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AbstractÐThe Kullback-Leibler (KL) divergence is a dis-
crepancy measure between probability distribution that plays
a central role in information theory, statistics and machine
learning. While there are numerous methods for estimating this
quantity from data, a limit distribution theory which quantifies
fluctuations of the estimation error is largely obscure. In this
paper, we close this gap by identifying sufficient conditions on
the population distributions for the existence of distributional
limits and characterizing the limiting variables. These results are
used to derive one- and two-sample limit theorems for Gaussian-
smoothed KL divergence, both under the null and the alternative.
Finally, an application of the limit distribution result to auditing
differential privacy is proposed and analyzed for significance level
and power against local alternatives.

I. INTRODUCTION

Statistical inference often boils down to estimation of

a certain functional of the underlying probability measures.

Discrepancy measures between probability distributions, also

known as statistical divergences, such as f -divergences [1],

[2], RÂenyi divergences [3], [4], integral probability metrics [5],

[6], Wasserstein distances [7], [8], etc., form an important class

of such functionals. Among the f -divergences, the Kullback-

Leibler (KL) divergence is ubiquitous in information theory

and statistics, naturally emerging as a quantifier of operational

channel capacity and hypothesis testing problems [9], [10].

The KL divergence also has applications to modeling, analysis,

and design of machine learning algorithms, including gener-

ative modeling [11], goodness-of-fit [12], model fusion [13]

and anomaly detection [14].

In data-driven applications, one only has samples from

the population distributions, which necessitates estimating the

KL divergence. While there is an abundance of consistent

estimators with known convergence rates, a limit distribution

theory for the empirical estimation error has remained partial

and prematureÐwe close this gap in this paper.

A. Contributions

Denote the KL divergence between µ, ν by DKL(µ∥ν), and

let µn, νn be empirical estimates of µ, ν. Limit theorems seek
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to identify a scaling rate rn → ∞ and a limiting variable G
such that the following convergence in distribution holds1

rn
(

DKL(µn∥νn)− DKL(µ∥ν)
) d−→ G.

As such, these results characterize the probability laws gov-

erning the random fluctuations of the error and serve as

a central constituent for valid statistical inference. Indeed,

distributional limits enable constructing confidence intervals,

devising consistent resampling methods, proving guarantees

for applications of hypothesis testing, and more.

To derive our main limit distribution result, we identify

regularity conditions on the population distributions that allow

bounding the second order term in a Taylor’s expansion of

KL divergence. This enables lifting weak convergence of

the estimates of the distributions to convergence of the KL

divergence between them, with the limiting variable identified

in terms of the first or second order term in the expansion. We

obtain the one- and two-sample distributional limits, under

both the null (µ = ν) and the alternative (µ ̸= ν) via

this approach. The results hold under the high-level weak

convergence assumptions on the empirical estimates of µ, ν
with a given scaling law rn.

To obtain limit theorems under basic conditions on the

population distributions with explicit rates, we then consider

the Gaussian-smoothed KL-divergence DKL(µ ∗ γσ∥ν ∗ γσ),
where γσ = N (0, σ2Id), and estimate µ, ν by the empirical

measures µ̂n = n−1
∑n

i=1 δXi
and ν̂n = n−1

∑n
i=1 δYi

,

respectively. Under this setup, we derive primitive conditions2

on µ, ν that guarantees weak convergence of the smooth

empirical measures µ̂n ∗ γσ, ν̂n ∗ γσ , utilizing the central limit

theorem (CLT) in L2 spaces [15, Proposition 2.1.11]. Under

the null, we identify the scaling law as rn = n and the limiting

variable as a weighted sum of independent and identically

distributed (i.i.d.) χ2 random variables. Under the alternative,

we show that rn =
√
n and the limit is a centered Gaussian.

As an application of our limit distribution theory, we con-

sider auditing ϵ-differential privacy (DP). An audit of a black-

box privacy mechanism seeks to certify whether it satisfies

a promised DP guarantee. While existing auditing methods

are heuristic [16], [17] or lack in formal guarantees [18],

1In the one-sample case, ν is not estimated and the relevant convergence

of interest is rn
(

DKL(µn∥ν)− DKL(µ∥ν)
) d
−→ G.

