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Abstract—The Kullback-Leibler (KL) divergence is a dis-
crepancy measure between probability distribution that plays
a central role in information theory, statistics and machine
learning. While there are numerous methods for estimating this
quantity from data, a limit distribution theory which quantifies
fluctuations of the estimation error is largely obscure. In this
paper, we close this gap by identifying sufficient conditions on
the population distributions for the existence of distributional
limits and characterizing the limiting variables. These results are
used to derive one- and two-sample limit theorems for Gaussian-
smoothed KL divergence, both under the null and the alternative.
Finally, an application of the limit distribution result to auditing
differential privacy is proposed and analyzed for significance level
and power against local alternatives.

I. INTRODUCTION

Statistical inference often boils down to estimation of
a certain functional of the underlying probability measures.
Discrepancy measures between probability distributions, also
known as statistical divergences, such as f-divergences [1],
[2], Rényi divergences [3], [4], integral probability metrics [5],
[6], Wasserstein distances [7], [8], etc., form an important class
of such functionals. Among the f-divergences, the Kullback-
Leibler (KL) divergence is ubiquitous in information theory
and statistics, naturally emerging as a quantifier of operational
channel capacity and hypothesis testing problems [9], [10].
The KL divergence also has applications to modeling, analysis,
and design of machine learning algorithms, including gener-
ative modeling [11], goodness-of-fit [12], model fusion [13]
and anomaly detection [14].

In data-driven applications, one only has samples from
the population distributions, which necessitates estimating the
KL divergence. While there is an abundance of consistent
estimators with known convergence rates, a limit distribution
theory for the empirical estimation error has remained partial
and premature—we close this gap in this paper.

A. Contributions

Denote the KL divergence between p, v by Dk (u||v), and
let p,,, v, be empirical estimates of , v. Limit theorems seek
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to identify a scaling rate r,, — oo and a limiting variable GG
such that the following convergence in distribution holds'

7 (DKL () — D () 5 G.

As such, these results characterize the probability laws gov-
erning the random fluctuations of the error and serve as
a central constituent for valid statistical inference. Indeed,
distributional limits enable constructing confidence intervals,
devising consistent resampling methods, proving guarantees
for applications of hypothesis testing, and more.

To derive our main limit distribution result, we identify
regularity conditions on the population distributions that allow
bounding the second order term in a Taylor’s expansion of
KL divergence. This enables lifting weak convergence of
the estimates of the distributions to convergence of the KL
divergence between them, with the limiting variable identified
in terms of the first or second order term in the expansion. We
obtain the one- and two-sample distributional limits, under
both the null (u = v) and the alternative (u # v) via
this approach. The results hold under the high-level weak
convergence assumptions on the empirical estimates of p, v
with a given scaling law 7,,.

To obtain limit theorems under basic conditions on the
population distributions with explicit rates, we then consider
the Gaussian-smoothed KL-divergence Dy (1 * Yo ||V * Vo),
where v, = N(0,021,), and estimate p,v by the empirical
measures fi, = n 'y, 0x, and D, = n~ 'Y by,
respectively. Under this setup, we derive primitive conditions?
on u,v that guarantees weak convergence of the smooth
empirical measures fi,, * Yy, Uy, * Y5, utilizing the central limit
theorem (CLT) in L? spaces [15, Proposition 2.1.11]. Under
the null, we identify the scaling law as r,, = n and the limiting
variable as a weighted sum of independent and identically
distributed (i.i.d.) x? random variables. Under the alternative,
we show that r,, = y/n and the limit is a centered Gaussian.

