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Abstract

The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard
MHD equations that include the “Hall” term from the general Ohm’s law. The Hall
term decouples ion and electron motion physically on the ion inertial length scales.
Implementing the Hall MHD equations in a numerical solver allows more physical
simulations for plasma dynamics on length scales less than the ion inertial scale
length but greater than the electron inertial length. The present effort is an impor-
tant step towards producing physically correct results to important problems, such
as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem.
The solver that is being modified is currently capable of solving the resistive MHD
equations on unstructured grids using the spectral difference scheme which is an ar-
bitrarily high-order method that is relatively simple to parallelize. The GEM Mag-
netic Reconnection problem is used to evaluate whether the Hall MHD equations
have been correctly implemented in the solver using the spectral difference method
with divergence cleaning (SDDC) algorithm by comparing against the reconnection
rates reported in the literature.

1 Introduction

Accurate simulations of magnetohydrodynamics problems rely on the ability to
control the divergence error of the magnetic field V - B [1,5, 13]. The constrained
transport method [11] inherently satisfies the divergence-free condition V - B = (),
making it an attractive solution. The high-order spectral difference (SD) method
was built using the constrained transport framework [6], though unstructured grids
are not supported in order to keep the stencil compact. Instead of satisfying the di-
vergence free condition exactly, other methods can be used, including the projection
method [16], the eight-wave formulation method [12], the hyperbolic divergence



cleaning (DC) method [9], and the locally divergence-free discontinuous Galerkin
(DG) method [8]. The DC method is commonly used because of its simplicity, ro-
bustness, and flexibility to unstructured grids. The DC method adds a generalized
Lagrange multiplier (GLM) and assumes V - B will not equal zero to couple the
divergence-free condition with the original MHD equations.

The implementation of divergence cleaning to the spectral difference method
(SDDC) has been accomplished for the resistive MHD equations [7]. However,
more accurate simulations are expected to be produced when using the Hall MHD
equations instead of the resistive MHD equations [15]. The Hall MHD equations
are derived using the same process as the resistive MHD equations when the Hall
term is no longer neglected in the general Ohm’s Law [14].

2 Governing Equations

2.1 Hall MHD Equations

The compressible Hall MHD equations [14] are a set of nonlinear hyperbolic equa-
tions,
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and the viscous flux vector is
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where p is the hydrodynamic pressure; 7 is the magnetic resistivity; || - || is the
Euclidean vector norm; Uy is the Hall velocity, defined as Uy = —J/p where J is

the current density; and I is the identity matrix. The total energy e is defined as
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where 7 is the specific heat ratio for an ideal gas. The 7 is the shear stress tensor,
T=p(VU+ (VU)T) + A(V - UL, 5)

where p is the dynamic viscosity, \ = —2/3u based on the Stokes hypothesis. The
heat flux vectors q = —xkV'T, where « is the thermal conductivity. We use the ideal
gas relation p = pRT as the equation of state.

2.2 Divergence Cleaning

The GLM approach shown here is a modification proposed by Derigs in [10] and
implemented by Chen & Liang (2022) in [7] for the resistive MHD equations. The
DC method used in this paper modifies the approach taken in Chen & Liang (2022)
[7] for the Hall MHD equations as follows
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with the augmented total energy e defined as
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The new scalar 1) is an auxiliary transport variable that couples the divergence-
free condition with the ideal MHD equations. The viscous fluxes are not modified
with the inclusion of . The hyperbolic DC speed ¢, is

ch =/ Amaz(Amae — maza([ul, [v], [w])), (8)

where )\, denotes the largest characteristic speed of the Hall MHD system, which
is the Whistler wave speed. The speed c;, is updated after the computation of nu-
merical flux every iteration. The first four nonconservative source terms are the
Powell source vector [12], allowing better control over the divergence-free condi-
tion. The last nonconservative term, —a), ensures that ¢ decays exponentially in



the region where V - B ~ 0, and = 2 is chosen. The inclusion of the Powell
non-conservative term and a non-conservative GLM term in the energy equation is
necessary for Galilean invariance [4]. The SD method for viscous resistive GLM -
Hall MHD in 2D is created by rewriting Eqn. (6) as
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where Q = (p, pu, pv, pw, €, B, By, B., )T, and nonlinear fluxes are composed
of inviscid, viscous and Hall parts,
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The inviscid fluxes are
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The viscous fluxes are
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The Hall fluxes are
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The source term M is
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This code is two-dimensional (9(-)/0z = 0), though the time evolution of B,
and w are also computed.