2The condition is sharp in the one-sample null case; cf. Proposition 1(i).



we propose a principled hypothesis testing pipeline for DP

auditing with a full asymptotic analysis of significance level

and power against local alternatives. The key idea is to relax

the ϵ-DP constraint to a KL divergence bound, which is

further relaxed to the Gaussian-smoothed KL divergence via

the data-processing inequality. We then test for the smooth

KL divergence value and leverage our limit theorem for

the significance and power analysis. Lastly, we establish a

stability lemma that bounds the gap due to smoothing, namely
∣

∣DKL(µ ∗ γσ∥ν ∗ γσ)−DKL(µ∥ν)
∣

∣. This enables translating the

audit to test for the KL divergence value itself, for which

we show that any non-zero significance level with power 1 is

asymptotically achievable.

B. Related Work

Statistical analysis of divergence estimators has been an

active area of research in recent years. Convergence rates

for various estimators, which subsumes entropy and mutual

information as special cases, have been studied in [19]±[31]

(see also references therein). Literature on limit distributions

for f -divergences mainly focused on analyzing specific es-

timators on a case-by-case basis. In [32], limit distributions

for f -divergences between maximum likelihood estimates of

probability distributions over a certain parametric class is

established, with the limit variable shown to be either normal

or χ2. The authors of [21] study plug-in methods of kernel

density estimators and show asymptotic normality subject to

high HÈolder smoothness and compact support of the densities.

The case when the density estimates are constructed via k-

nearest neighbour techniques is treated in [33]. One-sample

null distributional limits of Gaussian-smoothed TV distance

and χ2 divergence have been derived in [34] by invoking the

CLT in L1(Rd) and L2(Rd), respectively. Limit distributions

for plug-in estimators of entropy and mutual information in

the discrete setting have been considered in [35], [36].

II. PRELIMINARIES AND PROBLEM SETUP

A. Notation

Let (Ω,A,P) be a sufficiently rich probability space on

which all random variables are defined. Let (S,S) be a sep-

arable measurable space equipped with a σ-finite measure ρ.

When S is a topological space, we use B(S) to denote the

Borel σ-field on S. In the sequel, we adapt ρ on a case-by-case

basis, but given ρ, all considered measures are assumed to be

absolutely continuous with respect to (w.r.t.) it. For η ≪ ρ, we

write pη = dη/dρ for the Radon-Nikodym derivative of η w.r.t.

ρ. η⊗n stands for the n-fold product measure, and δx repre-

sents the Dirac measure at x. We use P(S) to denote the space

of probability measures on (S,S), leaving the σ-field implicit.

When S = R
d, we always take S = B(Rd) and P(Rd) as the

set of Borel probability measures. For µ, ν ∈ P(Rd), µ ∗ ν
denotes the convolution of µ and ν; likewise, f ∗ g represents

convolution of two measurable functions f, g : R
d → R.

We write γσ = N(0, σ2Id) for the centered Gaussian dis-

tribution on R
d with covariance matrix σ2Id, and use φσ =

(2πσ2)−d/2e−∥·∥2/(2σ2) for the corresponding density. We say

that µ ∈ P
(

R
d
)

is β-sub-Gaussian for β ≥ 0, if X ∼ µ

satisfies E
[

eα·(X−E[X])
]

≤ exp
(

β2∥α∥2/2
)

, for all α ∈ R
d.

Let
w−→ and

d−→ denote weak convergence of probability

measures and convergence in distribution of random variables,

respectively. For 1 ≤ r ≤ ∞, let Lr(ρ) = Lr(S,S, ρ) be the

space of all real-valued measurable functions f on S such that

∥f∥r,ρ :=
( ∫

S
|f |rdρ

)1/r
< ∞, with the usual identification

of functions that are equal ρ-almost everywhere (a.e.). When

ρ is the Lebesgue measure λ on R
d, we use ∥ · ∥r to denote

the corresponding Lr norm. ∥ · ∥ designates Euclidean norm.

B. Problem Setup

Let µ, ν ∈ P(S) and consider a sequence (µn, νn)n∈N of

random probability measures3 on S such that E[µn] = µ,

E[νn] = ν, and µn and νn converges weakly to µ and ν,

respectively. Accordingly, (µn, νn) can be viewed as weakly

convergent and unbiased estimators of the population distri-

bution (µ, ν). Below, the one- and two-sample settings refer

to when only µ or both (µ, ν) are approximated by µn or

(µn, νn), respectively. Also recall that the terms ‘null’ and

‘alternative’ refer to when µ = ν or µ ̸= ν, respectively.