As an application of our limit distribution theory, we con-
sider auditing e-differential privacy (DP). An audit of a black-
box privacy mechanism seeks to certify whether it satisfies
a promised DP guarantee. While existing auditing methods
are heuristic [16], [17] or lack in formal guarantees [18],

'In the one-sample case, v is not estimated and the relevant convergence
. . d

of interest is 7 (DkL (pn||v) — DL (ullv)) — G.
2The condition is sharp in the one-sample null case; cf. Proposition 1(3).



we propose a principled hypothesis testing pipeline for DP
auditing with a full asymptotic analysis of significance level
and power against local alternatives. The key idea is to relax
the e-DP constraint to a KL divergence bound, which is
further relaxed to the Gaussian-smoothed KL divergence via
the data-processing inequality. We then test for the smooth
KL divergence value and leverage our limit theorem for
the significance and power analysis. Lastly, we establish a
stability lemma that bounds the gap due to smoothing, namely
|Dk (i * Yo ||V % 7o) —Dkw (12|v) | This enables translating the
audit to test for the KL divergence value itself, for which
we show that any non-zero significance level with power 1 is
asymptotically achievable.

B. Related Work

Statistical analysis of divergence estimators has been an
active area of research in recent years. Convergence rates
for various estimators, which subsumes entropy and mutual
information as special cases, have been studied in [19]-[31]
(see also references therein). Literature on limit distributions
for f-divergences mainly focused on analyzing specific es-
timators on a case-by-case basis. In [32], limit distributions
for f-divergences between maximum likelihood estimates of
probability distributions over a certain parametric class is
established, with the limit variable shown to be either normal
or x2. The authors of [21] study plug-in methods of kernel
density estimators and show asymptotic normality subject to
high Holder smoothness and compact support of the densities.
The case when the density estimates are constructed via k-
nearest neighbour techniques is treated in [33]. One-sample
null distributional limits of Gaussian-smoothed TV distance
and x? divergence have been derived in [34] by invoking the
CLT in L'(R%) and L?(R?), respectively. Limit distributions
for plug-in estimators of entropy and mutual information in
the discrete setting have been considered in [35], [36].

II. PRELIMINARIES AND PROBLEM SETUP
A. Notation

Let (Q,.A,P) be a sufficiently rich probability space on
which all random variables are defined. Let (&,S) be a sep-
arable measurable space equipped with a o-finite measure p.
When & is a topological space, we use B(S) to denote the
Borel o-field on &. In the sequel, we adapt p on a case-by-case
basis, but given p, all considered measures are assumed to be
absolutely continuous with respect to (w.r.t.) it. For n < p, we
write p, = dn/dp for the Radon-Nikodym derivative of ) w.r.t.
p. n®™" stands for the n-fold product measure, and &, repre-
sents the Dirac measure at z. We use P (&) to denote the space
of probability measures on (S, S), leaving the o-field implicit.
When & = R%, we always take S = B(R?) and P(R?) as the
set of Borel probability measures. For p,v € P(R?), u v
denotes the convolution of x4 and v; likewise, f * g represents
convolution of two measurable functions f,g : R? — R,
We write 7, = N(0,021,) for the centered Gaussian dis-
tribution on R¢ with covariance matrix o2, and use Yo =
(2m2)~4/2¢=117/(2*) for the corresponding density. We say

that p € P(Rd) is B-sub-Gaussian for § > 0, if X ~ p
satisfies E [e® (X —FXD] < exp (52||af|?/2), for all a € RY.

Let % and -2+ denote weak convergence of probability
measures and convergence in distribution of random variables,
respectively. For 1 < r < oo, let L"(p) = L"(6, S, p) be the
space of all real-valued measurable functions f on & such that
1£1,., == (Jlf"dp)"" < oo, with the usual identification
of functions that are equal p-almost everywhere (a.e.). When
p is the Lebesgue measure A on R%, we use || - ||, to denote
the corresponding L" norm. || - || designates Euclidean norm.

B. Problem Setup

Let p,v € P(S) and consider a sequence (fin, Vn)nen Of
random probability measures® on & such that E[u,] = p,
E[v,] = v, and u, and v, converges weakly to p and v,
respectively. Accordingly, (p,, V) can be viewed as weakly
convergent and unbiased estimators of the population distri-
bution (1, v). Below, the one- and two-sample settings refer
to when only p or both (u,v) are approximated by ., or
(ttn, V), respectively. Also recall that the terms ‘null’ and
‘alternative’ refer to when pu = v or p # v, respectively.
Further, for two positive measures 7,72, © denotes the
normed space defined as

.= d O P2 =P 91,02 € L'(p),
(91 = Pps 92 — v )llp < o0 ’

where [|(h1, ho)llo == [|hally,,, + [

H2,772'
ITII. MAIN RESULTS
We present our limit distribution results for the KL diver-
gence, first under a general setting and then specialized to the

Gaussian-smoothed case. The proofs are omitted due to space
constraints and can be found in the extended version [37].