3 Numerical Methods

The spectral difference divergence cleaning method is described at length by Chen
& Liang (2022) in [7]. It is important to note that the Bassi & Rebay I [2] scheme is
employed for the computation of the viscous fluxes, as this method is not compact
and may be negatively affecting the stability of the spectral difference divergence
cleaning method.

4 The GEM Magnetic Reconnection Challenge

The goal of the Geospace Environmental Modeling (GEM) Reconnection Chal-
lenge proposed by Birn & Drake in [3] is stated to be the identification of the
essential physics which is required to model collisionless magnetic reconnection.
Through their study, they found that models that include the Hall effect in the gener-
alized Ohm’s law produce very similar rates of reconnection, while the conventional
resistive MHD model produces a dramatically smaller reconnection rate. Modern
MHD codes are now tested using this problem with the goal of reproducing the
results found in the paper. The SDDC code has been shown to produce a similar
reconnection rate for the conventional resistive MHD equations, and is now being
extended to the Hall MHD equations with the goal of producing faster reconnection.

4.1 Definition of the Problem

The domain is rectangular, where —L, /2 < = < L,/2and —L,/2 <y < L,/2.
The x direction is made periodic and ideal conducting boundaries are applied at
y = %L, /2, resulting in magnetic field boundary conditions of B, = 0B,/0y =



0B,/dy = 0 at the y boundaries, with corresponding conditions on the electric
fields and fluid quantities.
The equilibrium magnetic field is given by

and the density is given by

p(y) = posech®(y/A) + poo. (16)

Initially, the electron and ion temperatures, 7. and 7;, are taken to be uniform. This
means that the pressure balance condition gives po(T. + T;) = B2/8.

The system is normalized to the Alfvén speed v 4, allowing Bj and pg to both
equal 1. Other specific parameters for the simulations are A = 0.5, po/po = 0.2,
T./T; = 0.2, m;/m. = 25, L, = 25.6, and L,, = 12.8.

Grid spacing and resistivity are left open to be chosen specifically for each code.
The simulations run in this paper use grids of 32x64 and 24x48 cells using a third
and fourth order method respectively. We keep a consistent resistivity of 7 = 0.005,
and we use a 5 stage 3rd order accurate Runge-Kutta time stepping scheme with a
time step of dt = 0.0001 seconds.

The initial magnetic island is specified through the perturbation in the magnetic
flux,

Y(z,y) = thocos(2mx /Ly )cos(my/Ly), (17)

where the magnetic field perturbation is given by B = 2 x V). In normalized units
1y = 0.1, producing an initial island width which is comparable to the initial width
of the current layer.

4.2 Results

The speed of reconnection is visualized by plotting the reconnected flux over time.
Reconnected flux can be calculated in slightly different ways, usually depending on
if symmetry about the y axis is assumed. We calculate reconnected flux (¢) without
assuming y axis symmetry by using the equation
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It is important to note that all measures of time are in their nondimensionalized
units and not in physical time.

In Fig. 2, the reconnected flux for the Hall MHD and conventional resistive
MHD when using SDDC are plotted when a grid of 32x64 and a third-order method
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Figure 1: Reconnected flux reported in Birn & Drake et al. [3]. The “Full Particle” line
shows the reconnected flux for a simulation that models everything as particles. The “Hy-
brid” line shows results of a model of nuclei and electrons as separate continuum. The " Two
Fluid” line shows the result from using the Hall MHD system of equations. The "MHD”
line shows the result from using the conventional resistive MHD equations.

is used. Figure 1 shows the reconnected flux obtained in Birn & Drake [3]. The re-
connected flux produced by SDDC when using the resistive MHD equations shows
that the simulation is no longer stable after 30 seconds. When using the Hall MHD
equations, the reconnected flux shows that magnetic reconnection starts about 10
seconds later than expected. However, the shape of the reconnected flux plot for
the Hall MHD equations produced by SDDC is similar to the shapes of the plots
produced by Toth, Ma & Gombosi [14] and Birn & Drake et al. [3], suggesting that
magnetic reconnection is happening as expected even though it is starting later.