Further, for two positive measures η1, η2, D denotes the

normed space defined as

D :=

{

(g1 − pµ, g2 − pν) : g1, g2 ∈ L1(ρ),

∥(g1 − pµ, g2 − pν)∥D < ∞

}

,

where ∥(h1, h2)∥D := ∥h1∥2,η1
+ ∥h2∥2,η2

.

III. MAIN RESULTS

We present our limit distribution results for the KL diver-

gence, first under a general setting and then specialized to the

Gaussian-smoothed case. The proofs are omitted due to space

constraints and can be found in the extended version [37].

A. General Setting

In the following, inequalities involving relative densities

(e.g., pµ > 0) are understood as holding ρ-a.e. Let (rn)n∈N

denote a diverging sequence, and q be a measurable function.

Theorem 1 (Limit distribution for KL divergence) The fol-

lowing hold:

(i) (One-sample null) Let µn ≪ µ = ρ be such that

DKL(µn∥µ) < ∞ almost surely (a.s.). If rn(pµn
− 1)

w−→
B in L2(µ), then

r2nDKL(µn∥µ) d−→ 1

2

∫

S

B2dµ. (1)

(ii) (One-sample alternative) Let µ ≪ ν = ρ and µn ≪ ν
satisfy pµ > 0, log pµ ∈ L2(ν), DKL(µ∥ν) < ∞, and

DKL(µn∥ν) < ∞ a.s. If rn(pµn
− pµ)

w−→ B in L2(η),
where η has relative density pη = 1 + (1/pµ), then

rn
(

DKL(µn∥ν)− DKL(µ∥ν)
) d−→

∫

S

B log pµdν. (2)

3A random probability measure on S is a map ζ : Ω×S → [0, 1] satisfying
(i) for every C ∈ S, ω → ζ(ω, C) is measurable from (Ω,A) to (R,B(R));
and (ii) for every ω ∈ Ω, ζ(ω, ·) ∈ P(S).



(iii) (Two-sample null) Let µn ≪ νn ≪ µ = ρ be such that

DKL(µn∥νn) < ∞, pνn
> 0, and pµn

/pνn
≤ q a.s. Let

η1 = µ and η2 be the measure with relative density pη2
=

1 + q. If
(

rn(pµn
− 1), rn(pνn

− 1)
) w−→ (B1, B2) in D,

then

r2nDKL(µn∥νn) d−→ 1

2

∫

S

(B1 −B2)
2dµ. (3)

(iv) (Two-sample alternative) Let µ ≪ ν = ρ and µn ≪
νn ≪ ν satisfy pµ > 0, DKL(µ∥ν) < ∞, pµ, log pµ ∈
L2(ν), DKL(µn∥νn) < ∞, pνn

> 0, and pµn
/pνn

≤ q
a.s. Let η1 and η2 be measures with relative densities

pη1
= 1 + (1/pµ) and pη2

= 1 + pµ + q, respectively. If
(

rn(pµn
− pµ), rn(pνn

− 1)
) w−→ (B1, B2) in D, then

rn
(

DKL(µn∥νn)−DKL(µ∥ν)
) d−→

∫

S

B1log pµdν −
∫

S

B2dµ.

(4)

The proof of Theorem 1 identifies regularity conditions on

the population distributions that allow bounding the second

order term in a Taylor expansion of KL divergence. This

enables translating weak convergence of the estimates of the

distributions to that of the KL divergence between them. Note

that the regularity assumptions in Theorem 1 are automatically

satisfied in the one-sample case when S is discrete (of finite

cardinality) and µ ≪≫ ν. Then, the multivariate CLT implies

that (1)-(2) hold with rn = n1/2 and B as a Gaussian vector.

B. Gaussian-Smoothed KL Divergence

To obtain explicit scaling rates and distributional limits, we

consider the Gaussian-smoothed KL divergence, i.e., the popu-

lation objective is now DKL(µ ∗ γσ∥ν ∗ γσ) [38]. We estimate

µ (or both µ and ν) from samples, while assuming that the

Gaussian kernel is known. The Gaussian smoothing alleviates

mismatched support issues that f -divergences often suffer

from and gives rise to a well-posed empirical approximation

setting. Henceforth, we assume S = R
d and S = B

(

R
d
)

.