A. General Setting

In the following, inequalities involving relative densities
(e.g., pp > 0) are understood as holding p-a.e. Let (74,)nen
denote a diverging sequence, and ¢ be a measurable function.

Theorem 1 (Limit distribution for KL divergence) The fol-

lowing hold:

(i) (One-sample null) Let p, < p = p be such that
Dkt (in |lpt) < oo almost surely (a.s.). If 7o (py, — 1) —
B in L?(u), then

da 1
raDkL (pn 1) = i/eBQd%L (D

(ii) (One-sample alternative) Let | < v = p and p, < v
satisfy p, > 0, logp, € L*(v), Dxi(ulv) < oo, and
Dk (pn|v) < o0 as. Ifrn(pun - pu) — B in L2(’7)’
where 1 has relative density p, =1+ (1/p,), then

(Ot ) = D () [ Blogpydr. @)
S

3 A random probability measure on & is amap ¢ : 2xS — [0, 1] satisfying
(¢) for every C € S, w — {(w, C) is measurable from (2, A) to (R, B(R));
and (i) for every w € Q, ((w,-) € P(6).



(iii) (Two-sample null) Let p, < v, < pu = p be such that
Dk (tn|lvn) < o0, py, > 0, and p,, /pu, < q a.s. Let
11 = (1 and 12 be the measure with relative density py,, =
1+q. If (Tn(p/in - 1)7Tn(pl/n - 1)) — (Bl’BQ) in®,
then

1
Dk nln) < 5 [ (B Bafdn )
S

(iv) (Two-sample alternative) Let n < v = p and p, <
v < v satisfy p, > 0, Dro(p||v) < oo, pu,logp, €
L*(v), Dii(nllvn) < o0, py, > 0, and pp, /py, < q
a.s. Let my and no be measures with relative densities
Py =1+ (1/py) and p,, =1 —|—pu + g, respectively. If
(rn(pﬂn —Pu)s TPy, — 1)) (B1, Bs) in D, then

T (DkL(tn [|[vn) — Dk (pel|v))

The proof of Theorem 1 identifies regularity condmons on
the population distributions that allow bounding the second
order term in a Taylor expansion of KL divergence. This
enables translating weak convergence of the estimates of the
distributions to that of the KL divergence between them. Note
that the regularity assumptions in Theorem 1 are automatically
satisfied in the one-sample case when & is discrete (of finite
cardinality) and p¢ <> v. Then, the multivariate CLT implies
that (1)-(2) hold with r,, = n'/2 and B as a Gaussian vector.

B. Gaussian-Smoothed KL Divergence

To obtain explicit scaling rates and distributional limits, we
consider the Gaussian-smoothed KL divergence, i.e., the popu-
lation objective is now Dy (1 * Vo ||V * 75 ) [38]. We estimate
o (or both p and v) from samples, while assuming that the
Gaussian kernel is known. The Gaussian smoothing alleviates
mismatched support issues that f-divergences often suffer
from and gives rise to a well-posed empirical approximation
setting. Henceforth, we assume G = RYand S = B (Rd).
Some preliminaries are due before stating the results.

In defining the empirical measures of p and v we allow
arbitrary correlation between their samples, which is necessary
for the application to auditing DP considered below. Let
(X,Y) ~ 7 € P(RY x RY) with X, Y marginals j, v, respec-
tively. Set fi, =n~* Y., dx, as the empirical distribution of
(X1,...,X,)and D, = n=1 Y1 &y, as thatof (Y7,...,Y,),
where (X;,Y;) ~ m, 1 < i < n, are pairwise i.i.d. Recalling
that ¢, is the density of v,, the Lebesgue densities of fi,, * 7y,
and 7, * v, are fi, *x @, and U, * @,, respectively. We study
distributional limits of Dk (fi,, * Yo ||V * 7. ) as well as its two-
sample analogues, under the null and the alternative.