In an effort to make the solver more stable for the resistive MHD equations and
to get magnetic reconnection to start sooner, a new grid of 24x48 and a fourth-
order method are used. Figure 3 shows the reconnected flux produced when using
this grid, where it can be seen that the resistive MHD is more stable and magnetic
reconnection begins only a few seconds later than expected. Compared to the results
obtained when using SDDC on a 32x64 grid with a third-order SD method, the
24x48 grid with a fourth-order SD method gives results very similar to what was
obtained in Toth, Ma & Gombosi [14] and Birn & Drake et al. [3]. The decrease in
reconnected flux after about 36 seconds likely represents the merging of the central
island with the larger island on the periodic boundaries.

Unfortunately, the GEM magnetic reconnection problem is very stiff when us-
ing the Hall MHD equations with SDDC, and no grid more fine than 24x48 and
order of four can be used without decreasing the time step drastically, resulting in
simulations that take an unreasonable amount of time.

The contours produced at various times are shown in Fig. 4 and 5 for a third
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Figure 2: Reconnected flux plotted over 40 seconds for various equations. The lines labeled
SDDC are the graphs produced in this work on a 32x64 grid using the third-order SD
method. The lines labeled Toth show the data reported in Toth, Ma & Gombosi [14]. The
lines labeled Birn show the data reported in Birn & Drake et al. [3].
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Figure 3: Reconnected flux plotted over 40 seconds for various equations. The lines labeled
SDDC are the graphs produced in this work on a 24x48 grid using the fourth-order SD
method. The lines labeled Toth show the data reported in Toth, Ma & Gombosi [14]. The
lines labeled Birn show the data reported in Birn & Drake et al. [3].



-10 -5 0 5 10
X

Figure 4: Density contour with magnetic field lines from a Hall MHD simulation at 50
seconds on a 32x64 grid using the third-order SD method.
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Figure 5: Density contour with magnetic field lines from a Hall MHD simulation at 70
seconds on a 32x64 grid using the third-order SD method.

order simulation on a 32x64 grid when using the Hall MHD equations. Figures 6, 7
and 8 show contours produced using a fourth order simulation on a 24x48 grid for
the Hall MHD equations. The contour at 70 seconds using the 32x64 grid (Figure
5) shows that the central island starts moving to the left to merge with the larger
island. Similarly, when using the 24x48 grid the same behavior can be seen (Fig.
7), though it happens faster with the central island moving at around 42 seconds.
Ideally, a finer grid would have been used to observe the movement of the central
island because it is expected to be stationary when using the Hall MHD equations.

When using the resistive MHD equations for the 24x48 grid setup, the contours
shown in Fig. 9, 10 and 11 are produced. As expected, the simulation takes longer
to show the formation of islands compared to when the Hall MHD equations are
used, though again the use of a finer grid would have been ideal. This is because
the resistive MHD equations are still expected to produce a central island, which is



Figure 6: Density contour with magnetic field lines from a Hall MHD

seconds on a 24x48 grid using the fourth-order SD method.

Figure 7: Density contour with magnetic field lines from a Hall MHD simulation at 42.5

seconds on a 24x48 grid using the fourth-order SD method.

Figure 8: Density contour with magnetic field lines from a Hall MHD simulation at 50

seconds on a 24x48 grid using the fourth-order SD method.
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Figure 9: Density contour with magnetic field lines from a Resistive MHD simulation at 30

seconds on a 24x48 grid using the fourth-order SD method.

Figure 10: Density contour with magnetic field lines from a Resistive MHD simulation at

50 seconds on a 24x48 grid using the fourth-order SD method.

Figure 11: Density contour with magnetic field lines from a Resistive MHD simulation at

200 seconds on a 24x48 grid using the fourth-order SD method.
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not seen at any point when using the 24x48 grid setup. However, through analysis
of the animation produced, it can be seen that the density contour fluctuates in a
manner that suggests a central island was present and moved to the right, but that
the grid was too coarse to show its formation.

5 Future Work

In future works, attempts will be made to increase the resolution of the grid without
losing simulation stability. Success in refining the grid is expected to cause recon-
nection to begin sooner in the Hall MHD simulation. Additionally, it is expected
that the type of numerical flux between cells has a large effect on stability, suggest-
ing that future work which switches the current Rusanov flux with a different solver
will be worthwhile.

Future works will also involve modification of the Spectral Difference Con-
strained Transport (SDCT) code produced by Chen & Liang 2022 in [6] which pre-
serves the V - B = 0 condition exactly. It is expected that more stable simulations
will be produced because of this property, allowing for the use of finer grids.
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