Some preliminaries are due before stating the results.

In defining the empirical measures of µ and ν we allow

arbitrary correlation between their samples, which is necessary

for the application to auditing DP considered below. Let

(X,Y ) ∼ π ∈ P(Rd×R
d) with X,Y marginals µ, ν, respec-

tively. Set µ̂n = n−1
∑n

i=1 δXi
as the empirical distribution of

(X1, . . . , Xn) and ν̂n = n−1
∑n

i=1 δYi
as that of (Y1, . . . , Yn),

where (Xi, Yi) ∼ π, 1 ≤ i ≤ n, are pairwise i.i.d. Recalling

that φσ is the density of γσ , the Lebesgue densities of µ̂n ∗γσ
and ν̂n ∗ γσ are µ̂n ∗ φσ and ν̂n ∗ φσ , respectively. We study

distributional limits of DKL(µ̂n ∗ γσ∥ν ∗ γσ) as well as its two-

sample analogues, under the null and the alternative.

Our limit variables are characterized as integral forms of a

certain Gaussian process, which is introduced next. Consider

the 2-dimensional centered Gaussian process (Gµ,σ, Gν,σ) :=
(

Gµ,σ(x), Gν,σ(y)
)

(x,y)∈Rd×Rd
with covariance function

Σµ,ν,σ

(

(x, y), (x̃, ỹ)
)

:=

[

E
[

Gµ,σ(x)Gµ,σ(x̃)
]

E
[

Gµ,σ(x)Gν,σ(ỹ)
]

E
[

Gν,σ(y)Gµ,σ(x̃)
]

E
[

Gν,σ(y)Gν,σ(ỹ)
]

]

, (5)

where E
[

Gµ,σ(x)Gµ,σ(x̃)
]

= cov
(

φσ(x − X), φσ(x̃ − X)
)

,

E
[

Gµ,σ(x)Gν,σ(ỹ)
]

= cov
(

φσ(x − X), φσ(ỹ − Y )
)

, and

E
[

Gν,σ(y)Gν,σ(ỹ)
]

= cov
(

φσ(y − Y ), φσ(ỹ − Y )
)

. For

i, j ∈ {1, 2}, denote the (i, j)-th entry of Σµ,ν,σ by Σ
(i,j)
µ,ν,σ .

Note that each such entry depends only on two coordinates

among
(

(x, y), (x̃, ỹ)
)

. Hence, by some abuse of notation,

we omit the redundant coordinates and use the remaining

coordinates in the same order they appear, e.g., Σ
(2,1)
µ,ν,σ

(

y, x̃
)

for Σ
(2,1)
µ,ν,σ

(

(x, y), (x̃, ỹ)
)

. Further, when ν = µ (viz. X
d
= Y ),

we denote Gν,σ by G̃µ,σ to avoid confusion with Gµ,σ .

Proposition 1 (Limit distribution for Gaussian-smoothed KL

divergence) The following hold:

(i) (One-sample null) If

∫

Rd

Varµ

(

φσ(x− ·)
)

µ ∗ φσ(x)
dx < ∞, (6)

then there exists a version of Gµ,σ such that

Gµ,σ/
√
µ ∗ φσ is L2(Rd)-valued, and

nDKL(µ̂n ∗ γσ∥µ ∗ γσ) d−→ 1

2

∫

Rd

G2
µ,σ(x)

µ ∗ φσ(x)
dx, (7)

where the limit can be represented as a weighted sum

of i.i.d. χ2 random variables with 1 degree of freedom.

In particular, (6) and (7) holds for β-sub-Gaussian µ
with β < σ. Conversely, if (6) is violated, then we have

lim infn→∞ nE
[

DKL(µ̂n ∗ γσ∥µ ∗ γσ)
]

= ∞.