Our limit variables are characterized as integral forms of a
certain Gaussian process, which is introduced next. Consider
the 2-dimensional centered Gaussian process (G pos Guo) ==
(Gpo(2), Gl,ﬁ(y))(x’y)eRded with covariance function

Yo ((2:9), (2,9))
E[Gmo(x)Gu,a(j)] E[Gu,a(x)Gu,o@)]
E[Gyo(y)Guo(®)] E[Gho(y)Guo(@)] |

/Bllogpudy /Bgd,u.

o(@)] = cov(ps(z — X),90(2 — X)),
Gu, (z ( )]] = cov(@o(z — X),06(y — Y)), and

(y) ( ) = COV(@U(y - Y) (po(g - Y) . For
i,] E {1,2}, denote the (4,7)-th entry of ¥, , , by ZEL l,)c,
Note that each such entry depends only on two coordinates
among ((x,y),(ﬁ:,gj)). Hence, by some abuse of notation,

we omit the redundant coordinates and use the remaining

where E [G
)Gy

coordinates in the same order they appear, e.g., Eﬁ?ﬁ,( ,T)
for EE?VIL((Q:, y), (&,7)). Further, when v = i (viz. X Ly,

we denote G, , by G+ to avoid confusion with G, ;.

Proposition 1 (Limit distribution for Gaussian-smoothed KL
divergence) The following hold:

(i) (One-sample null) If

V oz —-
/ Varu(eal@ =) 4, o, ©)
Rd Pk Qo ()
then there exists a version of G, such that
Guo/ I * 0g is LQ(Rd)-valued, and

Gho()
nDKL (fin * Yo |10 * Vo) —> 76133, (7

1 ko ()

where the limit can be represented as a weighted sum
of ii.d. x* random variables with 1 degree of freedom.
In particular, (6) and (7) holds for B-sub-Gaussian
with 8 < o. Conversely, if (6) is violated, then we have
lim inf,, oo nE[DKL(ﬂn * Yo || e * 'y(,)} = 0.

(ii) (One-sample alternative) If (6) holds, log (,u * g /U *
@) € L2(v % @5), ||(v o) /1% ¢ol| < o0, and

/ Var, (cpg(x - ))
R

vk pg(x)

dr < o0,

then

n% (DKL(ﬂn * '70”” * ’70) - DKL(M * ’70“1/ * ’Va))
—5 N (0,03 (1, v, 0)),

@y 10g<u * %(f@)

where
vk pg(x)
(u * g (Y)

®)

vi(p,v,0) = / /
R4 JRA
vk @q(y)

In particular, (8) holds for B-sub-Gaussian p with § < o
such that v < p < v and ||dp/dv|| V ||dv/dp|| ., < oo
(iii) (Two-sample null) If u has compact support, then there ex-
ists a version of G, , and G, , such that G, , /| \/I * Py

and G, |/ * 9o are L*(R%)-valued, and
) G,
Po(x

)dm dy.

(«))”

dzx,
)

where the limit can be represented as a weighted sum of
i.i.d. x* random variables with 1 degree of freedom.

nDKL(fin * Yo || Pn * Yo ) N / )U



(iv) (Two-sample alternative) If u,v have compact supports,
then

1 R N
n:2 (DKL(Nn * ’YGHVn * 'Ya) - DKL(M * ’YUHV * 70))

L N (0,03 (n, v, 0)), (10)
where
Buro)= 3 [ S e L@@ dy,
R4 xRd

1<i,j<2

with L1 :=1log(pu % 0o /v * po) and Ly :=—p% 0y V% pq.

The proof of Proposition 1 hinges on Theorem 1 by identify-
ing primitive conditions in terms of u, v, and o that guarantee
the regularity assumptions therein.

