) ig the parity check matrix. In this work, we always assume that the
generator matrices are in their standard form.
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Massey Secret-sharing Schemes. Let C C F"*! be a linear code. Let s € F be a
secret. The Massey secret-sharing scheme corresponding to C' picks a random element
(8,81,...,8n) € C to share the secret s. The secret shares of parties 1,...,n are sq,..., Sy,
respectively.

Recall that the set of all codewords of the linear code generated by the generator matrix
Gt e Fk+1)x(n+1) is

{g: e PF &Gt =g} C P

For such a generator matrix, its rows are indexed by {0,1,...,k} and its columns are indexed
by {0,1,...,n}. Let s € F be the secret. The secret-sharing scheme picks independent and
uniformly random rq,...,7r, € F. Let

(Y0, Y15+ -y yn) == (8,71,...,75) - GT.

Observe that 3y = s because the generator matrix G is in the standard form. The secret
shares for the parties 1,...,n are s;1 = y1,S2 = ¥Ya2, ..., S, = Yn, respectively. Observe that
every party’s secret share is an element of the field F. Of particular interest will be the set
of all secret shares of the secret s = 0. Observe that the secret shares form an [n, k] p-code

that is (G), where G = G?L... kyx{1,..n}- Note that the matrix G is also in the standard

form. The secret shares of s € F* form the affine space s - ¥ + (G), where ¥ = Gg{l o}

Refer to Figure 4 for a pictorial summary.
Suppose parties 41,...,9: € {1,...,n} come together to reconstruct the secret with their,

respective, secret shares s;,,...,s;,. Let G:il, ey G:‘it e F+1x1 pepresent the columns

indexed by i1, ...,4; € {1,...,n}, respectively. If the column Gj,o e F+Dx1 Jies in the span
of {G+ ey G:it} then these parties can reconstruct the secret s using a linear combination

*,717
of their secret shares. If the column G, does not lie in the span of {GJr e Gj’it} then

*,117

the secret remains perfectly hidden from these parties.
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