(ii) (One-sample alternative) If (6) holds, log
(

µ ∗ φσ/ν ∗
φσ

)

∈ L2(ν ∗ φσ),
∥

∥(ν ∗ φσ)
2/µ ∗ φσ

∥

∥

∞
< ∞, and

∫

Rd

Varµ

(

φσ(x− ·)
)

ν ∗ φσ(x)
dx < ∞,

then

n
1

2

(

DKL(µ̂n ∗ γσ∥ν ∗ γσ)− DKL(µ ∗ γσ∥ν ∗ γσ)
)

d−→ N
(

0, v21(µ, ν, σ)
)

, (8)

where

v21(µ, ν, σ) :=

∫

Rd

∫

Rd

Σ(1,1)
µ,ν,σ(x, y) log

(

µ ∗ φσ(x)

ν ∗ φσ(x)

)

× log

(

µ ∗ φσ(y)

ν ∗ φσ(y)

)

dx dy.

In particular, (8) holds for β-sub-Gaussian µ with β < σ
such that ν ≪ µ ≪ ν and ∥dµ/dν∥∞∨∥dν/dµ∥∞ < ∞.

(iii) (Two-sample null) If µ has compact support, then there ex-

ists a version of Gµ,σ and G̃µ,σ such that Gµ,σ/
√
µ ∗ φσ

and G̃µ,σ/
√
µ ∗ φσ are L2(Rd)-valued, and

nDKL(µ̂n ∗γσ∥ν̂n ∗γσ) d−→ 1

2

∫

Rd

(

Gµ,σ(x)−G̃µ,σ(x)
)2

µ ∗ φσ(x)
dx,

(9)

where the limit can be represented as a weighted sum of

i.i.d. χ2 random variables with 1 degree of freedom.



(iv) (Two-sample alternative) If µ, ν have compact supports,

then

n
1

2

(

DKL(µ̂n ∗ γσ∥ν̂n ∗ γσ)− DKL(µ ∗ γσ∥ν ∗ γσ)
)

d−→ N
(

0, v22(µ, ν, σ)
)

, (10)

where

v22(µ, ν, σ) :=
∑

1≤i,j≤2

∫

Rd×Rd

Σ(i,j)
µ,ν,σ(x, y)L̃i(x)L̃j(y)dx dy,

with L̃1 :=log(µ ∗ φσ/ν ∗ φσ) and L̃2 :=−µ∗φσ/ν ∗φσ .

The proof of Proposition 1 hinges on Theorem 1 by identify-

ing primitive conditions in terms of µ, ν, and σ that guarantee

the regularity assumptions therein.

IV. APPLICATION TO AUDITING DIFFERENTIAL PRIVACY

We consider the application of our limit distribution theory

to auditing DP, which was introduced in [39] as an approach

for quantifying privacy leakage of privatization mechanisms.

We recall some DP notions that are relevant to our setting.

Consider a set U with a relation ∼ such that u ∼ v, for u, v ∈
U, denotes that u and v are adjacent. In the DP context, U

is a set of databases, while u ∼ v denotes that u and v are

adjacent databases, differing on a single entry. Let ϵ, δ ≥ 0. A

randomized (measurable) mechanism f : U → R
d is

(i) ϵ-differentially private if P(f(u) ∈ T ) ≤ eϵ P(f(v) ∈ T )
for every u ∼ v and T ∈ B(Rd);

(ii) ϵ-KL differentially private if DKL(µu∥µv) ≤ ϵ for every

u ∼ v, where µu ∈ P(Rd) is the distribution of f(u).

In addition, we say that a privacy mechanism is ϵ-smoothed KL

differentially private if DKL(µu ∗ γσ∥µv ∗ γσ) ≤ ϵ for every

u ∼ v, where σ > 0 is a pre-specified parameter. As ϵ-
DP is equivalent to supu∼v D∞(µu∥µv) ≤ ϵ, where D∞ is

the ∞-order Renyi divergence, it is clear that KL DP is a

relaxation of DP (see e.g. [40, Lemma 3.18]). By the data

processing inequality, we further have that smoothed KL DP

is a relaxation of KL DP.

In practice, given output samples from a privacy mechanism,

one encounters the problem of ascertaining whether the mech-

anism is differentially private or not, referred to as auditing DP.