IV. APPLICATION TO AUDITING DIFFERENTIAL PRIVACY

We consider the application of our limit distribution theory
to auditing DP, which was introduced in [39] as an approach
for quantifying privacy leakage of privatization mechanisms.
We recall some DP notions that are relevant to our setting.
Consider a set 41 with a relation ~ such that u ~ v, for u,v €
$l, denotes that v and v are adjacent. In the DP context, il
is a set of databases, while u© ~ v denotes that w and v are
adjacent databases, differing on a single entry. Let €, > 0. A
randomized (measurable) mechanism f : 4 — RY is
(i) e-differentially private if P(f(u) € T) < e P(f(v) € T)

for every u ~ v and T € B(R%);
(i) e-KL differentially private if Dy (pu/pn) < € for every
u ~ v, where p1,, € P(R?) is the distribution of f(u).
In addition, we say that a privacy mechanism is e-smoothed KL
differentially private if Dk (ptw * Vo || fto * 7o) < € for every
u ~ v, where ¢ > 0 is a pre-specified parameter. As e-
DP is equivalent to sup,,., Doo(ftu]lttv) < €, where Do is
the co-order Renyi divergence, it is clear that KL DP is a
relaxation of DP (see e.g. [40, Lemma 3.18]). By the data
processing inequality, we further have that smoothed KL DP
is a relaxation of KL DP.

In practice, given output samples from a privacy mechanism,
one encounters the problem of ascertaining whether the mech-
anism is differentially private or not, referred to as auditing DP.
In [18], a hypothesis test for auditing DP using a regularized
kernel Rényi divergence was proposed, where the null hy-
pothesis is that the mechanism satisfies (e, §)-DP. The authors
propose a decision rule achieving any non-zero significance
level (type I error probability), leaving the characterization of
the power (equivalently, type II error probability) open. Here,
utilizing Proposition 1, we put forth a principled hypothesis
testing pipeline for auditing DP using the Gaussian-smoothed
and the classical KL divergence. Our analysis accounts for
both significance and power of the test. We start from the
smoothed KL DP test.

A. Smoothed KL DP Test

The main objective of a privacy audit is to identify vio-
lations. For that reason, we set up an hypothesis test where

the null Hy corresponds to when privacy holds, and consider
a sequence of local alternatives H; , that become harder to
distinguish from Hy as n grows. This models a situation where
the alternative hypothesis is arbitrarily close to the null, and
we seek a powerful test that successfully rejects the null, even
under these local alternatives. To define the local alternatives,
we consider a sequence of privacy mechanisms that violate
e-smoothed KL DP by an O(n~'/2) amount.

Fix o,¢,b,C > 0 and, for n € Ny, let f,, : 4 — I, :=
[—b,b]¢ be a sequence of privacy mechanisms. Denote a pair
of adjacent databases by (U, V) ~ 7 € P(4 x ). Let 7, :=
(fns fn)#7 be the joint distribution of (f,(U), f,(V)), where
# is the pushforward operation. The first and second marginals
of m, are denoted by u,, and v, respectively. We impose the
following assumption on the sequence (7, )neN,-

Assumption 1 The sequence (7, )nen, is such that
(i) there exists 0 # h € L*(my) with nH*(m,,m) —
2
17/2115 5y Jraxga hdmo =0, and
1)) —

<n1/2<un * Qg — flo *%>,n1/2<”" * Py

Vg * Qo W * Qo
(E"TO [h(X’ Y)QOU(' — X)] ]Ewo [h(X» Y)QOU(‘ — Y)])
Vo * Po ’ Vo * Qo

in L®(\) x L>®(\).
(it) Dri(po * Yollvo * 7o) < € and DiL(pin * Yo |[Vn * 70) >
€n,c =€+ Cn=Y2 for all n sufficiently large.

Observe that Assumption 1(i¢) implies that f; satisfies e-
smoothed KL DP while f,, violates it for all n sufficiently
large. On the other hand, Assumption 1(7) is a technical
requirement that guarantees that the Gaussian-smoothed KL
divergence limit theorems needed for the analysis continue to
hold under the local alternatives setting, where m, changes
with n. Proposition 3 below presents an explicit construction
of (7 )nen, that satisfies Assumption 1 for any o,€,b,C > 0.