In [18], a hypothesis test for auditing DP using a regularized

kernel RÂenyi divergence was proposed, where the null hy-

pothesis is that the mechanism satisfies (ϵ, δ)-DP. The authors

propose a decision rule achieving any non-zero significance

level (type I error probability), leaving the characterization of

the power (equivalently, type II error probability) open. Here,

utilizing Proposition 1, we put forth a principled hypothesis

testing pipeline for auditing DP using the Gaussian-smoothed

and the classical KL divergence. Our analysis accounts for

both significance and power of the test. We start from the

smoothed KL DP test.

A. Smoothed KL DP Test

The main objective of a privacy audit is to identify vio-

lations. For that reason, we set up an hypothesis test where

the null H0 corresponds to when privacy holds, and consider

a sequence of local alternatives H1,n that become harder to

distinguish from H0 as n grows. This models a situation where

the alternative hypothesis is arbitrarily close to the null, and

we seek a powerful test that successfully rejects the null, even

under these local alternatives. To define the local alternatives,

we consider a sequence of privacy mechanisms that violate

ϵ-smoothed KL DP by an O(n−1/2) amount.

Fix σ, ϵ, b, C > 0 and, for n ∈ N0, let fn : U → Ib :=
[−b, b]d be a sequence of privacy mechanisms. Denote a pair

of adjacent databases by (U, V ) ∼ π̃ ∈ P(U× U). Let πn :=
(fn, fn)#π̃ be the joint distribution of

(

fn(U), fn(V )
)

, where

# is the pushforward operation. The first and second marginals

of πn are denoted by µn and νn, respectively. We impose the

following assumption on the sequence (πn)n∈N0
.

Assumption 1 The sequence (πn)n∈N0
is such that

(i) there exists 0 ̸= h ∈ L2(π0) with nH2(πn, π0) →
∥h/2∥22,π0

,
∫

Rd×Rd h dπ0 = 0, and

(

n1/2

(

µn ∗ φσ − µ0 ∗ φσ

ν0 ∗ φσ

)

, n1/2

(

νn ∗ φσ

ν0 ∗ φσ
− 1

))

→
(

Eπ0
[h(X,Y )φσ(· −X)]

ν0 ∗ φσ
,
Eπ0

[h(X,Y )φσ(· − Y )]

ν0 ∗ φσ

)

in L∞(λ)× L∞(λ).
(ii) DKL(µ0 ∗ γσ∥ν0 ∗ γσ) ≤ ϵ and DKL(µn ∗ γσ∥νn ∗ γσ) ≥

ϵn,C := ϵ+ Cn−1/2 for all n sufficiently large.

Observe that Assumption 1(ii) implies that f0 satisfies ϵ-
smoothed KL DP while fn violates it for all n sufficiently

large. On the other hand, Assumption 1(i) is a technical

requirement that guarantees that the Gaussian-smoothed KL

divergence limit theorems needed for the analysis continue to

hold under the local alternatives setting, where πn changes

with n. Proposition 3 below presents an explicit construction

of (πn)n∈N0
that satisfies Assumption 1 for any σ, ϵ, b, C > 0.

For now, under this assumption, consider the following

binary hypothesis test with a sequence of alternatives:

H0 : DKL(µ0 ∗ γσ∥ν0 ∗ γσ) ≤ ϵ,

H1,n : DKL(µn ∗ γσ∥νn ∗ γσ) ≥ ϵn,C .
(11)

Let (X1, Y1), . . . , (Xn, Yn) ∼ π be pairwise i.i.d. samples of

the privacy mechanism’s output when acting on i.i.d. pairs of

adjacent databases, where π = π0 under H0 and π = πn

under H1,n. Denote the empirical measures of (X1, . . . , Xn)
and (Y1, . . . , Yn) by µ̂n and ν̂n, respectively. For a test statistic

Tn = Tn(X1, . . . , Xn, Y1, . . . , Yn), a standard class of tests

rejects H0 if Tn > tn, where tn is a critical value chosen

according to the desired level τ ∈ (0, 1). The operational

meaning of rejecting H0 is declaring that ϵ-smoothed KL DP

is violated, and hence, also ϵ-DP itself. We say that such

a sequence has asymptotic level τ if lim supn→∞ P(Tn >
tn|H0) ≤ τ . The power of a test is the probability that it

correctly rejects H0, i.e., P(Tn > tn|H1,n), and the asymptotic

power is lim infn→∞ P(Tn > tn|H1,n). Lastly, the sequence

of tests is called asymptotically consistent if its asymptotic



power is 1. These definitions specialize to the case of a fixed

alternative H1 by H1,n = H1 and πn = π1, for all n ∈ N.

For τ ∈ [0, 1], let Q−1(τ) = inf
{

z ∈ R :

(2π)−1/2
∫∞

z
e−u2/2du ≤ τ

}

. The following proposition

provides a test statistic for the above hypothesis test and char-

acterizes its asymptotic level and asymptotic power against

local alternatives.

Proposition 2 (Smoothed KL DP audit) Suppose Assump-

tion 1 holds. For 0 < τ, τ ′ ≤ 1, there exists a constant

cb,d,σ (see [37, Equation (108)]) such that the test statistic

Tn = DKL(µ̂n ∗ γσ∥ν̂n ∗ γσ) with critical value tn = ϵ +
cb,d,σQ

−1(τ)n−1/2 achieves an asymptotic level τ and asymp-

totic power at least 1− τ ′ for the test in (11), whenever C >
Cb,d,σ,τ,τ ′∨0 and Cb,d,σ,τ,τ ′ = cb,d,σ

(

Q−1(τ)−Q−1(1−τ ′)
)

.

The proof of the above claim relies on the limit distribution

result for smoothed KL divergence given in (10) along with its

refinement to account for the local alternatives scenario, i.e.,

treating the sequence of distribution pairs (µn∗γσ, νn∗γσ)n∈N,

instead of a fixed one. This refinement is derived under As-

sumption 1 by invoking Le Cam’s third lemma [15, Theorem

3.10.7]. Given these results and the fact that the relevant

limit distributions are Gaussian, Proposition 2 follows by an

analysis of the asymptotic level and power via the Portmanteau

theorem [15, Theorem 1.3.4]. Note that the constant Cb,d,σ,τ,τ ′

is positive whenever τ+τ ′ < 1, which is when the requirement

C > Cb,d,σ,τ,τ ′ is active. Operationally, τ + τ ′ < 1 means

that the sum of type I and type II error probabilities is less

than 1, which is the interesting regime for hypothesis testing;

otherwise, a test based on a random coin flip is preferable.

We next provide an explicit construction of a sequence of

couplings (πn)n∈N0
satisfying Assumption 1.

Proposition 3 (Construction for Assumption 1) We have:

(i) Let π0 ∈ P(Rd × R
d) be such that µ0 ̸= ν0, ν0 ⊗ µ0 ≪

π0, ∥d(ν0 ⊗ µ0)/dπ0∥∞,π0
< ∞ and ∥hπ0,c̄∥2,π0

< ∞,

where hπ0,c̄ := c̄
(

d(µ0 ⊗ ν0)/dπ0) − (d(ν0 ⊗ µ0)/dπ0)
)

and c̄ > 0 is an arbitrary constant. Let πn ≪ π0 be

the probability measure specified by the relative density

dπn/dπ0 = 1 + n− 1

2hπ0,c̄, whenever the right-hand side

(RHS) is non-negative π0-a.s.; otherwise, set πn = π0.

Then, πn satisfies Assumption 1(i) with h = hπ0,c̄.

(ii) Let π0 ∈ P(Ib×Ib) and σ be such that µ0 ̸= ν0, ν0⊗µ0 ≪
π0, ∥d(ν0 ⊗ µ0)/dπ0∥∞,π0

∨∥d(µ0 ⊗ ν0)/dπ0∥2,π0
< ∞

and DKL(µ0 ∗ γσ∥ν0 ∗ γσ) = ϵ. Then, there exists a

sufficiently large c̄, such that πn as defined in Part (i)
satisfies Assumption 1 with h = hπ0,c̄ for any C > 0.

Proposition 3(ii) provides a method of constructing πn for

the hypothesis test in (11), given π0 that satisfies the aforemen-

tioned regularity assumptions. This can be achieved, for in-

stance, by choosing π0 with µ0 ≪≫ ν0 ≪ λ, ∥dν0/dµ0∥∞ ∨
∥dµ0/dν0∥∞ < ∞, and DKL(µ0 ∗ γσ∥ν0 ∗ γσ) = ϵ.