For now, under this assumption, consider the following
binary hypothesis test with a sequence of alternatives:

Hy : D (o * Yo ||lvo * vo) < €,

(11)
Hl,n . DKL(Nn * ’VaHl/n * ’YJ) > €n,C-

Let (X1,Y7),...,(Xn,Y,) ~ 7 be pairwise i.i.d. samples of
the privacy mechanism’s output when acting on i.i.d. pairs of
adjacent databases, where m = my under Hy and 7 = 7,
under H; ,,. Denote the empirical measures of (Xy,...,X,)
and (Y1,...,Y,) by [i,, and i, respectively. For a test statistic
T, =T,(X1,...,X,,Y1,..., Y,), a standard class of tests
rejects Hy if T, > t,, where t,, is a critical value chosen
according to the desired level 7 € (0,1). The operational
meaning of rejecting Hj is declaring that e-smoothed KL DP
is violated, and hence, also e-DP itself. We say that such
a sequence has asymprotic level T if limsup,_, . P(T, >
tn,|Ho) < 7. The power of a test is the probability that it
correctly rejects Ho, i.e., P(T}, > ¢,|H1 »,), and the asymptotic
power is liminf, . P(T,, > t,|H; y). Lastly, the sequence
of tests is called asymptotically consistent if its asymptotic



power is 1. These definitions specialize to the case of a fixed
alternative H; by H; , = H; and m, = 7y, for all n € N.

For 7 € [0,1], let Q7'(r) = inf{z € R
(2m)~1/2 [ e 2y < 7}. The following proposition
provides a test statistic for the above hypothesis test and char-
acterizes its asymptotic level and asymptotic power against
local alternatives.

Proposition 2 (Smoothed KL DP audit) Suppose Assump-
tion 1 holds. For 0 < 71,7 < 1, there exists a constant
Ch,d,c (see [37, Equation (108)]) such that the test statistic
T = DkL(fin * Yo |[Pn * 7o) with critical value t, = € +
haocQt (7)n~Y2 achieves an asymptotic level T and asymp-
totic power at least 1 — 7' for the test in (11), whenever C >
Cb,d,a’,‘r,T/ V0 and Cb,d,a',f,r’ = Cv,d,o (Qil(’r) 7Q71(177J))~

The proof of the above claim relies on the limit distribution
result for smoothed KL divergence given in (10) along with its
refinement to account for the local alternatives scenario, i.e.,
treating the sequence of distribution pairs (i *Ye, Vn*Ye )nens
instead of a fixed one. This refinement is derived under As-
sumption 1 by invoking Le Cam’s third lemma [15, Theorem
3.10.7]. Given these results and the fact that the relevant
limit distributions are Gaussian, Proposition 2 follows by an
analysis of the asymptotic level and power via the Portmanteau
theorem [15, Theorem 1.3.4]. Note that the constant Cj 4 . 7/
is positive whenever 747’ < 1, which is when the requirement
C > Chy,4,0,7,+ Is active. Operationally, 7 + 7/ < 1 means
that the sum of type I and type II error probabilities is less
than 1, which is the interesting regime for hypothesis testing;
otherwise, a test based on a random coin flip is preferable.

We next provide an explicit construction of a sequence of
couplings (7, )nen, satisfying Assumption 1.

Proposition 3 (Construction for Assumption 1) We have:

(i) Let my € P(R? x RY) be such that py # vo, vo @ po <
o, \d(u()@/,to)/dﬂo”wm < oo and ||hTr0,5||277r0 < 00,
where hr, = ¢(d(po @ vo)/dmo) — (d(vo @ po)/dmo))
and ¢ > 0 is an arbitrary constant. Let 7, < my be
the probability measure specified by the relative density
dmy,/dmg = 1+ n_%hmﬁ, whenever the right-hand side
(RHS) is non-negative my-a.s.; otherwise, set m, = .
Then, m,, satisfies Assumption 1(i) with h = hyr, &.