B. KL DP test

A more stringent DP audit is realized by a hypothesis test for

detecting ϵ-KL DP violations, instead of its smoothed version.

We provide such a test against a fixed alternative:

H0 : DKL(µ0∥ν0) ≤ ϵ, H1 : DKL(µ1∥ν1) ≥ ϵ̃, (12)

where ϵ̃ > ϵ > 0. We again employ the test statistic Tn

from Proposition 2 with appropriately chosen σ. Doing so

requires additional assumption on the output distributions

of the DP mechanism, namely, that µi, νi, i = 0, 1, have

smooth Lebesgue densities belonging to the Lipschitz class

Lips,1(M,X ), with smoothness parameter s, norm parameter

M , and domain X ⊆ R
d; see [41].

Assumption 2 For i = 0, 1, the Lebesgue densities pµi
, pνi

∈
Lips,1(M, Ib) and ∥pµi

/pνi
∥∞ ∨∥pνi

/pµi
∥∞ ≤ M for some

0 < s ≤ 1 and M > 0. Further, DKL(µ0∥ν0) ≤ ϵ and

DKL(µ1∥ν1) ≥ ϵ̃ for some ϵ̃ > ϵ > 0.

Assumption 2 is not restrictive in practice. Indeed, the def-

inition of DP itself necessitates that ∥pµu
/pµv

∥∞ is bounded

uniformly over all u, v ∈ U with u ∼ v. Moreover, the Lip-

schitz class grows as we shrink the smoothness parameter s,

whereby ∪M≥0Lip1,1(M, Ib) ⊆ ∪M≥0Lips,1(M, Ib) (since

we assume s ∈ (0, 1]). As functions with bounded variation

(for d = 1) over Ib are elements of ∪M≥0Lip1,1(M, Ib),
Assumption 2 allows for most densities of practical interest.

We are now ready to state the ϵ-KL DP audit result. As it

may be unrealistic to assume that the exact values of M , s,

and ϵ̃ are known when constructing Tn and choosing critical

values, the following proposition only requires the existence

of known constants M̄ ,ϵ̄,
¯
s, and s̄ such that M ≤ M̄ < ∞,

ϵ < ϵ̄ ≤ ϵ̃, and 0 <
¯
s ≤ s ≤ s̄ ≤ 1.

Proposition 4 (KL DP audit) Suppose Assumption 2 holds.

There exists constants cb,d,σ and σϵ,ϵ̄,
¯
s,s̄,d,M̄ such that for

all 0 < τ ≤ 1 and 0 < σ < σϵ,ϵ̄,
¯
s,s̄,d,M̄ , the test statistic

Tn = DKL(µ̂n ∗ γσ∥ν̂n ∗ γσ) with critical value tn = ϵ +
cb,d,σQ

−1(τ)n−1/2 is asymptotically consistent and achieves

asymptotic level τ for the test in (12).

Explicit expressions for cb,d,σ and σϵ,ϵ̄,
¯
s,s̄,d,M̄ are given in

[37, Equation (108)] and [37, Equation (110)], respectively.

The key difference between the proof of this claim and that

of Proposition 2 is that given M̄ , ϵ̄,
¯
s, and s̄, one may choose

σ > 0 small enough so that DKL(µ1 ∗ γσ∥ν1 ∗ γσ) > ϵ while

DKL(µ0 ∗ γσ∥ν0 ∗ γσ) ≤ ϵ. Choosing such a σ, the claim then

follows by utilizing (10) along with the Portmanteau theorem

to bound the type I and type II error probabilities associated

with Tn. The aforementioned choice of σ relies on a stability

lemma for smoothed KL divergence given next, which may

be of independent interest.

Lemma 1 (Stability of smoothed KL divergence) Let X ⊆
R

d, and µ, ν ∈ P(X ) have Lebesgue densities pµ and pν ,

respectively. Further, assume that pµ, pν ∈ Lips,1(M,X ) and

∥pµ/pν∥∞ ∨ ∥pν/pµ∥∞ ≤ M for some M ≥ 1. Then,

∣

∣DKL(µ∥ν)−DKL(µ ∗ γσ∥ν ∗ γσ)
∣

∣≤ cM(1+M + logM)σs,

where c= cd,s :=
∫

Rd∥z∥sφ1(z)dz only depends on s and d.
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