(ii) Let o € P(ZyxIy) and o be such that g # vo, Vo®po <K
7o, [[d(vo @ pio)/dmoll o, Vld(po ® vo)/dmolly 5, < 00
and Dk (10 * Yo ||vo * Vo) €. Then, there exists a
sufficiently large ¢, such that 7, as defined in Part (i)
satisfies Assumption 1 with h = hy, & for any C > 0.

Proposition 3(iz) provides a method of constructing 7, for
the hypothesis test in (11), given 7y that satisfies the aforemen-
tioned regularity assumptions. This can be achieved, for in-
stance, by choosing o with p1g <> v < A, ||dvg/dpol| . V
ldpo/droll o, < 0o, and Dii(po * Yo ||v0 * 7o) = €.

B. KL DP test

A more stringent DP audit is realized by a hypothesis test for
detecting e-KL. DP violations, instead of its smoothed version.

We provide such a test against a fixed alternative:

Hy : D (pollvo) <€, Hy:Dii(pljva) > €, (12)

where € > € > 0. We again employ the test statistic 7,
from Proposition 2 with appropriately chosen o. Doing so
requires additional assumption on the output distributions
of the DP mechanism, namely, that u;,v;, ¢ = 0,1, have
smooth Lebesgue densities belonging to the Lipschitz class
Lip, ; (M, X), with smoothness parameter s, norm parameter
M, and domain X C R?; see [41].

Assumption 2 For i = 0,1, the Lebesgue densities p,,,,py, €
Lips,l(MaIb) and ||pﬂi/pyi oo \/le/i/p#i 00 S Mfor some
0 < s < 1and M > 0. Further, Dk (pollvo) < € and
Dii(u1]|v1) > € for some € > € > 0.

Assumption 2 is not restrictive in practice. Indeed, the def-
inition of DP itself necessitates that ||p,, /py, ||, is bounded
uniformly over all u,v € Y with u ~ v. Moreover, the Lip-
schitz class grows as we shrink the smoothness parameter s,
whereby Unr>oLipy 1(M,Zy) € UnroLipg (M, Zy) (since
we assume s € (0,1]). As functions with bounded variation
(for d = 1) over 7, are elements of Uns>oLip; ;(M,Zy),
Assumption 2 allows for most densities of practical interest.

We are now ready to state the e-KL DP audit result. As it
may be unrealistic to assume that the exact values of M, s,
and € are known when constructing 7,, and choosing critical
values, the following proposition only requires the existence
of known constants M ¢, s, and 5 such that M < M < oo,
e<ée<gand0<s<s<s5<1.

Proposition 4 (KL DP audit) Suppose Assumption 2 holds.
There exists constants cy 4., and o,z s q 57 such that for
T, = DiL(ftn * YollPn * 7o) with critical value t, = €+
cb,d,c,Qfl(T)n’l/2 is asymptotically consistent and achieves
asymptotic level T for the test in (12).

Explicit expressions for ¢y 4, and o, ¢, 5 4 7 are given in
[37, Equation (108)] and [37, Equation (110)], respectively.
The key difference between the proof of this claim and that
of Proposition 2 is that given M, &, s, and 3, one may choose
o > 0 small enough so that Dy (1 * Yo ||¥1 * 7o) > € while
DL (o * Yo ||¥0 * 7o) < €. Choosing such a o, the claim then
follows by utilizing (10) along with the Portmanteau theorem
to bound the type I and type II error probabilities associated
with T;,. The aforementioned choice of o relies on a stability
lemma for smoothed KL divergence given next, which may
be of independent interest.

Lemma 1 (Stability of smoothed KL divergence) Let X C
RY, and p,v € P(X) have Lebesgue densities p, and p,,
respectively. Further, assume that p,,,p, € Lipg (M, X) and
IPu/Pollog VP /Pull o < M for some M > 1. Then,

Dk (pllv) = Dt Yo [V % 40)| < eM(1+ M +log Mo,

where ¢ =cq s := [pallzl|*p1(2)dz only depends on s and d.
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